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A Experiment Details1

We provide an introduction to the dataset, the implementation details, and the comparison methods.2

A.1 Dataset Details3

In this paper, we apply a play-by-play dataset constructed by NAME (name withheld to preserve4

anonymity). They capture the information of an on-puck player (player possessing the puck) from5

broadcast videos with computer version techniques. Table 4 shows a complete set of features.6

Table 4: The complete list of features. The table utilizes adjusted spatial coordinates where negative
numbers denote the defensive zone of the acting player and positive numbers denote his offensive
zone. Adjusted X-coordinates run from -100 to +100 and Adjusted Y-coordinates from 42.5 to -42.5,
where the origin is at the ice center.

Type Name Range

Spatial Features

X Coordinate of Puck [-100, 100]
Y Coordinate of Puck [-42.5, 42.5]

Velocity of Puck (−∞,+∞)
Angle between [−3.14, 3.14]the puck and the goal

Temporal Features Game Time Left [0, 3,600]
Event Duration (0, +∞)

In-Game Features

Score Differential (−∞,+∞)
Manpower Situation {Even Strength, Shorted Handed, Power Play}
Home or Away Team {Home, Away}

Action Outcome {successful, failure}

A.2 Implementation Details.7

Running settings. All the models (including our VaRLAE and other comparison models) are8

implemented by Tensorflow 1.15 (the source code has been uploaded as supplementary materials).9

The models are trained by mini-batch stochastic gradient descent (with batch size 32) applying10

Adam optimizer. The learning rate is set to 1E-5. To validate our model, we randomly divide the11

NHL dataset containing 1,196 games into a training set (80%), a validation set (10%), and a testing12

set(10%) and implement 5 independent runs. In each run, the models are trained for a total of 1013

epochs (over 40M events), and testing is implemented by the hold-out validation. In this paper, we14

report the results in the format of mean ± variance computed across these 5 runs. All the experiments15

are run on a local machine with 32 GB main memory, a TITAN X GPU (12 GB memory), and a16

GeForce GTX 1080 GPU (12 GB memory).17

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



Model settings. Within our VaRLAE , the dimensions of latent variables zs, za and zr are set to18

64, 64 and 32 respectively (following [1]). The sizes of other hidden layers (in both LSTM and MLP)19

are set to 256. The max trace length of LSTM is set to 10 following previous works [2, 3].20

A.3 A Summary for Comparison methods21

Table 5 summarizes the differences between these comparison methods and our model. our VaR-22

LAE applies a hierarchy of latent variables to embed players. To make fair comparisons, we set the23

dimension of the embedding vector to 256 for all comparison methods.24

N/A indicates no player information is applied and Pids indicates that we directly input one-hot25

player ids to the downstream application models.26

Deterministic Encoder (DE) [4]: DE applies a conditional auto-encoder structure. DE maps the27

current observations (ot,at, rt, plt) to the acting players by minimizing a reconstruction loss. It does28

not model the game history.29

Conditional Variational Auto-Encoder (CVAE) [5]: Our implementation of CVAE follows our30

player representation framework (Section 3.2). It learns a player representation conditioning current31

observations: q(zt|ot,at, rt, plt) (without modeling the game history).32

Multi-Agent Behavior Encoder (MA-BE)[6]: MA-BE applies a policy embedding framework and33

models the behavior of players by imitation learning. To identify the embedding for different agents,34

MA-BE introduces an exponential triple loss to punish the similarity among embeddings for different35

players. The scale of triple loss is controlled by a hyper-parameter (λ). A large λ produces well-36

distinguished player embeddings, but it also generates huge loss variance which leads to large gradient37

and undermines the model convergence. When we apply MA-BE to learn the player representations,38

we find it hard to determine such a λ that can adequately facilitate both the player identification and39

model convergence, given the large number of players and the unbalanced representation. In the40

experiment, we examine different λ and obtain a reasonable model performance when λ = 0.0001.41

Conditional Variational RNN (CVRNN): CVRNN implements a VRNN [7] conditioning on the42

game context. CVRNN includes a CVAE at each RNN cell. It models the game history with RNN43

hidden states and learns a contextualized player representation q(zt|st,at, rt, plt) following our44

player representation framework (Section 3.2).45

Conditional Auto-Encoder RNN (CAERNN): CAERNN applies a similar implementation to46

CVRNN except, at each RNN cell, it replaces the Variational Auto-Encoder with a determinis-47

tic Auto-Encoder.48

Table 5: A summary of comparison methods.
Hierarchical
Embedding

Game
History

Stochastic-
Model

Continuous-
Value Embedding

Player-
Information

Policy-
Representation

N/A No No No No No No
Pids No No No No Yes No
DE No No No Yes Yes No

CVAE No No Yes Yes Yes No
MA-BE No Yes No Yes Yes Yes

CAERNN No Yes No Yes Yes No
CVRNN No Yes Yes Yes Yes No
VaRLAE Yes Yes Yes Yes Yes No

B A Spatial Illustration for the Shot Attempts49

We randomly sample 20 games from the training data and show a spatial illustration of shots that50

happened during these games in Figure 4. This plot is consistent with our description (section 5.3)51

that the training data is highly imbalanced and only a few shot attempts lead to a goal. The plot also52

shows that the locations of the successful and the unsuccessful shots are highly overlapped. Without53

knowing the identity of the acting player, it is hard to determine whether the shot can be made or not.54
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Figure 4: The spatial illustration of shot attempts on a hockey rink. We apply the adjusted coordinate
(see Table 4) and the play always flows from left to right. Blue circles represent unsuccessful shots
and red stars indicate successful shot.

C Additional Results55

C.1 Embedding Visualization56

We visualize the embeddings generated by our VaRLAE and CAERNN to compare the difference57

between a stochastic encoder and a deterministic encoder. In our paper, we label the embedding58

with players’ positions, names, and locations. Here, we complement these visualizations by further59

labeling the action types of players (the visualization method is explained in our paper.).

Figure 5: Embedding visualization. Each data point corresponds to a player embedding conditioning
on the game context at the current time step t. The player embeddings are labelled by the action types.
The embeddings are computed by VaRLAE (top plots) and CAERNN (bottom plots).

60

C.2 Temporal Illustrations of the Absolute Error61

To show more details of the predicted score difference results , we separately illustrate the62

mean±variance plot (Figure 3 in Section 5.3) for all the evaluated embedding methods.63
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(a) N/A (b) Pids (c) DE (d) CVAE

(e) MA-BE (f) CVRNN (g) CAERNN (h) VaRLAE

Figure 6: Temporal illustrations of the absolute error between predicted score differences and final
score differences. We report mean±variance of the error at each time step for all compared methods.

C.3 Posterior Collapse64

Figure 7 shows the Kullback–Leibler Divergence (KLD) between the posterior and the context-65

specific prior (for the variational encoders) during training. Among the studied methods, CVAE66

quickly reduces KLD to a small value (around 0.0005) after training on only a few games, but its67

performance is less unstable without modeling the game history. CVRNN converges slower and68

the KLD gradually drops to a very small number (around 3E-05) after training, which indicates the69

prior can replace the posterior and the decoder can generate the distribution of acting player without70

the player representation. It is consistent without intuition that a high capacity decoder like RNN71

can lead to posterior collapse [8]. Our VaRLAE significantly alleviates this problem by applying72

a hierarchy of latent variables and a deterministic warm-up during training (Section 4). The KLD73

reduces smoothly until it converges a value around 0.03.74

Figure 7: The KLD between the posteriors and the priors during training for VaRLAE , CVRNN and
CVAE (from left to right).
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