
Learning to Negotiate via Voluntary Commitment

Shuhui Zhu Baoxiang Wang
University of Waterloo

Vector Institute
shuhui.zhu@uwaterloo.ca

The Chinese University of Hong Kong, Shenzhen
bxiangwang@cuhk.edu.cn

Sriram Ganapathi Subramanian Pascal Poupart
Vector Institute

sriram.subramanian@vectorinstitute.ai

University of Waterloo
Vector Institute

ppoupart@uwaterloo.ca

Abstract

The partial alignment and conflict of au-
tonomous agents lead to mixed-motive sce-
narios in many real-world applications. How-
ever, agents may fail to cooperate in practice
even when cooperation yields a better out-
come. One well known reason for this fail-
ure comes from non-credible commitments.
To facilitate commitments among agents for
better cooperation, we define Markov Com-
mitment Games (MCGs), a variant of com-
mitment games, where agents can voluntarily
commit to their proposed future plans. Based
on MCGs, we propose a learnable commit-
ment protocol via policy gradients. We fur-
ther propose incentive-compatible learning to
accelerate convergence to equilibria with bet-
ter social welfare. Experimental results in
challenging mixed-motive tasks demonstrate
faster empirical convergence and higher re-
turns for our method compared with its coun-
terparts. Our code is available at https:

//github.com/shuhui-zhu/DCL.

1 Introduction

In mixed-motive applications (Dafoe et al., 2020),
agents often fail to cooperate even when cooperation
leads to better outcomes. One key reason is the is-
sue of non-credible commitments. For instance, in
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Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

the Prisoner’s Dilemma (Table 1), mutual coopera-
tion would lead to higher payoffs for both players com-
pared to mutual defection, but each player, driven by
its self-interest, is incentivized to defect regardless of
the other’s choice. As a result, credible commitments
to cooperate cannot be established.

To mitigate the commitment problem, a commitment
device (Rogers et al., 2014; Sun et al., 2023) is of-
ten required to ensure that agents fulfill their commit-
ments, either by binding their actions to fixed strate-
gies (Schelling, 1980; Renou, 2009; Kalai et al., 2010;
DiGiovanni and Clifton, 2023) or imposing penalties
for noncompliance (Bryan et al., 2010). In partic-
ular, conditional commitment devices (Kalai et al.,
2010; Dafoe et al., 2020) have been verified to en-
hance cooperation in the Prisoner’s Dilemma. When
one player conditionally commits to cooperate if and
only if the other does the same, the other player is
motivated to cooperate. However, these conditional
commitment mechanisms, tailored to specific prob-
lems, typically rely on fixed, pre-specified rules, leav-
ing no room for adaptation in more complex, dynamic
environments. Additionally, such mechanisms are de-
signed primarily for simple, repeated games such as
the Prisoner’s Dilemma, limiting their applicability to
a broader range of strategic scenarios where the con-
ditions for cooperation may evolve over time.

To address these limitations, we propose a learn-
able commitment mechanism, named differentiable
commitment learning (DCL) based on the intro-
duced Markov Commitment Games (MCGs, Figure 1).
MCGs are a variant of commitment games (Renou,
2009; Bryan et al., 2010; Forges, 2013; DiGiovanni and
Clifton, 2023). In two-phase commitment games, each
agent first announces a unilateral commitment to a

https://github.com/shuhui-zhu/DCL
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Figure 1: Markov Commitment Game: A Markov commitment game consists of three stages. In the first stage,
agents announce their proposed future actions. In the second stage, agents observe others’ proposals and decide
whether to commit to the joint plan. In the final stage, agents choose their actions: if all agents commit, they
follow their proposals; if any agent does not commit, all agents independently select actions based on the current
state. Afterward, agents observe the resulting rewards and transit to the next state.

subset of possible strategies, then selects an action
based on strategies they have committed to. Different
from commitment games, MCGs incorporate an addi-
tional proposal phase, where agents release a proposed
future plan of their own actions in the current state
without disclosing their strategies for other states. As
a result, MCGs do not require mutual transparency
of commitment strategies and avoid incompatibilities
in commitment implementation. Furthermore, com-
mitments in MCGs have linear size in the planning
horizon and are therefore more tractable for agents to
reason through, whereas in conditional commitment
games (Bryan et al., 2010; Forges, 2013; DiGiovanni
and Clifton, 2023), commitments are recursive and po-
tentially infinite.

The core idea of DCL in MCGs is to learn a commit-
ment protocol that enables agents to voluntarily align
their actions based on the commitments of others.
Under the assumption of self-interested agents, DCL
adopts the scheme of reinforcement learning (Sutton,
2018), optimizes long-term individual returns via pol-
icy gradients. Different from common RL algorithms
that treat other agents as part of the environment,
DCL allows backpropagation through actual or esti-
mated policies of other agents. The advantages of
DCL are twofold. 1) The commitment mechanism
is agnostic to environment dynamics so that it can
generalize across various tasks. Whereas in commit-
ment games (Renou, 2009; Bryan et al., 2010; Forges,
2013; DiGiovanni and Clifton, 2023), the commit-
ment strategies are pre-defined for specific problems.
2) DCL provides more accurate value evaluation and
policy gradient estimations through backpropagation
across commitment channels. By explicitly leverag-
ing the interdependence of agents’ decisions, DCL en-
hances learning outcomes. Whereas other baseline RL
algorithms (Schulman et al., 2017; Haupt et al., 2022;
Ivanov et al., 2023) treat other agents as part of the

environment, resulting in non-stationarity from each
agent’s perspective.

Extensive experiments in tabular, sequential and iter-
ative social dilemmas verify the efficiency of our ap-
proach in promoting cooperation. DCL significantly
outperforms several baseline methods, including inde-
pendent RL, contract-based reward transfer RL, and
mediated multi-agent RL, often by establishing mutu-
ally beneficial multilateral commitments.

2 Related Works

2.1 Binding Contracts Mechanism

Binding contracts are generally applied to establish
commitments in multi-agent systems. The literature
offers various approaches to contract design. Wang
et al. (2024); Han et al. (2017); Sandholm and Lesser
(1996) developed contracts that bind agents’ future ac-
tions through side payments, rewarding agents for ful-
filling commitments and penalizing them for noncom-
pliance. Haupt et al. (2022); Sodomka et al. (2013)
also explored mechanisms where agents voluntarily
agree to binding reward transfers. However, these
methods directly alter agents’ incentives, which may
not be feasible in practice.

Instead, Kramár et al. (2022); De Jonge and Zhang
(2020); Hughes et al. (2020) proposed adaptive bind-
ing actions without reward transfers, which are similar
to MCGs but differ in specific details. De Jonge and
Zhang (2020) focused on turn-taking games with uni-
lateral commitments, while MCGs emphasize simulta-
neous moves and multilateral commitments. Hughes
et al. (2020) required agents to propose a joint plan
for all, with multilateral commitment only if they pro-
pose the same plan. In MCGs, however, each agent
proposes an individual plan and uses a separate com-
mitment model to decide whether to commit or not.
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Kramár et al. (2022) introduced pairwise negotiation
through Nash Bargaining Solution (NBS) (Binmore
et al., 1986), aiming to maximize the product of agents’
utilities. In contrast, MCGs focus on selfish agents
aiming to maximize their individual long-term returns.

2.2 Altruistic Third Party

Without manipulating agents’ rewards, (Ivanov et al.,
2023; McAleer et al., 2021; Greenwald et al., 2003)
introduced pro-social third parties to mediate agents’
actions and induce cooperative behaviors. These ap-
proaches optimize social welfare such as the sum of
agents’ returns while incorporating rationality con-
straints that define equilibria, ensuring that self-
interested agents have no incentive to deviate from
their strategies. Specifically, utilitarian correlated-Q
learning (Greenwald et al., 2003) utilized a centralized
model to optimize the joint action probability distri-
bution of all agents, with an objective that maximizes
the sum of the agents’ rewards. In contrast, Ivanov
et al. (2023); McAleer et al. (2021) trained agents to
optimize their individual payoffs, allowing them to fol-
low the recommendations of a prosocial mediator or
take their actions independently if those recommenda-
tions do not align with their self-interests. However,
these approaches still rely on a centralized altruistic
third party, which may become ineffective in highly
conflicting environments where collective interests sig-
nificantly clash with individual self-interests.

3 Background on Commitment Games

A normal form game G = (N , (Ri,Ai)i∈N ) consists
of a set N of agents, where each agent i chooses an
action ai ∈ Ai and earns a reward according to the
function Ri :

∏
j Aj → R. A commitment game

(Renou, 2009) extends a normal form game to two
phases where each agent first makes a commitment
and then plays an action. Formally, a commitment
game CG = (N , (Ri,Ai, Ci)i∈N ) extends a normal
form game with a commitment space Ci for each agent.
Player i’s strategy (ci, σi) consists of a commitment
ci ∈ Ci and a response function σi :

∏
j Cj → Ai. For

example, Renou (2009) considered unconditional uni-
lateral commitments where a commitment ci ⊆ Ai is
a subset of the action space, meaning that the agent
commits to choose an action in that subset. Such un-
conditional unilateral commitments can yield better
equilibria (i.e., Pareto optimal) when ruling out some
threats will incite other agents to cooperate. However,
in other games such as Prisoner’s Dilemma, no unilat-
eral commitment will induce convergence to mutual
cooperation.

Kalai et al. (2010) proposed conditional unilateral
commitments Ci :

∏
j ̸=i Cj → Ai, where agents com-

mit to some actions conditioned on the commitments
of others. This space of commitments is recursive
and potentially infinite, however it can turn mutual
cooperation into a stable equilibrium in Prisoner’s
Dilemma when both agents commit to cooperating
conditioned on the other one cooperating too. Kalai
et al. (2010) further augmented conditional unilateral
commitments with a voluntary commitment space. In
this voluntary commitment space, agents are allowed
to play the normal form game G without making any
advanced commitment. Thus, agents will indepen-
dently select their actions ai ∈ Ai if they voluntar-
ily decide not to commit to any ci ∈ Ci. However, this
conditional commitment mechanism requires agents to
reveal their commitment strategies (Kalai et al., 2010;
Forges, 2013) or source code of their models (DiGio-
vanni and Clifton, 2023), which may be impractical
and lead to incompatibilities in commitment imple-
mentation. Two tables in the supplementary mate-
rial summarize the differences and similarities between
various types of games and associated algorithms to
optimize strategies.

4 Markov Commitment Games

The ability to make binding commitments is a funda-
mental mechanism for promoting cooperation. To en-
able strategic commitment-making among intelligent
agents in multi-agent systems, we formulate a Markov
Commitment Game (MCG, Figure 1), formally defined
by a tuple

MCG = (N ,S, T , (Mi, Ci,Ai,Ri)i∈N , γ). (1)

MCGs include three stages. At each time step t,
the agent i ∈ N observes a global state st ∈ S
and announces a proposal mi ∈ Mi = Ai in the
first stage. Then each agent i observes the joint pro-
posal m = (mi)i∈N and makes a commitment decision
ci ∈ Ci = {0, 1} in the second stage, where ci = 1 indi-
cates that agent i commits to the joint proposal, ci = 0
indicates that agent i rejects the joint proposal. In the
third stage, if all agents commit to the joint plan, they
execute the actions in the proposal, i.e., ai = mi,∀i ∈
N ; otherwise, each agent i independently selects an
action ai ∈ Ai. Agent i receives the reward ri, deter-
mined by the reward function Ri : S ×A → R, where
A = (Ai)i∈N represents the joint action space. Mean-
while, the next state st+1 is generated by the transi-
tion function T : S × A → ∆(S), which satisfies the
Markov property and the stationarity condition, i.e.,
T (st+1 = s′|st = s,at = a) = T (st+1 = s′|st = s,at =
a, st−1,at−1..., s0,a0) = T (s′|s,a),∀t. This process is
repeated until the episode ends. It is important to note
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that the transition distribution conditions on the cur-
rent state and joint actions only, not on the proposals
or commitment decisions. This is because proposals
and commitments indirectly influence the transition
by affecting the actions executed.

In an MCG, each agent has three decisions to make
at each time step: what to propose, whether to com-
mit or not, and how to choose actions without joint
commitment. Therefore, we decompose each agent’s
behavioral model into three strategic policies. The
proposal policy, ϕiηi : S → ∆(Mi), maps the current
state st to a distribution over agent i’ space of propos-
als. The commitment policy, ψiζi : S ×M → ∆(Ci),
depends on the state st and the joint proposal mt ∈
M = (Mi)i∈N . The action policy, πiθi : S → ∆(Ai),
samples action based on the current state st only.

MCGs adopt a strategic commitment mechanism in
mixed-motive multi-agent systems. In this framework,
the environment also serves as a commitment device,
enforcing agents’ voluntarily imposed restrictions on
their future actions. Agents in MCGs have access
to this device, which is effective only when all self-
interested agents agree to commit to a public joint
plan. If any agent declines, all agents will indepen-
dently select actions without restrictions by commit-
ment. Thus, the commitment device facilitates a con-
ditional commitment: agents agree to execute their
proposed actions only if every other agent also com-
mits to the joint plan.

Driven by self-interest, the objective of each agent i is
to find the optimal strategy (ϕiηi∗ , ψ

i
ζi∗ , π

i
θi∗) that max-

imizes their future expected return, i.e. the expected
cumulative discounted reward, defined by

max
ηi,ζi,θi

V iϕ,ψ,π(s) = Eϕ,ψ,π[
∞∑
k=t

γk−trik+1|st = s], (2)

where γ is the discounted factor, ϕ = (ϕiηi)i∈N ,

ψ = (ψiζi)i∈N , π = (πiθi)i∈N . Note that agent i’s

value function V iϕ,ψ,π(s) is dependent on other agents’
strategies, as the collective actions of all agents jointly
decide the rewards and state transitions in multi-agent
systems. Meanwhile, each agent’s proposal and com-
mitment decision also indirectly affect others’ expec-
tation of their future returns. Therefore, the impact of
other players’ policies on each agent’s objective should
be properly evaluated during learning.

4.1 Equilibrium Analysis in Prisoner’s
Dilemma

MCGs induce a conditional commitment mechanism,
which can lead to different strategic behaviors and
outcomes compared to a game without such commit-

ments.

Proposition 4.1. Mutual cooperation is a Pareto-
dominant Nash equilibrium in the MCG of the Pris-
oner’s Dilemma.

Specifically, we demonstrate with Proposition 4.1
that with the ability to commit, both players have
an incentive to strategically propose and commit
to cooperation, given the other agent does the
same, thereby transforming mutual cooperation into a
Pareto-dominant Nash equilibrium. The formal proof
of this proposition is provided in Appendix C.

5 Differentiable Commitment
Learning

Based on MCGs, we propose differentiable commit-
ment learning (DCL) under the assumption of self-
interested agents. Instead of treating other agents
as part of the environment, DCL considers joint ac-
tions when evaluating individual returns. To for-
mulate this idea, we define the state-action value
function of agent i in MCGs as Qiϕ,ψ,π(s,a) =

Eϕ,ψ,π[
∑∞
k=t γ

k−trik+1|st = s,at = a], representing
the expected future returns conditioned on the cur-
rent state and the joint actions. Because the envi-
ronment’s transitions and reward function in MCGs
depend only on the state and joint actions, the state-
action value function does not condition on propos-
als or commitments either. Under the scheme of on-
policy reinforcement learning (Sutton, 2018), DCL es-
timates this state-action value function by minimiz-
ing the mean square error between Qiϕ,ψ,π(s,a) and

the Monte Carlo returns Ĝit =
∑T
k=t γ

k−trik+1 of the
sampled trajectories. Similar to the policy gradient
theorem (Sutton et al., 1999), we then derive unbi-
ased policy gradients based on Qiϕ,ψ,π(s,a) in Equa-
tions (3), (4), and (5) respectively. The complete proof
of Lemma 5.1 is provided in Appendix A.

Lemma 5.1. Given proposal policy ϕiηi , commitment

policy ψiζi and the action policy πiθi of each agent i

in an MCG (1), the gradients of the value function
V iϕ,ψ,π(s) w.r.t. θ

i, ζi, ηi are

∇θiV
i
ϕ,ψ,π(s) ∝Ex∼ρϕ,ψ,π ,m∼ϕ,c∼ψ,a∼π

[(
1− 1(c = 1)

)
Qi
ϕ,ψ,π(x,a)∇θi log π

i(ai|x)
]
,

(3)
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∇ζiV
i
ϕ,ψ,π(s)

∝Ex∼ρϕ,ψ,π ,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qi

ϕ,ψ,π(x,m)

+
(
1− 1(c = 1)

)
Qi
ϕ,ψ,π(x,a)

]
∇ζi logψ

i(ci|x,m)

+
[
Qi
ϕ,ψ,π(x,m)−Qi

ϕ,ψ,π(x,a)
]∏
k ̸=i

1(ck = 1)

· ∇ζi1(c
i = 1)

]
,

(4)

∇ηiV
i
ϕ,ψ,π(s)

∝Ex∼ρϕ,ψ,π ,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qi

ϕ,ψ,π(x,m)

+
(
1− 1(c = 1)

)
Qi
ϕ,ψ,π(x,a)

]
·
(
∇ηi log ϕ

i(mi|x) +
∑
j

∇ηi logψ
j(cj |x,m)

)
+

∑
j

∏
k ̸=j

1(ck = 1)
[
Qi
ϕ,ψ,π(x,m)−Qi

ϕ,ψ,π(x,a)
]

· ∇ηi1(c
j = 1)

]
,

(5)

where 1(·) denotes the indicator function, which
equals 1 if the condition inside is true and 0 otherwise;
ρϕ,ψ,π(x) denotes a discounted probability of state x
encountered, starting at s and then with all agents fol-
lowing ϕ,ψ,π : ρϕ,ψ,π(x) =

∑∞
t=0 γ

tPr{st = x|s0 =
s}.

Through policy gradients in Lemma 5.1, DCL enables
agents to optimize their strategies by considering both
direct and indirect effects of their policies on their util-
ities. To capture the direct impact, DCL allows agents
to differentiate through their own policies, updating in
the direction that maximizes their individual returns.
On the other hand, DCL allows agents to consider
how their decisions influence others’ commitments and
how these influences, in turn, affect their own utilities.
This indirect influence is leveraged by differentiation
through the commitment policies of other players when
computing ∇ηiV iϕ,ψ,π(s). To backpropagate through
discrete commitments, we apply the Gumbel-Softmax
distribution (Jang et al., 2016) for differentiable sam-
pling.

Instead of limiting DCL to centralized training (Ap-
pendix B.1) with access to other agents’ policies,
we extend DCL to fully decentralized settings (Ap-
pendix B.2). In decentralized DCL, each agent esti-
mates others’ policies and differentiates through these
estimates to update their own policies.

Algorithm 1 Differentiable Commitment Learning

Input: initial parameters of action policy θi, com-
mitment policy ζi, proposal policy ηi, action-value
function wi for i ∈ N , learning rate β, Lagrange
multiplier λ, number of iterations T .
for k=0, 1, 2, ..., T − 1 do

Collect set of trajectories Dk = {τt} by running
latest policies (θi, ζi, ηi), ∀i ∈ N .

Compute Monte-Carlo discounted accumulative
rewards Ĝit,∀i ∈ N .

Fit value function with gradient descent by min-
imizing the mean-squared error:

w
i
k+1 = argmin

wi

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(Q
i
wi (st, at) − Ĝ

i
t)

2
.

Estimate action policy gradient ĝθik according to

Equation (3).
Estimate commitment policy gradient ĝζik ac-

cording to Equation (4).
Estimate proposal policy gradient ĝηik w.r.t. ex-

pected return according to Equation (5).

Estimate proposal policy gradient ĝ
′

ηik
w.r.t. the

incentive-compatible constraints by

1

|Dk|

∑
τ∈Dk

T∑
t=0

∑
j

∇
ηi
k

min{0, Qj

w
j
k+1

(st,mt) − Q
j

w
j
k+1

(st, at)}.

Update policy parameters for all agents with gra-
dient ascent,

θ
i
k+1 = θ

i
k + βĝ

θi
k
, ζ

i
k+1 = ζ

i
k + βĝ

ζi
k
, η

i
k+1 = η

i
k + βĝ

ηi
k

+ λĝ
′
ηi
k
.

end for

5.1 Incentive-Compatible Constraints

Although mutual cooperation can be a Nash equilib-
rium in MCGs for some mixed-motive environments,
agents may still have the equilibrium selection prob-
lem when multiple equilibria exist. For instance,
mutual defection is another Nash equilibrium of the
MCG in Prisoner’s Dilemma, with less pay-offs of both
agents compared to mutual cooperation equilibrium
in Lemma 5.1. Even if agents are motivated by self-
interest to select mutual cooperation equilibria over
mutual defection equilibria with DCL, they may fail
to find the equilibria with better outcomes because of
inefficient exploration. To address this challenge, we
introduce a set of incentive-compatible constraints on
agents’ proposal policies in Equation (6), which en-
courage agents to find mutually beneficial proposals.

Em∼ϕ[Q
i
ϕ,ψ,π(s,m)] ≥ Ea∼π[Q

i
ϕ,ψ,π(s,a)] ∀ i. (6)



Learning to Negotiate via Voluntary Commitment

Combining these incentive-compatible constraints
with the self-interested objective, agents are driven to
maximize their expected returns and propose mutu-
ally beneficial agreements. If a joint proposal results
in outcomes worse than actions induced by indepen-
dent action policy for any player, agents are penalized
during training through a regularization term induced
by constraints in Equation (6). This regularization en-
courages agents to develop better agreements that ben-
efit all players. Meanwhile, these constraints do not
sacrifice agents’ self-interests, as they retain the abil-
ity to reject proposals that do not enhance their own
utility. Thus, they will follow their unconstrained poli-
cies unless a mutually beneficial agreement emerges.

It is important to note that feasible solutions always
exist for Equation (6), as agents can align their pro-
posal policies with their action policies, i.e. ϕi(s) =
πi(s) for ∀i ∈ N . We then integrate these constraints
into the objective function of agent i with a Lagrange
multiplier λ, to update the parameter ηi of the pro-
posal policy:

ηi ←ηi +∇ηiV iϕ,ψ,π(s) + λ∇ηi
∑
j

min{0,

Em∼ϕ[Q
j
ϕ,ψ,π(s,m)]− Ea∼π[Q

j
ϕ,ψ,π(s,a)]}.

(7)
Note that when λ = 0, the proposal policies are not
constrained by Equation (6). The abstract pseudocode
of DCL is provided in Algorithm 1. Please refer to
Appendix B for more details about DCL.

6 Experiments

We evaluated the performance of DCL focusing on
two objectives. First, we investigated DCL’s abil-
ity to foster cooperative behaviors among agents in
challenging mixed-motive tasks. To validate this, we
analyzed the behaviors of agents with mutual com-
mitment and without commitment. Second, we com-
pared DCL’s efficiency against other multi-agent re-
inforcement learning algorithms in tabular, repeated,
and sequential social dilemmas. We demonstrated im-
provements in both agents’ self-interest optimization
and social welfare. Additionally, we compared central-
ized (Algorithm 2, Appendix B.1) and decentralized
(Algorithm 3, Appendix B.2) versions of DCL. Each
algorithm was executed with and without incentive-
compatible constraints (denoted as DCL-IC and DCL
respectively), to further explore the impact of the con-
straints introduced in Equation (6).

6.1 Baselines

We compared DCL with the following baselines. Each
curve was averaged over 10 seeds with shaded re-

gions indicating standard errors. Hyperparameters
and more implementation details can be found in Ap-
pendix D.

Independent PPO (IPPO) In this baseline, each
agent was trained independently with the proximal
policy optimization (PPO) (Schulman et al., 2017).
The objective of each agent is maximizing individual
expected returns. We implemented multi-agent inde-
pendent PPO with RLlib (Liang et al., 2018).

Mediated MARL To compare with an altruistic
third party mechanism, we implemented mediated
multi-agent reinforcement learning using the code re-
leased by Ivanov et al. (2023). The mediator, whether
constrained or unconstrained, was trained to maximize
the utilitarian social welfare, i.e., the expected sum
of all agents’ returns, while other agents were trained
independently to maximize their self-interests. Both
agents and the mediator were optimized via actor-
critic algorithms (Mnih et al., 2016).

Multi-Objective Contract Augmentation
Learning (MOCA) To compare with a contract
mechanism with reward transfer, we implemented
multi-objective contract augmentation learning with
the code released by Christoffersen (2024); Haupt
et al. (2022). Each agent was trained to maximize
self-interest, with a learnable transfer payment that
directly modifies agents’ rewards.

6.2 Results

6.2.1 Prisoner’s Dilemma

Prisoner’s Dilemma (Rapoport, 1965) is a normal form
mixed-motive game, with payoff matrix in Table 1.

Table 1: Prisoner’s Dilemma

C D
C (-1,-1) (-3,0)
D (0,-3) (-2,-2)

In accord with Proposition 4.1, Figure 2 shows that
the DCL agents converge to mutual cooperation in the
MCG with utilitarian social welfare −2. The fully de-
centralized DCL also converges to mutual cooperation,
while having a larger oscillation before convergence
(Figure 2). This behavior is expected since decen-
tralized DCL estimates policies of other agents rather
than directly accessing the true policies, which intro-
duces biases, particularly in the early stages of train-
ing. These biases are gradually reduced as the esti-
mated policies approach the actual policies over time.
Figure 3 shows the policies of proposals, commitments
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Figure 2: Prisoner’s Dilemma: DCL v.s. Other Baselines

0 2 4 6 8 10
Number of Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y 
of

 C
oo

pe
ra

tio
n

1e3

(a) DCL Action Policy
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(b) DCL Proposal Policy

0 2 4 6 8 10
Number of Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
of

 C
om

m
itm

en
t

1e3

(c) DCL Commitment Policy of (C,C)

Figure 3: DCL Policies in Prisoner’s Dilemma

and actions. Without mutual commitment, the prob-
ability of cooperation converges to 0. Whereas under
the conditional commitment mechanism, the probabil-
ities of proposing and committing to mutual cooper-
ation converge to 1. This result aligns with our the-
oretical analysis in Proposition C and demonstrates
the capability of commitment mechanism to achieve
cooperation.

Mediated MARL with an unconstrained mediator
shows the second-best performance, while constrained
mediated MARL performs worse, failing to converge
to either mutual cooperation or defection. This failure
may arise from inaccurate value estimation in medi-
ated MARL, which constrains the mediator’s policy
during training. Specifically, mediated MARL trains
each agent with independent actor critic (Mnih et al.,
2016), considering other agents as part of the envi-
ronment, leading to nonstationarity from each agent’s
perspective. In contrast, DCL agents consider joint ac-
tions when evaluating future expected returns, avoid-
ing conflicts with the stationary environment assump-
tion in MCGs. Furthermore, the constrained mediated
MARL dynamically updates the Lagrange multiplier,
shifting the optimization objective at each timestep,
which may lead to divergence.

The other baselines, MOCA and IPPO, converge to
the mutual defection equilibrium after only a few iter-

ations. Without mechanism design, mutual defection
is the only Nash equilibrium in Prisoner’s Dilemma,
so it is expected that IPPO fails to achieve coopera-
tion. Without a specific choice of contract space and
hand-crafted rules, MOCA also fails to find a contract
acceptable to all agents.

6.2.2 Grid Game

The above results show that DCL works well on a tab-
ular social dilemma with a single state, we next extend
the evaluation to sequential social dilemmas. We cre-
ated a 2-player, T -step, N -grid game, where agent 1
starts at grid position p10 = 0, and agent 2 starts at
p20 = N − 1. At each timestep, each player observes
both agents’ locations, st = (p1t , p

2
t ), and chooses be-

tween moving forward, pit+1 = min{pit + 1, N − 1}, or
moving backward, pit+1 = max{pit − 1, 0}. Rewards
are defined based on agents’ positions: for agent 1,
r1 = p1−2(N−1−p2); for agent 2, r2 = N−1−p2−2p1.
This grid game presents a social dilemma at every
state. Agents benefit from cooperation by moving
away from the other player’s initial position, while the
dominant strategy is to move towards the other’s start-
ing point. Figure 4 demonstrates that DCL agents
gradually learn to cooperate, with zero accumulated
discounted rewards. In contrast, other baselines fail
to converge to such cooperative strategies.
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(a) Agent 1 Return in Grid Game
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(b) Agent 2 Return in Grid Game
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(c) Social Welfare in Grid Game

Figure 4: Grid Game (Horizon=16): DCL v.s. Other Baselines.
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(a) Agent 1 Return in RPC
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(b) Agent 2 Return in RPC
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(c) Social Welfare in RPC

Figure 5: Repeated Purely Conflicting Game (Horizon=16): DCL v.s. Other Baselines.

6.2.3 Repeated Purely Conflicting Game

To investigate whether DCL can adapt effectively to
scenarios with significant competition, we then intro-
duced a purely conflicting game presented in Table 2.
In this game, an increase in one agent’s payoff always
results in a decrease in the payoff of others. The dom-
inant strategy of each agent is to play A2 regardless of
the opponent’s action, which also holds true in finitely
repeated versions (denoted as RPC). Under such con-
ditions, agents have no opportunity to establish 1-step
mutually beneficial agreements. As a result, all players
receive zero payoff throughout episodes.

Table 2: Purely Conflicting Game

A1 A2

A1 (0,0) (-1,2)
A2 (2,-1) (0,0)

However, if agents can commit to actions over multiple
steps, both can achieve positive long-term returns by
committing to a tit-for-tat agreement. To explore this,
we extended DCL with mega-step commitments, en-
abling agents to commit to multi-step, mutually ben-
eficial proposals. Our experiments show that DCL
agents successfully converge to cooperative strategies
[(A1, A2), (A2, A1), ...] by alternating between A1 and

A2 in multiple steps. While DCL agents make sacri-
fices at certain steps, they achieve significantly higher
cumulative payoffs over the long run compared to other
baselines (Figure 5), demonstrating DCL’s adaptabil-
ity to highly competitive environments.

7 Discussion on Experiments

7.1 Many-player Scenarios

In MCGs, the joint proposal space grows exponentially
with the number of agents, which would inevitably in-
crease the computational complexity. To investigate
how DCL handles scalability with many players, we
conducted additional experiments on anN -player pub-
lic goods game (Marwell and Ames, 1981) with ben-
efit factor 1.5, where the dominant strategy for each
agent is to free-ride by not contributing to the pub-
lic pool. The results demonstrate that DCL with
incentive-compatible constraints performs effectively
across scenarios with 2, 3, 5, and 10 agents, achiev-
ing high social welfare. Most agents converge to pro-
pose contributions and commit to joint proposals that
result in positive individual welfare. These findings
indicate that DCL scales well to many-player games,
with the agreement rate of joint proposals remaining
stable (> 0.99) as the number of agents increases. We
report runtime, average joint proposal agreement rate
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(a) Commitment Policy of (C,D)
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(b) Commitment Policy of (D,C)
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(c) Commitment Policy of (D,D)

Figure 6: DCL Commitment Policies in Prisoner’s Dilemma

and average social welfare per batch (batch size =256)
across 5 random seeds in Table 8, Appendix E.

7.2 Robustness to Maliciously Irrational
Agents

As shown in Figure 3c and Figure 6, DCL agents
converge to commitment policies that accept propos-
als for mutual cooperation and self-defection when
the co-player cooperates, while rejecting cooperation
when the co-player proposes defection in the Prisoner’s
Dilemma. Consequently, when interacting with irra-
tional agents—such as those who always propose de-
fection—DCL agents will reject such proposals and
choose to defect following their action policies (Fig-
ure 3a). This demonstrates the robustness of DCL
agents against malicious agents, as they effectively re-
ject disadvantageous agreements and act in their own
best interests.

8 Conclusion

We introduced the Markov Commitment Games, a
framework that allows self-interested agents to nego-
tiate future plans through voluntary commitments.
It responds to the open problem in cooperative
AI (Dafoe et al., 2020) on commitment capabilities
without relying on altruism. We derived unbiased
proposal, commitment, and action policy gradients
(Lemma 5.1), which facilitates the design of policy up-
dates while preserving the stationarity assumption of
the multi-agent environment. Under the framework
of MCGs, we proposed differentiable commitment
learning (DCL), which maximizes agents’ expected
self-interests while incorporating incentive-compatible
constraints on their proposal policies to encourage mu-
tually beneficial agreements. DCL also mitigates lim-
itations of non-stationary training of existing meth-
ods. Rather than treating other agents as part of
a stationary environment—a simplification that does
not hold in multi-agent settings—DCL explicitly lever-

ages other agents’ actions when estimating future ex-
pected values. This approach enhances the accuracy of
value estimations and promotes stability during train-
ing. We empirically showed that our method outper-
forms the baseline methods in multiple tasks, often
by successfully facilitating cooperation among agents.
We also demonstrated the efficacy of DCL in its fully
decentralized implementation.

9 Limitations and Future Work

Sample Efficiency Both centralized and decentral-
ized versions of DCL employ on-policy updates for
agents’ actors and critics, which explores by sampling
actions according to the current policy models. This
is less sample efficient compared to off-policy meth-
ods, which use past trajectories from a replay buffer
for model updates. However, off-policy methods may
bring biases due to discrepancies between the behav-
ior policy and the target policy. While importance
sampling can mitigate this issue by re-weighting expe-
riences, it may also introduce high variance, especially
when policies diverge significantly. Furthermore, in
fully decentralized DCL, agents do not have access to
other agents’ policies, and importance sampling based
on estimations of other agents’ policies may introduce
additional biases. Therefore, the trade-off between the
sample efficiency, bias and variance can be further ex-
plored in our future work.

Complex Proposal Domain In DCL and MCGs,
the proposal domain is formulated as a set of future ac-
tions. This reflects real-world scenarios, where agree-
ments often specify future actions conditioned on the
behavior of other parties. Nevertheless, human com-
mitments can take various forms, such as stochastic
policies of future plan. Extending our framework to ac-
commodate more complex proposal domains presents
a promising direction for future research.
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Learning to Negotiate via Voluntary Commitment:
Supplementary Materials

A Proof of Lemma 5.1

The proof of Lemma 5.1 derives the action, commitment, and proposal policy gradients in DCL. Recall that the
state value function (the objective function of self-interested agents) in MCGs is:

V iϕ,ψ,π(s) = Eϕ,ψ,π[
∞∑
k=t

γk−trik+1|st = s]. (8)

The state-action value function is:

Qiϕ,ψ,π(s,a) = Eϕ,ψ,π[
∞∑
k=t

γk−trik+1|st = s,at = a]. (9)

Therefore we can expand the state value function by:

V iϕ,ψ,π(s) =
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)
∑
a∼π

π(a|s)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(s,a)

]
.

(10)
We then derive policy gradients based on the state-action value function and policy functions.

A.1 Unconstrained Policy Gradient

Proof. First, we consider the action policy gradient ∇θiV iϕ,ψ,π(s) for each agent i ∈ N :

∇θiV iϕ,ψ,π(s)

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇θiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

Qiϕ,ψ,π(s,a)∇θiπ(a|s)

+ π(a|s)∇θiQiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[(
1− 1(c = 1)

) ∑
a∼π

Qiϕ,ψ,π(s,a)∇θiπ(a|s)

]
+

∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

·

[
1(c = 1)∇θiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)∇θiQiϕ,ψ,π(s,a)

]
.

(11)

Let fϕ,ψ,π(s) =
∑

m∼ϕ ϕ(m|s)
∑

c∼ψ ψ(c|s,m)

[(
1− 1(c = 1)

)∑
a∼π Q

i
ϕ,ψ,π(s,a)∇θiπ(a|s)

]
. We have

∇θiV iϕ,ψ,π(s) =fϕ,ψ,π(s) +
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇θiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

)

·
∑
a∼π

π(a|s)∇θiQiϕ,ψ,π(s,a)

]
.

(12)

Since Qiϕ,ψ,π(s,a) = Ri(s,a) + γ
∑
s′ p(s

′|s,a)V iϕ,ψ,π(s′), we obtain
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∇θiQiϕ,ψ,π(s,a) = ∇θi
(
Ri(s,a) + γ

∑
s′

p(s′|s,a)V iϕ,ψ,π(s′)
)
= γ

∑
s′

p(s′|s,a)∇θiV iϕ,ψ,π(s′). (13)

Therefore,

∇θiV iϕ,ψ,π(s)

=fϕ,ψ,π(s) + γ
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)

∑
s′

p(s′|s,m)∇θiV iϕ,ψ,π(s′) +
(
1− 1(c = 1)

)

·
∑
a∼π

π(a|s)
∑
s′

p(s′|s,a)∇θiV iϕ,ψ,π(s′)

]
.

(14)

Define dϕ,ψ,π(s, s
′, k) as the probability of transitioning from state s to state s′ in k steps under ϕ,ψ,π, then

we have

dϕ,ψ,π(s, s
′, 1) =

∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)p(s′|s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)p(s′|s,a)

]
, (15)

and

dϕ,ψ,π(s, s
′, k + 1) =

∑
x

dϕ,ψ,π(s, x, k)dϕ,ψ,π(x, s
′, 1). (16)

Note

dϕ,ψ,π(s, s, 0) =
∑
x

dϕ,ψ,π(s, x, 0) = 1. (17)

Then,

∇θiV iϕ,ψ,π(s)

=fϕ,ψ,π(s) + γ
∑
s′

∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)p(s′|s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)p(s′|s,a)

]
· ∇θiV iϕ,ψ,π(s′),

=fϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)∇θiV iϕ,ψ,π(s′).

(18)

By induction,

∇θiV iϕ,ψ,π(s)

=fϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)

(
fϕ,ψ,π(s

′) + γ
∑
s′′

dϕ,ψ,π(s
′, s′′, 1)∇θiV iϕ,ψ,π(s′′)

)
,

=fϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)fϕ,ψ,π(s

′) + γ2
∑
s′′

dϕ,ψ,π(s, s
′′, 2)∇θiV iϕ,ψ,π(s′′),

=
∑
x∈S

∞∑
k=0

γkdϕ,ψ,π(s, x, k)fϕ,ψ,π(x).

(19)
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Then we define a stationary distribution ρϕ,ψ,π(x) =
∑∞

k=0 γ
kdϕ,ψ,π(s,x,k)∑

x∈S
∑∞

k=0 γ
kdϕ,ψ,π(s,x,k)

, also known as an occupancy

measure of ϕ,ψ,π. Thus,

∇θiV iϕ,ψ,π(s)

∝
∑
x∈S

ρϕ,ψ,π(x)fϕ,ψ,π(x),

=
∑
x∈S

ρϕ,ψ,π(x)
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)

[(
1− 1(c = 1)

) ∑
a∼π

Qiϕ,ψ,π(x,a)∇θiπ(a|x)

]
,

=
∑
x∈S

ρϕ,ψ,π(x)
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)
∑
a∼π

π(a|x)

[(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi logπ(a|x)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi logπ(a|x)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi log πi(ai|x)

]
.

(20)

Therefore, we have

∇θiV iϕ,ψ,π(s) ∝ Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)∇θi log πi(ai|x)

]
.

A.2 Commitment Network Gradient

Proof. Next, we consider commitment policy gradient ∇ζiV iϕ,ψ,π(s):

∇ζiV iϕ,ψ,π(s)

=∇ζi
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)∇ζi
[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζi1(c = 1)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇ζiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)∇ζiQiϕ,ψ,π(s,a)

]
.

(21)

Let

gϕ,ψ,π(s) =
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ζi1(c = 1).
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Then,

∇ζiV iϕ,ψ,π(s)

=gϕ,ψ,π(s) +
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇ζiQiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)

· ∇ζiQiϕ,ψ,π(s,a)

]
,

=gϕ,ψ,π(s) + γ
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)

∑
s′

p(s′|s,m)∇ζiV iϕ,ψ,π(s′) +
(
1− 1(c = 1)

)

·
∑
a∼π

π(a|s)
∑
s′

p(s′|s,a)∇ζiV iϕ,ψ,π(s′)

]
.

(22)

According to (15),

∇ζiV iϕ,ψ,π(s) = gϕ,ψ,π(s) + γ
∑
s′

dϕ,ψ,π(s, s
′, 1)∇ζiV iϕ,ψ,π(s′). (23)

Similarly by induction,

∇ζiV iϕ,ψ,π(s)

=
∑
x∈S

∞∑
k=0

γkdϕ,ψ,π(s, x, k)gϕ,ψ,π(x),

∝
∑
x∈S

ρϕ,ψ,π(x)gϕ,ψ,π(x),

=
∑
x∈S

ρϕ,ψ,π(x)

[ ∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]

· ∇ζiψ(c|x,m) +
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)
[
Qiϕ,ψ,π(x,m)−

∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]
∇ζi1(c = 1)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
∇ζi logψ(c|x,m)

+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]
∇ζi1(c = 1)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
∇ζi logψi(ci|x,m)

+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]∏
k ̸=i

1(ck = 1)∇ζi1(ci = 1)

]
.

(24)

Therefore,

∇ζiV iϕ,ψ,π(s) ∝Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
· ∇ζi logψi(ci|x,m) +

[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]∏
k ̸=i

1(ck = 1)∇ζi1(ci = 1)

]
.

Note that ∇ζi1(ci = 1) = d1(ci=1)
dci

∂ci

∂ζi . To compute ∂ci

∂ζi , we apply the Gumbel-Softmax distribution (Jang et al.,

2016) for differentiable sampling. This allows backpropagation through the differentiable commitment sample ci

for ∀i ∈ N .
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A.3 Proposing Network Gradient

Proof. Finally, we consider the proposal policy gradient ∇ηiV iϕ,ψ,π(s):

∇ηiV iϕ,ψ,π(s)

=∇ηi
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
,

=
∑
m∼ϕ

∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiϕ(m|s)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηi1(c = 1)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)∇ηiQiϕ,ψ,π(s,m)

+
(
1− 1(c = 1)

) ∑
a∼π

π(a|s)∇ηiQiϕ,ψ,π(s,a)

]
.

(25)

Let

hϕ,ψ,π(s)

=
∑
m∼ϕ

∑
c∼ψ

ψ(c|s,m)

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiϕ(m|s)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(s,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηiψ(c|s,m)

+
∑
m∼ϕ

ϕ(m|s)
∑
c∼ψ

ψ(c|s,m)

[
Qiϕ,ψ,π(s,m)−

∑
a∼π

π(a|s)Qiϕ,ψ,π(s,a)

]
∇ηi1(c = 1).

(26)

Similarly we have

∇ηiV iϕ,ψ,π(s)

∝
∑
x∈S

ρϕ,ψ,π(x)hϕ,ψ,π(x),

=
∑
x∈S

ρϕ,ψ,π(x)

[ ∑
m∼ϕ

∑
c∼ψ

ψ(c|x,m)
[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]

· ∇ηiϕ(m|x) +
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

) ∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]

· ∇ηiψ(c|x,m) +
∑
m∼ϕ

ϕ(m|x)
∑
c∼ψ

ψ(c|x,m)
[
Qiϕ,ψ,π(x,m)−

∑
a∼π

π(a|x)Qiϕ,ψ,π(x,a)
]
∇ηi1(c = 1)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

](
∇ηi logϕ(m|x)

+∇ηi logψ(c|x,m)
)
+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]
∇ηi1(c = 1)

]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

](
∇ηi log ϕi(mi|x)
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+
∑
j

∇ηi logψj(cj |x,m)
)
+
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

](
1(c−i = 1)∇ηi1(ci = 1) + 1(ci = 1)

· ∇ηi1(c−i = 1)
)]
,

=Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

](
∇ηi log ϕi(mi|x)

+
∑
j

∇ηi logψj(cj |x,m)
)
+
∑
j

∏
k ̸=j

1(ck = 1)
[
Qiϕ,ψ,π(x,m)−Qiϕ,ψ,π(x,a)

]
∇ηi1(cj = 1)

]
. (27)

Therefore,

∇ηiV iϕ,ψ,π(s) ∝Ex∼ρϕ,ψ,π,m∼ϕ,c∼ψ,a∼π

[[
1(c = 1)Qiϕ,ψ,π(x,m) +

(
1− 1(c = 1)

)
Qiϕ,ψ,π(x,a)

]
·(

∇ηi log ϕi(mi|x) +
∑
j

∇ηi logψj(cj |x,m)
)
+

∑
j

∏
k ̸=j

1(ck = 1)
[
Qiϕ,ψ,π(x,m)−

Qiϕ,ψ,π(x,a)
]
∇ηi1(cj = 1)

]
.

Note that ∇ηi1(ci = 1) = d1(ci=1)
dci (∂ψ

i

∂ci )
−1 ∂ψ

i

∂mi
∂mi

∂ηi , ∇ηi1(c
j = 1)|j ̸=i = d1(cj=1)

dcj (∂ψ
j

∂cj )
−1 ∂ψ

j

∂mi
∂mi

∂ηi . We apply

Gumbel-Softmax distribution (Jang et al., 2016) again, which allows autodifferentiation through mi,∀i.

B DCL Details

B.1 Centralized DCL

DCL updates policies with respect to policy gradients in Lemma 5.1. Because calculating ∇ηiV iϕ,ψ,π(s) requires
differentiation through commitment policies of other agents j ∈ N \i, we present centralized DCL in Algorithm 2
that allows agents to backpropagate through exact policies of others.

B.2 Decentralized DCL

Centralized training is not always feasible in mixed-motive environments. To address this limitation, we further
present decentralized DCL in Algorithm 3. In decentralized DCL, each agent estimates others’ policies and value
functions with DCL. Then, agents can differentiate through these estimates to update their own policies.

C Proof of Proposition 4.1

Recall the definition of Nash equilibrium and Pareto-dominant outcome:

Definition C.1. (Hu and Wellman, 2003) In stochastic game Γ, a Nash equilibrium point is a tuple of n
strategies (π1

∗, ..., π
n
∗ ) such that for all s ∈ S and i = 1, ..., n,

V i(s, π1
∗, ..., π

n
∗ ) ≥ V i(s, π1

∗, ..., π
i−1
∗ , πi, πi+1

∗ , ..., πn∗ ), ∀πi ∈ Πi, (28)

where Πi is the set of strategies available to agent i.

At a Nash equilibrium, no player can improve their payoff by changing their strategy, assuming that the other
players stick to their current strategies.

Definition C.2. (Censor, 1977; Fudenberg, 1991) An outcome of a game is Pareto-dominant, also known as
Pareto-optimal and Pareto-efficient, if it’s impossible to make one player better-off, without making some other
players worse-off.
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To prove Proposition 4.1, we need to find a tuple of strategies ((ϕi∗, ψ
i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )) in MCGs that satisfies

the conditions of Nash equilibrium and Pareto-optimality.

Proof. In the MCG of the Prisoner’s Dilemma, we define a tuple of deterministic strategies ∀i ∈ N , ϕi(s) = C,
πi∗(s) = D and

ψi∗(s,m = {C,C}) =1,

ψi∗(s,m = {D,C}) =1,

ψi∗(s,m = {C,D}) =0,

ψi∗(s,m = {D,D}) =0 or 1.

(29)

So the value function of this tuple is:

V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )) = −1. (30)

Then we show that no player can increase their payoff by unilaterally changing to other deterministic strategies,
assuming all other players keep their strategies fixed.

1. ∀ϕi ̸= ϕi∗, i.e. ϕ
i(s) = D, and ∀ψi:

(a) if πi(s) = C,

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −3 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )), (31)

(b) otherwise πi(s) = D,

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −2 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )). (32)

2. ϕi = ϕi∗ and ψi ̸= ψi∗:

(a) ∀ψi ̸= ψi∗ s.t. ψi(s,m = {C,C}) = 1 and ∀πi,

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )). (33)

(b) ∀ψi ̸= ψi∗ s.t. ψi(s,m = {C,C}) = 0,

i. if πi(s) = C,

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −3 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )), (34)

ii. otherwise πi(s) = D,

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −2 < −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )). (35)

3. ϕi = ϕi∗, ψ
i = ψi∗,∀πi:

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) = −1 = V i(s, (ϕi∗, ψ
i
∗, π

i
∗)|(ϕ−i∗ , ψ−i

∗ , π−i
∗ )). (36)

Thus,

V i(s, (ϕi, ψi, πi)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )) ≤ V i(s, (ϕi∗, ψi∗, πi∗)|(ϕ−i∗ , ψ−i
∗ , π−i

∗ )), ∀ϕi, ψi, πi. (37)

Therefore, ((ϕi∗, ψ
i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )) is a pure strategy Nash equilibrium in the MCG of Prisoner’s Dilemma.

Meanwhile, ((ϕi∗, ψ
i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )) is also a Pareto-optimal equilibrium. Given the payoff matrix in Ta-

ble 1, other possible outcomes are (−2,−2), (0,−3) and (−3, 0). Therefore, no further improvement can be
made to one player’s outcome without reducing the payoff of another player compared to (−1,−1) achieved by
((ϕi∗, ψ

i
∗, π

i
∗), (ϕ

−i
∗ , ψ−i

∗ , π−i
∗ )).
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Algorithm 2 Differentiable Commitment Learning (Centralized Version)

Input: initial action policy parameters θi, initial commitment policy parameters ζi, initial proposal policy
parameters ηi, initial action-value function parameters wi for all i ∈ N .
for k=0, 1, 2, ... do

Collect set of trajectories Dk = {τt} by running latest policies (θi, ζi, ηi), ∀i ∈ N .
Compute Monte-Carlo discounted accumulative rewards Ĝit,∀i ∈ N .
Fit value function for all i ∈ N with gradient descent by minimizing the mean-squared error:

wik+1 = argmin
wi

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Qiwi(st,at)− Ĝit)2.

Estimate action policy gradient for all i ∈ N as

ĝθik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)∇θik log π

i
θik
(ait|st).

Estimate commitment policy gradient for all i ∈ N as

ĝζik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
· ∇ζik logψ

i
ζik
(cit|st,mt) +

[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]∏
j ̸=i

1(cjt = 1)∇ζi1(cit = 1).

Estimate proposal policy gradient w.r.t. the expected return for all i ∈ N by

ĝηik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
·
(
∇ηik log ϕ

i
ηik
(mi

t|st) +
∑
j

∇ηik logψ
j

ζjk
(cjt |st,mt)

)
+
∑
j

∏
l ̸=j

1(clt = 1)
[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]
∇ηik1(c

j
t = 1).

Estimate proposal policy gradient w.r.t. incentive-compatible constraints for all i ∈ N by

ĝ
′

ηik
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

∑
j

∇ηik min{0, Qj
wj

k+1

(st,mt)−Qjwj
k+1

(st,at)}.

Update policy parameters for all i ∈ N with gradient ascent,

θik+1 = θik + βĝθik ,

ζik+1 = ζik + βĝζik ,

ηik+1 = ηik + βĝηik + λĝ
′

ηik
.

end for
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Algorithm 3 Differentiable Commitment Learning (Decentralized Version)

Input: initial action policy parameters: θi, initial estimated action policy parameters of b ∈ N \ i: θ̃ib, initial
commitment policy parameters: ζi, initial estimated commitment policy parameters of b ∈ N \ i: ζ̃ib, initial
proposal policy parameters: ηi, initial estimated proposal policy parameters of b ∈ N \ i: η̃ib, initial action-
value function parameters: wi for i ∈ N , initial estimated action-value function parameters of b ∈ N \ i: w̃ib
for all i ∈ N .
for k=0, 1, 2, ... do

Collect set of trajectories Dk = {τt} by running latest policies (θi, ζi, ηi), ∀i ∈ N .
Compute Monte-Carlo discounted accumulative rewards Ĝit,∀i ∈ N .
Fit value function for all i ∈ N with gradient descent by minimizing the mean-squared error:

wik+1 = argmin
wi

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Qiwi(st,at)− Ĝit)2.

Fit estimated value function of b for ∀b ∈ N \ i and ∀i ∈ N with gradient descent by minimizing the
mean-squared error:

w̃ibk+1 = argmin
wb

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Qbwb(st,at)− Ĝbt)2.

Estimate action policy gradient for all i ∈ N as

ĝθik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)∇θik log π

i
θik
(ait|st).

Estimate action policy of b for ∀b ∈ N \ i and ∀i ∈ N by

ĝθ̃ibk
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

(
1− 1(ct = 1)

)
Qbw̃ib

k+1
(st,at)∇θ̃ibk log πb

θ̃ibk
(abt |st).

Estimate commitment policy gradient for all i ∈ N as

ĝζik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
· ∇ζik logψ

i
ζik
(cit|st,mt) +

[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]∏
j ̸=i

1(cjt = 1)∇ζi1(cit = 1).

Estimate commitment policy gradient of b for ∀b ∈ N \ i and ∀i ∈ N by

ĝζ̃ibk
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qbw̃ib

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qbw̃ib

k+1
(st,at)

]
· ∇ζ̃ibk logψi

ζ̃ibk
(cbt |st,mt) +

[
Qbw̃ib

k+1
(st,mt)−Qbw̃ib

k+1
(st,at)

]∏
j ̸=b

1(cjt = 1)∇ζ̃ibk 1(c
b
t = 1).

Estimate proposal policy gradient w.r.t. the expected return for all i ∈ N by

ĝηik =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qiwi

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qiwi

k+1
(st,at)

]
·
(
∇ηik log ϕ

i
ηik
(mi

t|st)

+
∑
j

∇ηik logψ
j

ζjk
(cjt |st,mt)

)
+

∑
j

∏
l ̸=j

1(clt = 1)
[
Qiwi

k+1
(st,mt)−Qiwi

k+1
(st,at)

]
∇ηik1(c

j
t = 1).

Estimate proposal policy gradient w.r.t. incentive-compatible constraints for all i ∈ N by
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ĝ
′

ηik
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

∇ηik min{0, Qiwi
k+1

(st,mt)−Qiwi
k+1

(s,a)}+
∑
b ̸=i

∇ηik min{0, Qbw̃ib
k
(s,m)−Qbw̃ib

k
(s,a)}.

Estimate proposal policy gradient w.r.t. the expected return of b for ∀b ∈ N \ i and ∀i ∈ N by

ĝη̃ibk =
1

|Dk|
∑
τ∈Dk

T∑
t=0

[
1(ct = 1)Qbw̃ib

k+1
(st,mt) +

(
1− 1(ct = 1)

)
Qbw̃ib

k+1
(st,at)

]
·
(
∇η̃ibk log ϕbη̃ibk

(mb
t |st)

+
∑
j

∇η̃ibk logψj
ζ̃ijk

(cjt |st,mt)
)
+
∑
j

∏
l ̸=j

1(clt = 1)
[
Qbw̃ib

k+1
(st,mt)−Qbw̃ib

k+1
(st,at)

]
∇η̃ibk 1(c

j
t = 1).

Estimate proposal policy gradient w.r.t. incentive-compatible constraints of b for ∀b ∈ N \ i and ∀i ∈ N
by

ĝ
′

η̃ibk
=

1

|Dk|
∑
τ∈Dk

T∑
t=0

∇η̃ibk min{0, Qiwi
k+1

(st,mt)−Qiwi
k+1

(s,a)}+
∑
b̸=i

∇η̃ibk min{0, Qbw̃ib
k+1

(s,m)−Qbw̃ib
k+1

(s,a)}.

Update policy parameters for all i ∈ N with gradient ascent,

θik+1 = θik + βĝθik , ζ
i
k+1 = ζik + βĝζik , η

i
k+1 = ηik + βĝηik + λĝ

′

ηik
.

Update policy parameters for all b ∈ N \ i and i ∈ N with gradient ascent,

θ̃ibk+1 = θ̃ibk + βĝθ̃ibk
, ζ̃ibk+1 = ζ̃ibk + βĝζ̃ibk

, η̃ibk+1 = η̃ibk + βĝη̃ibk + λĝ
′

η̃ibk
.

end for

Table 3: Comparison with Related Frameworks

Name Commitment Share Policies Altruistic Third Party Reward Transfer Proposal of Actions
Commitment Games (Renou, 2009) Unconditional Yes No No No

Conditional Commitment Games (Bryan et al., 2010) Conditional Yes No No No
Contract Mechanism (Hughes et al., 2020) Conditional No No No Joint Action
Formal Contracting (Haupt et al., 2022) Conditional No No Yes No
Mediated-MARL (Ivanov et al., 2023) N/A No Yes No No

MCGs (Ours) Conditional No No No Self Action

Table 4: Comparison with MARL Baselines

Name Objective Reward Transfer Independent Learning Decentralized Learning
IPPO (Schulman et al., 2017) Individual Returns No Yes Yes
MOCA (Haupt et al., 2022) Individual Returns Yes Yes Yes

Mediated-MARL (Ivanov et al., 2023) Social Welfare + Individual Returns No Yes Yes
Centralized DCL (Ours) Individual Returns No No No
Decentralized DCL (Ours) Individual Returns No No Yes
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Table 5: Hyperparameters of Prisoner’s Dilemma

Hyperparameters DCL Mediated-MARL IPPO MOCA
Num of Iterations 10,000 10,000 10,000 10,000
Batch size 128 128 128 128
Entropy Coef. Start 1.0 1.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0 0 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 8 8 8 8
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 10.0 N/A N/A N/A
Temperature Decay 0.05 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 1 1 1 1

D Hyperparameters

For all algorithms, we utilized 2-layer MLP networks with ReLU activation in the hidden layers. All policy
networks apply a softmax function as the output activation, whereas the value network uses a linear output
without any activation function. Other hyperparameters are reported in Table 5, 6 and 7.

Table 6: Hyperparameters of Grid Game

Hyperparameters DCL Mediated-MARL IPPO MOCA
Horizon 16 16 16 16
Grid Size 4 4 4 4
Num of Iterations 10,000 10,000 10,000 10,000
Discount Factor 0.99 0.99 0.99 0.99
Batch size 512 512 512 512
Entropy Coef. Start 2.0 2.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0.001 0.001 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 32 32 32 32
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 1.0 N/A N/A N/A
Temperature Decay 0 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 30 30 30 30
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Table 7: Hyperparameters of Repeated Pure Conflicting Game

Hyperparameters DCL Mediated-MARL IPPO MOCA
Num of Iterations 10,000 10,000 10,000 10,000
Discount Factor 0.99 0.99 0.99 0.99
Batch size 512 512 512 512
Entropy Coef. Start 2.0 2.0 N/A N/A
Entropy Decay 0.0005 0.0005 N/A N/A
Min. Entropy Coef. 0.001 0.001 N/A N/A
LR of Value Function 8e-4 8e-4 8e-4 8e-4
LR of Policies 4e-4 4e-4 4e-4 4e-4
Hidden Layer size 32 32 32 32
Num of Layers 2 2 2 2
KL-coefficient N/A N/A 0.2 0.2
KL-target N/A N/A 0.01 0.01
Clip Parameter in PPO N/A N/A 0.3 0.3
Temperature 1.0 N/A N/A N/A
Temperature Decay 0 N/A N/A N/A
Min. Temperature 1.0 N/A N/A N/A
Num of Update Per Iteration 30 30 30 30

E Many-player Experiments

To investigate how DCL handles scalability with many players, we conducted experiments on an N -player public
goods game. For each agent i, the reward is calculated as Ri =

∑
j C

j ∗β−Ci, where Ci denotes the contribution
of agent i, β denotes the benefit factor with a range between (1, N). In our experiments, we set β = 1.5 for
all scenarios. Results in Table 8 indicate that DCL with incentive-compatible constraints scales effectively with
large numbers of agents. While the runtime of DCL increases with the number of agents, the agreement rate of
joint proposals remains stable (> 0.99), achieving high social welfare.

Table 8: DCL-IC on Many-player Public Goods Game

Number of Agents Run Time (Hours) Agreement Rate Social Welfare
2 4 0.996± 0.002 0.997± 0.002
3 7 0.994± 0.001 1.491± 0.004
5 12 0.996± 0.001 1.989± 0.002
10 32 0.991± 0.001 3.659± 0.143

F Other Related Works

F.1 Cooperation Problems in Mixed-Motive Environments

The causes of cooperation failures between self-interested agents in mixed-motive environments have been pri-
marily categorized into two types: information problems and commitment problems (Dafoe et al., 2020; Powell,
2006; Fearon, 1995). Information problems refer to cooperation failures caused by incorrect or insufficient in-
formation, which frequently occur in partially observable environments. Existing works have demonstrated that
information problems can be alleviated by communication (Kim et al., 2020; Sukhbaatar et al., 2016; Foerster
et al., 2016) and opponent reasoning (Konan et al., 2022; Jaques et al., 2019; Wen et al., 2019). However, in
mixed-motive environments, agents driven by conflicting self-interests may deceive others regarding their pri-
vate observations (Lin et al., 2024; Kamenica, 2019; Taneva, 2019; Dughmi, 2017). Cooperation may also fail
due to agents’ inability to make credible commitments, known as commitment problems, even in the absence
of information asymmetries. For instance, cooperation can not be achieved through cheap talk communication
or non-binding promises of cooperation in the Prisoner’s Dilemma (Rapoport, 1965), as agents achieve higher
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payoffs by defecting regardless of the opponent’s actions. To address commitment problems, a commitment
device is often required to ensure that agents fulfill their commitments, either by restricting their actions or
imposing penalties for noncompliance (Sun et al., 2023; Rogers et al., 2014). Static conditional commitments
facilitated by such devices have been shown to enhance cooperation in the prisoner’s dilemma (Kalai et al., 2010;
Renou, 2009; Schelling, 1980). However, these fixed strategies are difficult to generalize across various games
and environments.

F.2 Comparison with Related Works

Table 3 and 4 summarize the differences and similarities between various types of games and associated algorithms
to optimize strategies.
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