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Abstract

Previous studies have demonstrated that encoding a Bayesian
network into a SAT-CNF formula and then performing
weighted model counting using a backtracking search al-
gorithm can be an effective method for exact inference in
Bayesian networks. In this paper, we present techniques
for improving this approach for Bayesian networks with
noisy-OR and noisy-MAX relations—two relations which are
widely used in practice as they can dramatically reduce the
number of probabilities one needs to specify. In particu-
lar, we present two space efficient CNF encodings for noisy-
OR/MAX and explore alternative search ordering heuristics.
We experimentally evaluated our techniques on large-scale
real and randomly generated Bayesian networks. On these
benchmarks, our techniques gave speedups of up to two or-
ders of magnitude over the best previous approaches and
scaled up to networks with larger numbers of random vari-
ables.

Introduction

Bayesian networks are a fundamental building block of
many AI applications. A Bayesian network consists of a di-
rected acyclic graph where the nodes represent the random
variables and each node is labeled with a conditional prob-
ability table (CPT) which represents the strengths of the in-
fluences of the parent nodes on the child node (Pearl 1988).
In general, assuming Boolean random variables, the CPT of
a child node with n parents requires one to specify 2n proba-
bilities. This presents a practical difficulty and has led to the
introduction of patterns for CPTs which require one to spec-
ify many fewer parameters (see, e.g., (Dı́ez and Druzdzel
2006) and the references therein).

Perhaps the most widely used patterns in practice are the
noisy-OR relation and its generalization, the noisy-MAX re-
lation (Good 1961; Pearl 1988). These relations assume
a form of causal independence and allow one to specify a
CPT with just n parameters, where n is the number of par-
ents of the node. The noisy-OR/MAX relations have been
successfully applied in the knowledge engineering of large
real-world Bayesian networks, such as the Quick Medical
Reference-Decision Theoretic (QMR-DT) project (Miller,
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Masarie, and Myers 1986) and the Computer-based Patient
Case Simulation system (Parker and Miller 1987).

We consider here the problem of exact inference in
Bayesian networks which contain noisy-OR/MAX relations.
One method for solving such networks is to replace each
noisy-OR/MAX by its full CPT representation and then
use any of the well-known algorithms for answering prob-
abilistic queries such as variable elimination or tree clus-
tering/jointree. However, in general—and in particular, for
the networks that we use in our experimental evaluation—
this method is impractical. A more fruitful approach for
solving such networks is to take advantage of the seman-
tics of the noisy-OR/MAX relations to improve both time
and space efficiency (e.g., (Heckerman 1989; Olesen et
al. 1989; D’Ambrosio 1994; Heckerman and Breese 1996;
Zhang and Poole 1996; Takikawa and D’Ambrosio 1999;
Dı́ez and Galán 2003; Chavira, Allen, and Darwiche 2005)).

Previous studies have demonstrated that encoding a
Bayesian network into a SAT-CNF formula and then per-
forming weighted model counting using a DPLL-based al-
gorithm can be an effective method for exact inference,
where DPLL is a backtracking algorithm specialized for
SAT that includes unit propagation, conflict recording and
backjumping (Sang, Beame, and Kautz 2005a). In this
paper, we present techniques for improving this weighted
model counting approach for Bayesian networks with noisy-
OR and noisy-MAX relations. In particular, we present two
space efficient CNF encodings for noisy-OR/MAX which
exploit its semantics. In our encodings, we pay particular
attention to reducing the treewidth of the CNF formula and
to directly encoding the effect of unit propagation on evi-
dence into the CNF formula, without actually performing
unit propagation. We also explore alternative search order-
ing heuristics for the DPLL-based backtracking algorithm.

We experimentally evaluated our techniques on large-
scale real and randomly generated Bayesian networks. On
these benchmarks, our techniques gave speedups of up to
two orders of magnitude over the best previous approaches
for Bayesian networks with noisy-OR/MAX relations and
scaled up to networks with larger numbers of random vari-
ables. As well, our techniques extend the model counting
approach for exact inference to networks that were previ-
ously intractable for the approach.



Background

In this section, we briefly review noisy-OR/MAX relations
and the needed background on weighted model counting ap-
proaches to exact inference (for more on this latter topic see,
e.g., (Chavira and Darwiche 2007)).

Let there be a noisy-OR at a node Y in a Bayesian net-
work and let X1, . . . , Xn be the parents of Y , where all
random variables are assumed to have Boolean-valued do-
mains. A noisy-OR relation specifies a CPT using n param-
eters, q1, . . . , qn, one for each parent, where,

P (Y = 0 | Xi = 1, Xj = 0[∀j,j 6=i]) = qi. (1)

From these parameters, the full CPT representation of size
2n can be generated using,

P (Y = 0 | x) =
∏

i∈Tx

qi

where Tx = {i | Xi = 1} and P (Y = 0 | x) = 0 if Tx is
empty. The noisy-MAX is a generalization of the noisy-OR
to non-Boolean domains.

A Bayesian network with full CPT representations can be
encoded into a SAT-CNF formula (Darwiche 2002). The
encoding proceeds as follows. For each value of each node
in the network, an indicator variable is created. Next, for
each node, indicator clauses are generated which ensure that
in each model exactly one of the corresponding indicator
variables is true. Next, for each CPT and for each non-zero
parameter value in the CPT, a parameter variable is created.
Finally, for each parameter variable, a parameter clause is
generated. A parameter clause asserts that the conjunction of
the corresponding indicator variables implies the parameter
variable and vice-versa. The CNF encoding of the Bayesian
network can then be compiled into an arithmetic circuit to
answer probabilistic queries (Darwiche 2002).

A CNF encoded Bayesian network can also be solved di-
rectly using a backtracking search algorithm by introducing
weights for the propositional variables (Sang, Beame, and
Kautz 2005a). The weight of a parameter variable is its cor-
responding probability, where weight(v) + weight(¬v) =
1. The weight of an indicator variable is always 1. Let φ be
a SAT formula and let s be an assignment of a value to every
variable in the formula that satisfies the formula; i.e., s is a
model of the formula. Let a literal be a propositional vari-
able or the negation of a propositional variable. The weight
of a formula φ is,

weight(φ) =
∑

s

∏

l∈s

weight(l),

where the sum is over all possible models and the product is
over the weight of the literals in that model. Finally, let F be
the CNF encoding of a Bayesian network. A general query
P (Q | E) on the network can be answered by,

weight(F ∧ Q ∧ E)

weight(F ∧ E)
. (2)

A backtracking algorithm used to enumerate the models of a
CNF formula is often referred to as DPLL or DPLL-based,
and usually includes such techniques as unit propagation,
conflict recording and backjumping.

Related Work

In this section, we relate our work to previously proposed
methods for exact inference in Bayesian networks with
noisy-OR/MAX relations.

The two standard exact algorithms for Bayesian networks
are variable elimination (VE) and tree clustering/jointree.
Clustering algorithms are often preferred as they pre-
compute results and so can answer queries faster. How-
ever, there are large real-world networks that clustering can-
not deal with due to time and space complexities. In such
networks, VE can sometimes still answer queries because it
permits pruning of irrelevant variables.

Many methods have been proposed to transform a noisy-
OR/MAX into a decomposable auxiliary graph by adding
hidden nodes and then solving using adaptations of vari-
able elimination or tree clustering (e.g., (Olesen et al. 1989;
D’Ambrosio 1994; Heckerman and Breese 1996; Takikawa
and D’Ambrosio 1999; Dı́ez and Galán 2003)). Most re-
cently, Dı́ez & Galán (2003) proposed a multiplicative fac-
torization which improves on previous work. We use their
auxiliary graph as the starting point for one of our CNF en-
codings. In our experiments, we perform a detailed empiri-
cal comparison of their approach using variable elimination
against our proposals on large Bayesian networks.

Quickscore (Heckerman 1989) was the first efficient ex-
act inference algorithm for Boolean-valued two-layer noisy-
OR networks. Chavira, Allen and Darwiche (2005) present
a method for multi-layer noisy-OR networks and show that
their approach is significantly faster than Quickscore on ran-
domly generated two-layer networks. Their approach pro-
ceeds as follows: (i) transform the noisy-OR network into a
Bayesian network with full CPTs using Pearl’s transforma-
tion (see Figure 2), (ii) translate the network with full CPTs
into CNF using a general encoding (see Background sec-
tion), and (iii) compile the CNF into an arithmetic circuit.
In our experiments, we show that our special-purpose en-
codings of noisy-OR can be more space and time efficient
and scale to much harder problems.

In our work, we build upon the DPLL-based weighted
model counting approach of Sang, Beame, and Kautz
(2005a). Their general encoding assumes full CPTs and
yields a parameter clause for each CPT parameter. However,
this approach is impractical for large-scale noisy-OR net-
works. Our special-purpose encodings extend the weighted
model counting approach for exact inference to networks
that were previously intractable for the approach.

Encoding Noisy-OR/MAX into CNF

In this section, we first present our SAT-CNF encodings of
the noisy-OR relation. We use as our running example the
Bayesian network shown in Figure 1. We then generalize
our encodings to noisy-MAX.

Weighted CNF Encoding 1

In our first weighted model encoding method (WMC1), we
introduce an indicator variable IY for Y and an indicator
variable IXi

for each parent of Y . We also introduce a pa-
rameter variable Pqi

for each parameter qi (see Eqn. 1) in



Cold Flu Malaria

Nausea Headache

P(N=0|C=1, F=0, M=0) = 0.6
P(N=0|C=0, F=1, M=0) = 0.5
P(N=0|C=0, F=0, M=1) = 0.4

P(H=0|C=1, F=0, M=0) = 0.3
P(H=0|C=0, F=1, M=0) = 0.2
P(H=0|C=0, F=0, M=1) = 0.1

Figure 1: Example of a Bayesian network. We assume the
random variables are Boolean and there is a noisy-OR at
node Nausea and at node Headache with the given parame-
ters.

the noisy-OR. The weights of these variables are as follows.

weight(IXi
) = weight(IY ) = 1

weight(Pqi
) = qi

weight(¬Pqi
) = 1 − qi

The noisy-OR relation can then be encoded as the formula,

(IX1
∧Pq1

)∨ (IX2
∧Pq2

)∨ · · · ∨ (IXn
∧Pqn

) ⇔ IY . (3)

The formula so far can be seen to be an encoding of Pearl’s
well-known transformation for noisy-OR (see Figure 2). Be-
fore converting the formula to CNF, we introduce an aux-
iliary indicator variable wi for each conjunction such that
wi ⇔ IXi

∧ Pqi
. This dramatically reduces the number of

clauses generated. The formula is then transformed into,

(¬IY ∨ ((w1 ∨ . . . ∨ wn) ∧

(¬Pq1
∨ ¬IX1

∨ w1) ∧

(Pq1
∨ ¬w1) ∧ (IX1

∨ ¬w1) ∧ . . . ∧

(¬Pqn
∨ ¬IXn

∨ wn) ∧

(Pqn
∨ ¬wn) ∧ (IXn

∨ ¬wn))) ∧

(IY ∨ ((¬Pq1
∨ ¬IX1

) ∧ . . . ∧

(¬Pqn
∨ ¬IXn

))). (4)

The formula is not in CNF, but can be easily transformed
into CNF using the distributive law. It can be seen that
WMC1 can also easily encode evidence—i.e, if IY = 0 or
IY = 1, the formula can be further simplified—before the
final translation into CNF.

Example 1. Consider the small network shown in Figure 1.
The WMC1 encoding introduces the five Boolean indicator
variables IC , IF , IM , IN , and IH , each with weight 1; and
the six parameter variables P0.6, P0.5, P0.4, P0.3, P0.2, and
P0.1, each with weight Pqi

= qi and ¬Pqi
= 1 − qi. To

illustrate the encoding of evidence, suppose that nausea is
present (i.e., N = 1) and headache is not present (i.e., H =
0). The corresponding constraints for the evidence are as
follows.

(P0.6 ∧ IC) ∨ (P0.5 ∧ IF ) ∨ (P0.4 ∧ IM ) = 1 (5)

(P0.3 ∧ IC) ∨ (P0.2 ∧ IF ) ∨ (P0.1 ∧ IM ) = 0 (6)

Using Equation 4, the above constraints can be converted

AND AND AND AND AND AND

OR OR

C1

C

C2

F

C4

M

C3 C5 C6

Nausea Headache

Figure 2: Pearl’s transformation of noisy-OR network.
Nodes with double borders are deterministic nodes with the
designated logical relationship.

into CNF clauses. Equation 5 gives the clauses,

(w1 ∨ w2 ∨ w3)

∧ (¬P0.6 ∨ ¬IC ∨ w1) ∧ (P0.6 ∨ ¬w1) ∧ (IC ∨ ¬w1)

∧ (¬P0.5 ∨ ¬IF ∨ w2) ∧ (P0.5 ∨ ¬w2) ∧ (IF ∨ ¬w2)

∧ (¬P0.4 ∨ ¬IM ∨ w3) ∧ (P0.4 ∨ ¬w3) ∧ (IM ∨ ¬w3)

and constraint equation 6 gives the clauses,

(¬P0.3 ∨ ¬IC) ∧ (¬P0.2 ∨ ¬IF ) ∧ (¬P0.1 ∨ ¬IM ).

Weighted CNF Encoding 2

Our second weighted model encoding method (WMC2)
takes as its starting point Dı́ez & Galán’s (2003) directed
auxiliary graph transformation of a Bayesian network with
noisy-OR1. The transformation first creates a graph with the
same set of nodes and arcs as the original network. Then,
for each node Y with a noisy-OR relation,

• Add a hidden node Y ′ with the same domain as Y

• Add an arc Y ′ → Y

• Redirect each arc Xi → Y to Xi → Y ′

• Associate with Y a factorization table,

Y ′ = 0 Y ′ = 1
Y = 0 1 0
Y = 1 -1 1

This auxiliary graph is not a Bayesian network because it
contains parameters which are less than 0. So the CNF en-
coding methods for general Bayesian networks (see Back-
ground section) cannot be applied here.

We introduce indicator variables I ′Y and IY for Y ′ and Y ,
and an indicator variable IXi

for each parent of Y ′. For each
arc Xi → Y ′, we create two parameter variables P 0

Xi,Y ′ and

P 1
Xi,Y ′ where the weights of these variables is given by,

weight(P 0
Xi,Y ′) = 1, weight(P 1

Xi,Y ′) = qi.

1The Dı́ez & Galán (2003) transformation is a generalization
to noisy-MAX of the noisy-OR transformation of Takikawa and
D’Ambrosio (1999).
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Figure 3: Dı́ez and Galán’s transformation of noisy-OR.

For each factorization table, we introduce two variables, uY

and wY , where the weights of these variables are given by,

weight(uY ) = 1, weight(¬uY ) = 0,

weight(wY ) = −1, weight(¬wY ) = 2.

For the first row of a factorization table, we generate the
clause,

(¬IY ′ ∨ IY ),

and for the second row, we generate the clause,

(¬IY ′ ∨ ¬IY ∨ uY ) ∧ (IY ′ ∨ ¬IY ∨ wY ).

Finally, for every parent Xi of Y ′, we generate the clauses,

(IY ′ ∨ IXi
∨ P 0

Xi,Y ′) ∧ (IY ′ ∨ ¬IXi
∨ P 1

Xi,Y ′).

We now have a conjunction of clauses; i.e., CNF. Once
again, it can be seen that WMC2 can also easily encode ev-
idence into the CNF formula; i.e., if IY = 0 or IY = 1, the
formula can be further simplified.

Example 2. Consider once again the network shown in Fig-
ure 1. The auxiliary graph transformation is shown in Fig-
ure 3. If we again know that N = 0 and H = 1, the WMC2
encoding results in the following formula,

(IC ∨ P 0
C,N ) ∧ (¬IC ∨ P 1

C,N ) ∧

(IF ∨ P 0
F,N ) ∧ (¬IF ∨ P 1

F,N ) ∧

(IM ∨ P 0
M,N ) ∧ (¬IM ∨ P 1

M,N ) ∧

(IH′ ∨ IC ∨ P 0
C,H) ∧ (IH′ ∨ ¬IC ∨ P 1

C,H) ∧

(IH′ ∨ IF ∨ P 0
F,H) ∧ (IH′ ∨ ¬IF ∨ P 1

F,H) ∧

(IH′ ∨ IM ∨ P 0
M,H) ∧ (IH′ ∨ ¬IM ∨ P 1

M,H) ∧

(¬IH′ ∨ uH) ∧ (IH′ ∨ wH),

where the weights are given by,

weight(P 1
C,N ) = 0.6 weight(P 1

C,H) = 0.3

weight(P 1
F,N ) = 0.5 weight(P 1

F,H) = 0.2

weight(P 1
M,N ) = 0.4 weight(P 1

M,H) = 0.1

and all other weights are 1.

Noisy-MAX

WMC1 and WMC2 can be extended to noisy-MAX by intro-
ducing more indicator variables to represent variables with
multiple values. Here, we give an overview of the extension.

The noisy-MAX model assumes that there are different
causes X1, . . . , Xn leading to a certain effect Y that might
have several degrees of severity; it also assumes that the de-
gree reached by Y is the maximum of the degrees produced
by each cause if they were acting independently. The noisy-
MAX model would be valid only if the effects do not ac-
cumulate with one another. Given a noisy-MAX variable
Y with dY possible values labeled from 0 to dY − 1, and
n parents X1, . . . , Xn each with dXi

possible values, the
noisy-MAX can be described by two basic axioms:

1. When all the causes are absent, the effect is absent,

P (Y = 0 | Xi = 0[∀i]) = 1.

2. The degree (value) of Y is the maximum of the degrees
produced by the X’s if they were acting independently,

P (Y ≤ y | x) =
∏

i

P (Y ≤ y | Xi = xk, X[∀j,j 6=i] = 0) = qxk

i,y

For each noisy-MAX variable Y , we introduce dY indicator

variables Iy0 ... IydY −1
to represent each value and

(

dY

2

)

+1
clauses to ensure that exactly one of these variables is true.
For example, if Y has three values—None, Mediocre, and
Severe—we add Iyn

, Iym
and Iys

and four clauses, where

weight(Iyn
) = weight(Iym

) = weight(Iys
) = 1

(¬Iyn
∨ ¬Iym

) ∧ (¬Iyn
∨ ¬Iys

) ∧ (¬Iym
∨ ¬Iys

)

∧(Iyn
∨ Iym

∨ Iys
)

For WMC1, for each parent Xi, we define parameter vari-
ables,

weight(P xk

i,yj
) = qxk

i,y,

where 0 ≤ j ≤ dY − 1, 0 ≤ k ≤ dXi − 1. We also rewrite
Formula 3 for each noisy-MAX variable as,

dY −1
∧

j=0

¬Iyj

n
∨

i=1

dXi
−1

∨

k=0

(Ii,xk
∧ P xk

i,yj
)

For WMC2, we can introduce dY indicator variables for
each Y and Y ′. Based on the auxiliary graph we described
in WMC2 above, we expand the factorization table δY as a
dY × dY matrix given by,

δY (y, y′) =







1, add (¬Iy′ ∨ ¬Iy ∨ uY ) if y′ = y

−1, add (¬Iy′ ∨ ¬Iy ∨ wY ) if y′ = y − 1

0, add (¬Iy′ ∨ ¬Iy ∨ ¬uY ) otherwise

For example, the factorization table of the three value vari-
able above is

Y ′ = yn Y ′ = ym Y ′ = ys

Y = yn 1 0 0
Y = ym -1 1 0
Y = ys 0 -1 1

The relation between Xi and Y ′ is represented by the
clauses,

(¬Iy′

j
∨ ¬Ixk

∨ P xk

i,yj
),

where 0 ≤ j ≤ dY − 1, 0 ≤ k ≤ dXi − 1.



Comparison

Both WMC1 and WMC2 can answer probabilistic queries
using Equation 2. Both encodings lead to quick factoriza-
tion given evidence during the encoding. The clauses from
negative evidence can be represented compactly in the re-
sulting CNF, even with a large number of parents. In the
WMC2 encoding, positive evidence can be represented by
three Boolean variables, whereas the WMC1 encoding re-
quires n Boolean variables, one for each parent. In WMC2,
we use two parameter variables (P 0

Xi,Y ′ and P 1
Xi,Y ′ ) to rep-

resent every arc, while WMC1 only needs one.

Table 1: 500+500 Binary, two layer, noisy-OR Networks.
When there is 60 positive evidence, the table lists the number
of problems (/30) solved within one hour.

P+ WMC1 WMC2 ACE
#var w sec #var w sec sec

30 3,686 10 0.2 6,590 11 0.1 32
35 3,716 11 0.6 6,605 11 0.2 33
40 3,746 13 21 6,620 11 0.5 33
45 3,776 14 39 6,635 13 2 36
50 3,806 19 75 6,650 13 6 41
55 3,836 22 175 6,665 16 71 166
60 3,916 24 (17) 6,680 16 (27) (21)

We used randomly generated two-layer networks to com-
pare the space efficiency and complexity of WMC1 and
WMC2. Each random network contains 500 diseases and
500 symptoms. Each symptom has 6 possible diseases uni-
formly distributed in the disease set. Table 1 shows the tree
width of the encoded CNF from WMC1 and WMC2. The
first column shows the number of positive evidence in the
symptom variables. The rest are negative symptoms. It can
be seen that although WMC1 generates fewer variables than
WMC2, the CNF created by WMC2 have smaller width. We
compute the probability of evidence (PE) with the tree de-
composition guided variable ordering (Huang and Darwiche
2003) and compare our results with ACE22 (a more detailed
experimental analysis is given in the next section). ACE2 is
the latest package which applies the general Bayesian net-
works encoding method to noisy-OR model and then com-
piles the CNF into an arithmetic circuit (Chavira, Allen, and
Darwiche 2005). For ACE2, we used the best parameter set-
tings that we could find, which were much better than the
default parameters on these instances.

Experimental Evaluation

In this section, we evaluate the effectives of our encodings.
We use Cachet3 as it is currently recognized as the fastest
weighted model counting solver.

We compare against ACE2 (Chavira, Allen, and Darwiche
2005). We also implemented Dı́ez and Galán’s (2003) ap-
proach, which consists of variable elimination (VE) applied
to an auxiliary network that permits exploitation of causal
independence. Our implementation uses Algebraic Decision

2http://reasoning.cs.ucla.edu/ace/
3http://www.cs.rochester.edu/u/kautz/Cachet/index.htm

Diagrams (ADDs) (Bahar et al. 1993) as the base data struc-
ture to represent conditional probability tables. ADDs per-
mit a compact representation by aggregating identical proba-
bility values. They also speed up computation by exploiting
context-specific independence (Boutilier et al. 1996), taking
advantage of determinism and caching intermediate results
to avoid duplicate computation. The variable elimination
heuristic that we used is a greedy one that first eliminates all
variables that appear in deterministic potentials of one vari-
able (equivalent to unit propagation) and then eliminates the
variable that will create the smallest ADD with respect to
the eliminated ADDs. In order to avoid creating an ADD for
each variable when searching for the next variable to elimi-
nate, the size of a new ADD is estimated by the smallest of
two upper bounds: (i) the cross product of the domain size
of the variables of the new ADD and (ii) the product of the
sizes (e.g., number of nodes) of the eliminated ADDs.

Good variable ordering heuristics play an important role
in the success of modern DPLL-based model counting
solvers. Here, we evaluate two heuristics: Variable State
Aware Decaying Sum (VSADS) and Tree Decomposition
Variable Group Ordering (DTree). VSADS is one of the cur-
rent best performing dynamic heuristics designed for DPLL-
based model counting engines (Sang, Beame, and Kautz
2005b). It can be viewed as a scoring system that attempts
to satisfy the most recent conflict clauses and simultaneously
makes its branching decisions based on the number of occur-
rences of a variable. Compared with VSADS, DTree (Huang
and Darwiche 2003) can be described as a mixed variable
ordering heuristic. DTree first uses a binary tree decompo-
sition to generate ordered variable groups. Then the order
of variables within a group is decided dynamically during
DPLL by other dynamic heuristics.

All the experiments were performed on a Pentium work-
station with a 3GHz hyper-threading CPU and 2GB RAM.

QMR-DT

Compared with randomly generated problems, QMR-DT
presents a real-world inference task with various structural
and sparsity properties. For example, in the empirical distri-
bution of diseases, a small proportion of the symptoms are
connected with a large number of diseases.

The network we used was aQMR-DT, an anonymized ver-
sion of QMR-DT4. We generated symptom vectors for each
experiment with k positive symptoms. For each evidence
vector, we sort the symptom variables into ascending order
by their parent (disease) number, chose the first k variables
as positive symptoms, and then set the remaining variables
to negative. The goal of the method is to generate instances
of increasing difficulty.

We report the runtime to answer the probability of evi-
dence (PE) queries. We also experimented with an imple-
mentation of Quickscore5, but found that it could not solve
any of the test cases shown in Figure 4 (the figure only shows
the difficult range; the instances with fewer positive symp-
toms are easier for all the algorithms in the figure). The

4http://citeseer.ist.psu.edu/463049.html
5http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html
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Figure 4: QMR-DT with 4,075 symptoms and 570 diseases.

WMC-based approach also outperforms VE on QMR-DT.
The model counting time of WMC1+VSADS for 2,560 pos-
itive symptoms are 25s. But this instance could not be solved
within one hour by VE.

We tested different heuristics on each encoding. The run-
time using WMC and DTree heuristic is the sum of two
parts: the preprocessing time by DTree (Huang and Dar-
wiche 2003) and the runtime of model counting. In this
experiment, semi-static tree decomposition-based heuristic
has faster run time than VSADS in the model counting pro-
cess. However, the overhead of preprocessing for large size
networks is too high to achieve better overall performance.

The WMC2 encoding generates twice as many vari-
ables as WMC1. Although WMC2 is more promising than
WMC1 on smaller size networks (Table 1), here WMC2 is
less efficient than WMC1. The overhead of the tree de-
composition ordering on WMC2 encodings is also higher
than on WMC1 encodings. Our results also show that
dynamic variable ordering does not work well in WMC2.
WMC2+VSADS cannot solve networks with more than
1,500 positive evidences.

Results also show that our approach is more efficient than
ACE2. For example, using ACE2, a CNF of QMR-DT with
30 positive symptoms creates 2.8× 105 variables, 2.8× 105

clauses and 3.8 × 105 literals. Also, it often requires more
than 1GB memory to finish the compilation process. With
WMC1, the same network and the same evidence create only
4.6×104 variables, 4.6×104 clauses and 1.1×105 literals.
Cachet only needs less than 250M memory in most cases.
And in our experiments, ACE 2 cannot solve QMR-DT with
more than 500 positive evidence in an hour.

Random Noisy-OR Multi-Layer

To test randomly generated multi-layer networks, we con-
structed a set of acyclic Bayesian networks using the same
method as Dı́ez & Galán (2003): create n binary variables;
randomly select m pairs of nodes and add arcs between
them, where an arc is added from Xi to Xj if i < j; and
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Figure 5: Random noisy-OR network with 3,000 binary
variables.

assign a noisy-OR/MAX distribution to each node with par-
ents.

Figure 5 represents the average time to answer the prob-
ability of evidence (PE) queries, which is a function of the
number of hidden variables. We repeat the experiment for
a total of 50 randomly generated networks with 300 hidden
variables and then increase the number of hidden variables.

The results from two layer QMR-DT and multi-layer ran-
dom noisy-OR show that on average, the WMC-based ap-
proaches performed significantly better than the VE-based
approach and ACE2. All the approaches benefit from the
large amount of evidence, but the WMC-based approaches
explore the determinism more efficiently with dynamic de-
composition and unit propagation (resolution). Compared
with VE, the WMC-based approaches encode the local
dependencies among parameters and the evidences into
clauses/constraints. The topological features of CNF, such
as connectivity, can then be explored dynamically during
DPLL’s simplification process.

Conflict analysis based heuristics have been successfully
applied in modern SAT solvers. However, conflicts rarely
occur in model counting problems with large numbers of so-
lutions as is the case in encodings of Bayesian networks. In
situations where there are few conflicts, VSADS essentially
makes random decisions. But here, for large Bayesian net-
works with large numbers of evidences, VSADS work very
well because the constraints we generated from the evidence
limits the number of solutions. DTree is also a good choice
due to its divide-and-conquer nature. However, when we
use DTree to decompose the CNF generated from QMR-DT,
usually the first variable group contains more than 500 dis-
ease variables. And, the overhead of preprocessing affects
the overall efficiency of this approach.

Similarly, we performed an experiment with 100 five-
valued variables. We generated 50 random networks for
each number of arcs. The results are displayed in Figure 6.
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Figure 6: Random noisy-MAX network with 100 five-
valued variables.

Conclusion and Future Work

Large graphical models, such as QMR-DT, are often in-
tractable for exact inference when there is a large amount of
positive evidence. We discussed multiple techniques which
can exploit determinism and causal independence and make
exact inference perform more efficiently on these problems.
In particular, we presented two space efficient CNF encod-
ings for noisy-OR/MAX relations. We also explored alter-
native search ordering heuristics for the DPLL-based back-
tracking algorithm on these encodings. In our experiments,
we showed that together our techniques extend the model
counting approach for exact inference to networks that were
previously intractable for the approach. As well, our tech-
niques gave speedups of up to two orders of magnitude over
the best previous approaches for Bayesian networks with
noisy-OR/MAX relations.

For future work, recent work by (Li, van Beek, and
Poupart 2006) demonstrated that a DPLL procedure com-
bined with dynamic decomposition and caching allows one
to perform Bayesian inference incrementally. We intend to
further apply this method to the encodings proposed in this
paper. As well, future work could include developing spe-
cific SAT-encodings of other causal independence relations
such as noisy-adder.
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