
Towards Global Reinforcement

Learning

by

Milen Pavlov

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Milen Pavlov 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Sequential decision making under uncertainty is a ubiquitous problem. In ev-

eryday situations we are faced with a series of decisions that aim to maximize the

probability of achieving some goal. However, decision outcomes are often uncertain

and it is not always immediately evident how to determine if one decision is better

than another. The Reinforcement Learning framework overcomes this difficulty by

learning to make optimal decisions based on interactions with the environment.

One drawback of Reinforcement Learning is that it requires too much data (in-

teractions) to learn from scratch. For this reason, current approaches attempt to

incorporate prior information in order to simplify the learning process. However,

this is usually accomplished by making problem-specific assumptions, which limit

generalizability of the approaches to other problems. This thesis presents the first

steps towards a new framework that incorporates and exploits broad prior knowl-

edge in a principled way. It uses Constraint Satisfaction and Bayesian techniques to

construct and update a belief over the environment, as well as over good decisions.

This allows for incorporating broad types of prior knowledge without limiting gen-

eralizability. Preliminary experiments show that the framework’s algorithms work

well on toy problems in simulation and encourage further research on real-world

problems.

iii

Contents

1 Introduction 1

2 Background 5

2.1 Bayesian Learning . 5

2.1.1 The Dirichlet Distribution 8

2.1.2 The Dirichlet Mixture . 10

2.2 Reinforcement Learning . 11

2.3 Linear Constraint Satisfaction . 15

2.3.1 The Simplex Method . 18

2.3.2 Euclidean Distance Minimization 19

3 Related Work 20

4 The Global Reinforcement Learning Framework 23

4.1 Terminology . 25

4.2 Prior Knowledge Elicitation . 26

4.3 Agent’s Belief As a Joint Mixture of Dirichlets 28

4.3.1 Prior Knowledge Incorporation 29

4.3.2 Action Selection . 33

4.3.3 Belief Update . 34

4.3.4 Known Limitations . 35

4.4 Agent’s Belief as a Marginal Mixture of Dirichlets 36

4.4.1 Prior Knowledge Incorporation 37

iv

5 Experiments and Results 41

5.1 Testing Prior Belief . 43

5.2 Testing Consistency Measure . 45

5.3 Testing Convergence to Optimal Behaviour 46

5.4 Testing Scalability . 48

6 Conclusions 50

6.1 Future Work . 51

Appendix A: Symbols Glossary 54

References 56

v

List of Figures

2.1 Visualization of a Linear Programming Problem in 2D 18

4.1 Agent’s lifecycle . 24

5.1 A simple test world. 42

5.2 Rewards plot of competing learning strategies. 47

5.3 Time required for belief construction. 49

vi

Chapter 1

Introduction

Sequential decision making is a ubiquitous problem. In everyday situations, such as

grocery shopping, driving a car, playing competitive sports or even just socializing

with friends, we are faced with a series of decisions. Should I buy some broccoli or

go for spinach instead? Should I take the next exit or stay on and hope the traffic

jam clears up? Should I pass the ball or try to score myself? In such situations

we often have a specific goal in mind (e.g., cooking a delicious and healthy meal)

and we aim to make decisions that maximize the probability of achieving this goal

(e.g., buying the appropriate vegetables).

Sequential decision making is not too difficult to reason about if we can predict

with certainty the effects of all our decisions. Unfortunately, this is often not the

case. Many times we need to make decisions without fully understanding their

effects. For example, we cannot tell if passing to a teammate will result in winning

the game. We do not know if taking the next exit will not result in getting stuck

in a worse traffic jam. In such scenarios we are faced with making decisions under

uncertainty and it is not immediately evident how to determine if one decision is

better than another.

Fortunately, in Operations Research there already exists a framework for se-

quential decision making under uncertainty. This framework is referred to as a

Markov Decision Process. A Markov Decision Process models the world as a finite

state machine: it assumes that the world can be in one of a set of predefined states

and that decisions affect the world by changing its current state to another. This

change is referred to as a transition. The uncertainty in the effects of decisions is

modelled by means of a stochastic transition function. That is, from any state, any

decision has some specific probability to result in a transition to any other state.

States and decisions are also associated with some rewards (utilities). For exam-

ple, being in one state might be more rewarding than being in another. Thus, by

1

combining probability theory and utility theory, we can reason about the expected

reward of each possible decision. From there, the task is simple: simply choose

decisions that maximize the expected reward.

For example, consider the game of football (or soccer, as it is known in North

America). The game starts with score 0-0. This can be viewed as the state of the

world and we will refer to it as state “00”. If the away team scores then the score

becomes 0-1 and the world transitions to state “01”. Suppose we were on the away

team and would understandably associate a high reward with such a transition.

Coming back to the decision of passing, we could model the problem by associating

specific probabilities with the different outcomes of different decisions. Given the

choice between passing to Cristiano Ronaldo or passing to Wayne Rooney, it is

clear that either decision has a nonzero (and likely much higher) probability of

transitioning to state “01”. Of course, given that Rooney is a skilled striker, the

probability associated with passing to him might be slightly higher. Therefore, the

expected reward associated with the decision to pass to him will also be higher and

so this will be the optimal decision to make.

But what if the transitions and rewards were not known in advance? What if

we did not know who Rooney was and really could not tell who had the better

chance of scoring? What if, in addition to the reward associated with scoring, we

also associated another reward with just watching Ronaldo play attractive football,

and did not know a priori which of the two rewards was greater?

This is where Reinforcement Learning becomes useful. Reinforcement Learning

allows sequential decision making under uncertainty even when the transitions and

rewards are unknown. It works by observing the feedback of our decisions (partic-

ularly, the resulting transition and the associated reward) and learning to expect a

similar feedback the next time we find ourselves in the same situation. In this way,

after sufficient decision making, the transition function and the reward function are

both learned.

However, Reinforcement Learning is not easy to perform. Out of the three

Machine Learning frameworks—supervised, unsupervised and reinforcement—it is

perhaps the most difficult, due to the following challenges:

1. Feedback is received in terms of reinforcement (e.g., a reward of “5”) instead

of labeled data (e.g., “this action was the correct one”). This makes it difficult

to reason about the optimality of our decisions. For example, sliding on the

grass to steal the ball from an opponent might result in a success and some

positive reinforcement, but from that evidence alone it is not clear whether

sliding is always the best option.

2

2. The sequential aspect implies that the reward for a decision might come very

late, perhaps after making numerous other decisions along the way. This

makes it difficult to properly assign credit to individual decisions. For exam-

ple, if Rooney scores a goal, is the credit his for delivering a piercing shot in

the top corner of the net, or does Ronaldo also deserve a substantial part of it

for whirling past three defenders, drawing the goalkeeper out and delivering

the perfect pass?

3. Data (in terms of reinforcements) is often very limited and/or costly because it

is obtained through exploration (i.e., interacting with the environment). Com-

plete exploration is generally impossible for two reasons. First, the amount

of time required to explore all possible effects of all possible decisions is often

prohibitively large. For example, no football player has ever tried all possible

ways of scoring a goal. And second, there usually exist decisions that can po-

tentially incur very large penalties (negative reinforcement) and should never

be taken. For example, most football players would never decide to vent frus-

tration by headbutting an opponent, as it might result in a red card and a

ban from the sport.

The first two challenges are well documented and explored in existing research

on Reinforcement Learning. This thesis focuses on the last one.

Prior information helps immensely with this challenge. If someone told us in

advance that specific decisions would lead to specific outcomes then (barring any

trust issues) it would greatly simplify our learning process. Let us see why this is

the case. In the beginning of the learning process we know nothing about anything:

the real world could be one of infinitely many hypothetical worlds. To learn, we

observe the feedback of our decisions (and the ensuing actions) and start to favour

hypotheses that are consistent with this feedback. Prior knowledge helps by readily

specifying which hypotheses are favourable. It saves us all the exploration necessary

to determine this ourselves and so greatly speeds up the learning process. For

this reason, there is great motivation to incorporate as much prior information as

possible into learning problems.

Unfortunately, to our knowledge there does not currently exist any framework

for incorporating such broad prior knowledge in Reinforcement Learning, nor de-

veloping general algorithms that make use of it. The state of the art consists of

designing algorithms that employ ad-hoc shortcuts, which often rely on problem-

specific assumptions. As a result, it is hard to generalize these approaches to many

problems. Moreover, prior information is often only used implicitly through those

assumptions, which introduces difficulties with validating its correctness.

3

This thesis makes the first step to providing a framework to encode prior knowl-

edge in a more general and principled way. We consider a Bayesian approach,

whereby prior knowledge can be modelled as a probability distribution over hy-

potheses. This approach provides a principled way to make decisions based on that

distribution and also to update the distribution as a result of observing decisions’

outcomes. The main problem is how to construct such a prior disribution so that

it incorporates prior information about transitions, rewards and courses of actions

(policies). Doing this would enable us not only to exploit one or two pieces of

information to learn about the third, but also to exploit all three to learn about all

three. In this document, we explore how this problem can be solved using various

Constraint Satisfaction techniques.

We summarize our contributions as follows:

• Incorporating prior knowledge over both transition models of the environment

and optimal policies. The benefit of this is twofold. One, prior knowledge

reduces uncertainty in both the true transition model and the optimal pol-

icy, which helps increase the rate of learning. And two, incorporating prior

knowledge about policies avoids performing potentially costly actions.

• Constructing a joint prior. This enables learning agents to simultaneously

reason about all pieces of prior knowledge given. We present two construction

approaches: one that estimates a joint distribution directly and one that

instead represents its constituent single and conditional distributions.

• Optimizing action selection directly. One of the approaches mentioned in the

previous point achieves this by sampling a policy from the marginal of the

joint distribution; the other - by using an already existing learning algorithm

(BEETLE [14]). In both cases, selected actions tend to be more exploratory in

the beginning of the learning process and more rewarding as time progresses.

• Proposing a measure of inconsistency between the two types of prior knowl-

edge. This may help identify problems with the elicited prior knowledge and

suggest if any of it should be rejected to preserve consistency.

This thesis is organized as follows. Chapter 2 reviews Reinforcement Learn-

ing, Bayesian learning and other algorithms that provide the building blocks for

our research. Chapter 3 offers a brief survey of current state-of-the-art learning

approaches. Chapter 4 details the framework we propose. Chapter 5 shows our ex-

periments and discusses their results. Chapter 6 concludes and suggests directions

for further research. Appendix 6.1 summarizes all symbols defined or otherwise

referred to in the document.

4

Chapter 2

Background

This chapter explains notation and concepts used throughout the rest of the doc-

ument. It is organized as follows. First, an overview of the Bayesian approach to

learning is given. This includes a discussion of useful ways of representing proba-

bility distributions in the context of learning. Next, we review the Reinforcement

Learning framework and how it can be used to learn the parameters of a Markov

Decision Process. Finally, we compare two methods for satisfying linear constraints.

While these are not generally related to the theory of Learning, in our case they

are useful for approximating learning parameters.

2.1 Bayesian Learning

Discussions on probabilities and statistics are often classified into one of two views:

the Classical and the Bayesian. The Classical view states that the probability of

an event x is equal to the expected relative frequency of occurrence of x. That is,

if we denote by xn the outcome of experiment n, then the physical probability of

outcome x is defined as

p(x) = lim
n→∞

∑n
i=1 δ(xi = x)

n

δ(cond) =

1 if cond evaluates to true

0 otherwise

Using the above formula, classical statisticians are able to estimate the likelihood

of event x occurring in the n-th experiment, given the outcomes of the previous

n− 1 experiments.

5

In contrast, the Bayesian view states that the probability of an event is equal

to the degree of belief someone assigns to it. Thus, it is not a physical property of

the environment, but rather a person’s belief in it. Often, such beliefs are given by

experts who have extensive knowledge of the environment and thus the ability to

give accurate estimations.

In the rest of this document, Bayesian probabilities will be referred to simply

as probabilities. In case we explicitly need to refer to a probability in the classical

sense, we will use the term physical probability.

First, let us review the standard notation used in Probability and Statistics.

We denote variables with uppercase letters (e.g., X, Θi) and values with their

corresponding lowercase letters (e.g., x, θi). It is sometimes useful to talk about

sets or vectors of variables. These we denote with bold uppercase letters (e.g., X,

Θi). Similarly, a set of values we denote by the corresponding bold lowercase letters

(e.g., xi, θi). We use p(X = x | ξ) to denote one’s degree of belief that X = x,

based on one’s state of information ξ. With p(x | ξ) we denote the probability

distribution for X. Whenever ambiguity does not arise, we may also use p(x | ξ)
as a shorthand notation for p(X = x | ξ).

Now we can proceed to define the Bayesian approach to learning. We use

the convention of Heckerman [7]. Consider a variable X, whose probability dis-

tribution we wish to learn. Let us denote this unknown probability distribution

by Θ. Consider also a set of observations (sometimes referred to as evidence),

e = {X1 = x1, ..., XN = xN}, where Xi denotes the variable representing the out-

come of the i-th experiment and xi - the outcome itself. The goal is to estimate the

likelihood that a certain outcome will occur in the (N + 1)-th experiment. That

is, we need to compute p(xN+1 | e, ξ). Bayesians do this by keeping an updated

distribution over Θ, p(θ | e, ξ), and using it to estimate p(xN+1 | e, ξ). Let us see

how we can use Bayes’ Rule to keep updating p(θ | ξ) every time we receive new

evidence e:

p(θ | e, ξ) =
p(θ | ξ)p(e | θ, ξ)

p(e | ξ)
(2.1)

To see how we can perform this computation let us examine each of the terms in

the equation. The denominator is a normalization constant and can be computed

using:

p(e | ξ) =

∫
θ

p(θ | ξ)p(e | θ, ξ)dθ

The second term in the quotient is readily computable, since the probability of

each event in e is dictated by the given θ. Finally, the first term in the quotient is

assumed known in advance. Normally, this is either through expert estimation or

6

through some other evidence occurring before e. (More discussion on this is given

later in this section.)

This method of computing a posterior distribution p(θ | e, ξ) from a prior

distribution p(θ | ξ) by incorporating some observed evidence e is referred to as a

Bayesian update.

Once we have computed the posterior, we can compute our estimate of the

probability of any one event xN+1 occurring in the next experiment.

p(xN+1 | e, ξ) =

∫
θ

p(xN+1 | θ, ξ)p(θ | e, ξ)dθ

There is one more detail that should be pointed out. Before we start learning, we

need a prior distribution that reflects our a priori knowledge of the problem domain.

There are two challenges associated with constructing such a prior. One, it must be

able to represent our prior knowledge relatively well. And two, it should facilitate

computation. For example, a conjugate prior is, by definition, computable in closed

form under the Bayesian update of (2.1). This allows the same representation to

be used for the posterior distribution so that it is easily computable using dynamic

programming techniques.

For very simple problem domains where the unknown variable is binary (e.g.,

with possible values 0 and 1) we only need to learn a single distribution (e.g., θ0, the

probability of observing a zero). Then, the Beta distribution offers a good model

for representation.

p(θ0 | ξ) = Beta(θ0;α0, α1) ≡
1

B(α0, α1)
(θ0)

α0−1(1− θ0)
α1−1 (2.2)

where the normalization constant 1/B(α0, α1) is given by the Beta function:

B(α0, α1) =

∫ 1

0

(t)α0−1(1− t)α1−1dt =
Γ(α0)Γ(α1)

Γ(α0 + α1)

Here Γ() is the gamma function - a generalization of the factorial function to the

domain of real numbers. In this scenario, the Beta distribution model is a good

choice because of the following two points. One, it can readily represent our prior

knowledge. Specifically, if we believe that, say, seven times out of ten we would

observe a zero then we can set α0 = 7 and α1 = 10− 7 = 3. And two, its posterior

is computable in closed form. This is clear from the following. For evidence e =

7

{Xi = 0}, Bayes’ Rule (2.1) gives us

p(θ0 | e, ξ) =
p(θ0 | ξ)p(e | θ0, ξ)

p(e | ξ)

=
Beta(θ0;α0, α1)p(e | θ0, ξ)

p(e | ξ)
= k(θ0)

α0−1(1− θ0)
α1−1p(Xi = 0 | θ0, ξ)

= k(θ0)
α0−1(1− θ0)

α1−1θ0

= k(θ0)
α0−1+1(1− θ0)

α1

= Beta(θ0;α0 + 1, α1)

where the normalization constant k is computed by

k =
1

B(α0, α1)p(e | ξ)

As we can see from above, the posterior is still a Beta distribution. In fact, the

only changes from the prior are an increment of the hyperparameter corresponding

to the observed event and an update of the normalization constant. The procedure

is symmetric for evidence e = {Xi = 1}.

However, in other scenarios it is desirable to track multi-valued variables and in

those cases we need other models of representation. We consider two such models:

The Dirichlet distribution and the mixture of Dirichlet distributions. The two are

discussed in detail in the following two subsections respectively.

2.1.1 The Dirichlet Distribution

The Dirichlet distribution is the multivariate generalization of the Beta distribu-

tion [6]. For some set of parameters θ = {θ1, ..., θI} and a set of corresponding

hyperparameters α = {α1, ..., αI}, the probability distribution of θ is given by

Dir(θ;α) ≡ 1

B(α)

I∏
i=1

(θi)
αi−1 (2.3)

where the normalization constant 1/B(α) is given by the multinomial Beta function

B(α) =

∫
θ

I∏
i=1

(θi)
αi−1 =

∏
i Γ(αi)

Γ(
∑

i αi)
(2.4)

Similar to the Beta distribution, the Dirichlet has the following constraints on its

parameters. ∑
i

θi = 1

8

∀i : αi > 0, θi ≥ 0

The Dirichlet distribution is more expressive than the Beta distribution because

it can encode knowledge about multivariate data. For example, if we observe the

results of throwing a biased 6-sided die and increment αi every time we see an i,

1 ≤ i ≤ 6, then with enough throws we can estimate the physical bias of the die.

(In fact, Dir(θ;α) gives us a probability distribution over all possible biases θ.)

Like the Beta distribution, the Dirichlet is also closed under a Bayesian update:

Given evidence that in the (n + 1)-th experiment we observed outcome xj, e =

{Xn+1 = xj}, we can compute the posterior as follows.

p(θ | e, ξ) =
p(θ | ξ)p(e | θ, ξ)

p(e | ξ)

= k

[∏
i

(θi)
αi−1

]
p(Xn+1 = xj | θ, ξ)

= k

[∏
i

(θi)
αi−1

]
θj

= k
∏
i

(θi)
αi−1+δ(i=j)

= Dir(θ;α+ êj)

êj = The j-th component of the I × I identity matrix

k =
1

B(α)p(e | ξ)

Since the posterior is also a Dirichlet distribution (with one of the hyperparameters

incremented), this model is suitable for Bayesian learning.

To construct a Dirichlet from prior knowledge we can use similar techniques as

with the Beta distribution. Let us define the precision s and the mean m of the

Dirichlet as follows:

s =
∑
i

αi

m =
α

s
Note that while the precision is a static number, the mean is vector of probabilities,

collectively denoting the expectation of the Dirichlet. Given both the precision and

mean, constructing the corresponding Dirichlet (i.e., determining the initial values

of its hyperparameters) is trivial:

α = sm

9

Admittedly, many real-world problems do not naturally lend themselves to estimat-

ing means and precision. For lack of a more practical way of constructing Dirichlets

however, this is currently the de facto standard.

Finally, it is worth noting that the Dirichlet distribution is unimodal. That is, it

encodes distributions that are peaked towards a single value. In scenarios where we

need to encode multimodal distributions we need to use a more expressive model,

such as the Dirichlet Mixture.

2.1.2 The Dirichlet Mixture

There are cases in which even the Dirichlet distribution is not expressive enough

to model the environment. For those cases we may choose to use a mixture of

Dirichlet distributions. We now proceed to define the formula and properties of

this Dirichlet Mixture.

For some set of parameters θ = {θ1, ..., θI}, a second-order set of hyperpa-

rameters α = {α1, ...,αD} (where each αd = {αd1, ..., αdI}) and a set of weights

c = {c1, ...cD}, the probability of θ is given by

DirMix(θ; c,α) ≡
D∑
d=1

cdDir(θ;αd) =
D∑
d=1

cd
1

B(αd)

I∏
i=1

(θi)
αdi−1 (2.5)

The normalizing constants 1/B(αd) are given by the multinomial Beta function, as

defined in (2.4). There are also the following constraints on the parameters of the

distribution. ∑
i

θi = 1

∑
d

cd = 1

∀d, i : αdi > 0, cd ≥ 0, θi ≥ 0

The Dirichlet Mixture is more expressive than a single Dirichlet because it can

model distributions over data drawn from different Dirichlets. For example, we

can model word frequencies in a document using a single Dirichlet distribution.1

This works well for documents that come from the same domain of knowledge (e.g.,

computer science theses). However, in cases where documents come from a variety

of domains, word frequencies in documents from different domains do not follow

the same Dirichlet distribution. In those cases, a Dirichlet Mixture is a better fit.

1Specifically, θi is the probability that any word is word i and αi is the count of observed
occurrences of word i in the document.

10

If we take a closer look at the analytical forms of the plain Dirichlet and the

Dirichlet Mixture, we can readily see why the second is more expressive: it takes

the form of a polynomial rather than a monomial. Since each monomial term in the

polynomial corresponds to a plain Dirichlet (which is unimodal), the complete mix-

ture can be used to encode multimodal distributions. In fact, it is well known that

polynomials can be used to effectively approximate any function. Therefore, any

probability distribution could potentially be approximated with a Dirichlet Mix-

ture. The quality of approximation would then depend on the number of monomial

terms in the mixture.

We show that a Dirichlet Mixture is also closed under a Bayesian update. Given

evidence that in the (n + 1)-th experiment we observed outcome xj, e = {Xn+1 =

xj}, we can compute the posterior as follows.

p(θ | e, ξ) =
p(θ | ξ)p(e | θ, ξ)

p(e | ξ)

=
1

p(e | ξ)

[∑
d

cd
1

B(αd)

∏
i

(θi)
αdi−1

]
θj

=
∑
d

cd
p(e | ξ)

· B(αd + ê)

B(αd)
· 1

B(αd + ê)

∏
i

(θi)
αdi−1+δ(i=j)

=
∑
d

c′dDir(θ;αd + ê)

= DirMix

(
θ; c′,

⋃
d

{αd + êj}

)

c′d =
B(αd + ê)

p(e | ξ)B(αd)
cd

Constructing a Dirichlet Mixture is not as straightforward as other previously

discussed distributions. The method of specifying mean and precision, while sound

in theory, proves difficult to apply in practice. This is because, in the case of

mixtures, several (mean,precision)-tuples need to be specified, in addition to a set

of weight values. Learning problems usually do not possess structure that could

intuitively be converted to this format. Furthermore, we are not aware of any other

principled methods for constructing a Dirichlet Mixture.

2.2 Reinforcement Learning

While Bayesian Learning deals with inferring probability distributions over un-

known variables, which could potentially be used as a basis for making good de-

cisions in different situations, Reinforcement Learning deals with the problem of

11

making good decisions directly. By adding the notion of an agent to the environ-

ment and explicitly specifying possible actions, Reinforcement Learning aims to

learn which actions the agent should perform in which states of the environment.

Let us see how this problem can be formulated mathematically.

The environment in Reinforcement Learning settings is usually modelled using

a Markov Decision Process (MDP) [1]. An MDP is formally defined as a tuple

〈S,A, T (), R()〉, where:

• S is the set of states of the environment (also referred to as the state space).

We will denote states with s ∈ S.

• A is the set of actions that agents can perform in any of the states. We will

denote actions with a ∈ A.

• T : S × A × S → [0, 1] is a nondeterministic transition function that gives

the likelihood that the environment will transition to some specific state

as a result of some action being executed in some other state. Therefore,

T (s, a, s′) ≡ p(s′ | s, a). Note that T may be partially or completely unknown

to the agent.

• R : S × A → R is a reward function that specifies immediate rewards for

performing particular actions in particular states. For example, R(s, a) is the

reward agents associate with performing action a in state s. Normally, receiv-

ing rewards greater than zero is considered positive reinforcement because it

encourages taking the same actions again. Conversely, rewards less than zero

convey negative reinforcement, which discourages similar actions.

At each time step, the agent observes the current state s ∈ S of the environment

and selects an action a ∈ A. As a result of the agent performing action a, the

environment transitions to state s′ ∈ S with probability T (s, a, s′). The agent then

observes the associated reward R(s, a) and the new state s′. The process repeats

indefinitely or until a final state is reached.

The goal of Reinforcement Learning is to determine what is the best action

to perform in each of the states in the state space. Mathematically, this means

finding a mapping of states to actions, π : S → A, where a = π(s) denotes the

action a to be selected at state s. This mapping function π is often referred to as

an action selection strategy, or more formally as a policy. Policies can be either

deterministic, in the sense that the same action will be selected every time the

agent visits the same state, or nondeterministic, in the sense that different actions

might be selected at different times the agent passes through the same state. An

12

example of the former type was given above; an example of the latter can be defined

as follows: π : S × A → [0, 1], where π(s, a) ≡ p(a | s). Note that we can encode

deterministic policies using the nondeterministic notation by setting π(s, ai) = 1

for some ai ∈ A and π(s, aj) = 0 for the remaining aj ∈ A, j 6= i. We will use this

notation henceforth without loss of generality.

There is still the question of what is considered a best action. In Reinforcement

Learning good actions are actions likely to yield relatively high long-term expected

reward. To distinguish from the immediate reward defined earlier, we will refer to

the long-term expected reward in state s as the value of reaching state s. We will

denote this value with V (s), where V : S → R. If the underlying MDP has a final

state then the value function V (s) can be defined simply as the sum of expected

rewards starting from state s: V (s) =
∑

a π(s, a) [R(s, a) +
∑

s′ T (s, a, s′)V (s′)]. If

the MDP does not explicitly define final states then we can introduce a discount

factor to deal with the infinite recursion. The resulting equation is referred to as

Bellman’s equation:

V (s) =
∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)
(2.6)

where the discount factor γ ∈ [0, 1] specifies how much more we value immediate

rewards over delayed rewards. Note that if γ = 1 then this formulation is the

same as the one defined for MDPs with a final state. We will therefore use this

formulation henceforth for the sake of preserving generality. On the other extreme,

if γ = 0 then the value of reaching a state is reduced to its expected immediate

reward: V (s) =
∑

a π(s, a)R(s, a). In practice, γ is usually set to a number close

to 1.

Similarly, we can define the optimal value function

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
We may sometimes wish to explicitly distinguish between the value achieved using

one policy versus another. In this case we may superscript a value function with a

specific policy (e.g., V π) to denote which policy achieves the value in question.

Using this notion of value we define the “best” action, or more formally the

optimal action, in some state s as the action that is expected to yield the maximum

value from state s onwards.2 If we denote this action with a∗s then we have

a∗s = argmax
a∈A

∑
s′∈S

T (s, a, s′)V ∗(s′) (2.7)

2Again, whenever ambiguity does not arise, we may use the optimal action to refer to any of
a number of equally-optimal actions.

13

Therefore, solving an MDP amounts to finding the optimal policy (i.e., one that

selects optimal actions in every state). We will denote this policy by π∗.

Many different methods exist for solving MDPs. Most of them work using

Dynamic Programming, by alternating between the following two steps:

1) π(s, a)← δ

(
a = argmax

a′∈A

∑
s′∈S

T (s, a′, s′)V (s′)

)

2) V (s)←
∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)

The first step here updates the (deterministic, in this case) policy based on the

current estimate of the value function. The second updates the value function

based on the current estimate of the policy.

One of the most popular methods that uses the above steps is Value Iteration [1,

9]. Value Iteration searches in the space of value functions to find V ∗ by combining

the two steps into the following one-step iterative update:

V (s)← max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)
(2.8)

Using this update rule V is guaranteed to converge to V ∗. [17] When this happens,

we can construct a deterministic π∗ using step 1) above.

Another method for solving MDPs is Policy Iteration. Policy Iteration searches

in the space of policies by performing step 1) once, then repeating step 2) until con-

vergence, then performing step 1) again and so on. We know we have converged to

the optimal policy when step 1) results in no change to the current policy estimate.

One final note worth drawing attention to before leaving the context of Rein-

forcement Learning is that of the tradeoff between exploration and exploitation. It

is often the case that learning agents know very little about the environment a pri-

ori and therefore do not know which actions are best to perform. As a result, they

often select actions that seem optimal given the limited knowldge they have, but

in fact may be sub-optimal. This is referred to as exploitation. During the agent’s

initial learning stages, exploitation is not a good strategy because it hinders (or, in

extreme cases, altogether avoids) learning. On the other hand, if agents purposely

select sub-optimal actions hoping to gain more information about the environment

then they are not fully utilizing the information thus gained. This is referred to as

exploration and it is often undesired because of frequently incurring opportunity

14

costs3. The tradeoff between exploration and exploitation refers to the fact that

the two are inversely related and it is not always obvious how to achieve balance.

To avoid this difficulty people often resolve to introducing a problem-specific pa-

rameter that controls this tradeoff. Usually, the parameter favours exploration in

the beginning of the learning process and later shifts more and more towards ex-

ploitation. An alternative is to optimize over the tradeoff directly, which has been

done by Poupart et al. [14] and is discussed in Chapter 3.

2.3 Linear Constraint Satisfaction

Constraint Satisfaction is the process of finding a solution to a set of constraints.

Constraints are usually specified in terms of equations with unknown variables. We

refer to these unknowns as decision variables. The goal is therefore to find a set of

assignments of values to decision variables, such that all constraints are satisfied.

A proposed set of assignments in general is called a solution and a solution which

satisfies all constraints is called a feasible solution. It is not unusual for problems to

have more than one feasible solution. However, in the case that no feasible solution

exists, the problem itself is called infeasible.

A special case of this class of problems is observed when all constraints are

linear (i.e., every term in every constraint is either a constant or a constant mul-

tiplied by the first power of a variable). In this case, we refer to the problem as

a Linear Constraint Satisfaction problem. Finding solutions to Linear Constraint

Satisfaction problems is generally easier than their non-linear variations.

In many real-world scenarios it is desirable to not just find any feasible solution

to a set of constraints but to find the optimal solution. The optimal solution is

defined as a feasible solution that minimizes or maximizes some function expressed

in terms of decision variables.4 This function is called the objective function. The

process of finding the optimal solution to a Constraint Satisfaction problem is

called Constraint Programming. Similarly, when we deal with linear constraints

and a linear objective function we are dealing with Linear Programming problems.

In the case of linear constraints but a quadratic (and convex) objective function

the problem is referred to as a Quadratic Programming problem.

3Opportunity cost is the difference in costs (or profits) between the action taken and an al-
ternative mutually exclusive action. It is borrowed from the field of Economics and used here to
refer to differences in rewards.

4Even though there could potentially exist multiple solutions with the same degree of optimal-
ity, applications usually do not distinguish between them. Therefore, whenever we refer to the
optimal solution, any other equally-optimal solution is acceptable.

15

In our research we often formulate problems using Linear Programming nomen-

clature. It is therefore useful to review this nomenclature. We briefly do this here.

For a more detailed description please refer to [18].

Given a 1 × J objective function vector f = [f1, ..., fJ], an I × J coefficient

matrix5 A = [a1, ...,aI]
T, where each ai = [ai1, ..., aiJ], and an I × 1 boundary

vector b = [b1, ..., bI]
T, the goal of Linear Programming is to find a J × 1 vector

x = [x1, ..., xJ]T that

minimizes fx

subject to Ax ≤ b (2.9)

x ≥ 0

While the formulation itself looks simple, it involves a number of variables and

coefficients that may be easily confused. A summary of what each vector/matrix

and their contents mean appears in Table 2.1.

Table 2.1: Summary of Linear Programming Terms

Term Meaning

x a solution

xj a decision variable

f the objective function

A the coefficients matrix

ai a vector of coefficients

aij a coefficient

b the boundary vector

bi a boundary term

aix ≤ bi the i-th constraint

Ax ≤ b all constraints

The above focuses on linear objective functions, but it is not difficult to extend

the same notation to quadratic functions. For example, we can use an objective

function of the form xTFx + fx, where the coefficients of the objective function

are given by the symmetric |x| × |x| matrix F and the 1× |x| vector f .

Note that the formulation of (2.9) minimizes (as opposed to maximizing) the

objective function. Nevertheless, we can still encode maximization problems by

simply optimizing over (−f)x instead of fx. The same trick can be used if a

5Here we denote matrices by bold uppercase letters and vectors - by bold lowercase letters.

16

constraint needs to be converted from an upper bound to a lower bound. Equality

constraints appear as a pair of a lower bound and an upper bound constraint:

aix = bi ⇔

∣∣∣∣∣ aix ≤ bi
aix ≥ bi

⇔

∣∣∣∣∣ aix ≤ bi
−aix ≤ −bi

Sometimes it is also useful to add more variables to the formulation of problems

in order to facilitate computation. (How will be explained later.) Such variables

are not contained in the final solution and so are referred to as slack variables.

In our research we often deal with overconstrained problems of the form

min
x≥0
||Ax− b|| (2.10)

where “overconstrained” means I � J , and ||Ax− b|| is some norm of (Ax− b).
The norm can be thought of as the “distance” between the two vectors Ax and b.

However, there are many ways to interpret “distance” between vectors. In general,

the p-norm of a vector x, denoted ||x||p, is defined as

||x||p ≡

(
J∑
j=1

|xj|p
) 1

p

(2.11)

We consider two norms in particular: the maximum norm (p = ∞) and the Eu-

clidean norm (p = 2).

||x||∞ = max
j
|xj| (2.12)

||x||2 =

√∑
j

(xj)2 (2.13)

If we take the maximum norm in equation 2.10 we obtain a linear objective

function. Therefore, we can use a Linear Programming method, such as the Simplex

method (see Sec. 2.3.1), to find the solution.

On the other hand, if we consider the Euclidean norm we obtain a quadratic

(convex) objective function6 and therefore a Quadratic Programming problem. To

find a solution we can use the method of minimizing Euclidean distance, described

in Sec. 2.3.2.

6The square root in (2.13) can be ignored when minimizing, thus leaving us with a quadratic
function.

17

2.3.1 The Simplex Method

Consider a Linear Programming problem of the form (2.9). Let us try to visualize

it geometrically. To keep things visually manageable, suppose the problem is two-

dimensional (i.e., j = 2) and we have only five constraints (i = 5). We can view

the constraints as half-planes in the Cartesian plane. Then, the intersection of all

such half-planes defines the space of all feasible solutions. This space is called the

feasibility region. Refer to Fig. 2.1.

Figure 2.1: A visualization of a Linear Programming problem in 2D. The shaded

(feasibility) region is bounded by the constraints Ax ≤ b and x ≥ 0 and contains

all feasible solutions. The optimal solution is given by the point on the boundary

of the feasibility region where the objective function fx achieves minimum value

c′.

The Simplex method works by exploiting the fact that there always exists an

optimal solution on one of the corners of the boundary of the feasibility region. It

begins by selecting a corner on the boundary and evaluating the objective function

at that corner. Next, it jumps to an adjacent corner, in the direction of decreasing

objective function values. When it reaches a corner whose neighbours both achieve

higher values, the current corner is returned as the optimal solution.

We can see (albeit not graphically) that this works in higher dimensions too.

For j ≥ 3 each constraint is represented by a half-space and the feasibility region

takes the form of a convex polytope. Then, moving along the boundary is less

trivial to imagine, but still as straightforward to perform computationally as in the

two-dimensional case.

This is how the Simplex algorithm can be used to solve Linear Programming

18

problems of normal form (2.9). In addition, it is not difficult to see that the same

method works for minimizing the maximum norm of the difference between two

vectors (thus solving equation 2.10). By introducing a slack variable ε, we can

convert (2.10) into the form of (2.9):

minimize ε

subject to Ax− b− εê ≤ 0

b−Ax− εê ≤ 0

ε ≥ 0

x ≥ 0

where ê is an I × 1 vector of ones. The above is clearly a Linear Programming

problem and as such can be solved by the Simplex method.

For more theoretical and computational details on the Simplex method refer to

[18].

2.3.2 Euclidean Distance Minimization

This method is useful when we need to solve problems of the form (2.10) when

the norm is taken in Euclidean terms. If we view f(x) = ||Ax − b||2 as the

objective function in a Constraint Programming problem then the Simplex method

fails because f(x) is not linear in x. The method described in this section overcomes

this problem by exploiting the fact that f(x) is quadratic:

f(x) = ||Ax− b||2
= (Ax− b)T(Ax− b)
= xTATAx− bTAx− xTATb+ bTb

= xTATAx− 2xTATb+ bTb

As we can see from above, f(x) is quadratic and convex. Therefore, its absolute

minimum can be found by setting its derivative to zero.

∂f(x)

∂x
= 0

⇒ 2ATAx− 2ATb = 0

⇒ ATAx = ATb

The solution is given by solving the above system of linear equations. If the columns

of A are linearly independent then its product with its transpose is invertible and

x = (ATA)−1ATb

19

Chapter 3

Related Work

In our research we aim to solve the Reinforcement Learning problem efficiently

by incorporating a broad range of prior information. Bayesian learning provides a

convenient framework to include prior information. Therefore, in this chapter, we

will review previous approaches to Bayesian Reinforcement Learning, paying close

attention to the type of prior information that they can take advantage of.

Bayesian Reinforcement Learning [15] is a framework that allows agents to not

only act optimally but also learn the underlying model of the environment. In [15]

Strens uses the idea that the uncertainty in the environment’s underlying MDP

model can be encoded with a probability distribution. He initially constructs a

distribution over all possible MDP models, referred to as hypotheses, and keeps

updating this distribution after observing evidence1 at each time step. This dis-

tribution is referred to as the agent’s belief. The policy at any time is given by

sampling a hypothesis from the current belief and determining the optimal policy

for that hypothesis. With time, the peak of the distribution shifts towards the true

MDP and so the policy converges to the optimal one. This approach implicitly op-

timizes the tradeoff between exploration and expectation in the sense that agents

will naturally tend to explore more often in the beginning of the learning process

and less when nearing convergence.

Dearden et al. propose a similar framework in their work on Bayesian Q-learning

[4]. They also model uncertainty the Bayesian way. However, instead of uncertainty

in the environment, they model uncertainty in the value of information associated

with performing an exploratory action. While this does not learn the underlying

model of the environment, it provides a more structured approach to measuring

1Evidence typically consists of the immediate reward received and the next state transitioned
to. In more complex scenarios it might also include observations drawn from an explicitly defined
set.

20

the tradeoff between exploration and exploitation. Namely, the agent can directly

compare the value of expected future rewards to the value of gaining exploratory

information and make a choice based on this comparison. Through the course of

learning the uncertainty is reduced and the selected actions converge to the optimal

policy.

Another solution to Bayesian Reinforcement Learning is given by Poupart et al.

[14], where they model the environment and the uncertainty in it with a Partially

Observable MDP (POMDP). A POMDP is an extension of an MDP where the

state space is not fully observable but instead can be reasoned about through an

explicitly defined set of observations. In this work, the underlying MDP model of

the environment is considered a part of the state space (i.e., the partially observable

part) and is learned through the course of acting. Poupart et al. show that in

this case the optimal value function is the upper envelope of a set of multivariate

polynomials and develop an algorithm (BEETLE) that exploits this fact to compute

an optimal policy offline. Their algorithm is practical because it allows online

learning with minimal computation overhead (only belief monitoring is performed)

and at the same time maximizes the expected total reward. The approach also

optimizes exploration and exploitation directly, since the action selection process

implicitly takes into account how the belief will change as a result of the selected

action.

In a recent paper ([5]), Doshi, Roy and Pineau propose a Reinforcement Learn-

ing framework where a POMDP-modelled environment and the uncertainty in it

are themselves modelled by a larger “model-uncertainty” POMDP. In their case

the BEETLE algorithm does not scale because of the continuous and partially ob-

servable nature of the underlying environment, so they develop their own active

learning approach. In their approach the agent selects actions that minimize the

Bayes risk or, in the case when this risk is above a certain threshold, the agent

admits there is too much uncertainty associated with all actions and asks a query

to reduce this uncertainty instead of choosing a potentially disastrous action. The

obvious disadvantage of this approach is the assumption that an oracle (e.g., an

expert with perfect knowledge about the policy) is available online 100% of the

time. It is nevertheless a viable option to consider in scenarios where the cost of

active learning is lower than the cost of making frequent exploratory mistakes.

Note that the above approaches generally aim to learn about the transition

parameters of the MDP model to infer a policy. Inverse Reinforcement Learning

[12] takes a different approach and tries to infer the environment’s reward function

by observing a rational agent’s behaviour. It does so by first characterizing a set of

all feasible reward functions given the observed policy. This set might be too big

21

to work with – Ng and Russel refer to this phenomenon as degeneracy. They deal

with degeneracy by using heuristics to select a reward function that maximally

differentiates the observed policy from other suboptimal policies. The resulting

problem is solved using Linear Programming. Here the notions of exploration and

exploitation are irrelevant, since there is no action selection process.

A similar approach is adopted by Chajewska, Koller and Ormoneit in [2], where

they learn an agent’s utility function2 from past behaviour for the purpose of pre-

dicting future behaviour. The main difference with Ng’s method above is that here

Bayes rule is used to update a prior over utility functions given the agent’s newly

observed actions as evidence. Samples from the posterior are viewed as likely utility

functions.

So far we have seen how to take into account prior information over transition

dynamics, reward functions or policies to learn about each by assuming (most of)

the rest are known. Our research aims to construct a framework that takes into

account priors over all three, to learn about all three.

2Utility function here is the same as a reward function, except that it is considered a property
of the agent, not the environment.

22

Chapter 4

The Global Reinforcement

Learning Framework

In this chapter we explain how to construct a framework that empowers the learning

agent to achieve the following goals:

1. To incorporate broad prior knowledge about the learning problem so that

costly actions are avoided and rate of learning is increased

2. To learn the parameters of the environment so that the agent knows how the

environment will react to an action

3. To learn to act optimally so that high rewards can be achieved

How would we know if we have achieved those goals? We adopt an approach

similar to Bayesian Reinforcement Learning, where the agent forms a belief about

the world and updates this belief through interacting with the environment. First,

we attempt to incorporate prior knowledge about both the underlying MDP model

of the environment and the optimal policy. Forming a belief that reflects such prior

knowledge satisfies goal 1. Next, we let the agent observe the effects of his actions

on the environment, while updating his belief after each observation. If the agent’s

belief (or more specifically, the part of it that monitors the environment) converges

to the true MDP model then goal 2 is satisfied. Finally, we tell the agent to select

actions that are consistent with his current belief. Assuming goal 2 is eventually

satisfied, goal 3 will be as well.

Since a learning framework is practically a program to be loaded onto an agent,

it is useful to see how everything will look like from an agent’s point of view.

Consider the lifecycle of a Bayesian learning agent, illustrated in Fig. 4.1.

23

Figure 4.1: Agent’s lifecycle

In the first step above, information is gathered from domain experts and used

to construct the agent’s initial belief. This process can be divided into two parts:

prior knowledge elicitation and prior knowledge incorporation. The elicitation step

involves querying experts to extract knowledge in a format that is both easily speci-

fiable by humans and readily interpretable by machines. This step is discussed in

Sec. 4.2. The incorporation step involves the mathematical work behind converting

the elicited knowledge into an initial belief. This is discussed in Sec. 4.3.1. Step

2 in the agent’s lifecycle is the action selection step and involves rules by which

the current belief is used to decide which action seems optimal under the current

conditions. These rules are given in Sec. 4.3.2. Steps 3 and 4 represent interactions

between the environment and the agent. When learning in simulation these steps

are typically simulated. When learning in the real world the steps are typically

performed by the hardware comprising the logical entity we here refer to as an

agent. Therefore, in both cases the details of steps 3 and 4 need not be specified

by the learning framework. Finally, step 5 deals with how the agent modifies his

belief about the world, based on the new evidence just observed. This is discussed

in Sec. 4.3.3.

This chapter continues with definitions of some useful terms in the context of

our framework. The rest of the chapter is organized as outlined above.

24

4.1 Terminology

We assume the learning problem takes place in an environment that can be modelled

by a Markov Decision Process. (See Sec. 2.2 for a formal definition of MDPs.)

The unknown parameters in an MDP are usually the transition dynamics and

the rewards. Without loss of generality, we consider learning only the transition

dynamics to keep the exposition simple. Therefore, we define

Environment = 〈S,A, T ()〉
S = set of states

A = set of actions

T : S × A× S → [0, 1]

We have purposely left out the reward function normally present in MDPs, as we

will later define it as a property of the learning agent. While the sets of states and

actions are known and observable, the transition function is only observable. That

is, the agent does not know the value of T (s, a, s′) but can infer it by performing

action a in state s and recording the frequency of transitions to state s′. We break

this unknown function into single probability parameters θsas′ , one for each (s, a, s′)

triplet. Therefore, learning the transition function T is equivalent to learning the

Unknown transition parameters = θsas′

θsas′ ≡ T (s, a, s′) ∈ [0, 1]

that together form the

Transition model = θ

For every environment there is also an optimal policy (i.e., one that in any state,

enables agents to gain no less reward than using any other policy).

Optimal policy = π∗

π∗ : S × A→ [0, 1]

The optimal policy is also unknown so we parameterize it using

Unknown policy parameters = πsa
πsa ≡ P (a is optimal | s)

25

When we talk about learning a policy it is implicit that we are seeking an optimal

policy. Therefore we may omit the ∗ and simply write π.

Learning will be performed in the environment by an agent. This agent has some

belief about the world, that dictates what he thinks will happen if he performs a

particular action and also, what he thinks is the best action to perform. He also has

a utility function that describes how much he favours some scenarios over others.

Note that such a utility function has the same purpose as a reward function in

an MDP. However, this definition allows different agents to have different utilities,

which we find reasonable.

Agent = 〈B,U()〉
B = agent’s belief

U : S × A→ [0, 1]

We have considered several implementations of the belief B. One of them we

formally describe in Sec. 4.3. Other alternatives we outline in Sec. 4.4.

Another issue we deal with is incorporating prior knowledge. Since we want to

learn about both the transition model θ and the optimal policy π it is worthwhile

to incorporate prior knowledge about both entities. We assume such knowledge is

available individually for each entity in terms of a probability distribution over all

possibilities.

Prior knowledge over transition dynamics = P̄ (θ)

Prior knowledge over policies = P̄ (π)

We use the bar in P̄ (x) to distinguish the prior probability of x from the actual

probability P (x). In Sec. 4.2 we discuss how we can convert prior knowledge given

by humans (domain experts) to this machine-readable form.

The goal is then to use the given P̄ (θ) and P̄ (π) to construct a belief B that

the agent will use to select actions and will update after observing each action’s

effects, for the purpose of eventually converging to the true θ and π, while at the

same time collecting optimal (or near optimal) utilities along the way.

4.2 Prior Knowledge Elicitation

Our framework incorporates prior knowledge of the form P̄ (θ) and P̄ (π). How-

ever, note that these are second-order probability distributions (i.e., probability

26

distributions over probability distributions) and as such may not be very easy to

specify directly by domain experts. This difficulty may be overcome by adopting a

Dirichlet representation for the probability distributions and specifying their means

and precisions (see Sec. 2.1.1). Therefore, in the Reinforcement Learning setting,

prior knowledge may be specified using statements like:

“With X amount of certainty, I believe that performing action a in state s has Yi
probability to lead to state si.”

Here X can be interpreted as the number of trials that this belief is based on, and

so it specifies the precision of the Dirichlet distribution for θsa. On the other hand,

the Yi values directly specify the mean.

This allows us to elicit the prior P̄ (θ) in a more user-friendly manner. The same

technique can be used to construct P̄ (π) as well.

Note, however, that the two priors P̄ (θ) and P̄ (π) only encode information

about the transition dynamics and the policy separately. But there is another

piece of information that should be taken into account - the degree to which a

policy is optimal for a given transition model. This third piece of prior knowledge

is always implicit in every learning problem and it needs no explicit elicitation. In

fact, we can encode it using Bellman’s equation and the notion of value functions

(2.6). Consider the following Loss function

L(θ,π) = max
s
V ∗(θ, s)− V π(θ, s) (4.1)

where the optimal value function and the policy-specific value function follow the

definitions given in Sec. 2.2. Intuitively, the Loss function tells us how much utility

is lost by using a non-optimal policy in the worst case. In other words, given a

transition model, it computes a policy’s opportunity cost. We can see that for

(θ,π)-pairs where π is optimal L(θ,π) will be zero. For non-optimal π the Loss

value will be greater if the actions chosen by π achieve lower utilities than π∗.

It may be worth noting that there are other ways of representing the Loss

function. For example, in learning problems that have a predefined start state

we can drop the max over states and simply compute the opportunity cost from

the start state on. In other scenarios, there might be states which are costly but

rarely reachable. This might result in some policies having an “unfairly” high Loss

value under the current “worst-case” definition. Such unfairness could be corrected

by taking an expectation over states, so that the opportunity costs associated with

improbable states do not have as high an impact on the Loss value. In our research,

27

we choose to work with the worst-case Loss to obtain an upper bound on policy

suboptimality.

To summarize, our framework uses three pieces of information as prior knowl-

edge: a prior over transition models P̄ (θ), a prior over policies P̄ (π) and the implicit

degree of optimality of each (θ,π)-pair. While the first two are specified by domain

experts, the last is computed automatically using L(θ,π). How to combine these

three pieces into a whole is explained in the next section.

4.3 Agent’s Belief As a Joint Mixture of Dirich-

lets

The agent’s belief B is normally a distribution over all possibilities of the unknown

parameters we wish to learn. In our case, since we are learning about both θ and

π, we have

B : θ × π → [0, 1]

We choose to represent B with a mixture of Dirichlet distributions for several

reasons. First, Dirichlets are conjugate priors - this means they are closed under

Bayes’ rule and will be easy to update. Second, they can be easily specified using

mean and precision. Third, mixtures of Dirichlets are multi-modal (as opposed to

the unimodal Dirichlet), so they can encode a broad variety of prior information.

Fourth, a mixture of Dirichlets can encode any positive polynomial and is therefore

very expressive.

We define B using the Dirichlet mixture below. Since B is a joint distribution,

the formulation differs slightly from that of (2.5).

B(θ,π) =
∑
ij

cij
∏
sas′

(θsas′)
nisas′

∏
sa

(πsa)
mjsa (4.2)

In this equation each of the two products can be viewed as an unnormalized Dirich-

let, corresponding to an unknown entity. Each unnormalized Dirichlet is defined by

its own set of hyperparameters (ni for the transition dynamics, mj for the policy).

These products are then weighted using the weights cij and summed. The weights

subsume the normalization factors of the Dirichlets, which avoids having to deal

with gamma functions altogether. Furthermore, cij values are used to encode the

correlations between the two unnormalized Dirichlets: for example, high weights

relate distributions that are consistent.

The free parameters of this joint mixture of Dirichlets are therefore the hyperpa-

rameters ni and mj and the weights cij. We will try to initialize these parameters

28

to reflect our prior knowledge, use them to determine optimal actions and update

them according to observed evidence.

4.3.1 Prior Knowledge Incorporation

The problem of incorporating prior knowledge amounts to constructing the agent’s

belief from the given prior knowledge.

Input: P̄ (θ), P̄ (π), L(θ,π)

Output: B(θ,π)

In fact, we can view prior knowledge incorporation as a Constraint Satisfaction

problem, where a set of constraints is used to enforce the correspondence of the

belief to each of the three pieces of input. For the first one—the prior over transition

dynamics—we can equate P̄ (θ) to B’s marginal1 of θ. Similarly, for the second one

we can equate P̄ (π) to the marginal of π. The third one is somewhat different,

in the sense that it does not specify explicit belief values. Instead, it imposes an

ordering over (θ,π)-pairs: a pair whose Loss value is greater than another’s should

have a lower belief value. We can describe these rules mathematically using the

following constraints.∣∣∣∣∣∣∣
∀θ :

∫
π
B(θ,π)dπ = P̄ (θ)

∀π :
∫
θ
B(θ,π)dθ = P̄ (π)

∀θ,π,π′ : L(θ,π) ≥ L(θ,π′)⇒ B(θ,π) ≤ B(θ,π′)

Note that in practice prior information can often be incompatible. For example,

an expert might think action a1 is the best thing to do in state s, yet at the

same time believe in a transition model that achieves better utilities using a2. We

want our framework to be able to handle such cases so we “soften” the above

constraints by adding a slack variable ε. This variable2 can be viewed as an error

term that grows with the amount of inconsistency present in the prior knowledge.

The resulting problem, therefore, is one of Constraint Programming, where we seek

1Since B is a joint probability distribution over both θ and π, we can integrate over one of
the variables to obtain a marginal distribution of the other. For example, the marginal of θ is∫

π
B(θ,π)dπ.
2Technically, in the following formulation ε is an infinite vector of variables (one for each θ,

each π and each pair) so our notation is slightly abusive.

29

to minimize some norm of this error term.

minimize ||ε||

subject to ∀θ : −ε ≤
∫
π

B(θ,π)dπ − P̄ (θ) ≤ ε

∀π : −ε ≤
∫
θ

B(θ,π)dθ − P̄ (π) ≤ ε

∀θ,π,π′ : L(θ,π) ≥ L(θ,π′)⇒ B(θ,π)−B(θ,π′) ≤ ε

Expanding the formula for B (eq. 4.2) we obtain

minimize ||ε||

subject to ∀θ : −ε ≤
∫
π

∑
ij

cij
∏
sas′

(θsas′)
nisas′

∏
sa

(πsa)
mjsadπ − P̄ (θ) ≤ ε (C1)

∀π : −ε ≤
∫
θ

∑
ij

cij
∏
sas′

(θsas′)
nisas′

∏
sa

(πsa)
mjsadθ − P̄ (π) ≤ ε (C2)

∀θ,π,π′ : L(θ,π) ≥ L(θ,π′)⇒∑
ij

cij
∏
sas′

(θsas′)
nisas′

[∏
sa

(πsa)
mjsa −

∏
sa

(π′sa)
mjsa

]
≤ ε (C3)

Solving the above constraint programming problem faces two challenges. The

first is performing the integration in each of the first two constraints. Fortunately,

we can avoid this by sampling some θ and π, so that we treat the integrals as sums

over the samples. The second challenge comes from the fact that our constraints are

not linear. In fact, we have variables as exponents and as multiplicative factors. It

is not clear how such a system of constraints can be easily satisfied. Since Dirichlet

mixtures are polynomials, we proceed in two steps: first, we construct basis func-

tions (monomials) that correspond to products of unnormalized Dirichlets; second,

we weigh those basis functions to satisfy the constraints.

Constructing Basis Functions

We define a basis function as a product of two unnormalized Dirichlets: one over

transition dynamics and one over policies. We denote basis functions with β :

θ × π → R+. We aim to construct multiple basis functions, one for each weight

cij. Then, the ij-th basis function is given by

βij(θ,π) =
∏
sas′

(θsas′)
nisas′

∏
sa

(πsa)
mjsa (4.3)

30

We will use the same letter to denote the individual components of basis functions.

βi(θ) =
∏
sas′

(θsas′)
nisas′

βj(π) =
∏
sa

(πsa)
mjsa

Let us first look at constructing βi(θ). We need to find exponents ni, such that

∀θ :

∫
π

∑
ij

cijβi(θ)βj(π)dπ ≈ P̄ (θ)

Or equivalently, minimize some error terms εθ, such that

∀θ :
1

εθ
≤ 1

P̄ (θ)

[∫
π

∑
ij

cijβi(θ)βj(π)dπ

]
≤ εθ

We proceed incrementally, starting with the case when i = j = 1. Then, there is

only one basis function and the above equation reduces to

∀θ :
1

εθ
≤ 1

P̄ (θ)

[∫
π

c11

∏
sas′

(θsas′)
n1sas′

∏
sa

(πsa)
m1sadπ

]
≤ εθ

∀θ :
1

εθ
≤ 1

P̄ (θ)

[
c11

∏
sas′

(θsas′)
n1sas′

∫
π

∏
sa

(πsa)
m1sadπ

]
≤ εθ

Since the product over policies is an unnormalized Dirichlet, we know its integral

is equal to the multinomial Beta function (eq. 2.2). This is just another constant,

so we multiply it with c11 and denote the product with z1.

∀θ :
1

εθ
≤ 1

P̄ (θ)

[
z1

∏
sas′

(θsas′)
n1sas′

]
≤ εθ

Now we can take the log of both sides.

∀θ : − log εθ ≤ log

[
z1

∏
sas′

(θsas′)
n1sas′

]
− log P̄ (θ) ≤ log εθ

∀θ : − log εθ ≤ log z1 +
∑
sas′

n1sas′ log θsas′ − log P̄ (θ) ≤ log εθ

It does not appear possible to easily make sure the above holds true for all θ.

However, we can sample some θ uniformly at random and make sure it holds for

those samples. Let θk denote the k-th of K samples. Then, we have a set of K

linear constraints to satisfy, while minimizing some norm of log ε =
⋃
θ log εθ. We

31

can see that the expression between the two inequality signs above is equivalent to

the difference between vectors Ax and b, where

x =
(

log z1 n1s1a1s1 n1s1a1s2 · · · n1s|S|a|A|s|S|

)T

b =
(

log P̄ (θ1) log P̄ (θ2) · · · log P̄ (θK)
)T

A =


1 log(θ1

s1a1s1
) log(θ1

s1a1s2
) · · · log(θ1

s|S|a|A|s|S|
)

1 log(θ2
s1a1s1

) log(θ2
s1a1s2

) · · · log(θ2
s|S|a|A|s|S|

)
...

...
...

. . .
...

1 log(θKs1a1s1
) log(θKs1a1s2

) · · · log(θKs|S|a|A|s|S|)


To find the x that minimizes the Euclidean norm of log(ε) then, we use the method

of minimizing Euclidean distance (see Sec. 2.3.2). Thus, we can extract the expo-

nents (hyperparameters) n1 directly from x.

Now we look at the difference between Ax and b. This difference is known as

the residual. (In fact, this is the same quantity our error terms εθ were seeking to

minimize.) Let us denote the positively shifted residual (formally defined below)

with ψ1. We will attempt to fit another monomial to approximate ψ1. To do this

we use the same matrix A as above, but we set b = logψ1. The minimization is

performed in the same way as above to obtain n2.

In general, to find hyperparameters ni we need to determine the value of each

ψik,

ψik = P̄ (θk)−
i−1∑
j=1

zj
∏
sas′

(θsas′)
njsas′ − shifti−1,

where shifti−1 = min
1≤k≤K

{
P̄ (θk)−

i−1∑
j=1

zj
∏
sas′

(θsas′)
njsas′

}
− 1

and minimize the Euclidean distance between Ax and the new b,

b =
(

logψi1 logψi2 · · · logψiK

)T

Note that taking the log of ψki is always allowed, since the shift term ensures ψi is

strictly positive. In particular, the −1 term in the shift ensures ψi is never zero,

while the rest ensures it is never negative. The iteration continutes until the residual

drops below a certain threshold, meaning our desired level of approximation has

been achieved.

Applying the same methodology to constraint (C2) we can find the hyperparam-

eters mj. We will then have all we need to construct the basis functions βij(θ,π).

Next, we must weigh them properly so as to satisfy all three constraints.

32

Weighing Basis Functions

Weighing basis functions means finding coefficients cij that satisfy constraints (C1),

(C2) and (C3), while minimizing ||ε||. Taking the infinity norm and sampling K

transition models and K ′ policies, we have

minimize ε

subject to ∀θk : −ε ≤
∫
π

∑
ij

cijβij(θ
k,π)dπ − P̄ (θk) ≤ ε (C1)

∀πk′ : −ε ≤
∫
θ

∑
ij

cijβij(θ,π
k′)dθ − P̄ (πk

′
) ≤ ε (C2)

∀θk,πk′ ,πk′′ : L(θk,πk
′
) ≥ L(θk,πk

′′
)⇒∑

ij

cijβi(θ
k)
[
βj(π

k′)− βj(πk
′′
)
]
≤ ε (C3)

Note that the only unknowns in the above formulation are the weights cij and the

error term ε. Moreover, the objective function and all constraints are linear in

terms of those unknowns. Therefore, this is a Linear Programming problem - one

we can solve by the Simplex method (see Sec. 2.3.1).

Now that we have the hyperparameters ni and mj and the weights cij, we have

constructed the Dirichlet mixture that encodes all our prior knowledge and we are

ready to start using it as the agent’s belief.

4.3.2 Action Selection

Action selection is the process by which an agent decides what to do in any given

situation. For example, if the agent finds himself in state s, should he perform

action a1 or a2? Should he choose the action he believes will yield the highest

utility or the one that will give him a chance to learn more about the environment

so that he can perhaps achieve higher utilities in the long run?

Our framework optimizes this choice directly. The agent’s belief is a joint dis-

tribution over both transition models and optimal policies. Therefore, the agent

can simply take the marginal over policies, sample a policy from it and choose an

action as dictated by that policy.

Let us see how this is done computationally. The marginal over policies is given

33

by ∫
θ

B(θ,π) =

∫
θ

∑
ij

cijβi(θ)βj(π)dθ

=
∑
ij

cijβj(π)

∫
θ

βi(θ)dθ

=
∑
j

∏
sa

(πsa)
mjsa

∑
i

cij

∫
θ

∏
sas′

(θsas′)
nisas′dθ

=
∑
ij

zj
∏
sa

(πsa)
mjsa (4.4)

where the factors zj can be computed using the multinomial Beta function (2.4)

zj =
∑
i

cij

∫
θ

∏
sas′

(θsas′)
nisas′dθ

=
∑
i

cij

∏
sas′ Γ(nisas′ + 1)

Γ(
∑

sas′ nisas′ + 1)
(4.5)

We can see the marginal has the form of a Dirichlet mixture. This makes sampling

easy: we can sample a j from the distribution of zj, then sample a policy from

the j-th Dirichlet distribution and finally select an action according to the sampled

policy.

This action selection method naturally progresses from high exploration to high

exploitation. In the beginning the agent is uncertain about the environment and

this will be reflected in his diffused belief distribution. This will result in a more

random action selection process that will not necessarily yield high utilities but has

a higher chance of giving the agent exploratory information. Later on, as the agent’s

belief converges to the true environment, the distribution will be more peaked and

the selected actions will be very likely to yield maximum utilities.

4.3.3 Belief Update

After performing an action, the agent receives some evidence from the environment.

Typically, such evidence includes the next state and some utility value. The agent

must then update his belief to take into account this new evidence.

Formally, suppose an agent with current belief B is in state s, performs action

a and receives evidence that the next state is s′. Then, the updated belief B′ can

34

be computed as follows.

B′(θ,π) = p(θ,π | s, a, s′)

=
p(θ,π) p(s, a, s′ | θ,π)

p(s, a, s′)

= z B(θ,π) θsas′

= z
∑
ij

cij
∏
ŝâŝ′

(θŝâŝ′)
niŝâŝ′+δ([ŝ,â,ŝ′]=[s,a,s′])

∏
sa

(πsa)
mjsa

where the normalization factor z can be factored into the weights cij and computed

using the multinomial Beta function for each corresponding Dirichlet.

Note that in practice the update is performed simply by incrementing the hyper-

parameters corresponding to the observed transition and renormalizing. Both steps

can be performed in closed form, so that computation can be greatly facilitated by

Dynamic Programming techniques.

The fact that the policy hyperparameters mj are never updated may seem

counterintuitive. After all, the belief update step aims to improve the agent’s ability

to recognize good policies, yet the above equation suggests an improvement only

with respect to transition models. Let us see if this is in fact the case. Recall that

the agent selects actions based on a sampled policy from the belief’s marginal over

policies (4.4). The question is, does updating the transition model hyperparameters

impact the marginal over policies as well? From (4.5) it is evident that a change in

ni propagates through to zj by means of the multinomial Beta function. The factor

zj itself can be thought of as a weight to the j-th policy basis function component

βj(π). Updating zj updates the probability that the sampled policy comes from

the j-th component. In effect, incrementing ni affects the marginal over policies

in the following way: policy basis function components associated with transition

model components that are consistent with the observed evidence become more

likely. This is how the agent learns about the policy.

4.3.4 Known Limitations

Consider the belief update discussed in the previous section. It is clear that, given

enough feedback from the environment, the agent’s belief will converge to the un-

derlying transition model. But is the same guaranteed to happen with the optimal

policy as well?

Recall that learning about the policy is performed by increasing the weights

of policy basis function components βj that correspond to high-utility policies.

35

However, the components βj are pre-computed and finite. When the agent has

converged to the underlying model of the environment, he will increase the weight

of the best component β∗j and will act according to policies sampled from that

component. This behaviour is not equivalent to acting according to the optimal

policy π∗ for two reasons:

1. There is no guarantee that any of the components βj assign a high probability

to π∗. In other words, even the best βj may favour a policy that is only similar

to the optimal one.

2. Acting according to β∗j is a nondeterministic process and even if π∗ has a very

high probability under β∗j there is still a nonzero probability that a different

policy will be sampled. This is the case even when the agent has converged

to the true transition model of the environment and no further learning can

be performed.

As a result, even if the agent is given infinite feedback from the environment he

can only converge to the underlying transition model and not the optimal policy.

Let us think about how difficult it would be to overcome the above limitations.

In order to ensure there is at least one component βj that corresponds to the opti-

mal policy (thus dealing with limitation 1) we would need to construct an infinite

number of basis functions - one for each (possibly optimal) policy. Assuming this

can be done, to ensure convergence to the optimal policy (dealing with limitation

2) we would need to force the best component β∗j to select only π∗ - that is, assign

zero probability to all other π. Since a βj components is modelled by a Dirichlet,

the only way to achieve this theoretically would be by using a precision equal to

infinity.

It is clear that the above limitations cannot be easily overcome. We take a step

back and consider a slightly different approach.

4.4 Agent’s Belief as a Marginal Mixture of Dirich-

lets

The difficulties with the approach described in the previous section originate from

the fact that we cannot fully encode the knowledge implicit in Bellman’s equation.

In fact, to do this we would need an infinite number of basis functions, so to be sure

all combinations between transition models and policies are weighted properly. To

36

avoid these difficulties we seek a better way of encoding the knowledge implicit in

Bellman’s equation.

This section presents an alternative approach to modelling the agent’s belief B:

in terms of its transition model component and conditional policy component.

B(θ,π) = B(θ)B(π | θ)

The transition model component B(θ) denotes the probability that θ is the un-

derlying model of the environment. The conditional policy component B(π | θ)

denotes the probability that π is an optimal policy for θ. As we will see later,

B(π | θ) encodes the knowldge implicit in Bellman’s equation and can be con-

structed from that equation alone. It is therefore static: agent’s interactions with

the environment do not result in any new evidence about B(π | θ) and so it never

needs to be updated. On the other hand, B(θ) needs to be updated after every

action performed, to take into account observed transitions. For the same reasons

as with the previous approach (see Sec. 4.3), we choose a Dirichlet mixture to

encode this belief.

B(θ) =
∑
i

ci
∏
sas′

(θsas′)
nisas′ (4.6)

Let us see how an agent works with a belief of this type. To incorporate prior

knowledge, the agent must convert prior distributions of the form P̄ (θ) and P̄ (π),

as well as Bellman’s equation, into a prior belief B(θ). This process is explained in

the following section. Once this prior belief is constructed the agent is free to use

any existing Reinforcement Learning algorthm to take care of the action selection

and belief update steps. We consider the BEETLE algortihm, as it is known to

perform well in practice [14].

4.4.1 Prior Knowledge Incorporation

As before, the problem of incorporating prior knowledge amounts to constructing

the agent’s belief from the given prior knowledge. However, this time the output

consists of two probability distributions.

Input: P̄ (θ), P̄ (π), L(θ,π)

Output: B(θ), B(π | θ)

In the formulation above, both B(θ) and P̄ (θ) are distributions over transition

models. It might seem reasonable therefore to copy P̄ (θ) into B(θ) and thus obtain

37

the agent’s belief trivially. Similarly, B(π | θ) could be constructed from L(θ,π)

alone by performing some trivial algebraic manipulations (explained shortly). Al-

though this should work in practice, it is not the best way to go, as it does not

take into account the prior information about policies stored in P̄ (θ). In order to

take advantage of this additional prior information we proceed by satisfying the

following set of constraints.∣∣∣∣∣ ∀θ : B(θ) = P̄ (θ)

∀π :
∫
θ
P (π | θ)B(θ)dθ = P̄ (π)

As before, since we cannot enforce the constraints for all θ and π, we sample

K transition models θk and K ′ policies πk
′

uniformly at random, and attempt to

satisfy the constraints for those samples. Using the same sampled points, we can

also approximate the integral in the second constraint with a sum. However, we

must be careful to ensure the probabilities of sampled transition models sum up to

one. Therefore, we introduce auxiliary variables pk ∈ [0, 1] (one for each sampled

θk) and rewrite the constraints as follows.∣∣∣∣∣ ∀θk :
∑

i ci
∏

sas′(θ
k
sas′)

nisas′ = P̄ (θk)

∀πk′ :
∑

k P (πk
′ | θk) pk = P̄ (πk

′
)

pk =

∑
i ci
∏

sas′(θ
k
sas′)

nisas′∑
k′ pk′

To satisfy the above constraints, we proceed as follows. First, we construct the

conditional distribution P (π | θ) from the given Loss function values L(θ,π). (This

incorporates Bellman’s equation into the belief.) Next, we solve for pk using the

second constraint in the formulation above. Finally, once we have all pk values, we

solve for the Dirichlet mixture parameters ci and ni that satisfy both constraints.

Constructing P (π | θ)

Intuitively, P (π | θ) is the probability that the policy π is optimal for the transition

model θ. To construct this probability distribution we use an approach similar to

Boltzmann exploration [16]. Given L(θ,π), we set

P (π | θ) =
e−L(θ,π)t∑
π e
−L(θ,π)t

(4.7)

This formulation ensures that the values of P (π | θ) are between 0 and 1, sum up

to 1, and are higher for policies that are closer to optimal (i.e., having Loss values

close to zero). The temperature parameter t can be used to control how peaked

38

the resulting distribution will be. Specifically, lower temperature values give more

peaked distributions. Ideally, the value of t should be such that the resulting

distribution is neither too uniform over all policies, nor too peaked towards a single

policy and thus ignoring virtually all others. We have been successful in achieving

a balance with temperature values around t = 500.

Solving for pk

Next, we search for pk values that

minimize ε

such that ∀πk′ : −ε ≤
∑
k

P (πk
′ | θk) pk − P̄ (πk

′
) ≤ ε∑

k

pk = 1

We can see that all constraints above are linear, as is the objective function. There-

fore, we use the Simplex method to solve for pk.

Solving for ci and ni

The parameters of the Dirichlet mixture must now satisfy the following constraints.∣∣∣∣∣ ∀θk :
∑

i ci
∏

sas′(θ
k
sas′)

nisas′ = P̄ (θk)

∀θk :
∑

i ci
∏

sas′(θ
k
sas′)

nisas′ = pk
∑

k′ pk′

Note that this is an overconstrained problem where even the slightest inconsistency

in the given prior knowledge might result in unsatisfiability. As before, we add an

error term ε to soften the constraints and thus deal with potential inconsistencies.

However, it is interesting to note that here we can observe a direct numerical rep-

resentation of inconsistency by examining the difference between the terms P̄ (θk)

and pk
∑

k′ pk′ . The bigger the discrepancy between those two terms, the more

evidence there is to the fact that inconsistency exists in the given prior knowledge.

We can exploit this fact to create a consistency measure ζ, computable by taking

the infinity norm of the above difference.

ζ = max
k
|P̄ (θk)− pk

∑
k′

pk′ | (4.8)

The consistency measure could be a useful factor for determining whether the

elicited prior knowledge should be trusted or perhaps partially ignored.

39

We can see that, similar to the joint mixture construction approach discussed

in Sec. 4.3.1, the variables in the above constraints are either exponents or weights.

We therefore proceed with the same approach used for the joint mixture: first we

construct basis functions by minimizing the Euclidean distance between the terms,

then we weigh the basis functions using Simplex to minimize error. The details are

the same as in Sec. 4.3.1, except now we are working with the following coefficient

matrix A and boundary vector b.

A =



1 log(θ1
s1a1s1

) log(θ1
s1a1s2

) · · · log(θ1
s|S|a|A|s|S|

)

1 log(θ2
s1a1s1

) log(θ2
s1a1s2

) · · · log(θ2
s|S|a|A|s|S|

)
...

...
...

. . .
...

1 log(θKs1a1s1
) log(θKs1a1s2

) · · · log(θKs|S|a|A|s|S|)

1 log(θ1
s1a1s1

) log(θ1
s1a1s2

) · · · log(θ1
s|S|a|A|s|S|

)

1 log(θ2
s1a1s1

) log(θ2
s1a1s2

) · · · log(θ2
s|S|a|A|s|S|

)
...

...
...

. . .
...

1 log(θKs1a1s1
) log(θKs1a1s2

) · · · log(θKs|S|a|A|s|S|)


b =

(
log P̄ (θ1) · · · log P̄ (θK) log (p1

∑
k pk) · · · log (pK

∑
k pk)

)T

This approach has the advantage of building only basis functions corresponding

to transition models and using these basis functions to reason about optimal poli-

cies. Since these basis functions are constantly updated through the closed-form

belief update, even in the case where erroneous prior knowledge is given the frame-

work will still be able to converge to the true model of the environment (albeit

more slowly) and select optimal actions from then on.

40

Chapter 5

Experiments and Results

To test the validity of both approaches described in the previous chapter, we con-

duct several experiments on toy problems. The experiments are preliminary. The

goal is to provide a proof-of-concept demonstrating that the proposed algorithms

do work in practice.

Specifically, we test for four things:

1. How well does the constructed prior belief reflect prior knowledge?

2. How informative is the consistency measure (equation 4.8)?

3. Do any of the two approaches converge to optimal behaviour in practice?

4. How do the algorithms scale with the number of unknown parameters?

To answer the above questions we perform experiments on a simple two-state

two-action world. Refer to Fig. 5.1.

In this world the agent starts in state s1 and has the choice of performing either

action a1 or a2. Either action has some probability of leading the agent to state

s2 (30% and 50% respectively). Such a transition is desired because it will give

the agent a high reward (namely, 10) for performing any action in s2. In fact, we

can easily see that the highest rewards are obtained by staying in s2 for as long

as possible. The highest probability of achieving this is by following a policy that

selects a2 in s1 and a1 in s2. This policy is optimal for this world.

The agent may not be fully aware of the transition probabilities and optimal

actions. In the beginning he will only know as much as his prior knowledge. Recall

that we elicit prior knowledge in terms of prior distributions P̄ (θ) and P̄ (π). (The

third piece—the loss function L(θ,π)—is not elicited, but rather extracted from

41

Figure 5.1: A simple test world with two states (s1 and s2), two actions (a1 and

a2) and rewards (r1 and r2). Nodes in the graph represent states and edges -

transitions. Transitions are stochastic: for example, performing a1 in s1 will lead

back to state s1 with probability 0.7 and to state s2 with probability 0.3. Rewards

are only state-dependent.

Bellman’s equation.) In our experiments we test for different scenarios by giving the

agent prior knowledge with various degrees of consistency. We identify three such

degrees: consistent, less consistent and inconsistent. We denote the corresponding

priors with P̄C , P̄L and P̄I respectively. We vary the degree of consistency by keeping

the prior over transitions the same but choosing priors over policies with various

degrees of optimality. For consistent prior knowledge we use Dirichlet distributions

with the following parameters.

P̄C(θ) = k
∏
sas′

(θsas′)
nsas′

n111 = 14

n112 = 6

n121 = 1

n122 = 1

n211 = 2

n212 = 8

n221 = 1

n222 = 1

P̄C(π) = k
∏
sa

(πsa)
msa

m11 = 1

m12 = 50

m21 = 50

m22 = 1

42

Intuitively, we can interpret the above parameters as occurrence counts for partic-

ular events (e.g., “I believe performing a1 in s1 has a high change of leading back

to s1, as if I had observed this happen 14 times out of 14 + 6 = 20 trials”).

The priors with lower degrees of consistency are defined as follows.

P̄L(θ) = P̄C(θ)

P̄L(π) = k
∏
sa

(πsa)
msa

m11 = 20

m12 = 1

m21 = 10

m22 = 1

P̄I(θ) = P̄C(θ)

P̄I(π) = k
∏
sa

(πsa)
msa

m11 = 50

m12 = 1

m21 = 1

m22 = 50

The four questions identified in the beginning of this chapter are evaluated in

the following four sections respectively.

5.1 Testing Prior Belief

This experiment aims to show how well the constructed prior belief reflects prior

knowledge. To do this we compare the average Euclidean distance between the

true transition model and points sampled from the constructed belief versus points

sampled from the prior over models. If the belief points are closer then the belief

distribution must be more peaked towards the true model.

We go through the following steps:

• Construct B(θ) from P̄C(θ) and P̄C(π) using the marginal mixture approach

described in Sec. 4.4.1.

• Sample N points θ̇P from P̄ (θ) and N points θ̇B from B(θ).

43

• For each sampled point θ̇, compute its Euclidean distance dθ̇ from the true

transition model θ∗.

dθ̇ =

√∑
sas′

(θ∗sas′ − θ̇sas′)2

• Compute the average distances d̂P
θ̇

of θ̇P -samples and d̂B
θ̇

of θ̇B-samples.

d̂θ̇ =
1

N

∑
θ̇

dθ̇

• Compare the two averages. If d̂B
θ̇

is smaller then the knowledge in P̄ (π) has

been successfully incorporated to reduce uncertainty in the agent’s belief.

• Repeat from the beginning for I number of iterations, averaging out the

results.

There are a number of parameters that affect the quality of the constructed

prior. We use the following values in this experiment.

• K = K ′ = 100 (Number of uniformly sampled transition models and policies

used for constructing the prior. See Sec. 4.4.1.)

• N = 1000 (Number of sampled transition models used for calculating average

distance to true transition model.)

• EDM threshold = 10−4 (Convergence threshold for Euclidean distance mini-

mization. See Sec. 4.3.1.)

• I = 50 (Number of iterations the experiment is performed.)

We obtain the following results.

d̂P
θ̇

= 0.7155 d̂B
θ̇

= 0.5645

What these numbers mean is that samples from the belief are, on average, 21%

closer to θ∗. This shows that constructing a belief distribution from both prior

distributions P̄ (θ) and P̄ (π) does in fact incorporate more prior information than

simply using P̄ (θ) alone.

44

5.2 Testing Consistency Measure

This experiment tests the consistency measure ζ. We compute and compare the

value of ζ for the three pairs of prior distributions defined in the beginning of this

chapter.

We go through the following steps:

• Given P̄C(θ) and P̄C(π), compute ζC as described in Sec. 4.4.1.

• Given P̄L(θ) and P̄L(π), compute ζL.

• Given P̄I(θ) and P̄I(π), compute ζI .

• Repeat from the beginning for I number of iterations, averaging out the

results.

The parameter values we use for this experiment are as follows. We decrease the

number of sampled transition models and policies to avoid issues with scalability.

• K = K ′ = 10

• EDM threshold = 10−4

• I = 100

We obtain the following results.

ζC = 3.6627 ζL = 4.0416 ζI = 5.248

Recall that the consistency measure ζ by definition measures the largest inconsis-

tency between the prior probabilities of a sampled transition model according to the

prior over transition models alone and according to the prior over policies coupled

with Bellman’s equation. It is no surprise then that the consistent priors achieve

the lowest amount of inconsistency.

Future work could explore how to use this measure to incorporate only prior

information that is consistent, by automatically removing inconsistencies. This is

discussed in more detail in the last section of this document.

45

5.3 Testing Convergence to Optimal Behaviour

Here we check if the two approaches described in Chap. 4 eventually lead the

agent to converge to optimal behaviour (i.e., start achieving maximum rewards).

Consider three agents: one that acts using a joint mixture belief, one using a

marginal mixture belief and one using the true optimal policy. We want to see how

the rewards achieved by the three agents compare to each other. The third agent

is guaranteed to achive maximum rewards (by definition of “optimal policy”); the

other agents should start out by receiving lower rewards (during their exploration

stages) but the key thing to note is whether they eventually start gaining rewards

on par with the third agent. The experiment proceeds as follows.

Agent 1: Using a joint belief.

• Construct B(θ,π) from P̄L(θ) and P̄L(π) using the joint mixture approach

described in Sec. 4.3.1.

• Act for N steps, by sampling a policy from the marginal at each step (see

Sec. 4.3.2).

• Record the rewards received. (There will be N of them.)

• Repeat from the beginning for I number of iterations, averaging out the

results.

Agent 2: Using a marginal mixture belief.

• Construct B(θ) from P̄L(θ) and P̄L(π) using the marginal mixture approach

described in Sec. 4.4.1.

• Act for N steps using the BEETLE algorithm [14].

• Record the rewards received.

• Repeat from the beginning for I number of iterations, averaging out the

results.

Agent 3: Using the optimal policy

• Construct the optimal policy π∗ using Value Iteration (2.8).

• Act for N steps using π∗.

46

• Record the rewards received.

• Repeat from the beginning for I number of iterations, averaging out the

results.

Here we use the same parameter values as in Sec. 5.1, with the following additions.

• VI threshold = 10−4 (Convergence threshold for the Value Iteration algo-

rithm.)

• γ = 0.99 (Discount factor. See Sec. 2.2.)

• N = 100 (Number of steps each agent performs.)

In the end, the output consists of three vectors: the sequences of average rewards

obtained by the three agents. We plot these vectors on the same graph - see Fig.

5.2.

Figure 5.2: Rewards achieved by agents. Agent 1 uses a joint mixture belief, Agent

2 uses a marginal mixture belief, Agent 3 uses the optimal policy.

Agent 2, using a marginal mixture belief, converges to the optimal policy rea-

sonably quickly. This is evident from the fact that (somewhere near the 15th step)

the reward curve of Agent 2 becomes roughly parallel to the reward curve of Agent

3. This means Agent 2 has learned the optimal policy and will behave optimally

from then on. On the other hand, Agent 1 who uses a joint mixture belief is not

so lucky. He converges to a policy that is suboptimal and is unable to match the

reward slope of the other two agents. This is due to the limitations of the joint

mixture approach, discussed in Sec. 4.3.4.

47

5.4 Testing Scalability

Here we test how the algorithms scale with the number of unknown parameters.

Since the unknown parameters are transition and action probabilities, their number

depends on the size of the state and action spaces. For example, in the two-state

two-action test world we defined earlier, there are 2 ∗ 2 ∗ 2 unknown transition

parameters and 2 ∗ 2 unknown policy parameters, for a total of 12 parameters to

be learned. If we increase the number of states by 1, we obtain 3 ∗ 2 ∗ 3 + 3 ∗ 2 =

24 parameters. The question is how much longer would the algorithms take to

accommodate such an increase?

To test this, we go through the following steps:

• Construct B(θ) from P̄L(θ) and P̄L(π) using the joint and marginal mixture

approaches.

• Record the time taken by each approach.

• Add a copy of state s2 to the state space, modifying U , P̄L(θ) and P̄L(π)

accordingly.

• Repeat from the top.

Here we use the same parameter values as in Sec. 5.1.

As evident from Fig. 5.3, constructing the belief using either method takes less

than 30 minutes, even for problems approaching 100 unknown parameters. This

indicates that the algorithms scale reasonably well with increasing the size of our

toy problem. It remains to be seen whether the same success can be achieved with

real-world problems.

48

Figure 5.3: Time required for belief construction.

49

Chapter 6

Conclusions

This thesis described the first steps towards a reinforcement learning framework

that incorporates a broad variety of prior knowledge in a principled way to help

agents quickly learn to act optimally. Specifically, the framework accepts as input

two prior distributions: one over transition models of the environment and one over

courses of actions (policies). It then combines this knowledge with the information

implicit in Bellman’s equation to construct the agent’s initial belief. Agents act

based on the current state of this belief. The belief is continually updated using

Bayes’ Rule to take into account the observed evidence from the environment after

each action. In this way, the agent learns the underlying transition model of the

environment and converges to a specific policy. (Discussions on optimality follow

shortly.)

This approach naturally progresses from high exploration to high exploitation.

In the beginning the agent is uncertain about the environment and this will be

reflected in his diffused belief distribution. This will result in a more random

action selection process that will not necessarily yield high utilities but has a higher

chance of giving the agent exploratory information. Later on, as the agent’s belief

converges to the true environment, the distribution will be more peaked and the

selected actions will be very likely to yield maximum utilities.

We presented two alternative methods for encoding the agent’s belief: as a joint

mixture of Dirichlet distributions and as a marginal mixture of the same. Let us

now see if the two methods satisfy the three goals we outlined in the beginning of

Chapter 4:

1. To incorporate broad prior knowledge about the learning problem

• Both methods achieve this goal by incorporating prior information over

both policies and transition models.

50

2. To learn the parameters of the environment

• Both methods achieve this goal by updating the hyperparameters of the

belief distributions to take into account observed transitions. This is

guaranteed to lead to convergence to the true model of the environment.

3. To learn to act optimally

• The joint mixture method fails here, as it converges to a probability

distribution of policies, which may at best assign a high sampling chance

to the optimal policy. This is true even after the agent converges to the

true model of the environment. This leads to suboptimal performance,

as seen in Fig. 5.2.

• The marginal mixture method achieves success here, as convergence to

the true model guarantees convergence to the optimal policy (using the

BEETLE algorithm). And convergence to the true model is guaranteed

by the Bayesian belief update.

The marginal mixture approach is clearly the superior of the two and is therefore

the preferred belief construction method for the Global Reinforcement Learning

framework.

We also showed that incorporating broad prior knowledge is beneficial. Specifi-

cally, taking into account prior knowledge about both transition models and policies

gives the agent a mode peaked belief distribution (and therefore increased rate of

learning) than taking into account prior knowledge about transition models alone.

This seems intuitive, but it was nevertheless worthwhile to verify experimentally

(Sec. 5.1).

In the toy world used for our experiments, the Global Reinforcement Learning

framework performs well. However, more work is needed to assess the framework’s

usefulness in real-world problems. The following section discusses possible direc-

tions for such work.

6.1 Future Work

We identify several directions for future research: (1) real world testing, (2) further

broadening the scope of accepted prior knowledge, (3) generalizing applicability to

partially observable domains, (4) automatically rejecting inconsistencies in prior

knowledge and (5) investigating how the number of sampled points affects the

precision of the belief construction process.

51

(1) Real world testing is an important validation aspect of any framework. As

such, it seems like the next logical step for our research. Specifically, it would be

interesting to see how well Global Reinforcement Learning collects rewards in an

everyday scenario (e.g., the hand-washing problem [8]) and compare the results to

an already established approach in that domain (e.g., BEETLE).

(2) Further broadening the scope of accepted prior knowledge can be achieved

in at least two ways. One, we could extend the theory to allow incorporation of and

learning about the utility (reward) function. So far we have assumed the agent has

his own utility function that he is fully aware of. However, in many situations agents

are uncertain about the utility function and only have some prior belief about it.

The rest must be learned through interactions with the environment. This should

not be too difficult to implement in Global Reinforcement Learning, since evidence

about utilities is received as feedback from the environment in exactly the same

way as evidence about the transition model.

Two, we could incorporate other types of prior knowledge. Currently, we have

only considered eliciting prior knowledge in terms of precisions and means of Dirich-

let distributions over transition models and policies. However, in many scenarios

we might also wish to encode more particular knowledge, such as absolute rules

(e.g., “a1 should never be performed”), comparison knowledge (e.g., “a1 is better

than a2”, “s1 is more likely than s2”) and certainty intervals (e.g., “the probability

that the next state will be s is anywhere between x and y”). Such prior knowledge

can be easily represented by a (set of) constraint(s) and should be applicable to

our belief construction process.

(3) Partially observable domains are domains in which the state space is not fully

observable by agents. Instead, agents receive observations from the environment

and must use them to infer the current state. Such domains are especially common

for robotic agents, where the robot’s position in the world must be inferred through

the set of observations acquired from an onboard camera, sonar or laser range-finder.

Fortunately, there already exists a framework for modelling partially observable

domains. It is the Partially Observable extension to the Markov Decision Process:

POMDP [10]. It should be possible to extend the Global Reinforcement Learning

framework to use a POMDP model instead of MDP, thus empowering agents to

incorporate broad prior knowledge in partially observable domains.

(4) There is also the question of what to do if the agent is presented (presumably

by domain experts) with wrong or otherwise inconsistent prior knowledge. There

are several obvious ways to deal with this, ranging from constructing a “best fit”

prior belief to interactively querying domain experts for clarifications. Perhaps an

even better alternative is to attempt to use the consistency measure ζ to determine

52

which constraints in the belief construction process are causing the inconsistencies.

It is likely that the inconsistency-causing constraints are misspecified and should

not be taken into account. By rejecting these constraints we should be able to

construct a consistent belief from the remaining (presumably correct) constraints.

(5) The belief construction process in both the joint and marginal mixture

approaches relies on sampled points to approximate integrals and satisfy universal

constraints. As such, it is expected that the more points are sampled, the more

accurately the constructed belief will represent prior knowledge. Future research

could explore how this accuracy can be measured and determine a theoretical bound

on the optimal number of sampled points necessary to achieve a specific accuracy

level.

53

Appendix A: Symbols Glossary

a action in a Markov Decision Process

c weight of a Dirichlet in a Dirichlet Mixture

d Euclidean distance between sampled points and true data

e set of observed evidence; elementary vector

f objective function in a Constraint Programming problem

h hypothesis

i counter/index

j counter/index

k normalization constant; counter/index

m mean of a Dirichlet distribution

s state in an MDP; precision of a Dirichlet distribution

x unknown variable

y unknown variable

z weight coefficient

A coefficient matrix in a Linear Programming problem; action

space in a Markov Decision Process

B the Beta function; agent’s belief in Global Reinforcement

Learning

I upper limit of a counter or index; number of hyperparameters

in a distribution model

J upper limit of a counter or index

N number of experiments, indices, variables or other quantities

we wish to enumerate

R reward function in a Markov Decision Process

R the set of real numbers

R+ the set of positive real numbers

S state space of a Markov Decision Process

T transition function in a Markov Decision Process

V value function used in a Markov Decision Process

54

α hyperparameter of a probability distribution model (alpha)

β basis function (or a component thereof) (beta)

γ discount factor in Bellman’s equation (gamma)

δ the Kronecker delta function (delta)

ε error term; residual in the context of Euclidean distance min-

imization

(epsilon)

ζ consistency measure in a marginal mixture belief (zeta)

θ unknown value whose probability distribution we wish to

model

(theta)

κ used as an additional temporary counter when i, j, k, a, s are

already taken

(kappa)

ξ state of information (xi)

π policy of an agent in an environment modelled by a Markov

Decision Process

(pi)

χ augmented set of decision variables in a Linear Programming

problem

(chi)

ψ positively shifted residual (psi)

Γ the Gamma function (gamma)

Θ unknown variable whose probability distribution we wish to

model

(theta)

Σ arithmetic summation operator (sigma)

Π arithmetic product operator (pi)

55

References

[1] R. Bellman. A Markovian decision process. Journal of Mathematics and Me-

chanics, 6:679–684, 1957. 12, 14

[2] U. Chajewska, D. Koller, and D. Ormoneit. Learning an agent’s utility function

by observing behavior. In Proceedings of the 18th International Conference on

Machine Learning, pages 35–42. Morgan Kaufmann, San Francisco, CA, 2001.

22

[3] R.H. Crites and A.G. Barto. Improving elevator performance using reinforce-

ment learning. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors,

Advances in Neural Information Processing Systems, volume 8, pages 1017–

1023. The MIT Press, 1996.

[4] R. Dearden, N. Friedman, and S.J. Russell. Bayesian Q-learning. In

AAAI/IAAI, pages 761–768, 1998. 20

[5] F. Doshi, N. Roy, and J. Pineau. Reinforcement learning with limited rein-

forcement: Using Bayes risk for active learning in POMDPs. In Proceedings of

the 10th International Symposium on Artificial Intelligence and Mathematics,

Fort Lauderdale, FL, 2008. 21

[6] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chap-

man & Hall, 1995. 8

[7] D. Heckerman. A tutorial on learning with Bayesian networks. Technical report

MSR-TR-95-06, Microsoft Research, Redmond, WA, 1995. Revised June 96. 6

[8] J. Hoey, P. Poupart, C. Boutilier, and A. Mihailidis. POMDP models for

assistive technology. Technical report, IATSL, 2005. 52

[9] R.A. Howard. Dynamic programming and Markov processes. The M.I.T.

Press, 1960. 14

56

[10] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in

partially observable stochastic domains. Technical Report CS-96-08, 1996. 52

[11] L.P. Kaelbling, M.L. Littman, and A.P. Moore. Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[12] A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In

Proceedings of the 17th International Conference on Machine Learning, pages

663–670. Morgan Kaufmann, San Francisco, CA, 2000. 21

[13] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime

algorithm for POMDPs. In Proceedings of the 16th International Joint Con-

ference on Artificial Intelligence, pages 1025–1030, Acapulco, Mexico, 2003.

[14] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to dis-

crete Bayesian reinforcement learning. In Proceedings of the 23rd International

Conference on Machine Learning, pages 697–704, New York, NY, 2006. ACM.

4, 15, 21, 37, 46

[15] M.J.A. Strens. A Bayesian framework for reinforcement learning. In Proceed-

ings of the 17th International Conference on Machine Learning, pages 943–950,

San Francisco, CA, 2000. Morgan Kaufmann Publishers Inc. 20

[16] R.S. Sutton. Integrated architectures for learning, planning, and reacting based

on approximating dynamic programming. In Proceedings of the 7th Interna-

tional Conference on Machine Learning, pages 216–224, 1990. 38

[17] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998. 14

[18] R.J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer

Academic Publishers, Hingham, MA, 1997. 16, 19

[19] M. Yamamoto and K. Sadamitsu. Dirichlet mixtures in text modeling. Tech-

nical report CS-TR-05-1, University of Tsukuba, Tsukuba, Ibaraki, Japan,

2005.

57

	Introduction
	Background
	Bayesian Learning
	The Dirichlet Distribution
	The Dirichlet Mixture

	Reinforcement Learning
	Linear Constraint Satisfaction
	The Simplex Method
	Euclidean Distance Minimization

	Related Work
	The Global Reinforcement Learning Framework
	Terminology
	Prior Knowledge Elicitation
	Agent's Belief As a Joint Mixture of Dirichlets
	Prior Knowledge Incorporation
	Action Selection
	Belief Update
	Known Limitations

	Agent's Belief as a Marginal Mixture of Dirichlets
	Prior Knowledge Incorporation

	Experiments and Results
	Testing Prior Belief
	Testing Consistency Measure
	Testing Convergence to Optimal Behaviour
	Testing Scalability

	Conclusions
	Future Work

	Appendix A: Symbols Glossary
	References

