
Abstract
This work shows how a dialogue model can be
represented as a factored Partially Observable
Markov Decision Process (POMDP). The fac-
tored representation has several benefits, such as
enabling more nuanced reward functions to be
specified. Although our dialogue model is sig-
nificantly larger than past work using POMDPs,
experiments on a small testbed problem demon-
strate that recent optimisation techniques scale
well and produce policies which outperform a
traditional fully-observable Markov Decision
Process. This work then shows how a dialogue
manager produced with a POMDP optimisation
technique may be directly compared to a hand-
crafted dialogue manager. Experiments on the
testbed problem show that automatically gener-
ated dialogue managers outperform several hand-
crafted dialogue managers, and that automati-
cally generated dialogue managers for the testbed
problem successfully adapt to changes in speech
recognition accuracy.

1 Introduction
Creating (and improving) a dialogue manager by hand is
typically an expensive and time-consuming undertaking.
Instead of expressing which actions a machine should take
in each dialogue situation, ideally a dialogue designer
would simply express the desired outcomes of a dialogue.
This specification would then be combined with a user
model using a planning and optimisation algorithm to
produce a dialogue manager. Markov Decision Processes
(MDPs) provide a principled framework for this type of
approach. The application of MDPs to the dialogue man-
agement problem is first explored by Levin and Pieraccini
[1997]. Levin et al. [2000] provide a formal treatment of
how a MDP may be applied to dialogue management, and
Singh et al. [2002] show application to real systems.
 MDPs assume the current state of the environment (i.e.,
the conversation) is known exactly and do not naturally or
precisely model “noisy” evidence from the speech recog-
niser. This limitation has prompted several dialogue man-
agement researchers to explore POMDPs, which naturally
express uncertainty in the current state. Roy et al. [2000]
compare an MDP and a POMDP version of the same spo-
ken dialogue system, and find that the POMDP version

gains more reward per unit time than the MDP version.
Further, the authors show a trend that as speech recogni-
tion accuracy degrades, the margin by which the POMDP
outperforms the MDP increases. Zhang et al. [2001] ex-
tend this work in several ways. First, the authors add
“hidden” system states to account for various types of
dialogue trouble, such as different sources of speech rec-
ognition errors. Second, the authors use Bayesian Net-
works to combine observations from a variety of sources
(e.g., parse score, acoustic confidence score, etc.)
 Looking outside the (PO)MDP framework, Paek and
Horvitz [2003] suggest using a dynamic influence dia-
gram to model user and dialogue state, and selecting ac-
tions based on “Maximum Expected [immediate] Utility.”
This proposal can be viewed as a POMDP that greedily
selects actions – i.e., which selects actions based only on
immediate reward.1 By choosing appropriate utilities, the
authors show how local grounding actions can be auto-
matically selected in a principled manner. In this work,
we are interested in POMDPs as they enable planning
over any horizon.
 In previous work which has applied POMDPs to dia-
logue management, three important issues are not ad-
dressed. First, it is unclear in these models how to esti-
mate the system dynamics in practice. For example,
Zhang et al. [2001] indicate that the system dynamics are
“handcrafted, depending a lot on the experience of the
developer.” Second, neither model includes a notion of
“dialogue state,” and as a result, the reward functions in
these models cannot capture the notion of “appropriate-
ness” of an action – for example, the relative appropriate-
ness of confirming vs. querying a slot value.2 Finally,
although handcrafted dialogue managers are often used as
a baseline comparison in dialogue system literature, the
authors do not attempt a comparison with a handcrafted
dialogue manager.
 This paper makes two contributions. First, we propose
a factored architecture for describing a POMDP-based
dialogue manager. Unlike past work applying POMDPs

1 We can express this formally as a POMDP with discount
0=γ . See section 2 for background on POMDPs.

2 Zhang et al. [2001] included unobservable states for possi-
ble causes of dialog trouble – for example, “channel errors.” By
contrast, in this work, we’re interested in the conventional sense
of “dialogue state” as viewed by the user – for example, which
items have been confirmed.

Factored Partially Observable Markov Decision Processes
for Dialogue Management

 Jason D. Williams Pascal Poupart Steve Young
 Engineering Department School of Computer Science Engineering Department
 Cambridge University University of Waterloo Cambridge University
 Cambridge, UK Ontario, Canada Cambridge, UK
 jdw30@cam.ac.uk ppoupart@cs.uwaterloo.ca sjy@eng.cam.ac.uk

(and MDPs) to dialogue management, our factored repre-
sentation adds a component for the state of the dialogue
from the perspective of the user, enabling dialogue de-
signers to add reward measures for the “appropriateness”
of system actions. The factored representation also cre-
ates separate distributions for the user model and the
speech recognition model, which facilitates estimating or
adapting the system dynamics from dialogue data. Al-
though the scope of our model results in a much larger
model than past POMDP work on the dialogue manage-
ment problem, we show (using a simple testbed problem)
that the recently developed Perseus algorithm [Spaan and
Vlassis, 2004] scales sufficiently to optimize our model
and finds a policy which outperforms an MDP baseline.
 Second, we show how to make direct comparisons be-
tween a hand-crafted and an automatically generated pol-
icy. We demonstrate this technique by introducing three
hand-crafted dialogue managers for the testbed problem,
and find that a dialogue manager created with an auto-
mated technique outperforms all of them.
 The paper is organised as follows. Section 2 briefly
reviews background on POMDPs. Section 3 presents the
factored architecture. Section 4 shows an example testbed
system using this architecture. Section 5 compares the
testbed system to an MDP baseline, and assesses robust-
ness in the face of changing speech recognition accuracy.
Section 6 shows how a handcrafted policy can be com-
pared to an automatically-generated policy, and makes
this comparison for the testbed problem. Section 7 con-
cludes.

2 Overview of POMDPs
Formally, a POMDP is defined as a tuple {S, Am, T, R, O,
Z}, where S is a set of states, Am is a set of actions that an
agent may take,3 T defines a transition probability

),|(massp ′ , R defines the expected (immediate, real-
valued) reward),(masr , O is a set of observations, and Z
defines an observation probability,),|(masop ′′ .
 The POMDP operates as follows. At each time-step,
the machine is in some unobserved state s . The machine
selects an action ma , receives a reward r , and transitions
to (unobserved) state s ′ , where s ′ depends only on s
and ma . The machine receives an observation o ′ which
is dependant on s ′ and ma . Although the observation
gives the system some evidence about the current state s ,
s is not known exactly, so we maintain a distribution
over states called a “belief state,” b. We write tb to indi-
cate the distribution over all states at time t, and)(sbt to
indicate the probability of being in a particular state s at
time t. The immediate reward is computed as the ex-
pected reward over belief states:

 ∑
∈

=
Ss

tmttmt asrsbab),()(),(ρ . (1)

The goal of the machine is to maximise the cumulative,
infinite-horizon, discounted reward called the return:

3 In the literature, the system action set is often written as an

un-subscripted A. In this work, we will model both machine and
user actions, and have chosen to write the machine action set as
Am for clarity.

 ∑ ∑ ∑
∞

=

∞

= ∈

=
0 0

),()(),(
t t

tm
Ss

t
t

tmt
t asrsbab γργ . (2)

where γ is a geometric discount factor, 10 ≤≤ γ . At
each time step, the next belief state)(sb ′′ can be com-
puted exactly as shown in Eq. 12 below.
 Because belief space is real-valued, an optimal infinite-
horizon policy may consist of an arbitrary partitioning of
S-dimensional space. In fact, the size of the policy space
grows exponentially with the size of the observation set
and doubly exponentially with the distance (in time-steps)
from the horizon [Kaelbling et al., 1998]. Nevertheless,
real-world problems often possess small policies of high
quality.
 In this work, we make use of a recent approximate
method called Perseus. Perseus [Spaan and Vlassis,
2004] is capable of rapidly finding good yet compact poli-
cies (when they exist). Perseus heuristically selects a
small set of representative belief points, and then itera-
tively applies value updates to just those points, instead of
all of belief space, thereby achieving a significant speed-
up. Perseus has been tested on a range of problems, and
found to outperform a variety of other methods, including
grid-based methods [Spaan and Vlassis, 2004].

3 Factored architecture
Our proposal is to formulate the Dialogue Manager of a
Spoken Dialogue System as a factored POMDP as fol-
lows.
 First, the POMDP state variable Ss ∈ is separated into
three components: (1) the user’s goal, uu Ss ∈ ; (2) the
user’s action, uu Aa ∈ ; and (3) the state of the dialogue,

dd Ss ∈ . The POMDP state s is given by the tuple
},,{ duu sas . We note that, from the machine’s perspec-

tive, all of these components are unobservable.
 The user’s goal, us , gives the current goal or intention
of the user. Examples of a complete user goal include a
travel itinerary, a request for information about a calendar,
or a product the user would like to purchase.
 The user’s action, ua , gives the user’s most recent
user’s actual action. Examples of user actions include
specifying a place the user would like to travel to, re-
sponding to a yes/no question, or a “null” response indi-
cating the user took no action.
 The state of the dialogue ds indicates any relevant dia-
logue state information from the perspective of the user.
For example, ds might indicate that a particular slot has
not yet been stated, has been stated but not grounded, or
has been grounded. ds enables a policy to make deci-
sions about the appropriateness of behaviours in a dia-
logue – for example, if there are ungrounded items, a dia-
logue designer might wish to penalise asking an open
question (vs. grounding an item).
 Note that we do not include a state component for con-
fidence associated with a particular user goal. The con-
cept of confidence is naturally captured by the distribution
of probability mass assigned to a particular user goal in
the belief state.4

4 Future work will explore how a speech recognition confi-

dence score can be incorporated in a principled way.

 The POMDP action mm Aa ∈ is the action the machine
takes in the dialogue. For example, machine actions
might include greeting the user, asking the user where
they want to go “to”, or confirming that the user wants to
leave “from” a specific place. The POMDP observation o
is drawn from the same set as ua , i.e., uAo ∈ . Note that
at each time step the POMDP receives a single observa-
tion, but maintains a distribution over all possible user
actions.
 To factor the model, we decompose the POMDP transi-
tion function as follows:

)4().,,,,,|(
),,,,|(

),,,|(
)3(),,,|,,(),|(

muduuud

muduuu

muduu

muduudum

aasssasp
aasssap

aasssp
aassasspassp

′′′
⋅′′

⋅′=
′′′=′

 We then assume conditional independence as follows.
The first term – which we call the user goal model – indi-
cates how the user’s goal changes (or does not change) at
each time step. We assume the user’s goal at a time step
depends only on the previous goal and the machine’s ac-
tion:
),|(),,,|(muumuduu asspaasssp ′=′ . (5)

 The second term – which we call the user action model
– indicates what actions the user is likely to take at each
time step. We assume the user’s action depends on their
(current) goal and the preceding machine action:
),|(),,,,|(muumuduuu asapaasssap ′′=′′ . (6)

 The third term – which we call the dialogue model –
indicates how the user and machine’s actions affect the
state of the conversation. We assume the current state of
the dialogue depends on the previous state of the dialogue,
the user’s action, and the machine’s action:
),,|(),,,,,|(mdudmuduuud asaspaasssasp ′′=′′′ . (7)

 In sum, our transition function is given by:

).,,|(

),|(
),|(),|(

mdud

muu

muum

asasp
asap
asspassp

′′
⋅′′
⋅′=′

 (8)

 This factored representation reduces the number of pa-
rameters required for the transition function, and allows
groups of parameters to be estimated separately. For ex-
ample, we could estimate the user action model from a
corpus by counting user dialogue acts given a machine
dialogue act and a user goal, or use a “generic” distribu-
tion and adapt it to a particular problem once data be-
comes available.5 We could then separately specify the
dialogue model using a handcrafted function such as “In-
formation State” update rules as in for example [Larsson
and Traum, 2000].
 The observation function is given by:
),,,|(),|(mudum aassopasop ′′′′=′′ . (9)

5 To appropriately cover all of the conditions, the corpus

would need to include variability in the strategy employed by the
machine – for example, using a Wizard-of-Oz framework with a
simulated ASR channel [Stuttle et al., 2004].

 The observation function accounts for the corruption
introduced by the speech recognition engine, so we as-
sume the observation depends only on the action taken by
the user:6
)|()|(),,,|(uumudu aopaopaassop =′′=′′′′ . (10)

 The observation function can be estimated from a cor-
pus or derived analytically using a phonetic confusion
matrix, language model, etc. The observation can be dis-
crete (i.e., a recognition hypothesis), or a mixture of dis-
crete and continuous (i.e., a recognition hypothesis and a
confidence score). Figure 1 shows an influence diagram
of our proposal.
 The reward function is not specified explicitly in this
proposal since it depends on the design objectives of the
target system. We note that the reward measure could
contain incentives for dialogue speed (by using a per-turn
penalty), appropriateness (through rewards conditioned on
dialogue state), and successful task completion (through
rewards conditioned on the user’s goal). Weights between
these incentives could be estimated through formalisms
like PARADISE [Walker et al., 2000], and then adapted
to the needs of a particular domain – for example, accu-
racy in performing a financial transaction is arguably
more important than accuracy when obtaining weather
information.
 Finally, we update the belief state at each time step by:

)11(),|(

)(),|(),|(

),|(

),|(),,|(),|(

),|(
),|(),,|(

),,|()('

baop

sbsaspasop

baop

baspsbaspasop

baop
baspbasop

baospsb

m

Ss
mm

m

Ss
mmm

m

mm

m

′

′′′
=

′

′′′
=

′
′′′

=

′′=′

∑

∑

∈

∈

The numerator consists of the observation function, transi-
tion matrix, and current belief state. The denominator is
independent of s ′ , and can be regarded as a normalisation
factor; hence:

 ∑
∈

′′′⋅=′′
Ss

mm sbsaspasopksb)(),|(),|()(. (12)

 Substituting equation (8) and (10) into (12) and simpli-
fying, we can write:

6 This implicitly assumes that the same recognition grammar

is always used. The model could be readily extended to enable a
system “action" which activates a particular grammar.

)13(.),,(

),,|(

),|(
),|()|(),,(

∑
∑
∑

∈

∈

∈

⋅′′

⋅′
⋅′′′′⋅=′′′′

uu

dd

uu

Aa
udu

Ss
mdud

Ss
muu

muuuudu

assb

asasp

assp
asapaopkassb

o

au

sd

su

am

r

o'

au'

sd'

su'

am'

r'

Timestep n Timestep n+1

Figure 1: Influence diagram for the factored model.
The dotted box indicates the composite state s is com-

prised of three components, su, sd, and au. Shading
indicates a component is unobservable. Arcs into cir-
cular chance nodes and diamond-shaped utility nodes

show influence, whereas arcs into square decision
nodes are informational (see Jensen [2001], p140).

4 Testbed spoken dialogue system
To test the ideas in our proposal, we created a simulated
dialogue management problem in the travel domain in
which the user is trying to buy a ticket to travel from one
city to another city. The machine asks the user a series of
questions, and then “submits” the ticket purchase request,
ending the dialogue. The machine may also choose to
“fail”. In the testbed problem, there are three cities,
{a,b,c}.
 The machine has 16 actions available, including greet,
ask-from/ask-to, conf-to-x/conf-from-x, submit-x-y, and
fail, where yxcbayx ≠∈ },,,{, . As above, the state space
is given by the tuple },,{ duu sas . The user’s goal uu Ss ∈
specifies the user’s desired itinerary. There are a total of
6 user goals, given by yxcbayxyxsu ≠∈∈ },,,{,),,(.
The dialogue state sd contains three components. Two of
these indicate (from the user’s perspective) whether the
from place and to place have not been specified (n), are
unconfirmed (u), or are confirmed (c). A third component
z specifies whether the current turn is the first turn (1) or
not (0). There are a total of 18 dialogue states, given by:
 }0,1{},,,{,);,,(∈∈∈ zcunyxzyxs ddddd (14)

 The user’s action uu Aa ∈ and the observation uAo ∈
are drawn from the set x, from-x, to-x, from-x-to-y, yes,
no, and null, where yxcbayx ≠∈ },,,{, .
 These state components yield a total of 1944 states, to
which we add one additional, absorbing end state. When
the machine takes the fail action or a submit-x-y action,
control transitions to this end state, and the dialogue ends.
 The initial (prior) probability of the user’s goal is dis-
tributed uniformly over the 6 user goals. In the testbed

problem the user has a fixed goal for the duration of the
dialogue, and we define the user goal model accordingly.
 We define the user action model to include a variable
set of responses – for example: the user may respond to
ask-to/ask-from with x, to-x/from-x, or from-x-to-y; the
user may respond to greet with to-y, from-x, or from-x-to-
y; the user may respond to confirm-to-x/confirm-from-x
with yes/no, x, or to/from-x; and at any point the user
might not respond (i.e., respond with null). The probabili-
ties in the user action model were chosen such that the
user usually provides cooperative but varied responses,
and sometimes doesn’t respond at all. The probabilities
were handcrafted, selected based on the authors’ experi-
ence performing usability testing with slot-filling dialogue
systems.7 In future work, we intend to estimate a user
model based on dialogue data.
 We define the dialogue model to deterministically im-
plement the notions of dialogue state above – i.e., a field
which has not been referenced by the user takes the value
n; a field which has been referenced by the user exactly
once takes the value u; and a field which has been refer-
enced by the user more than once takes the value c.
 We define the observation function to encode the prob-
ability of making a speech recognition error to be errp ,
and define the observation function as:







≠
−

=−
=

u
u

err

uerr

u aoif
A
p

aoifp
aop

1

1
)|((15)

Below we will vary errp to explore the effects of speech
recognition errors.
 The reward measure includes components for both task
completion and dialogue “appropriateness”, including: a
reward of -3 for confirming a field before it has been ref-
erenced by the user; a reward of -5 for taking the fail ac-
tion; a reward of +10 or -10 for taking the submit-x-y ac-
tion when the user’s goal is (x,y) or not, respectively; and
a reward of -1 otherwise. The reward measure reflects the
intuition that behaving inappropriately or even abandon-
ing a hopeless conversation early are both less severe than
getting the user's goal wrong. The per-turn penalty of -1
expresses the intuition that, all else being equal, short dia-
logues are better than long dialogues.

The reward measure also assigned -100 for taking the
greet action when not in the first turn of the dialogue.
This portion of the reward function effectively expresses a
design decision: the greet action may only be taken in the
first turn. A discount of 95.0=γ was used for all experi-
ments.
 The Perseus algorithm requires two parameters: num-
ber of belief points, and number of iterations. Through
experimentation, we found that 500 belief points and 30
iterations attained asymptotic performance for all values
of errp .

7 Because of space limitations, the detail of this distribution

isn’t shown here.

5 Testbed evaluation

5.1 Comparison with an MDP Baseline
To test whether an automated solution to the POMDP is
both feasible and worthwhile, we created an MDP-based
dialogue manager baseline, patterned on systems in the
literature (e.g., [Pietquin, 2004]). The MDP is trained and
evaluated through interaction with a model of the envi-
ronment, which is formed of the POMDP transition, ob-
servation, and reward functions. This model of the envi-
ronment takes an action from the MDP as input, and emits
an observation and a reward to the MDP as output.

The MDP state contains components for each field
which reflect whether, from the standpoint of the machine,
(a) a value has not been observed, (b) a value has been
observed but not confirmed, or (c) a value has been con-
firmed. Two additional states – dialogue-start and dia-
logue-end – which were also in the POMDP state space,
are included in the MDP state space for a total of 11 MDP
states.

An MDP state estimator maps from POMDP observa-
tion to MDP state, and from MDP action to POMDP ac-
tion. For example, given the current MDP state, the MDP
policy selects an MDP action, and the MDP state estima-
tor then maps the MDP action back to a POMDP action,
which updates the environment model. The MDP state
estimator tracks the most recent value observed for a slot,
enabling it to map from an MDP action like confirm-from
to a POMDP action like confirm-from-a or an MDP action
like submit to submit-from-a-to-b. This behaviour of the
MDP state estimator is identical to that used in the
MDP/spoken dialogue system literature (e.g., [Pietquin,
2004] and [Levin et al., 2000]).
 Because the MDP learns through experience with a
simulated environment, we selected an on-line learning
technique, Watkins Q-learning, to train the MDP baseline.
A variety of learning parameters were explored, and the
best-performing parameter set was selected: initial Q val-
ues set to 0, exploration parameter 2.0=ε , and the learn-
ing rate α set to 1/k (where k is the number of visits to
the Q(s,a) being updated.). To evaluate the resulting
MDP policy, 10,000 dialogs were simulated using the
learned policy.
 Figure 2 shows expected return for the POMDP solu-
tion, and the average return for the MDP solutions vs.

errp ranging from 0.00 to 0.65. The (negligible) error
bars show the 95% confidence interval for return assum-
ing a normal distribution. Note that return decreases con-
sistently as errp increases for all solution methods, but the
POMDP solution attains the largest return of the solutions
at all values of errp . Further, the performance gain of the
POMDP solution over the other solutions increases as

errp increases. From this result we conclude that the
POMDP solution copes with higher speech recognition
error rates better than the MDP approach, consistent with
[Roy et al., 2000].

-15

-10

-5

0

5

10

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

Ex
pe

ct
ed

 o
r a

ve
ra

ge
 re

tu
rn

POMDP
MDP

Figure 2: Expected or average return of POMDP poli-
cies and MDP baseline. Error bars show 95% confi-

dence interval.

-4

-2

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
perr used at evaluation

A
ve

ra
ge

 re
tu

rn

Figure 3: Performance of POMDP policies vs. perr.
White bars show a policy trained using perr=0.15,
checked bars perr=0.35, and shaded bars perr=0.55.

Error bars show 95% confidence interval.

5.2 Robustness to changes in error rate
 In practice, the error rate of a spoken dialogue system
varies from user to user. Thus we were interested to see
how a POMDP solution adapts to a value of errp for
which it was not designed. Figure 3 shows average return
for three dialogue managers when executed using a differ-
ent value for errp . Error bars show 95% confidence in-
terval for true average return sampled over 10,000 dia-
logues. From this we see that the POMDP solutions are
not “brittle” – i.e., they do not fail catastrophically as errp
deviates from that used in training.

6 Comparison with a handcrafted policy

6.1 Method to evaluate a handcrafted policy
Intuitively, a policy specifies what action to take in a
given situation. In the previous section, we relied on the
representation of a POMDP policy produced by value
iteration – i.e., a value function, represented as a set of N
vectors each of dimensionality |S|. We write)(snυ to
indicate the sth component of the nth vector.
 Each vector represents the value, at all points in the
belief space, of executing some “policy tree” which starts
with an action associated with that vector. We write

An ∈)(π̂ to indicate the action associated with the nth
vector. If we assume that the policy trees have an infinite

horizon, then we can express the optimal policy at all
timesteps as:

 









= ∑

=

S

s
n

n
sbsb

1

)()(maxargˆ)(υππ (16)

 Thus the value-function method provides both a parti-
tioning of belief space into regions corresponding to op-
timal actions as well as the expected return of taking that
action. A second way of representing a POMDP policy is
as a “policy graph” – a finite state controller consisting of
N nodes and some number of directed arcs. Each control-
ler node is assigned a POMDP action, and we will again
write)(ˆ nπ to indicate the action associated with the nth
node. Each arc is labelled with a POMDP observation,
such that all controller nodes have exactly one outward
arc for each observation.),(onl denotes the successor
node for node n and observation o.
 A policy graph is a general and common way of repre-
senting handcrafted dialogue management policies. More
complex handcrafted policies – for example, those created
with rules – can usually be compiled into a (possibly very
large) policy graph.
 A policy graph does not make the expected return asso-
ciated with each controller node explicit. However, as
pointed out by Hansen [1998], we can find the expected
return associated with each controller node by solving this
system of linear equations in υ :

)17()())(ˆ,|())(ˆ,|(
))(ˆ,()(

),(∑∑
∈′ ∈

′′′
+=

Ss Oo
onl

n

snsopnssp
nsrs

υππγ
πυ

Solving this set of linear equations yields a set of vectors
– one vector for each controller node. To find the ex-
pected value of starting the controller in node n and belief
state b we compute:

 ∑
=

S

s
n sbs

1

)()(υ (18)

6.2 Example handcrafted policies and results
Three handcrafted policies were created, called HC1,
HC2, and HC3. All of the handcrafted policies first take
the action greet. HC1 takes the ask-from and ask-to ac-
tions to fill the from and to fields, performing no confir-
mation. If the user does not respond, it re-tries the same
action. If it receives an observation which is inconsistent
or nonsensical, it re-tries the same action. Once it fills
both fields, it takes the corresponding submit-x-y action.
A logical diagram showing HC1 is shown in Figure 4.8
 HC2 is identical to HC1 except that if the machine re-
ceives an observation which is inconsistent or nonsensi-
cal, it immediately takes the fail action. Once it fills both
fields, it takes the corresponding submit-x-y action.
 HC3 employs a similar strategy to HC1 but extends
HC1 by confirming each field as it is collected. If the user

8 A logical diagram is shown for clarity: the actual controller
uses the real values a, b, and c, instead of the variables X and Y,
resulting in a controller with 15 states.

responds with “no” to a confirmation, it re-asks the field.
If the user provides inconsistent information, it treats the
new information as “correct” and confirms the new in-
formation. If the user does not respond, or if the machine
receives any nonsensical input, it re-tries the same action.
Once it has successfully filled and confirmed both fields,
it takes the corresponding submit-x-y action.
 Figure 5 shows the expected return for the handcrafted
policies and the optimised POMDP solution. The
POMDP solution outperforms all of the handcrafted poli-
cies for all values of errp .

We inspected the POMDP solution in order to charac-
terise how it differs from the handcrafted solutions. Con-
ceptually, the POMDP policy differs from the handcrafted
policies in that it tracks conflicting evidence rather than
discarding it. For example, whereas the POMDP policy
can interpret the “best 2 of 3” observations for a given
slot, the handcrafted policies can maintain only 1 hy-
pothesis for each slot.

As an illustration, consider an environment with no un-
certainty – i.e., no speech recognition errors. In this envi-
ronment, there is no benefit to maintaining multiple hy-
potheses for a user goal, and thus we would expect a
POMDP to perform identically to a policy which does not
track multiple hypotheses for a user goal. Figure 5 dem-
onstrates this point: where 0=errp , HC1 and HC2 per-
form identically to the POMDP policy.9

It is interesting to note that HC3, which confirms all in-
puts, performs least well for all values of errp . For the
reward function we have provided in the testbed system,
requiring 2 consistent recognition results (the response to
ask and the response to confirm) gives rise to longer dia-
logs which outweigh the benefit of the increase in cer-
tainty

greet

guess
X-Y

ask
from

ask
to

ask
from

else from X
to Y

X
from X

from X to Y,
X≠Y

from X to Y

X
from X

Y, to Y
from X to Y, X≠Y

from X to Y

else else else

Figure 4: HC1 handcrafted controller

9 HC3 performs worse because it confirms each element,

lengthening the dialogue and thus reducing return.

-8

-6

-4

-2

0

2

4

6

8

10

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

E
xp

ec
te

d
re

tu
rn

POMDP
HC1
HC2
HC3

Figure 5: Expected return vs. perr for POMDP policy

and 3 handcrafted policies.

7 Conclusion
We have proposed a factored architecture for describing
POMDPs applied to spoken dialogue management. The
factored representation is useful for two reasons – first, it
facilitates estimating or specifying the system dynamics
by reducing the number of parameters, and enabling dif-
ferent aspects of the system dynamics to be specified in-
dependently. Second, it enables incorporation of an ex-
plicit dialogue model from the user’s standpoint, which
allows a dialogue designer to add rewards for “appropri-
ate” dialogue behaviour. Further, we have shown how to
convert a handcrafted policy represented as a finite-state
controller into a value function, providing a principled
way for handcrafted policies to be compared directly with
policies produced with automated solutions. Our model is
much larger than past POMDP dialogue managers; how-
ever, using our testbed problem, we have shown that a
recent POMDP optimisation technique finds policies
which outperform both an MDP baseline and three hand-
crafted controllers over all operating conditions. Further,
the POMDP solution appears to adapt to changes in
speech recognition error rate well.
 A crucial theoretical issue is how to scale this model to
handle larger problems since the state, action, and obser-
vation sets grow exponentially with the number of con-
cepts in the problem. Although we have not used the fac-
tored representation to assist the optimisation process in
this work, it may be possible to exploit the factoring to
make the optimisation algorithms more efficient.

Acknowledgements
The work reported in this paper was supported by the EU
FP6 Talk Project.

References
[Hansen, 1998] Eric A. Hansen. Solving POMDPs by

searching in policy space. In Uncertainty in Artificial
Intelligence, Madison, Wisconsin. 1998.

[Jensen, 2001]. Finn V. Jensen. Bayesian Networks and
Decision Graphs. New York: Springer Verlang, 2001.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman and Anthony R. Cassandra. Planning and
Acting in Partially Observable Stochastic Domains.
Artificial Intelligence, Vol. 101, 1998.

[Larsson and Traum, 2000] Staffan Larsson and David
Traum. Information state and dialogue management in
the trindi dialogue move engine toolkit. Natural
Language Engineering, 5(3–4):323–340, 2000.

[Levin et al., 2000] Esther Levin, Roberto Pieraccini, and
Wieland Eckert. A Stochastic Model of Human-
Machine Interaction for Learning Dialogue Strategies.
IEEE Transactions on Speech and Audio Processing,
Volume 8, No. 1, 11-23, 2000.

[Levin and Pieraccini, 1997] Esther Levin and Roberto
Pieraccini. A Stochastic Model of Computer-Human
Interaction For Learning Dialogue Strategies.
Eurospeech, Rhodes, Greece, 1997.

[Paek and Horvitz, 2000] Tim Paek and Eric Horvitz.
Conversation as Action Under Uncertainty. In Proc.
Uncertainty in Artificial Intelligence (UAI), Stanford,
CA, June 2000.

[Pietquin, 2004] Olivier Pietquin. A Framework for
Unsupervised Learning of Dialogue Strategies. Ph D
thesis, Faculty of Engineering, Mons, Belgium, 2004.

[Roy et al., 2000] Nicholas Roy, Joelle Pineau and
Sebastian Thrun. Spoken Dialogue Management
Using Probabilistic Reasoning. Annual meeting of the
the Association for Computational Linguistics (ACL-
2000).

[Singh et al., 2002] Satinder Singh, Diane Litman,
Michael Kearns and Marilyn Walker. Optimizing
Dialogue Management with Reinforcement Leaning:
Experiments with the NJFun System. Journal of
Artificial Intelligence, Vol. 16, 105-133, 2002.

[Spaan and Vlassis, 2004] Matthijs T. J. Spaan and Nikos
Vlassis. Perseus: randomized point-based value
iteration for POMDPs. Technical Report IAS-UVA-
04-02, Informatics Institute, University of Amsterdam,
2004.

[Stuttle et al., 2004] Matthew Stuttle, Jason D. Williams,
and Steve Young. A Framework for Wizard-of-Oz
Experiments with a Simulated ASR-Channel.
International Conferences on Spoken Language
Processing (ICSLP-2004), Jeju, South Korea, 2004.

[Walker et al., 2000] Marilyn A. Walker, Candace
Kamm, and Diane Litman. Towards Developing
General Models of Usability with PARADISE.
Natural Language Engineering, Vol. 6, No. 3, 2000.

[Zhang et al., 2001] Zhang Bo, Cai Qingsheng, Mao
Jianfeng, and Guo Baining. Planning and Acting
under Uncertainty: A New Model for Spoken Dialogue
System. Proceedings of the 17th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-01). San
Francisco, USA, 2001.

