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Abstract

Inverse Constraint Reinforcement Learning (ICRL) aims to recover the underlying
constraints respected by expert agents in a data-driven manner. Existing ICRL
algorithms typically assume that the demonstration data is generated by a single
type of expert. However, in practice, demonstrations often comprise a mixture of
trajectories collected from various expert agents respecting different constraints,
making it challenging to explain expert behaviors with a unified constraint function.
To tackle this issue, we propose a Multi-Modal Inverse Constrained Reinforcement
Learning (MMICRL) algorithm for simultaneously estimating multiple constraints
corresponding to different types of experts. MMICRL constructs a flow-based den-
sity estimator that enables unsupervised expert identification from demonstrations,
so as to infer the agent-specific constraints. Following these constraints, MMI-
CRL imitates expert policies with a novel multi-modal constrained policy optimiza-
tion objective that minimizes the agent-conditioned policy entropy and maximizes
the unconditioned one. To enhance robustness, we incorporate this objective into
the contrastive learning framework. This approach enables imitation policies to cap-
ture the diversity of behaviors among expert agents. Extensive experiments in both
discrete and continuous environments show that MMICRL outperforms other base-
lines in terms of constraint recovery and control performance. Our implementation
is available at: https://github.com/qiaoguanren/Multi-Modal-Inverse-Constrained-
Reinforcement-Learning.

1 Introduction

Figure 1: The flowchart of MMICRL.

A fundamental prerequisite for achieving safe
Reinforcement Learning (RL) is that the agents’
policies must adhere to the underlying con-
straints in the environment [1, 2]. However, in
many real-world applications (e.g., robot control
and autonomous driving), the ideal constraints
are time-varying, context-dependent, and inher-
ent to experts’ own experience. These con-
straints are hard to specify mathematically and
may not be readily available to RL agents in
policy updates.

A promising approach for learning latent con-
straints is Inverse Constraint Reinforcement
Learning (ICRL) [3, 4, 5]. As a data-driven technique, ICRL recovers the underlying constraints
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respected by expert agents from their demonstrations and utilizes these constraints to support down-
stream applications. Existing ICRL methods [3, 4, 6, 7, 8] commonly assumed that all expert
demonstrations follow the same constraints, and they approximated these constraints with a unified
constraint model, whereas, in practice, the demonstration data may be collected from various agents,
and these agents might follow different or even conflicting constraints. It is problematic to leverage a
single constraint model to explain the behaviors of diverse agents. For example, in the context of
autonomous driving [9], the vehicle-distance constraints followed by trucks and cars should differ,
and misapplying these constraints could lead to serious traffic accidents.

To differentiate expert demonstrations, previous RL approaches [10, 11, 12, 13] inferred the la-
tent structure of expert demonstrations and identified expert agents by examining their behavioral
preferences. However, these methods were specifically designed for imitation learning rather than
constraint inference. Moreover, as their identification process primarily relies on an agent classifier
that evaluates state-action pairs, there is no theoretical guarantee that the optimal model is identifiable.

In this work, we propose the Multi-Modal Inverse Constrained Reinforcement Learning (MMICRL)
algorithm for estimating agent-specific constraints from a mixture of expert demonstrations (Figure 1).
MMICRL extends the traditional maximum entropy framework [14] with agent-conditioned entropy
minimization and unconditioned entropy maximization subject to a permissibility constraint. The
resulting policy representation facilitates inferring agent-specific constraints by alternating between
the following steps: 1) Unsupervised Agent Identification. MMICRL conducts trajectory-based agent
identification using a flow-based density estimator. The optimal results are identifiable since each
agent’s policy must correspond to a unique occupancy measure [15]. 2) Agent-Specific Constraint
Inference. Leveraging the identified demonstrations, MMICRL estimates a permissibility function for
distinguishing expert demonstrations from sub-optimal ones, based on which we construct constraints
for each type of agent. 3) Multi-Modal Policy Optimization. MMICRL measures the accuracy
of inferred constraint models by comparing the similarity between expert trajectories and those
generated by imitation policies under the inferred constraints. To capture the diversity of behaviors
exhibited by multiple agents, we incorporate policy optimization within the contrastive learning
framework. We treat the generated trajectories as noisy embeddings of agents, which serve as compact
representations of their behaviors. Utilizing the contrastive estimation methods [16], we can enhance
the similarity between embeddings for agents of the same type, while simultaneously maintaining the
distinctiveness of diverse agent types.

We empirically demonstrate the performance of our method by conducting experiments in both dis-
crete (e.g., Gridworld) [7] and continuous environments (e.g., MuJoCo) [17]. MMICRL significantly
surpasses other baselines in terms of distinguishing different agents, adhering to the true constraints,
and optimizing control performance. To examine the robustness of MMICRL , we investigate its
ability to recover from incorrect agent identification and subsequently infer the correct constraints.

2 Related Works

Inverse Constrained Reinforcement Learning. Prior ICRL methods typically learned constraints
from demonstrations under the maximum entropy framework [14]. Some research [18, 19] employed
constraints to differentiate between feasible and infeasible state-action pairs in Constrained MDP, but
these studies were restricted to inferring discrete constraints in environments with known dynamics.
A subsequent work [4] extended this approach to continuous state-action spaces with unknown
transition models by utilizing neural networks to approximate constraints. Inspired by Bayesian
Inverse Reinforcement Learning [20, 21, 22], [8] inferred probability distributions over constraints.
To better model demonstrations, [6] extended ICRL to infer soft constraints rather than hard ones, and
[23] explored ICRL under the multi-agent setting. Striving for efficient comparisons, [7] established
an ICRL benchmark across various RL domains, such as Gridworld, robot control, and autonomous
driving. However, these algorithms primarily target inferring constraints for a single agent type,
without considering the distinct constraints associated with multiple agent types.

Learning from a Mixture of Expert Demonstrations. Multi-task Inverse Reinforcement Learning
(IRL) [24, 25] aims to learn from a mixture of expert demonstrations. Some previous studies
[10, 26, 12, 27] utilized the Generative Adversarial Imitation Learning algorithm [28] to model the
behaviors of multiple agents. [10, 11, 13, 29] learned interpretable representations of behavioral
policies and inferred the latent representation of expert demonstrations in an unsupervised way.
Specifically, [30] learned a Variational Auto-Encoder (VAE) [31] where the encoder infers the latent
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factors of variation from mixed demonstrations and the decoder models different types of expert
behaviors. To strengthen the consistency between the learned policy and the types of agents, [12, 32]
included "burn-in demonstrations" for updating the imitation policies. These methods, however, were
proposed for imitation learning or rewards recovery (i.e., for IRL) [33] instead of constraint inference.

3 Problem Definition
Constrained Mixture-Agent Markov Decision Process. To support constraint inference for different
agents, we formulate the environment as a Constrained Mixture-Agent Markov Decision Process
(CMA-MDP) [34] Mϕ, which can be defined by a tuple (S,A,Z,R, pT , {(pCi , ϵi)}∀i, γ, µ0) where:
1) S, A and Z denote the space of states, actions, and latent code (for specifying expert agents).
2) pT (s′|s, a) and R(s, a) define the transition and reward functions. 3) pCj (c|s, a, z) refers to an
agent-specific cost model with an associated bound ϵj(z), where j indicates the index of a constraint.
4) γ is the discount factor and µ0(s) defines the initial state distribution. CMA-MDP assumes the
agents are differentiable by examining their policies, implying that different agent types cannot share
identical policies. We aim to elucidate these differences with the constraints associated with each
agent type.

In contrast to Multi-Agent Reinforcement Learning (MARL) [35], where multiple agents can act
concurrently, CMA-MDP allows only one agent to operate at a given time. Nevertheless, since the
agents in CMA-MDP might adhere to distinct constraints, they can develop different optimal control
policies or strategies. However, standard MARL frameworks do not explicitly differentiate between
agent types, nor do they distinguish their respective policies and constraints.

Policy Update under Conditional Constraints. We introduce Constrained Reinforcement Learning
(CRL) based on CMA-MDP. For an agent identified by z, the goal of CRL is to find a policy π∗(a|s, z)
that maximizes expected discounted rewards under the conditional constraints:

J (π|z) = max
π

Eµ0,pT ,π

[ T∑
t=0

γtrt

]
+ βH(π) s.t. Eτ∼(µ0,pT ,π),pCj

[
cj(τ |z)

]
≤ ϵj(z) ∀j ∈ [0, J ] (1)

where H(π) denotes the policy entropy weighted by β, and we follow [4] to define the trajectory cost
c(τ |z) = 1−

∏
(s,a)∈τ ϕ(s, a|z) where the permissibility function ϕ(s, a|z) indicates the probability

that performing action a under a state s is safe for agent z. CRL commonly assumes that the
constraints are known, whereas in practice, instead of directly observing the constraint signals, we
often have access to expert demonstrations that follow the underlying constraints, and thus the agent
must recover the constraints from the demonstration dataset.

Constraint Inference from a Mixture of Expert Dataset. Based on the CMA-MDP, the goal of
ICRL is to discover the underlying constraints respected by different types of expert agents from their
demonstrations. To achieve it, we consider the Maximum Entropy framework [4, 14] and represent
the likelihood function as follows:

p(DE |ϕ) =
1

(ZMĉϕ )N

N∏
i=1

∑
z

1τ i∈Dz exp
[
r(τ (i))

]
1Mĉϕ

(τ (i)|z) (2)

where 1) N denotes the number of trajectories in the demonstration dataset, 2) ZMĉϕ is a normalizing

term, 3) the permissibility indicator 1Mĉϕ
(τ (i)) can be defined by ϕ(τ (i)|z) =

∏T
t=1 ϕt(s

i
t, a

i
t|z) ,

and 4) the agent identifier 1τ(i)∈Dz determines whether the trajectory τ (i) is generated by the agent z.

By following [4], constraint inference can be formulated as inferring ϕt by maximizing this likelihood
function. A common approach is parameterizing ϕt with neural network models and updating the
model parameters with the agent-specific expert data [4, 6, 7]. However, the major challenge of this
task lies in our lack of knowledge about the agent’s identity that generates the expert trajectories
(i.e., 1τ(i)∈Dz is unknown). For example, a vehicle trajectory dataset does not label the specific
type of vehicles, or these labels are coarse-grained , incomplete, and noisy. On the other hand, to
explain the optimal policy with the learned constraints, the types of agents and the constraints must
be consistent. If we evaluate the policy of an agent z under the constraint for another type of agent z′
(e.g., evaluate the driving strategy of a truck under the constraint for a car), the performance will be
substantially compromised. As a result, for a specific agent z, the expert trajectories {τ∗z } are optimal
while the trajectories generated by other experts {τ∗z′ , τ∗z′′τ∗z′′′,...} are supposed to be sub-optimal
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or even infeasible. To capture the correct constraints, the ICLR algorithm must identify the agent
corresponding to each trajectory in an unsupervised manner.

4 Inverse Constrained Reinforcement Learning for a Mixture of Experts
In order to infer constraints for various expert agent types, we introduce the Multi-Modal Inverse Con-
strained Reinforcement Learning (MMICRL) algorithm (Figure 1). MMICRL employs a conditional
imitation policy to capture the diverse agent behaviors, facilitating unsupervised agent identification.
Technically, we require the agents’ policies to 1) exhibit high entropy when the agent type (specified
by z) is unknown, and 2) collapse to a specific behavioral mode when the type is determined. The
objective for MMICRL can be expressed as :

Minimize − α1H[π(τ)] + α2H[π(τ |z)] (3)

Subject to
∫
π(τ |z)fz(τ)dτ =

1

N

∑
τ∈Dz

f(τ),
∫
π(τ |z)dτ = 1, and

∫
π(τ |z) log ϕ(τ |z)dτ ≥ ϵ

(Proof is provided in Appendix B.) where f(·) represents a latent feature extractor, H[π(τ |z)]
denotes the agent-specific policy entropy, and H[π(τ)] signifies the entropy without knowledge of
the agent type. The weighting parameters α1 and α2 (both ≥ 0) determine the balance between
conditional entropy minimization and general entropy maximization. This objective differs from the
traditional Maximum Entropy Inverse Reinforcement Learning (MEntIRL) [14] in two ways: 1) the
objective also minimizes an entropy conditioned on agent types, and 2) it incorporates an additional
constraint related to the policy’s permissibility (the last constraint). Given this objective, the optimal
representation for the trajectory likelihood (i.e., trajectory policy) is:

Proposition 4.1. Let p(z|τ) denote the trajectory-level agent identifier, let r(τ) = λ0

α2−α1
f(τ)

denote the trajectory rewards, let ZMĉϕ denote a normalizing term. The optimal policy of the above
optimization problem can be represented as:

π(τ |z) = 1

ZMĉϕ

exp
[α1Ez∼p(z)[log(p(z|τ))]

α2 − α1
+ r(τ)

]
ϕ(τ |z)

λ2
α1−α2 (4)

Building upon this policy representation (4), we present the key steps of MMICRL , which involves
iteratively performing: 1) unsupervised agent identification for calculating p(z|τ) (Section 4.1), 2)
conditional inverse constraint inference (Section 4.2) for deducing ϕ(τ |z), and 3) multi-modal policy
update (Section 4.3) for approximating π(τ |z). MMICRL alternates between these steps until the
imitation policies reproduce expert trajectories, signifying that the inferred constraints align with the
ground-truth constraints.

4.1 Unsupervised Agent Identification

MMICRL identifies expert trajectories (i.e., learning p(z|τ)) in an unsupervised manner. Previous
works commonly determined the agents’ identities by examining the state-action features [10, 11, 12]
with the classifier p(z|sz, az). Nevertheless, different agents may exhibit similar behaviors under
certain contexts or at specific time steps within a trajectory, which makes this point-wise identification
problematic (e.g., see our experimental results of InfoGAIL [10] in Section 5).

To derive a reliable agent identifier, MMICRL performs trajectory-level identification by estimating
an agent-specific density. Specifically, we define a state-action density (i.e., normalized occupancy
measure) ρπ(s, a) = (1−γ)π(a|s)

∑∞
t=0 γ

tp(st = s|π) where p(st = s|π) is the probability density
of state s at time step t following policy π. Based on this density, we consider the theorem:
Proposition 4.2 (Theorem 2 of [15]). Suppose ρ is the occupancy measure that satisfies the Bellman
flow constraints:

∑
a ρ(s, a) = µ0(s) + γ

∑
s′,a ρ(s

′, a)Pτ(s′|s, a) and ρ(s, a) ≥ 0. Let the policy

defined by: πρ(a|s) = ρ(s,a)∫
ρ(s,a′)da′

, then πρ is the only policy whose occupancy measure is ρ.

Density Estimation. The aforementioned theorem provides a crucial insight for agent identification:
"one can identify an expert agent by examining the occupancy measures in the expert trajectories".
Leveraging this insight, we design a state-action density estimator to compute a density using a
Conditional Flow-based Density Estimator (CFDE). CFDE estimates the density of input variables
in the training data distribution under an auto-regressive constraint. Moreover, to enhance our
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density estimator’s sensitivity to the behavior of different agents, the estimator also conditions on
the agent type. so p(x|z) =

∏
i p(xi|x1:i−1, z) where x := (s, a) defines an event. We implement

p(xi|x1:i−1, z) = N (xi|µi, (exp(αi))2) where µi = ψµi(x1:i−1, z) and αi = ψαi(x1:i−1, z). The
neural function ψ is implemented by stacking multiple MADE layers [36]. The corresponding agent
identifier can be represented by Bayesian rule, so pψ(z|τ) = p(z)·pψ(τ |z)∑

z p(z)·pψ(τ |z)
. We assume a uniform

prior p(z), thereby deriving the following form: pψ(z|τ) =
∏

(s,a)∈τ pψ(s,a|z)∑
z′

∏
(s,a)∈τ pψ(s,a|z′)

.

Agent Identification. After learning the density model pψ(s, a|z) with CFDE, we divide DE into
sub-datasets {Dz}|Z|

z=1 by: 1) initializing the dataset Dz = ∅ and 2) ∀τi ∈ DE , adding τ i into Dz if
z = argmaxz

∑
(s,a)∈τi log[pψ(s, a|z)]. We repeat the above steps for all z ∈ Z .

4.2 Agent-Specific Constraint Inference

Based on the identified expert dataset, we have pω(z|τz) = 1,∀τz ∈ Dz , and thus log pω(z|τz) = 0,
so the likelihood function (4) can be simplified to:

p(Dz|ϕ, z) =
N∏
i=1

1

ZMĉϕ

exp
[
r(τ (i)z )

]
ϕ(τ (i)z )

λ2
α1−α2 (5)

where ϕ(τ (i)z ) =
∏

(s,a)∈τ(i)
z
ϕt(s, a|z) and the normalizer ZMĉϕ =

∫
exp[r(τ)]ϕ(τ)

λ2
α1−α2 dτ . By

defining η = λ2

α1−α2
, we can then define the log-likelihood log[p(Dz|ϕ, z)] as:

N∑
i=1

[
r(τ (i)z ) + η log

T∏
t=0

ϕ(s
(i)
t , a

(i)
t |z)

]
−N log

∫
exp[r(τ̂)]

[ T∏
t=0

ϕ(ŝt, ât|z)
]η
dτ̂ (6)

We parameterize the instantaneous permissibility function with ω, i.e., construct ϕω(st, at|z) and
update the parameters by computing the gradient of the above likelihood function (the derivation
resembles that of [4]), so ∇ω log [p(Dz|ϕ, z)] can be defined as:

N∑
i=1

[
∇ϕ

T∑
t=0

η log[ϕω(s
(i)
t , a

(i)
t |z)]

]
−NEτ̂∼πMϕ (·|z)

[
∇ϕ

T∑
t=0

η log[ϕω(ŝt, ât|z)]
]

(7)

This inverse constraint objective relies on the nominal trajectories τ̂ sampled with the conditional
policy πMϕ̂(τ |z) (also see Figure 1). For simplicity, we denote it as π(τ |z). In the following, we
will introduce our approach to learning π(τ |z).

4.3 Multi-Modal Policy Optimization

By definition, the policy π̂(τ |z) is trained to maximize cumulative rewards subject to constraint
Eτ∼π(·|z)[log ϕ(τ |z)] ≥ ϵ. To be consistent with our MMICRL objective in formula (3), we design
the multi-modal policy optimization objective in the following: (8)

min
π

−Eπ(·|z)
[ T∑
t=0

γtr(st, at)
]
− α1H[π(τ)] + α2H[π(τ |z)] s.t. Eπ(·|z)

( h∑
t=0

γt log ϕω(s, a, z)
)
≥ ϵ

This objective extends maximum entropy policy optimization by minimizing an additional agent-
conditioned entropy H[π(τ |z)], which limits the variance of policy distribution for a specific type
of agent. The balance between these entropy terms is controlled by α1 and α2. Since H[π(τ)] =

H[π(τ |z)]+Ez∼p(z),τ∼π(τ |z)
[
log[pψ(z|τ)]

]
+H(z), and by removing the uniform prior p(z) (since

it is independent of the policy update), the objective (8) can be simplified to: (9)

min
π

−Eπ(·|z)
[
r(τ) + α1 log[pψ(z|τ)]

]
+ (α2 − α1)H[π(τ |z)] s.t. Eπ(·|z)

( h∑
t=0

γt log ϕω(s, a, z)
)
≥ ϵ

Intuitively, this objective expands the reward signals with a log-probability term log[pψ(z|τ)], which
encourages the policy to generate trajectories from high-density regions for a specific agent type.
This approach ensures that the learned policies π(·|z)Zz=1 are differentiable.

Learning Diverse Policies via Contrastive Estimation. In practice, directly augmenting the reward
with a log-probability term (as in objective 9) may lead to a sub-optimal policy [7]. This issue
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arises because the log-probability term assigns a large penalty to trajectories with low pψ(z|τ). In
such cases, the controlling policy becomes more sensitive to density estimation (since pψ(z|τ) =
softmax[pψ(τ |z)], see Section 4.1) rather than the reward signals. Balancing the trade-off between
reward and density maximization by identifying an optimal weight α1 is challenging, especially when
predictions from pψ(τ |z) are less accurate at the beginning of training (i.e., during the cold start).

To resolve the above issues, we consider replacing the identification probability with a contrastive
estimation method by constructing the following objective for policy optimization:

(10)

min
π

−Eπ(·|z)
(
r(τ) + α1Lce(τ,V1,...,|Z|)

)
+ (α2 − α1)H(π(τ |z)) s.t. Eπ(·|z)

( h∑
t=0

γt log ϕω(s, a, z)
)
≥ ϵ

where V defines the probing sets (constructed with the density estimator in Algorithm 1). Given a
specific agent type z, these probing vectors are among the most representative data points since they
are located in a high-density region conditioning on z and a low-density region conditioning on other
agent types (z̃ ̸= z). Inspired by the InfoNCE loss [16, 37] , Lce can be calculated as:

Lce(τ,V1,...,|Z|) =

T∑
t=0

log
exp

[∑
(ŝz,âz)∈Vz fs[(st, at), (ŝz, âz)]

]
∑
z̃∈Z exp

[∑
(s̃,ã)∈Vz̃ fs[(st, at), (s̃, ã)]

] (11)

where fs denotes the score function for measuring the similarity between the features from different
state-action pairs (we use cosine similarity in the experiment). To interpret Lce(τ,V1,...,|Z|), we can
treat (s, a) ∈ {τ,Vz} as positive embeddings for π(·|z) since they are generated by this policy. On
the other hand, (s̃, ã) ∈ {Vz̃}z̃ ̸=z are negative embeddings for π(·|z) since they are generated by
controlling with other policies π(·|z̃) (where z̃ ̸= z). Considering the generation is influenced by
the stochasticity in environment dynamics (e.g., transition functions), we can equivalently view the
generation process as injecting the environmental noise into the policy, and thus Noise Contrastive
Estimation (NCE) [38] becomes a compatible tool for learning differentiable policies. Specifically,
since embeddings in Vz belong to a high conditional density region in p(·|z) (see Algorithm 1), the
knowledge from the density estimator has been integrated into policy updates.

In essence, the integration of contrastive learning into policy optimization helps the algorithm to
better understand the relationships between agents, their behaviors, and the corresponding expert
trajectories, resulting in improved performance for tasks involving diverse agent types. Algorithm 2
introduces the detailed implementation of MMICRL .
Algorithm 1: Probing_Sets
Input: Agent type z, trajectory dataset Dz and conditional density model p(·|z)
Initialize a probing sets Vz = {∅};
for τz ∈ D̂z do

Find (ŝ, â) = argmax(s,a)∈τz log pψi(s, a|z)− 1
|Z|−1

∑
z̃ 1z̃ ̸=z log pψi(s, a|z̃);

Store the probing points Vz = Vz ∪ {(ŝ, â)};
end
Output: Vz

5 Experiments

Running Setting. For a comprehensive comparison, we employ consistent evaluation metrics
across all environments. These metrics include 1) Constraint Violation Rate, which assesses the
likelihood of a policy violating a constraint in a given trajectory, and 2) Feasible Cumulative Rewards,
which calculates the total rewards accumulated by the agent before violating any constraints. The
demonstration data are assumed to have a zero violation rate. We run experiments with three different
seeds and present the mean ± std results for each algorithm. To ensure a fair comparison, we maintain
uniform settings for all comparison baselines. Appendix A.2 reports the detailed settings.

Comparison Methods. We employ an ablation strategy to progressively remove components from
MMICRL (Algorithm 2) and consider the following variants: 1) MMICRL-LD excludes our
contrastive estimation approach, using the objective (9) directly for policy updates. 2) Inspired
by [10], InfoGAIL-ICRL replaces the trajectory density model with a discriminator to identify
agents based on state-action pairs, extending GAIL [28] to distinguish between distinct agents’
trajectories. 3) MEICRL [4] eliminates the agent identifier and expands traditional Maximum
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Algorithm 2: Multi-Modal Inverse Constrained Reinforcement Learning (MMICRL)
Input: Expert demonstration DE , upper level iterations N , lower level iterations B
Initialize the policy πθ0(·|·, z), constraint function ϕω0(·|z) and density model pψ0(·|z);
for i = 1, 2, . . . , N do

Initialize an ensemble of imitation datasets {D̂z}z∈Z and each dataset D̂z = {∅};
for j = 1, 2, . . . , B do

Randomly sample a zj , and generate imitation trajectories τzj with πθi(·|·, zj);
Update the density model by maximizing: log pψi(τzj |zj) ;
Store the generated trajectories and the code D̂z = D̂z ∪ {(τzj , zj)};

end
Divide DE into sub-datasets {DE,z}|Z|

z=1 by utilizing the density model (see Section 4.1);
for k = 1, 2, . . . , B do

Sample an agent type from the prior ẑ ∼ p(z);
Sample an expert trajectory τE,ẑ from the ẑth expert dataset: τE,ẑ ∼ DE,ẑ;
Sample a nominal trajectory from the ẑth generated dataset: τ̂ ∼ D̂ẑ;
Update the constraint function ϕωi with the objective (7);

end
for z ∈ Z do

Construct a probing set Vz =ProbingSets(z,Dz , pψ(·|z))(Algorithm 1);
update the policy with the objective (10);

end
end

Entropy (ME) IRL methods to infer Markovian constraints in a model-free environment. 4) Binary
Classifier Constraint Learning (B2CL) constructs a deterministic binary classifier directly for
constraint inference, bypassing the need for the maximum entropy framework.

5.1 Empirical Evaluations in Discrete Environments

The discrete environments we use are based on Gridworld, a widely studied RL environment that
enables us to visualize the recovered constraints and trajectories generated by various agents. We
create a 7x7 Gridworld map and design four distinct constraint map settings. In Figure 2, the leftmost
column illustrates expert trajectories and constraints for each configuration. Notably, the first three
settings (rows 1-3 in Figure 2) incorporate two different types of constraints, while the final setting
(the last row in Figure 2) includes three constraint types. The primary goal for each agent is to
navigate from the starting point to the endpoint while minimizing the number of steps and avoiding
their respective constraints. To facilitate constraint inference, a demonstration dataset containing
expert trajectories is provided for each environment [7].

Figure 2 displays the ground-truth trajectory map alongside the learned trajectory maps. Appendix C.1
summarizes the detailed performance in terms of feasible cumulative rewards, constraint violation
rate, and destination-reaching rate. Without implementing agent identification, both B2CL and
MEICRL can only restore a single constraint type. Although InfoGAIL-ICRL incorporates agent
identification, its performance is unsatisfactory, resulting in incomplete destination-reaching. In
contrast, MMICRL-LD and MMICRL exhibit significant improvements; they can identify various
agent types corresponding to different constraints and generate accurate trajectories that successfully
reach the endpoint. Notably, the enhancements provided by MMICRL are more prominent, and the
trajectories produced by the MMICRL algorithm closely resemble expert demonstrations.

5.2 Empirical Evaluations in Continuous Environments
Table 1: Continuous environment setting.
Setting Dim. 1st constraint 2nd constraint

Half-cheetah 24 x≤ −3 x≥ 3
Antwall 121 x≤ −3 x≥ 3

Swimmer 12 x≤ −0.01 x≥ 0.01
Walker 24 x≤ −0.1 x≥ 0.1

In continuous environments, we evaluate ICLR
algorithms by whether they can infer location
constraints for various types of robots (robots
can only operate within designated areas). The
task involves directing the robot to navigate out
of the danger zone, represented by the constraint.
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Figure 2: We utilize blue, red, and orange colors to represent the constraints or trajectories corre-
sponding to each agent type. The red circle and blue triangle indicate the starting and ending points
of each environment, respectively. Since MECL and B2CL recover only a single, unified constraint,
they produce just one type of trajectory (Marked by the red color).

We base our continuous environments on MuJoCo [17]. For each environment, we configure two types
of robots—one moving forward and the other moving backward—each with opposing constraints.
Table 1 provides an overview of the settings. Our goal is to distinguish their respective constraints
and enable each robot type to maximize rewards without violating constraints.

Figure 3: From left to right, the environments are
Blocked Antwall, Blocked Half-Cheetah, Blocked
Swimmer, and Blocked Walker. The first row
shows the results of InfoGAIL-ICRL, followed
by MMICRL. The Blue and orange areas represent
the trajectories of two types of agents.

Figure 4 and Table 2 illustrate the constraint
violation rate and feasible cumulative rewards
for each agent across various environments. To
evaluate the accuracy of the discovered con-
straints, Figure 3 illustrates the distribution of x-
coordinate values for all states visited by agents
of different types. Compared to other baselines,
MMICRL consistently exhibits lower constraint
violation rates and higher cumulative rewards,
averaged over all agents. This superiority can be
attributed to MMICRL’s ability to capture the di-
versity of constraints by inferring agent-specific
constraints and learning heterogeneous policies
through contrastive estimation. While certain
baselines may achieve higher cumulative rewards for a specific agent, none of these algorithms
consistently outperform the others. (refer to Appendix C.2 for other complete results)

5.3 Robust Test: Can MMICRL Recover from the Early Mistakes?
To test the robustness of MMICRL , we enforce MMICRL to make incorrect agent identifications
and assess whether MMICRL can recover from these errors. Specifically, in the first round of
training, rather than using our density estimator, we randomly assign incorrect labels to 20% of
expert trajectories. These incorrect identifications can impact ongoing constraint inference and policy
updates. To recover from these mistakes, the MMICRL algorithm must accurately model diverse
agent preferences and rectify the incorrect trajectories to match the appropriate agent type.

8



Table 2: MuJoCo testing performance. We report the average feasible rewards and constraint violation
rate in 100 runs. The best average performance is highlighted in bold.

Method Blocked Half-Cheetah Blocked Ant Blocked Swimmer Blocked Walker
Feasible Cumulative Rewards

B2CL 5.03E+1 / 2.12E+3 1.33E+4 / 3.11E+3 3.28E+2 / 7.40 E-1 2.19E+1 / 7.88E+1
MEICRL 4.85E+1 / 3.45E+3 1.80E+4 / 3.31E+3 2.01E+2 / 8.30E-1 2.61E+1 / 7.33E+1

InfoGAIL-ICRL 2.22E+2 / 1.33E+2 3.73E+2 / 1.11E+2 2.38E+1 / 7.90E-1 2.15E+1 / 1.58E+3
MMICRL-LD 4.32E+3 / 2.56E+3 1.82E+4/ 2.21E+4 2.66E+2 / 6.10E+2 9.02E+2 / 5.12E+2

MMICRL 6.12E+3 / 3.06E+3 2.13E+4 / 2.17E+4 4.07E+2 / 6.48E+2 8.98E+2 / 1.53E+3
Constraint Violation Rate

B2CL 100%±0% / 67%±24% 33%±24% / 67±24% 62%±12% / 100%±0% 100%±0% / 100%±0%
MEICRL 100%±0% / 50%±25% 0%±0% / 67±24% 79%±14% / 100%±0% 100%±0% / 100%±0%

InfoGAIL-ICRL 25%±16% / 93%±5% 34%±18% / 37%±19% 73%±12% / 100%±0% 100%±0% / 0%±0%
MMICRL-LD 33%±24% / 34%±24% 0%±0% / 0%±0% 71%±16% / 34%±23% 52%±25% / 50%±25%

MMICRL 0%±0% / 0%±0% 0%±0% / 0%±0% 55%±23% / 28%±19% 31%±22% / 25%±22%

Figure 4: The feasible cumulative rewards (left two columns) and constraint violation rate (right
two columns). We denote the results for different agents with z_0 and z_1. From top to bottom, the
environments are Blocked Antwall, Blocked Half-Cheetah, Blocked Walker, and Blocked Swimmer.

Figure 5: The constraint violation rate (left two columns), and feasible
cumulative rewards (right two columns) in Blocked Ant and Gridworld-
Setting1( Appendix C.3 shows complete results).

Figure 5 displays the perfor-
mance of MMICRL in both
continuous and discrete set-
tings. We observe that it can
successfully recover multi-
ple constraints correspond-
ing to different types of
agents. The errors made at
the beginning of training do
not have a significant im-
pact on the overall perfor-
mance, which demonstrates
the robustness of MMICRL.

5.4 Empirical Evaluations in Realistic Environments
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Figure 6: Car distance
distribution.

To demonstrate the generalization capability of the model, we conducted
some preliminary studies in a realistic autonomous driving environment.
This environment is constructed by utilizing the HighD dataset (For more
details, check [7] and [9]). For extracting features of cars and roads, we
use the features collector from Commonroad RL [39]. The constraint
that we are interested in are 1) Car distance ≥ 20m (agent 0) and 2) Car
distance ≥ 40m (agent 1). Figure 6 shows the distribution of car distance
in expert demonstrations for agent 0 and agent 1. We aim to investigate
whether the MMICRL algorithm can differentiate between two different
types of cars based on distance constraints.

Figure 7: MMICRL performance in a realistic environment. We test four different settings (each
column refers to one setting.). We visualize the car distance in the states generated by the imitation
policies learned under the inferred constraints for agent 0 (upper row) and 1(lower row).

In the four settings shown in Figure 7, we find that in the first row, the observed distances of the first
type of car are all above 20 meters, while in the second row, the distances of the other type of car are
mostly above 40 meters. This suggests that the MMICRL algorithm shows promising preliminary
results in this context. In the future, we will further optimize the algorithm to achieve a lower
constraint violation rate and higher effective rewards in a wider range of real-world environments.

6 Limitations
Omitting Agent Interactions: MMICRL does not consider the interactions between agents or how
they can potentially collaborate or compete to satisfy a joint constraint. Future research could extend
the game theory to ICRL for implementing multi-agent constraint inference.

Experiment in Virtual Environment. We evaluate our algorithm in virtual games rather than
real-world applications (e.g., autonomous driving). This is due to the lack of an ICRL benchmark for
a mixture of experts. Future work can explore the application of MMICRL in realistic scenarios.

7 Conclusion
In this work, we introduce the MMICRL algorithm to differentiate multiple constraints corresponding
to various types of agents. MMICRL incorporates unsupervised constraint inference, agent-specific
constraint inference, and multi-modal policy optimization. To demonstrate the advantages of our
method over other baselines, we investigate whether MMICRL can accurately perform multiple
constraint inference in both discrete and continuous environments.
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