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Abstract
Spectral learning recently generated lots of ex-
citement in machine learning, largely because
it is the first known method to produce consis-
tent estimates (under suitable conditions) for sev-
eral latent variable models. In contrast, max-
imum likelihood estimates may get trapped in
local optima due to the non-convex nature of
the likelihood function of latent variable mod-
els. In this paper, we do an empirical evaluation
of spectral learning (SL) and expectation maxi-
mization (EM), which reveals an important gap
between the theory and the practice. First, SL of-
ten leads to negative probabilities. Second, EM
often yields better estimates than spectral learn-
ing and it does not seem to get stuck in local
optima. We discuss how the rank of the model
parameters and the amount of training data can
yield negative probabilities. We also question the
common belief that maximum likelihood estima-
tors are necessarily inconsistent.

1. Introduction
Spectral Learning is a general approach that uses spec-
tral decompositions (e.g., singular value decomposition and
tensor decomposition) for parameter estimation based on
the method of moments (Hsu et al., 2012; Parikh & Xing,
2011; Anandkumar et al., 2012a;c;b). Spectral learning
has generated a lot of excitement in recent years due to
its performance guarantees in latent variable models. The
presence of discrete latent variables generally leads to a
non-concave log-likelihood function, which is problem-
atic for maximum likelihood estimators. Spectral learn-
ing is the first known method to be consistent (under suit-
able conditions) for several latent variable models includ-
ing mixtures of Gaussians (MoGs), hidden Markov mod-
els (HMMs) and latent Dirichlet allocation (LDA). Further-
more, finite sample bounds guarantee that the approach will
find nearly optimal parameters or make nearly optimal pre-

dictions with high probability given a sufficient amount of
training data (Hsu et al., 2012).

We report some experiments that suggest an important gap
between the theory and the practice. Despite its theoret-
ical guarantees, spectral learning often generates negative
probabilities. This is an important issue that has received
little attention so far. We show some empirical results that
suggest that a poor choice of the rank of the model param-
eters and insufficient training data increase the likelihood
of negative probabilities. We also investigate how well
spectral learning performs in comparison to common ap-
proaches such as EM that do not enjoy the same theoret-
ical guarantees. Interestingly, even though EM is subject
to local optima and spectral learning is not, EM often out-
performs spectral learning. Contrary to the common belief,
we suggest that EM may be consistent in several settings.
We discuss two situations under the assumption that the
observation space is finite. When the true parameters are
identifiable, increasing the amount of data often leads to
a unimodal (though still non-concave) likelihood function,
which explains why maximum likelihood estimators do not
suffer from local optima. When the true parameters are
unidentifiable (i.e., several equivalent solutions), the likeli-
hood function remains multimodal, but if all the peaks of
the likelihood function are at equivalent solutions, maxi-
mum likelihood estimators do not suffer from local optima.
We also discuss two advantages of maximum likelihood es-
timators over spectral learning: a) maximum likelihood is
a better objective to optimize than moment consistency and
b) the data efficiency of maximum likelihood tends to be
higher since it uses all empirical moments of the data (not
just a few low order moments).

2. Spectral Learning for HMMs
Consider an HMM described as follows. Let x1, x2, x3, . . .
denote a sequence of discrete observations where xt ∈
[n] = {1, . . . , n} is the observation at time step t, and
h1, h2, h3, . . . denotes a sequence of hidden states where
ht ∈ [m] = {1, . . . ,m} is the hidden state at time
step t. The parameters of an HMM are (π, T,O) where
π ∈ Rm is the initial state distribution, T ∈ Rm×m is
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the transition matrix and O ∈ Rn×m is the observation
matrix. More specifically, we have Pr(h1 = i) = πi,
Pr(ht+1 = i|ht = j) = Tij and Pr(xt = i|ht = j) =
Oij . Based on (π, T,O), we define an observable operator
Ax = Tdiag(Ox,1, . . . , Ox,m) ∈ Rm×m for each obser-
vation x ∈ [n]. The joint probability of an observation
sequence of length t can be computed based on these oper-
ators as follows:

Pr(x1, . . . , xt) = 1T
mAxt

. . . Ax1
π (1)

Hsu et al. (2012) proposed a spectral algorithm called
LearnHMM to estimate a transformed set of operators
based on some low order empirical moments of the data.
The following moment matrices are estimated from the
data:

P1 ∈ Rn, [P1]i = Pr(x1 = i)
P2,1 ∈ Rn×n, [P2,1]ij = Pr(x2 = i, x1 = j)
P3,x,1 ∈ Rn×n, [P3,x,1]ij = Pr(x3 = i, x2 = x, x1 = j)

LearnHMM requires a matrix U ∈ Rn×m such that UTO
is invertible. It is often chosen to be the first m left sin-
gular vectors that preserve the range of O. The following
operators are then computed:

b1 = UTP1

bT∞ = PT
1 (UTP2,1)

+

Bx = UTP3,x,1(U
TP2,1)

+ ∀x ∈ [n] (2)

If T and O are of rank m and π is element-wise positive, it
can be shown that

Pr(x1, . . . , xt) = bT∞Bxt
. . . Bx1

b1

The classic parameters (π,O, T ) can also be recovered
from the operators (Hsu et al., 2012).

In practice, since we do not know the exact moments, we
obtain approximate moment matrices P̂1, P̂2,1, P̂3,x,1 from
the data and approximate operators b̂1, b̂T∞, B̂x. Hsu et al.
(2012) proved that joint probability estimates are consistent
in the sense that

lim
N→∞

∑
x1,...,xt

|Pr(x1, . . . , xt)− P̂r(x1, . . . , xt)| = 0 (3)

where N is the sample size. They also showed that ∀ε > 0,
the sample size needed to get an ε-bound on the estimate is
polynomial in t and m. Several extensions and variants of
this approach have been proposed for many latent variable
models (Parikh et al., 2012; Parikh & Xing, 2011; Anand-
kumar et al., 2012a;c).

3. Negative Probabilities
We implemented LearnHMM and tested it on small and
large synthetic discrete HMMs. The small HMM has 4 hid-
den states, 8 observations and the test set consists of 4096

observation sequences of length 4. The large HMM has 50
hidden states, 100 observations and a test set of 10,000 ob-
servation sequences of length 50. Fig. 1a and Fig. 1d show
the normalized L1 error when estimating the probability of
the test sequences as we vary the amount of training data
and the rank hyperparameter m. The normalized L1 error
is defined as follows:

L1 =
∑

(x1,...,xt)∈T

|Pr(x1, . . . , xt)− P̂r(x1, . . . , xt)|
1
t

where T is the set of test sequences. We also report the
proportion of negative probabilities

NEG PROP =
|{P̂r(x1, . . . , xt) < 0 | (x1, . . . , xt) ∈ T }|

|T |

computed by LearnHMM in Fig. 1b and Fig. 1e. Nega-
tive probabilities are an important problem as they occur
frequently. Increasing the amount of data and choosing a
more accurate rank parameter tends to decrease the L1 er-
ror and the proportion of negative probabilities.

Negative probabilities do not invalidate the theoretical
guarantees of spectral learning. They simply reflect the
fact that the theoretical guarantees are expressed in terms
of bounds on additive error (see Theorem 6 in Hsu et al.
(2012)). When the true probability is close to 0 and the
bound is loose, it may guarantee that the estimated proba-
bility is in some interval that is partly negative. The prob-
lem of negative probabilities is well-known in the litera-
ture on observable operator models and was acknowledged
by Boots et al. (2011) who rounded up all negative outputs
to a number slightly above zero followed by normalization.
In some spectral learning algorithms such as Excess Cor-
relation Analysis for latent Dirichlet allocation (Anandku-
mar et al., 2012a), the parameters are estimated up to a
sign. This means that an exact estimate of a distribution
will normally be all positive or all negative and the sign
can be flipped in the case of an entirely negative distribu-
tion. However, since the parameters are estimated approx-
imately, the sign of the probabilities will often be mixed.
It is not clear anymore whether the sign should be flipped.
A simple heuristic consists of adding the probabilities of
all outcomes and if the sum is negative, then flip the sign
of all probabilities. After that, the negative probabilities
can be rounded up to a number slightly higher than 0 fol-
lowed by normalization. Here, there is a risk that the sign
of the probabilities will be flipped when it should not. If
most of the mass is negative due to the approximate nature
of spectral learning, then the sign should not be flipped.
Those heuristics will ensure that the final probabilities are
positive, but they may increase the additive error. Spectral
learning (with those heuristics) remains consistent in the
limit, but the finite sample bounds need to be revised (this
is an open problem).
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Figure 1. Results for LearnHMM on two data sets (Fig.1a,1b,1d,1e) and comparing LearnHMM with EM (Fig.1c,1f).

Can we modify spectral learning to ensure that all proba-
bilities are non-negative? The root of the problem is that
spectral learning implicitly solves a system of non-linear
equations without restricting the space to non-negative so-
lutions. Could we simply add additional constraints to en-
sure non-negativity? We conjecture that it will be NP-hard.
Consider the problem of matrix factorization (i.e., find ma-
trices A and B such that C=AB). If the entries of A and B
may be any real number, then a solution can be found in
polynomial time by singular value decomposition. How-
ever, if we want A and B to be non-negative then this
becomes a problem of non-negative matrix factorization,
which is NP-hard (Vavasis, 2009). Similarly, spectral learn-
ing finds operators (from which transition and observation
matrices can be recovered) by singular value decomposi-
tion in polynomial time. If we add non-negativity con-
straints for the resulting transition and observation matri-
ces, we conjecture that the problem will become NP-hard.

4. Empirical Comparison with EM
We compared empirically spectral learning to expectation
maximization (EM) on synthetic HMMs. The theory sug-
gests that spectral learning should perform better since it
is consistent while EM is subject to local optima, but the
results are mixed. On the small synthetic HMM (Fig. 1c),
with the true rank and sufficient data, spectral learning out-
performs EM, but on the large synthetic HMM (Fig. 1f),
EM outperforms spectral learning. The amount of training

data was the same for both problems. We suspect that the
amount of training data was insufficient for spectral learn-
ing to estimate reasonable operators for the larger model.
Furthermore, since spectral learning inverts a matrix to re-
cover a similarity transform of the observable operators, it
is unstable and sensitive to noise. We also noticed a large
amount of negative probabilities. In general, spectral learn-
ing is very sensitive to the amount of data and the rank pa-
rameter as discussed in the previous section.

We also note that spectral learning does not optimize any
desirable objective. Since it implicitly solves a non-linear
system of equations induced by moment matching, if the
moments matrices are too approximate, the resulting op-
erators may be far from those that produced the data. If
the system of equations is highly sensitive to perturbations,
then spectral learning may yield terrible results. In contrast,
EM directly maximizes the likelihood of the data. So even
when there is little data it will find parameters that are likely
to generate the data. The main issue with small datasets for
EM is overfitting. We did not use regularization to mitigate
overfitting in this experiment.

Another difference between spectral learning and EM is the
information from the data that is used in training. Spectral
learning does not use the raw training data. It uses only
the first few empirical moments, which can be viewed as
insufficient statistics. In contrast, EM trains with the raw
data and therefore implicitly takes into account all the em-
pirical moments including the higher order moments that
spectral learning ignores.
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5. Local Optima
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Figure 2. Unnormalized likelihood curves Pr(θ|data).

We were surprised by the fact that EM performed as well
as it did since it may get stuck in arbitrarily bad local
optima. While EM produced different results for differ-
ent random restarts as shown by the error bars in Fig. 1c
and 1f, the results were generally quite good and consis-
tent. The variation for different random results can be
explained by (minor) local optima or different amounts
of overfitting. To investigate this further we constructed
a single-parameter HMM for which we can visualize the
likelihood function. This HMM has 2 states and 2 ob-
servations. We assume that the observation distribution
is known and fixed (Pr(xi|hi) = 0.7 ∀i) while the tran-
sition distribution is symmetric with a single parameter
θ = Pr(hi+1 = n|hi = n) ∀n, i indicating the probability
that the current state remains unchanged. The likelihood
function can be computed analytically for discrete latent
variable models since it consists of an unnormalized mix-
ture of Dirichlets. However, this mixture has one Dirich-
let component per joint assignment of the latent variables.
For a sequence of t time steps, this would yield an expo-
nentially large mixture in t. However, when there is only
one parameter θ, several mixture components can be col-
lapsed together and the number of different components
in the mixture grows quadratically in t. Figure 2 shows
the analytical likelihood function for data sequences of in-
creasing length. Each curve is a mixture of Dirichlets cor-
responding to the likelihood function for observation se-
quences of different length. Since the likelihood functions
are (unnormalized) mixtures of Dirichlets, we expect to see
multimodal curves, but most of the curves in Fig. 2 are uni-
modal. This means that maximum likelihood estimators
such as EM will perform very well. The fact that mixtures
of Dirichlets tend to form unimodal curves as we increase
the amount of data can be explained by the consistency of
Bayesian learning (Casella & Berger, 1990). When we start
with a uniform prior, the posterior in Bayesian learning is
the likelihood function. Since Bayesian learning is con-
sistent for discrete observation models, the posterior con-
verges to a Dirac distribution in the limit as long as the true
parameters are identifiable (i.e., unique solution) (Casella

& Berger, 1990). Hence the likelihood function converges
to a Dirac distribution too and we conjecture that EM is
consistent in this setting.

To test our conjecture that EM is consistent we did another
experiment with an HMM of 2 states, 2 observations and 4
parameters. Fig. 3 shows the likelihood of the training data
for the solutions found by EM in comparison to the true pa-
rameters. Our conjecture would not hold if EM found so-
lutions with lower likelihood than for the true parameters
because this would mean that it got stuck in a local opti-
mum. However as the the amount of training data increases
EM consistently finds solutions with higher likelihood than
for the true parameters and the variance of the likelihood
vanishes. This suggests that EM found solutions that are
all equivalent (i.e. no local optimum that is worse than the
other optima). The fact that the likelihood is higher than
for the true parameters simply indicates overfitting. While
we suspect that EM is consistent in some settings under
suitable conditions (that remain to be proven formally), we
note that EM is inconsistent for some continuous observa-
tion models such as HMMs with continuous observations
and mixture of Gaussians (MoGs). For MoGs, it is will
known that EM may converge to a mixture of a Dirac distri-
bution centered at one data point with a widespread Gaus-
sian that fits the rest of the data (Bishop, 2006). This sin-
gular solution has infinite data likelihood, but it does not
correspond to the true parameters, confirming the inconsis-
tency of EM.
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Figure 3. Log likelihood comparison.

6. Conclusion
Spectral learning is an exciting and promising line of re-
search. In this work we showed that there is an important
gap between the theory and the practice. We highlighted
several open problems regarding negative probabilities and
conjectured that EM may be consistent in some settings.
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