
Published as a conference paper at ICLR 2023

BENCHMARKING CONSTRAINT INFERENCE IN INVERSE
REINFORCEMENT LEARNING

Guiliang Liu1,2,3, Yudong Luo2,3, Ashish Gaurav2,3, Kasra Rezaee4, Pascal Poupart2,3
1The Chinese University of Hong Kong, Shenzhen, 2University of Waterloo, 3Vector Institute, 4Huawei
liuguiliang@cuhk.edu.cn, yudong.luo@uwaterloo.ca,
ashish.gaurav@uwaterloo.ca,kasra.rezaee@huawei.com,ppoupart@uwaterloo.ca

ABSTRACT

When deploying Reinforcement Learning (RL) agents into a physical system,
we must ensure that these agents are well aware of the underlying constraints.
In many real-world problems, however, the constraints are often hard to specify
mathematically and unknown to the RL agents. To tackle these issues, Inverse
Constrained Reinforcement Learning (ICRL) empirically estimates constraints
from expert demonstrations. As an emerging research topic, ICRL does not have
common benchmarks, and previous works tested algorithms under hand-crafted
environments with manually-generated expert demonstrations. In this paper, we
construct an ICRL benchmark in the context of RL application domains, including
robot control, and autonomous driving. For each environment, we design relevant
constraints and train expert agents to generate demonstration data. Besides, unlike
existing baselines that learn a ”point estimate” constraint, we propose a variational
ICRL method to model a posterior distribution of candidate constraints. We
conduct extensive experiments on these algorithms under our benchmark and
show how they can facilitate studying important research challenges for ICRL. The
benchmark, including the instructions for reproducing ICRL algorithms, is available
at https://github.com/Guiliang/ICRL-benchmarks-public.

1 INTRODUCTION

Constrained Reinforcement Learning (CRL) typically learns a policy under some known or predefined
constraints (Liu et al., 2021). This setting, however, is not realistic in many real-world problems
since it is difficult to specify the exact constraints that an agent should follow, especially when these
constraints are time-varying, context-dependent, and inherent to experts’ own experience. Further,
such information may not be completely revealed to the agent. For example, human drivers tend to
determine an implicit speed limit and a minimum gap to other cars based on the traffic conditions, rules
of the road, weather, and social norms. To derive a driving policy that matches human performance,
an autonomous agent needs to infer these constraints from expert demonstrations.

Figure 1: The flowchart of ICRL.

An important approach to recovering the underlying con-
straints is Inverse Constrained Reinforcement Learning
(ICRL) (Malik et al., 2021). ICRL infers a constraint
function to approximate constraints respected by expert
demonstrations. This is often done by alternating between
updating an imitating policy and a constraint function.
Figure 1 summarizes the main procedure of ICRL. As an
emerging research topic, ICRL does not have common
datasets and benchmarks for evaluation. Existing valida-
tion methods heavily depend on the safe-Gym (Ray et al.,
2019) environments. Utilizing these environments has some important drawbacks: 1) These environ-
ments are designed for control instead of constraint inference. To fill this gap, previous works often
pick some environments and add external constraints to them. Striving for simplicity, many of the
selected environments are deterministic with discretized state and action spaces (Scobee & Sastry,
2020; McPherson et al., 2021; Glazier et al., 2021; Papadimitriou et al., 2021; Gaurav et al., 2022).
Generalizing model performance in these simple environments to practical applications is difficult.

1

https://github.com/Guiliang/ICRL-benchmarks-public

Published as a conference paper at ICLR 2023

2) ICRL algorithms require expert demonstrations respecting the added constraints while general
RL environments do not include such data, and thus previous works often manually generate the
expert data. However, without carefully fine-tuning the generator, it is often unclear how the quality
of expert trajectories influences the performance of ICRL algorithms.

In this paper, we propose a benchmark for evaluating ICRL algorithms. This benchmark includes
a rich collection of testbeds, including virtual, realistic, and discretized environments. The virtual
environments are based on MuJoCo (Todorov et al., 2012), but we update some of these robot control
tasks by adding location constraints and modifying dynamic functions. The realistic environments are
constructed based on a highway vehicle tracking dataset (Krajewski et al., 2018), so the environments
can suitably reflect what happens in a realistic driving scenario, where we consider constraints
about car velocities and distances. The discretized environments are based on grid-worlds for
visualizing the recovered constraints (see Appendix B). To generate the demonstration dataset for
these environments, we expand the Proximal Policy Optimization (PPO) (Schulman et al., 2017) and
policy iteration (Sutton & Barto, 2018) methods by incorporating ground-truth constraints into the
optimization with Lagrange multipliers. We empirically demonstrate the performance of the expert
models trained by these methods and show the approach to generating expert demonstrations.

For ease of comparison, our benchmark includes ICRL baselines. Existing baselines learn a constraint
function that is most likely to differentiate expert trajectories from the generated ones. However,
this point estimate (i.e., single constraint estimate) may be inaccurate. On the other hand, a more
conceptually-satisfying method is accounting for all possibilities of the learned constraint by modeling
its posterior distribution. To extend this Bayesian approach to solve the task in our benchmark, we
propose a Variational Inverse Constrained Reinforcement Learning (VICRL) algorithm that can
efficiently infer constraints from the environment with a high-dimensional and continuous state space.

Besides the above regular evaluations, our benchmark can facilitate answering a series of important
research questions by studying how well ICRL algorithms perform 1) when the expert demonstrations
may violate constraints (Section 4.3) 2) under stochastic environments (Section 4.4) 3) under envi-
ronments with multiple constraints (Section 5.2) and 4) when recovering the exact least constraining
constraint (Appendix B.2).

2 BACKGROUND

In this section, we introduce Inverse Constrained Reinforcement Learning (ICRL) that alternatively
solves both a forward Constrained Reinforcement Learning problem (CRL) and an inverse constraint
inference problem (see Figure 1).

2.1 CONSTRAINED REINFORCEMENT LEARNING

Constrained Reinforcement Learning (CRL) is based on Constrained Markov Decision Processes
(CMDPs) Mc, which can be defined by a tuple (S,A, pR, pT , {(pCi , ϵi)}∀i, γ, T) where: 1) S and A
denote the space of states and actions. 2) pT (s′|s, a) and pR(r|s, a) define the transition and reward
distributions. 3) pCi(c|s, a) denotes a stochastic constraint function with an associated bound ϵi,
where i indicates the index of a constraint, and the cost c ∈ [0,∞]. 4) γ ∈ [0, 1) is the discount factor
and T is the planning horizon. Based on CMDPs, we define a trajectory τ = [s0, a0, ..., aT−1, sT]

and p(τ) = p(s0)
∏T−1

t=0 π(at|st)pT (st+1|st, at). To learn a policy under CMDPs, CRL agents
commonly consider the following optimization problems.

Cumulative Constraints. We consider a CRL problem that finds a policy π to maximize expected
discounted rewards under a set of cumulative soft constraints:

argmax
π

EpR,pT ,π

[
T∑

t=0

γtrt

]
+

1

β
H(π) s.t. EpCi

,pT ,π

[
T∑

t=0

γtci(st, at)

]
≤ ϵi ∀i ∈ [0, I] (1)

where H(π) denotes the policy entropy weighted by 1
β . This formulation is useful given an infinite

horizon (T = ∞), where the constraints consist of bounds on the expectation of cumulative constraint
values. In practice, we commonly use this setting to define soft constraints since the agent can recover
from an undesirable movement (corresponding to a high cost ci(st, at)) as long as the discounted
additive cost is smaller than the threshold (ϵi).

2

Published as a conference paper at ICLR 2023

Trajectory-based Constraints. An alternative approach is directly defining constraints on the
sampled trajectories without relying on the discounted factor:

argmax
π

EpR,pT ,π

[
T∑

t=0

γtrt

]
+

1

β
H(π) s.t. Eτ∼(pT ,π),pCi

[ci(τ)] ≤ ϵi ∀i ∈ [0, I] (2)

Depending on how we define the trajectory cost c(τ), the trajectory constraint can be more restrictive
than the cumulative constraint. For example, inspired by Malik et al. (2021), we define c(τ) =
1−

∏
(s,a)∈τ ϕ(s, a) where ϕ(s, a) indicates the probability that performing action a under a state s

is safe (i.e., within the support of the distribution of expert demonstration). Compared to the above
additive cost, this factored cost imposes a stricter requirement on the safety of each state-action pair
in a trajectory (i.e., if ∃(s̄, ā) ∈ τ , ϕ(s̄, ā) → 0, then

∏
(s,a)∈τ ϕ(·) → 0 and thus c(τ) → 1).

2.2 INVERSE CONSTRAINT INFERENCE

In practice, instead of observing the constraint signals, we often have access to expert demonstrations
that follow the underlying constraints. Under this setting, the agent must recover the constraint models
from the dataset. This is a challenging task since there might be various equivalent combinations of
reward distributions and constraints that can explain the same expert demonstrations (Ziebart et al.,
2008). To guarantee the identifiability, ICRL algorithms generally assume that rewards are observable,
and the goal is to recover the minimum constraint set that best explains the expert data (Scobee &
Sastry, 2020). This is the key difference with Inverse Reinforcement Learning (IRL), which aims to
learn rewards from an unconstrained MDP.

Maximum Entropy Constraint Inference. Existing ICRL works commonly follow the Maximum
Entropy framework. The likelihood function is represented as follow (Malik et al., 2021):

p(De|ϕ) =
1

(ZMĉϕ)N

N∏
i=1

exp
[
r(τ (i))

]
1Mĉϕ

(τ (i)) (3)

where 1) N denotes the number of trajectories in the demonstration dataset De, 2) the normalizing
termZMĉϕ =

∫
exp [r(τ)]1Mĉϕ

(τ)dτ , and 3) the indicator 1Mĉϕ
(τ (i)) can be defined by ϕ(τ (i)) =∏T

t=1 ϕt and ϕt(sit, a
i
t) defines to what extent the trajectory τ (i) is feasible, which can substitute the

indicator in Equation (3), and thus we define:

log [p(De|ϕ)] =
N∑
i=1

[
r(τ (i)) + log

T∏
t=0

ϕθ(s
(i)
t , a

(i)
t)

]
−N log

∫
exp[r(τ̂)]

T∏
t=0

ϕθ(ŝt, ât)dτ̂ (4)

We can update the parameters θ of the feasibility function ϕ by computing the gradient of this
likelihood function:

∇θ log [p(De|ϕ)] =
N∑
i=1

[
∇ϕ

T∑
t=0

log[ϕθ(s
(i)
t , a

(i)
t)]

]
−NEτ̂∼πMϕ

[
∇ϕ

T∑
t=0

log[ϕθ(ŝt, ât)]
]

(5)

where τ̂ is sampled based on executing policy πMϕ̂(τ̂) = exp[r(τ̂)]ϕ(τ̂)∫
exp[r(τ)]ϕ(τ)dτ

. This is a max-
imum entropy policy that can maximize cumulative rewards subject to πMϕ(τ) = 0 when∑

(s,a)∈τ ĉϕ(s, a) > ϵ (note that ĉϕ(s, a) = 1− ϕt as defined above). In practice, we can learn this
policy by constrained maximum entropy RL according to objective (2. In this sense, ICRL can be
formulated as a bi-level optimization problem that iteratively updates the upper-level objective (2)
for policy optimization and the lower-level objective (5) for constraint learning until convergence (π
matches the expert policy).

3 EVALUATION METHODS

In this section, we introduce our approach to evaluating the ICRL algorithms. To quantify the
performance of ICRL algorithms, the benchmark must be capable of determining whether the
learned constraint is correct. However, the true constraints satisfied by real-world agents are often
unavailable, for example, the exact constraints satisfied by human drivers are unknown, and we thus
cannot use real-world datasets as expert demonstrations. To solve these issues, our ICRL benchmark
enables incorporating external constraints into the environments and generates expert demonstrations
satisfying these constraints. Based on the dataset, we design evaluation metrics and baseline models
for comparing ICRL algorithms under our benchmark.

3

Published as a conference paper at ICLR 2023

3.1 DEMONSTRATION GENERATION

To generate the dataset, we train a PPO-Lagrange (PPO-Lag) under the CMDP with the known
constraints (Table 1 and Table 3) by performing the following steps:

Training Expert Agent. We train expert agents by assuming the ground-truth constraints are
unknown under different environments (introduced in Appendix B, Section 4 and Section 5). The
cost function c∗(st, at) returns 1 if the constraint is violated when the agent performs at in the state
st otherwise 0. In the environments (in Section 4 and Section 5) with continuous state and action
spaces, we train the expert agent by utilizing the Proximal Policy Optimization Lagrange (PPO-Lag)
method in Algorithm 1. In the environment with discrete action and state space, we learn the expert
policy with the Policy Iteration Lagrange (PI-Lag) method in Algorithm 2. The empirical results
(Figure D.1 and Figure 6) show that PI-Lag and PPO-Lag can achieve satisfactory performance given
the ground-truth constraint function.

Generating a Dataset with Expert Agents. We initialize De = {∅} and run the trained expert
agents in the testing environments. While running, we monitor whether the ground-truth constraints
are violated until the game ends. If yes, we mark this trajectory as infeasible, otherwise, we record the
corresponding trajectory: De = De∪{τe}. We repeat this process until the demonstration dataset has
enough trajectories. To understand how De influences constraint inference, our benchmark enables
studying the option of including these infeasible trajectories in the expert dataset (Section 4.3). Note
there is no guarantee the trajectories in De are optimal in terms of maximizing the rewards. For
more details, please check Appendix E. Our experiment (Section 4.2) shows ICRL algorithms can
outperform PPO-Lag under some easier environments.

3.2 BASELINES

For ease of comparison, our benchmark contains the following state-of-the-art baselines:

Binary Classifier Constraint Learning (BC2L) build a binary classifier to differentiate expert
trajectories from the generated ones to solve the constraint learning problem and utilizes PPO-Lag or
PI-Lag (Algorithms 1 and 2) to optimize the policy given the learned constraint. BC2L is independent
of the maximum entropy framework, which often induces a loss of identifiability in the learned
constraint models.

Generative Adversarial Constraint Learning (GACL) follows the design of Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016), where ζ(s, a) assigns 0 to violating state-action
pairs and 1 to satisfying ones. In order to include the learned constraints into the policy update, we
construct a new reward r′(s, a) = r(·) + log [ζ(·)]. In this way, GAIL enforces hard constraints by
directly punishing the rewards on the violating states or actions through assigning them −∞ penalties
(without relying on any constrained optimization technique).

Maximum Entropy Constraint Learning (MECL) is based on the maximum entropy IRL frame-
work (Ziebart et al., 2008), with which Scobee & Sastry (2020) proposed an algorithm to search
for constraints that most increase the likelihood of observing expert demonstrations. This algorithm
focused on discrete state spaces only. A following work (Malik et al., 2021) expanded MECL to
continuous states and actions. MECL utilizes PPO-Lag (or PI-Lag in discrete environments) to
optimize the policy given the learned constraint.

Variational Inverse Constrained Reinforcement Learning (VICRL) is also based on the maximum
entropy IRL framework (Ziebart et al., 2008), but instead of learning a ”point estimate” cost function,
we propose inferring the distribution of constraint for capturing the epistemic uncertainty in the
demonstration dataset. To achieve this goal, VICRL infers the distribution of a feasibility variable Φ
so that p(ϕ|s, a) measures to what extent an action a should be allowed in a particular state s1. The
instance ϕ can define a soft constraint given by: ĉϕ(s, a) = 1− ϕ where ϕ ∼ p(·|s, a). Since Φ is a
continuous variable with range [0, 1], we parameterize p(ϕ|s, a) by a Beta distribution:

ϕ(s, a) ∼ p(ϕ|s, a) = Beta(α, β) where [α, β] = log[1 + exp(f(s, a))] (6)

here f is implemented by a multi-layer network with 2-dimensional outputs (for α and β). In
practice, the true posterior p(ϕ|De) is intractable for high-dimensional input spaces, so VICRL learns

1We use a uppercase letter and a lowercase letter to define a random variable and an instance of this variable.

4

Published as a conference paper at ICLR 2023

an approximate posterior q(ϕ|De) by minimizing Dkl

[
q(ϕ|De)∥p(ϕ|De)

]
. This is equivalent to

maximizing an Evidence Lower Bound (ELBo):

Eq

[
log p(De|ϕ)

]
−Dkl

[
q(ϕ|De)∥p(ϕ)

]
(7)

where the log-likelihood term log p(De|ϕ) follows Equation 3 and the major challenge is to de-
fine the KL divergence. Striving for the ease of computing mini-batch gradients, we approximate
Dkl

[
q(ϕ|D)∥p(ϕ)

]
with

∑
(s,a)∈D Dkl

[
q(ϕ|s, a)∥p(ϕ)

]
. Since both the posterior and the prior are

Beta distributed, we define the KL divergence by following the Dirichlet VAE Joo et al. (2020):

Dkl

[
q(ϕ|s, a)∥p(ϕ)

]
= log

(Γ(α+ β)

Γ(α0 + β0)

)
+ log

(Γ(α0)Γ(β0)

Γ(α)Γ(β)

)
(8)

+ (α− α0)
[
ψ(α)− ψ(α+ β)

]
+ (β − β0)

[
ψ(β)− ψ(α+ β)

]
where 1) [α0, β0] and [α, β] are parameters from the prior and 2) the posterior functions and Γ and
ψ denote the gamma and the digamma functions. Note that the goal of ICRL is to infer the least
constraining constraint for explaining expert behaviors (see Section 2.2). To achieve this, previous
methods often use a regularizer E[1− ϕ(τ)] Malik et al. (2021) for punishing the scale of constraints,
whereas our KL-divergence extends it by further regularizing the variances of constraints.

3.3 EXPERIMENT SETTING

Running Setting. Following Malik et al. (2021), we evaluate the quality of a recovered constraint by
checking if the corresponding imitation policy can maximize the cumulative rewards with a minimum
violation rate for the ground-truth constraints. We repeat each experiment with different random seeds,
according to which we report the mean ± standard deviation (std) results for each studied baseline
and environment. For the details of model parameters and random seeds, please see Appendix C.3.

Evaluation Metric. To be consistent with the goal of ICRL, our benchmark uses the following
evaluation metrics to evaluate the tasks 1) constraint violation rate quantifies the probability with
which a policy violates a constraint in a trajectory. 2) Feasible Cumulative Rewards computes the
total number of rewards that the agent collects before violating any constraint.

4 VIRTUAL ENVIRONMENT

An important application of RL is robotic control, and our virtual benchmark mainly studies the
robot control task with a location constraint. In practice, this type of constraint captures the locations
of obstacles in the environment. For example, the agent observes that none of the expert agents
visited some places. Then it is reasonable to infer that these locations must be unsafe, which can be
represented by constraints. Although the real-world tasks might require more complicated constraints,
our benchmark, as the first benchmark for ICRL, could serve as a stepping stone for these tasks.

4.1 ENVIRONMENT SETTINGS

We implement our virtual environments by utilizing MuJoCo Todorov et al. (2012), a virtual simulator
suited to robotic control tasks. To extend MuJoCo for constraint inference, we modify the MuJoCo
environments by incorporating some predefined constraints into each environment and adjusting some
reward terms. Table 1 summarizes the environment settings (see Appendix C.1 for more details).
The virtual environments have 5 different robotic control environments simulated by MuJoCo. We
add constraints on the X-coordinate of these robots: 1) For the environments where it is relatively
easier for the robot to move backward rather than forward (e.g., Half-Cheetah, Ant, and Walker), our
constraints bound the robot in the forward direction (the X-coordinate having positive values), 2)
For the environments where moving forward is easier (e.g., Swimmer), the constraints bound the
robot in the backward direction (the X-coordinate having negative values). In these environments,
the rewards are determined by the distance that a robot moves between two continuous time steps, so
the robot is likely to violate the constraints in order to maximize the magnitude of total rewards (see
our analysis below). To increase difficulty, we include a Biased Pendulum environment that has a
larger reward on the left side. We nevertheless enforce a constraint to prevent the agent to go too far
on the left side. The agent must resist the influence of high rewards and stay in safe regions.

5

Published as a conference paper at ICLR 2023

Table 1: The virtual and realistic environments in our benchmark.

Type Name Dynamics Obs. Dim. Act. Dim. Constraints

Virtual

Blocked Half-cheetah Deterministic 18 6 X-Coordinate ≥ -3
Blocked Ant Deterministic 113 8 X-Coordinate ≥ -3

Biased Pendulumn Deterministic 4 1 X-Coordinate ≥ -0.015
Blocked Walker Deterministic 18 6 X-Coordinate ≥ -3

Blocked Swimmer Deterministic 10 2 X-Coordinate ≤ 0.5

The significance of added Constraints. The thresholds of the constraints in Table 1 are determined
experimentally to ensure that these constraints ”matter” for solving the control problems. This is
shown in Figure D.1 in the appendix: 1) without knowing the constraints, a PPO agent tends to
violate these constraints in order to collect more rewards within a limited number of time steps. 2)
When we inform the agent of the ground-truth constraints (with the Lagrange method in Section 3.1),
the PPO-Lag agent learns how to stay in the safe region, but the scale of cumulative rewards is likely
to be compromised. Based on these observations, we can evaluate whether the ICRL algorithms have
learned a satisfying constraint function by checking whether the corresponding RL agent can gather
more rewards by performing feasible actions under the safe states.

Figure 2: The constraint violation rate (top) and feasible rewards (i.e., the rewards from the trajectories
without constraint violation, bottom) during training. From left to right, the environments are Blocked
Half-cheetah, Blocked Ant, Bias Pendulum, Blocked Walker, and Blocked Swimmer.

Table 2: Testing performance. We report the average feasible rewards and the constraint violation
rate in 100 runs. Check Appendix D.3 for the complete mean±std results. ↑ (↓) indicates that a score
is statistically greater (smaller) than the score achieved by VICRL with p-value ≤ 0.05 according to
the Wilcoxon signed-rank test. (Table D.1 reports the p values.).

Blocked Half-
Cheetah

Blocked
Ant

Biased
Pendulum

Blocked
Walker

Blocked
Swimmer

HighD
Speed

HighD
Distance

Feasible
Rewards

GACL 3.48E+3↓ 7.21E+3 ↓ 8.50E-1↓ 2.84E+1 ↓ 5.78E+2↑ -1.93E+1 ↓ -1.70E+1 ↓
BC2L 8.70E+2 ↓ 1.20E+4 ↓ 5.73E+0↓ 4.87E+1 ↓ 1.41E+2↓ -2.93E-1 3.84E+0 ↓
MECL 3.02E+3 ↓ 8.55E+3 ↓ 1.02E+0↓ 1.27E+2 ↑ 6.37E+1↓ 9.67E-1 2.15E+0 ↓
VICRL 3.81E+3 1.37E+4 6.64E+0 9.34E+1 1.91E+2 -8.99E-1 4.60E+0

Constraint
Violation

Rate

GACL 0% 0% 100% ↑ 0% 42% ↓ 14% 19% ↓
BC2L 47% ↑ 0% 58%↑ 0% ↓ 84% ↑ 33% ↑ 33%
MECL 40% ↑ 0% 73% ↑ 19% 88% ↑ 31% ↑ 41% ↑
VICRL 0% 2% 39% 7% 59% 24% 31%

4.2 CONSTRAINT RECOVERY IN THE VIRTUAL ENVIRONMENT

Figure 2 and Table 2 show the training curves and the corresponding testing performance in each
virtual environment. Compared to other baseline models, we find VICRL generally performs better
with lower constraint violation rates and larger cumulative rewards. This is because VICRL captures
the uncertainty of constraints by modeling their distributions and requiring the agent to satisfy all the
sampled constraints, which facilitates a conservative imitation policy. Although MECL and GACL
outperform VICRL in the Blocked Walker and the Blocked Swimmer environments, respectively,
none of these algorithms can perform consistently better than the others. Figure D.5 visualizes the
constraints learned by VICRL for a closer analysis.

6

Published as a conference paper at ICLR 2023

4.3 CONSTRAINT RECOVERY FROM VIOLATING DEMONSTRATIONS

We use our virtual environment to study ”How well do the algorithms perform when the expert
demonstrations may violate the true underlying constraint?” Under the definition of ICRL problems,
violation indicates that expert trajectories contain state-action pairs that do not satisfy the ground-truth
constraint. The existence of violating expert trajectories is a crucial challenge for ICRL since in
practice the expert data is noisy and there is no guarantee that all trajectories strictly follow underlying
constraints. Our benchmark provides a testbed to study how the scale of violation influences the
performance of ICRL baselines. To achieve this, we perform random actions during expert data
generation so that the generated expert trajectories contain infeasible state-action pairs that violate
ground-truth constraints.

Figure 3: Model performance in the Blocked Half-Cheetah
environment. From left to right, the percentages of trajec-
tories containing violating state-action pairs are 20%, 50%,
and 80%. Check Figure D.6 in Appendix for all results.

Figure 3 shows the performance in-
cluding the constraint violation rate
(top row) and the feasible rewards
(bottom row). We find the constraint
violation rate (top row) increases sig-
nificantly and the feasible rewards de-
crease as the scale of violation in-
creases in the expert dataset, espe-
cially for GACL and BC2L, whose
performance is particularly vulnerable
to violating trajectories. Among the
studied baselines, MECL is the most
robust to expert violation, although its
performance drops significantly when
the violation rate reaches 80%. How
to design an ICLR algorithm that is
robust to expert violation remains a
challenge for future work.

4.4 CONSTRAINT RECOVERY
FROM STOCHASTIC ENVIRONMENTS

Figure 4: Model performance in the Blocked Half-Cheetah
environment. From left to right, the transition function has
the noises N (0, 0.001),N (0, 0.01), and N (0, 0.1). Check
Figure D.7 in Appendix for results in all environments.

Our virtual environment can help
answer the question ”How well do
ICRL algorithms perform in stochas-
tic environments?” To achieve this,
we modify the MuJoCo environ-
ments by adding noise to the tran-
sition functions at each step such
that p(st+1|st, at) = f(st, at) +
η,where η ∼ N (µ, σ)). Under this
design, our benchmark enables study-
ing how the scale of stochasticity in-
fluences model performance by con-
trolling the level of added noise. Fig-
ure 4 shows the results. We find ICRL
models are generally robust to addi-
tive Gaussian noises in environment
dynamics until they reach a threshold
(e.g., N (0, 0.1)). Another intriguing
finding is that the constraint inference
methods (MECL and B2CL) can benefit from a proper scale of random noise since these noisy signals
induce stricter constraint functions and thus a lower constraint violation rate.

5 REALISTIC ENVIRONMENT

Our realistic environment defines a highway driving task. This HighD environment examines if the
agent can drive safely the ego car to the destination by following the constraints learned from human

7

Published as a conference paper at ICLR 2023

drivers’ trajectories (see Figure 5). In practice, many of these constraints are based on driving context
and human experience. For example, human drivers tend to keep larger distances from trucks and
drive slower on crowded roads. Adding these constraints to an auto-driving system can facilitate a
more natural policy that resembles human preferences.

Figure 5: The Highway Driving (HighD) environment. The ego car is in blue, other cars are in red.
The ego car can only observe the things within the region around (marked by blue). The goal is to
drive the ego car to the destination (in yellow) without going off-road, colliding with other cars, or
violating time limits and other constraints (e.g., speed and distance to other vehicles).

Table 3: The constraints for realistic environments.

Type Name Dynamics Obs. Dim. Act. Dim. Constraints

Realistic HighD Velocity Constraint Stochastic 76 2 Car Velocity ≤ 40 m/s
HighD Distance Constraint Stochastic 76 2 Car Distance ≥ 20 m

Environment Settings. This environment is constructed by utilizing the HighD dataset (Krajewski
et al., 2018). Within each recording, HighD contains information about the static background (e.g.,
the shape and the length of highways), the vehicles, and their trajectories. We break these recordings
into 3,041 scenarios so that each scenario contains less than 1,000 time steps. To create the RL
environment, we randomly select a scenario and an ego car for control in this scenario. The game
context, which is constructed by following the background and the trajectories of other vehicles,
reflects the driving environment in real life. To further imitate what autonomous vehicles can observe
on the open road, we ensure the observed features in our environment are commonly used for
autonomous driving (e.g., Speed and distances to nearby vehicles). These features reflect only partial
information about the game context. To collect these features, we utilize the features collector from
Commonroad RL (Wang et al., 2021). In this HighD environment, we mainly study a car Speed
constraint and a car distance constraint (see Table 3) to ensure the ego car can drive at a safe speed
and keep a proper distance from other vehicles. Section 5.2 further studies an environment having
both of these constraints.

Note that the HighD environment is stochastic since 1) Human drivers might behave differently under
the same context depending on the road conditions and their driving preferences. The population
of drivers induces underlying transition dynamics that are stochastic. The trajectories in the HighD
dataset are essentially samples from these stochastic transition dynamics. 2) Each time an environment
is reset (either the game ends or the step limit is reached), it randomly picks a scenario with a set of
driving trajectories. This is equivalent to sampling from the aforementioned transition dynamics.

The significance of Constraints. We show the difference in performance between a PPO-Lag agent
(Section 3.1) that knows the ground-truth constraints and a PPO agent without knowing the constraints.
Figure 6 reports the violation rate of the speed constraint (top left) and the distance constraint (top
right). The bottom graphs report the cumulative rewards in both settings. We find 1) the PPO agent
tends to violate the constraints in order to get more rewards and 2) the PPO-Lag agent abandons some
of these rewards in order to satisfy the constraints. Their gap demonstrates the significance of these
constraints. Appendix C.6 explains why these constraints are ideal by comparing them with other
candidate constraint thresholds.

5.1 CONSTRAINT RECOVERY IN THE REALISTIC ENVIRONMENT

Figure 7 shows the training curves and Table 2 shows the testing performance. Among the studied
methods, VICRL achieves a low constraint violation rate with a satisfying number of rewards.
Although GACL has the lowest violation rate, it is at the cost of significantly degrading the controlling
performance, which demonstrates that directly augmenting rewards with penalties (induced by
constraints) can yield a control policy with much lower value. Appendix D.4 illustrates the causes
of failures by showing the collision rate, time-out rate, and off-road rate. To illustrate how well the
constraint is captured by the experimented algorithms, our plots include the upper bound of rewards

8

Published as a conference paper at ICLR 2023

Figure 6: Model performance in the HighD envi-
ronment with the speed (left) and distance (right)
constraint.

Figure 7: The constraint violation rate (top) and
feasible rewards (bottom) with the speed (left)
and distance (right) constraints.

and the performance of the PPO-Lag agent (trained under the true constraints). It shows that there is
sufficient space for future improvement under our benchmark.

5.2 MULTIPLE CONSTRAINTS RECOVERY

We consider the research question ”How well do ICRL algorithms work in terms of recovering
multiple constraints?”. Unlike the previously studied environments that include only one constraint,
we extend the HighD environment to include both the speed and the distance constraints. To achieve
this, we generate an expert dataset with the agent that considers both constraints by following 3.1 and
test ICRL algorithms by using this dataset.

Figure 8: Model Performance in an environment with the speed and distance constraints. From left to
right, we report speed and distance constraint violation rates, feasible rewards, and success rates.
Figure 8 shows the results. Compared to the performance of its single-constraint counterparts (in
Figure 7), the rewards collected by the imitation policy are reduced significantly, although the
constraint violation rate remains uninfluenced.

6 CONCLUSION

In this work, we introduced a benchmark, including robot control environments and highway driving
environments, for evaluating ICRL algorithms. Each environment is aligned with a demonstration
dataset generated by expert agents. To extend the Bayesian approach to constraint inference, we pro-
posed VICRL to learn a distribution of constraints. The empirical evaluation showed the performance
of ICRL algorithms under our benchmark.

ACKNOWLEDGEMENTS

Resources used in preparing this research at the University of Waterloo were provided by Huawei
Canada, the province of Ontario and the government of Canada through CIFAR and companies
sponsoring the Vector Institute. Guiliang Liu’s research was in part supported by the Start-up Fund
UDF01002911 of the Chinese University of Hong Kong, Shenzhen. We would like to thank Guanren
Qiao for providing valuable feedback for the experiments.

9

Published as a conference paper at ICLR 2023

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning (ICML), volume 70, pp. 22–31. PMLR, 2017.

Leopoldo Armesto, Jorren Bosga, Vladimir Ivan, and Sethu Vijayakumar. Efficient learning of
constraints and generic null space policies. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1520–1526, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. In International
Conference on Machine Learning, volume 97, pp. 783–792, 2019a.

Daniel S. Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on Robot Learning (CoRL), volume 100, pp.
330–359, 2019b.

Sylvain Calinon and Aude Billard. A probabilistic programming by demonstration framework
handling constraints in joint space and task space. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 367–372. IEEE, 2008.

Letian Chen, Rohan R. Paleja, and Matthew C. Gombolay. Learning from suboptimal demonstration
via self-supervised reward regression. In Conference on Robot Learning (CoRL), volume 155 of
Proceedings of Machine Learning Research, pp. 1262–1277, 2020.

Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learning constraints from demonstrations. In
Workshop on the Algorithmic Foundations of Robotics, WAFR 2018, volume 14, pp. 228–245.
Springer, 2018.

Glen Chou, Necmiye Ozay, and Dmitry Berenson. Learning parametric constraints in high dimensions
from demonstrations. In Conference on Robot Learning (CoRL), volume 100, pp. 1211–1230,
2019.

Glen Chou, Dmitry Berenson, and Necmiye Ozay. Uncertainty-aware constraint learning for adaptive
safe motion planning from demonstrations. In Conference on Robot Learning (CoRL), volume
155, pp. 1612–1639, 2020.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, and Edgar A. Duéñez-
Guzmán. Lyapunov-based safe policy optimization for continuous control. CoRR, abs/1901.10031,
2019.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. In Neural Information Processing Systems (NeurIPS), pp.
4028–4039, 2021.

Ashish Gaurav, Kasra Rezaee, Guiliang Liu, and Pascal Poupart. Learning soft constraints from
constrained expert demonstrations. CoRR, abs/2206.01311, 2022.

Arie Glazier, Andrea Loreggia, Nicholas Mattei, Taher Rahgooy, Francesca Rossi, and Kristen Brent
Venable. Making human-like trade-offs in constrained environments by learning from demonstra-
tions. CoRR, abs/2109.11018, 2021.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Neural Information
Processing Systems (Neurips), pp. 4565–4573, 2016.

Vinamra Jain, Prashant Doshi, and Bikramjit Banerjee. Model-free IRL using maximum likelihood
estimation. In AAAI Conference on Artificial Intelligence, pp. 3951–3958, 2019.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational autoencoder.
Pattern Recognit., 107:107514, 2020.

10

Published as a conference paper at ICLR 2023

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations (ICLR). OpenReview.net,
2020.

Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems. In 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), pp. 2118–2125, 2018. doi: 10.1109/ITSC.2018.8569552.

Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship learning
with deep successor features. In International Joint Conference on Artificial Intelligence (IJCAI),
pp. 5909–5915, 2019.

Changshuo Li and Dmitry Berenson. Learning object orientation constraints and guiding constraints
for narrow passages from one demonstration. In International Symposium on Experimental
Robotics (ISER), volume 1, pp. 197–210, 2016.

Hsiu-Chin Lin, Matthew Howard, and Sethu Vijayakumar. Learning null space projections. In IEEE
International Conference on Robotics and Automation (ICRA), pp. 2613–2619. IEEE, 2015.

Hsiu-Chin Lin, Prabhakar Ray, and Matthew Howard. Learning task constraints in operational space
formulation. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
309–315. IEEE, 2017.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. IPO: interior-point policy optimization under constraints.
In AAAI Conference on Artificial Intelligence, pp. 4940–4947, 2020.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free rein-
forcement learning: A survey. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp.
4508–4515. ijcai.org, 2021.

Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforcement
learning. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139, pp. 7390–7399, 2021.

David Livingston McPherson, Kaylene C. Stocking, and S. Shankar Sastry. Maximum likelihood
constraint inference from stochastic demonstrations. In IEEE Conference on Control Technology
and Applications, (CCTA), pp. 1208–1213, 2021.

Negar Mehr, Roberto Horowitz, and Anca D. Dragan. Inferring and assisting with constraints in
shared autonomy. In IEEE Conference on Decision and Control (CDC), pp. 6689–6696. IEEE,
2016.

Marcel Menner, Peter Worsnop, and Melanie N. Zeilinger. Constrained inverse optimal control with
application to a human manipulation task. IEEE Trans. Control. Syst. Technol., 29(2):826–834,
2021.

Lucia Pais, Keisuke Umezawa, Yoshihiko Nakamura, and Aude Billard. Learning robot skills through
motion segmentation and constraints extraction. In HRI Workshop on Collaborative Manipulation,
pp. 5. Citeseer, 2013.

Dimitris Papadimitriou, Usman Anwar, and Daniel S Brown. Bayesian inverse constrained rein-
forcement learning. In Workshop on Safe and Robust Control of Uncertain Systems (NeurIPS),
2021.

Daehyung Park, Michael Noseworthy, Rohan Paul, Subhro Roy, and Nicholas Roy. Inferring task
goals and constraints using bayesian nonparametric inverse reinforcement learning. In Conference
on Robot Learning (CoRL), volume 100, pp. 1005–1014, 2019.

Claudia Pérez-D’Arpino and Julie A. Shah. C-LEARN: learning geometric constraints from demon-
strations for multi-step manipulation in shared autonomy. In 2017 IEEE International Conference
on Robotics and Automation, ICRA, pp. 4058–4065. IEEE, 2017.

11

Published as a conference paper at ICLR 2023

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7:1, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Dexter R. R. Scobee and S. Shankar Sastry. Maximum likelihood constraint inference for inverse
reinforcement learning. In 8th International Conference on Learning Representations, (ICLR).
OpenReview.net, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, and Masashi Sugiyama. Variational imitation
learning with diverse-quality demonstrations. In International Conference on Machine Learning
(ICML), volume 119, pp. 9407–9417, 2020.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning from
noisy demonstrations. In Artificial Intelligence and Statistics (AISTATS), volume 130, pp. 298–306,
2021.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations ICLR. OpenReview.net, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura,
Algarve, Portugal, October 7-12, 2012, pp. 5026–5033. IEEE, 2012.

Xiao Wang, Hanna Krasowski, and Matthias Althoff. Commonroad-rl: A configurable reinforcement
learning environment for motion planning of autonomous vehicles. In 24th IEEE International
Intelligent Transportation Systems Conference, ITSC 2021, Indianapolis, IN, USA, September
19-22, 2021, pp. 466–472. IEEE, 2021.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama.
Imitation learning from imperfect demonstration. In International Conference on Machine Learning
(ICML), volume 97, pp. 6818–6827, 2019.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representations (ICLR),
2020.

Gu Ye and Ron Alterovitz. Demonstration-guided motion planning. In Robotics Research - The 15th
International Symposium ISRR, volume 100, pp. 291–307, 2011.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, pp. 1433–1438. AAAI
Press, 2008.

12

Published as a conference paper at ICLR 2023

A RELATED WORK

In this section, we introduce the previous works that are most related to our research.

Inferring Constraints from Demonstrations. Previous works commonly inferred constraints to
identify whether an action is allowed or a state is safe. Among these works, (Chou et al., 2018; Scobee
& Sastry, 2020; McPherson et al., 2021; Park et al., 2019) are based on the discrete state-action
space and constructed constraint sets to distinguish feasible state-action pairs from infeasible ones.
Regarding continuous domains, the goal is to infer the boundaries between feasible and infeasible
state-action pairs: (Lin et al., 2015; 2017; Armesto et al., 2017) estimated a constraint matrix from
observations based on the projection of its null-space matrix. (Pérez-D’Arpino & Shah, 2017)
learned geometric constraints by constructing a knowledge base from demonstration. (Menner et al.,
2021) proposed to construct constraint sets that correspond to the convex hull of all observed data.
(Malik et al., 2021; Gaurav et al., 2022) approximated constraints by learning neural functions
from demonstrations. Some previous works (Calinon & Billard, 2008; Ye & Alterovitz, 2011; Pais
et al., 2013; Li & Berenson, 2016; Mehr et al., 2016) focused on learning local trajectory-based
constraints from a single trajectory. These works focus on inferring a single candidate constraint
while some recent works learn a distribution over constraints, for example, (Glazier et al., 2021)
learned a constraint distribution by assuming the environment constraint follows a logistic distribution.
(Chou et al., 2020; Papadimitriou et al., 2021) utilized a Bayesian approach to update their belief
over constraints, but these methods are restricted to discrete state spaces or toy environments like
grid-worlds.

Testing Environments for ICRL. To the best of our knowledge, there is no common benchmark
for ICRL, and thus previous works often define their own environments for evaluation, including 1)
Grid-Worlds are the most popular environments due to their simplicity and interpretability. Previous
works (Scobee & Sastry, 2020; McPherson et al., 2021; Papadimitriou et al., 2021; Glazier et al.,
2021; Gaurav et al., 2022) added some obstacles to a grid map and examined whether their algorithms
can locate these obstacles by observing expert demonstrations. However, it is difficult to generalize
the model performance in these grid worlds to real applications with high-dimensional and continuous
state spaces. 2) Robotic Applications have been used as test beds for constraint inference, for example,
the manipulation of robot arms (Park et al., 2019; Menner et al., 2021; Armesto et al., 2017; Pérez-
D’Arpino & Shah, 2017), quadrotors (Chou et al., 2019; 2020), and humanoid robot hands (Lin
et al., 2017). However, there is no consistent type of robot for comparison, and the corresponding
equipment is not commonly available. A recent work (Malik et al., 2021) used a robotic simulator by
adding some pre-defined constraints into the simulated environments. Our virtual environments use a
similar setting, but we cover more control tasks and include a detailed study of the environments and
the added constraints. 3) Safety-Gym (Ray et al., 2019) is one of the most similar benchmarks to our
work. However, Safety Gym is designed for validating forward policy-updating algorithms given
some constraints, whereas our benchmark is designed for the inverse constraint-inference problem.

B DISCRETE ENVIRONMENTS

Our benchmark includes a Grid-World environment, which has a discrete state and action space.
Although migrating the model performance to real-world applications is difficult, Grid-Worlds
are commonly studied RL environments where we can visualize the recovered constraints and the
trajectories generated by agents. Our benchmark uses a Grid-World to answer the question ”How
well do the ICRL algorithms perform in terms of recovering the exact least constraining constraint?”

B.1 ENVIRONMENT SETTINGS

Our benchmark constructs a map of size 7 ∗ 7 and four different constraint maps (top row Fig-
ure B.1) for testing the baseline methods. For benchmarking ICRL algorithms, each environment is
accompanied by a demonstration dataset of expert trajectories generated with the PI-Lag algorithm 2
(see Section 3.1). Note that to be compatible with previous work that studied Grid-World environ-
ments Scobee & Sastry (2020), we replace the policy gradient algorithm in the baseline algorithms
with policy iteration for solving discretized control problems.

B.2 EXPERIMENT RESULTS

13

Published as a conference paper at ICLR 2023

Figure B.1: The recovered constraints under 4 settings (from
the left to right columns). From the second to the last row,
the experimented methods are GACL, BC2L, MECL, and
VICRL. Blue and red mark the starting and target locations.

To study how well the ICLR algo-
rithms perform in terms of recovering
the exact least constraining constraint,
we visualize the ground truth con-
straint map and the constraint maps
recovered by ICLR baselines in Fig-
ure B.1. (For other metrics, please
find the constraint violation rate and
feasible cumulative rewards in Fig-
ure D.3, and the generated trajecto-
ries in Figure D.2.). We find the dif-
ference between the added constraint
(top row Figure B.1) and the recov-
ered constraint is significant, although
most algorithms (BC2L, MECL, and
VICRL) learn a policy that matches
well the policy of an expert agent. In
most settings, the size of the recovered
constraint set is larger than the ground-
truth constraint (i.e., constraint learn-
ing is too conservative). While base-
lines including MECL and VICRL in-
tegrated regularization about the size
of the constraint set into their loss, the
results show that the impact of this
regularization is limited, and there is
plenty of room for improvement.

C MORE IMPLEMENTATION
AND ENVIRONMENT DETAILS

C.1 MORE INFORMATION ABOUT THE VIRTUAL ENVIRONMENTS

Figure C.1: Mujoco environments. From left to right, the environments are Half-cheetah, Ant,
Inverted Pendulum, Walker and Swimmer.

Our virtual environments are based on Mujoco (see Figure C.1). We provide more details about the
virtual environments as follows:

• Blocked Half-Cheetah. The agent controls a robot with two legs. The reward is determined by the
distance it walks between the current and the previous time step and a penalty over the magnitude
of the input action. The game ends when a maximum time step (1000) is reached. We define a
constraint that blocks the region with X-coordinate ≤ −3, so the robot is only allowed to move in
the region with X-coordinate between -3 and ∞.

• Blocked Ant. The agent controls a robot with four legs. The rewards are determined by the distance
to the origin and a healthy bonus that encourages the robot to stay balanced. The game ends when a
maximum time step (500) is reached. Similar to the Blocked Half-Cheetah environment, we define
a constraint that blocks the region with X-coordinate ≤ −3, so the robot is only allowed to move in
the region with X-coordinate between -3 and ∞.

14

Published as a conference paper at ICLR 2023

• Biased Pendulum. Similar to the Gym CartPole (Brockman et al., 2016), the agent’s goal is to
balance a pole on a cart. The game ends when the pole falls or a maximum time step (100) is
reached. At each step, the environment provides a reward of 0.1 if the X-coordinate ≥ 0 and
a reward of 1 if the X-coordinate ≤ −0.01. The reward monotonically increases from 0.1 to 1
when −0.01 < X-coordinate < 0. We define a constraint that blocks the region with X-coordinate
≤ −0.015, so the reward incentivizes the cart to move left, but the constraint prevents it from
moving too far. If the agent can detect the ground-truth constraint threshold, it will drive the cart to
move into the region with X-coordinate between −0.015 and −0.01 and stay balanced there.

• Blocked Walker. The agent controls a robot with two legs and learns how to make the robot walk.
The reward is determined by the distance it walks between the current and the previous time
step and a penalty over the magnitude of the input action (this is following the original Walker2d
environment). The game ends when the robot loses its balance or reaches a maximum time step
(500). Similar to the Blocked Half-Cheetah and Blocked Ant environment, we constrain the region
with X-coordinate ≤ −3, so the robot is only allowed to move in the region with X-coordinate
between -3 and ∞.

• Blocked Swimmer. The agent controls a robot with two rotors (connecting three segments) and
learns how to move. The reward is determined by the distance it walks between the current and
the previous time step and a penalty over the magnitude of the input action. The game ends when
the robot reaches a maximum time step (500). Unlike the Blocked Half-Cheetah and Blocked
Ant environment, it is easier for the Swimmer robot to move ahead than move back, and thus we
constrain the region with X-coordinate ≥ 0.5, so the robot is only allowed to move in the region
with X-coordinate between −∞ and 0.5.

C.2 MORE ALGORITHM

We show the PI-Lag in Algorithm 2.

Algorithm 1: Proximal Policy Optimization Lagrange (PPO-Lag)
Input: Constraint function f∗, constraint threshold ϵ, Lagrange multiplier λ, rollout rounds B,

update rounds K, loss parameters ξ1 and ξ2, clipping parameter ω, imitation policy πθ,
value functions Vr and Vc;

Initialize state s0 from CMDP and the roll-out dataset Droll;
for b = 1, 2, . . . , B do

Perform Monte-Carlo roll-out with the policy πθ in the environment;
Collect trajectories τb = [s0, a0, r0, c0, . . . , sT , aT , rT , cT] where ct = f∗ (st, at);
Calculate reward advantages Ar

t , total rewards Rt, constraint advantages Ac
t and total costs

Ct from the trajectory;
Add samples to the dataset Droll = Droll ∪ {st, at, rt, Ar

t , Rt, ct, A
c
t , Ct}Tt=1;

end
for κ = 1, 2, . . . ,K do

Sample a data point sκ, aκ, rκ, Ar
κ, Rκ, cκ, A

c
κ, Cκ from the dataset Droll;

Calculate the clipping loss
LCLIP = min

[
π(aκ|sκ)

πold(aκ|sκ) (Â
r
κ + λÂc

κ), clip(
π(aκ|sκ)

πold(aκ|sκ) , 1− ω, 1 + ω)(Âr
κ + λÂc

κ)
]
;

Calculate the value function loss LV F = ∥V r
θ (sκ)−Rκ∥22 + ∥V c

θ (sκ)− Cκ∥22;
Update policy parameters θ by minimizing the loss: −LCLIP + ξ1L

V F − ξ2H(π);
end
Update the Lagrange multiplier λ by minimizing the loss Lλ: λ[EDroll

(Âc)− ϵ];

C.3 HYPER-PARAMETERS

We published our benchmarks, including the configurations of the environments and the mod-
els at https://github.com/Guiliang/ICRL-benchmarks-public.Please see the
README.MD file for more details. We provide a brief summary of the hyper-parameters.

15

https://github.com/Guiliang/ICRL-benchmarks-public

Published as a conference paper at ICLR 2023

Algorithm 2: Policy Iteration Lagrange(PI-Lag)
Input: Constraint function f∗, Lagrange multiplier λ rollout rounds B, update rounds K, loss

parameters ξ1 and ξ2, imitation policy πθ;
Initialize state s0 from CMDP and the roll-out dataset Droll;
Initialize Values V (s) ∈ R and π(s) ∈ A(s) for all s ∈ S;
while not converge; // Policy evaluation.
do

for s ∈ S do
V (s) =

∑
r,s′ p(s

′, r|s, π(s))[r − λc∗ + γV (s′)] where c∗t = f∗ (st);
end

end
while not converge; // Policy update.
do

for s ∈ S do
π(s) = argmaxa

∑
r,s′ p(s

′, r|s, π(s))[r − λc∗ + γV (s′)] where c∗t = f∗ (st);
end

end
while not converge; // Lagrange multiplier update.
do

for b = 1, 2, . . . , B do
Collect trajectories τb = [s0, a0, c

∗
0, . . . , sT , aT , c

∗
T] where c∗t = f∗ (st);

Calculate total costs Ct from the trajectory from τb;
Add samples to the dataset Droll = Droll ∪ {st, at, Ct}Tt=1;

end
Update the Lagrange multiplier λ by minimizing the loss Lλ: λ[EDroll

(Ct)− ϵ];
end

In order to develop a fair comparison among ICRL algorithms, we use the same setting for all
algorithms.

In the virtual environments, we set 1) the batch size of PPO-Lag to 64, 2) the size of the hidden
layer to 64, and 3) the number of hidden layers for the policy function, the value function, and the
cost function to 3. We decide the other parameters, including the learning rate of both PPO-Lag and
constraint model, by following some previous work (Malik et al., 2021) and their implementation.
The random seeds of virtual environments are 123, 321, 456, 654, and 666.

In the realistic environments, we set 1) the batch size of the constraint model to 1000, 2) the size
of the hidden layer to 64 and 3) the number of hidden layers for the policy function, the value
function and the cost function to 3. We decide the other parameters, including the learning rate of
both PPO-Lag and constraint model, by following CommonRoad RL (Wang et al., 2021) and their
implementation. During our experiment, we received plenty of help from their forum 2. We will
acknowledge their help in the formal version of this paper. The random seeds of realistic environments
are 123, 321, and 666.

C.4 EXPERIMENTAL EQUIPMENT AND INFRASTRUCTURES

We run the experiment on a cluster operated by the Slurm workload manager. The cluster has multiple
kinds of GPUs, including Tesla T4 with 16 GB memory, Tesla P100 with 12 GB memory, and RTX
6000 with 24 GB memory. We used machines with 12 GB of memory for training the ICRL models.
The number of running nodes is 1, and the number of CPUs requested per task is 16. Given the
aforementioned resources, running one seed in the virtual environments and the realistic environments
takes 2-4 hours and 10-12 hours respectively.

2 https://gitlab.lrz.de/tum-cps/commonroad-rl

16

Published as a conference paper at ICLR 2023

C.5 COMPUTATIONAL COMPLEXITY

We provide a brief analysis of the computational complexity. The ICRL algorithms, including
GACL, MECL, BC2L, and VICRL, use an iterative updating paradigm and thus their computational
complexities are similar. Let K denote the number of iterations. Within each iteration, the algorithms
update both the imitation policy and the constraint model. Let M denote the number of episodes
that the PPO-Lag algorithm runs in the environments. Let N denote the number of sampling and
expert trajectories. Let L denote the maximum length of each trajectory. During training, we use
mini-batch gradient descent. Let B denote the batch size, and then the computational complexity is
O(KL(M +N)/B).

C.6 EXPLORING OTHER CONSTRAINTS IN THE REALISTIC ENVIRONMENTS

The constraint thresholds in our environments are determined empirically according to the perfor-
mance (constraint violation rate and rewards) of the PPO agent and the PPO-Lag agent. To support
this claim, we show the performance of other thresholds and analyze why they are sub-optimal in
terms of validating ICRL algorithms.

Figure C.2: From left to right, the constraint violation rate (top) and rewards (bottom) of the PPO and
PPO-Lag agents in the HighD environments with constraints 1) Ego Car Velocity < 30 m/s, 2) Ego
Car Velocity < 35 m/s, 3) Car Distance > 40 m, and 4) Car Distance > 60 m.

We have explored the option of using a 30m/s velocity constraint (The first column on the left in
Figure C.2) and 35m/s velocity constraint (The second column on the left in Figure C.2). Ideally,
these constraints should be closer to the realistic speed limit in most countries. However, the HighD
dataset comes from German highways where there is no speed limit. Moreover, when building the
environment, the ego car is accompanied by an initial speed calculated from the dataset. We observed
that the initial speed is already higher than the speed limit (e.g., 35m/s) in many scenarios, and thus
the violation rate will always be 1 in these scenarios, leaving no opportunity for improving the policy.
This explains why the corresponding violation rates are high for the PPO and the PPO-Lag agents.

We also explored the option of using a 40m distance constraint (third column in Figure C.2) and a
60m distance constraint (fourth column in Figure C.2). Ideally, these constraints should be more
consistent with the 2-second gap recommendation (the average speed is around 30m/s in HighD, so
the recommended gap is 2*30m/s=60m), but we find the controlling performance of the PPO-Lag
agents are very limited, which shows the agent cannot even develop a satisfying control policy when
knowing the ground-truth constraints. This is because the ego car learns to frequently go off-road in
order to maintain the large gap.

17

Published as a conference paper at ICLR 2023

D MORE EXPERIMENTAL RESULTS

D.1 ADDITIONAL EXPERIMENTAL RESULTS IN THE VIRTUAL ENVIRONMENTS

Figure D.1 shows the additional experimental results in the virtual environment.

Figure D.1: The constraint violation rate (top) and rewards (bottom). Environments from left to right:
Blocked Half-cheetah, Blocked Ant, Biased Pendulum, Blocked Walker, and Blocked Swimmer.

D.2 ADDITIONAL EXPERIMENTAL RESULTS IN THE DISCRETE ENVIRONMENTS

Figure D.2 and Figure D.3 show the additional experimental results in the discrete environment.

D.3 THE COMPLETE RESULTS FOR TESTING PERFORMANCE

Table D.2, Table D.2, Table D.3, Table D.4, and Table D.5 show the complete results for the testing
performance.

Table D.1: The p Values of Wilcoxon signed-rank test across 100 runs. We repeat the test for the
models trained by one random seed (we have a total of 5 random seeds) and report the averaged p
values.

Blocked Half-
Cheetah

Blocked
Ant

Biased
Pendulum

Blocked
Walker

Blocked
Swimmer

HighD
Velocity

HighD
Distance

Feasible
Rewards

GACL 1.17E-2 1.23E-06 2.46E-14 3.90E-18 3.42E-4 8.33E-5 3.28E-05
BC2L 1.40E-15 2.98E-05 4.89E-4 2.34E-8 9.98E-10 5.75E-1 3.43E-2
MECL 4.07E-2 3.72E-08 2.46E-14 2.94E-2 7.27E-3 3.40E-1 4.86E-2

Constraint
Violation

Rate

GACL 1.57E-1 6.13E-2 1.71E-18 7.68E-2 1.48E-4 2.81E-1 1.53E-2
BC2L 7.93E-2 8.17E-1 1.84E-06 1.21E-7 8.79E-13 3.65E-2 5.54E-2
MECL 1.52E-23 5.20E-1 1.71E-18 9.98E-2 1.55E-4 1.72E-2 7.16E-3

Table D.2: Testing performance in the virtual environments. We report the feasible rewards (i.e., the
rewards from the trajectories without constraint violation) computed with 50 runs.

Half-cheetah Blocked Ant Biased Pendulum Blocked Walker Blocked Swimmer
GACL 3477.53 ± 416.54 7213.62 ± 993.12 0.85 ± 0.02 28.35 ± 0.77 578.27 ± 148.16
BC2L 870.09 ± 499.03 11956.26 ± 1980.88 5.73 ± 5.60 48.73 ± 4.18 141.82 ± 152.14
MECL 3024.88 ± 1364.59 8546.19 ± 1262.03 1.02 ± 1.63 126.76 ± 52.21 63.66 ± 107.95
VICRL 3805.72 ± 511.66 13670.32 ± 2511.89 6.64 ± 4.45 93.40 ± 93.97 191.11 ± 154.57

D.4 COMPLEMENTARY RESULTS IN THE REALISTIC ENVIRONMENT

Figure D.4 reports the average velocity, collision rate, off-road rate, time-out rate and goal-reaching
rate during training. We find the off-road rate of GACL is significantly higher than other methods. It

18

Published as a conference paper at ICLR 2023

Figure D.2: The trajectories generated by different agents in the discrete environments.

Table D.3: Testing performance in the virtual environments. We report the constraint violation rate
computed with 50 runs.

Half-cheetah Blocked Ant Biased Pendulum Blocked Walker Blocked Swimmer
GACL 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.42 ± 0.23
BC2L 0.47 ± 0.24 0.0 ± 0.0 0.58 ± 0.23 0.0 ± 0.0 0.84 ± 0.14
MECL 0.40 ± 0.24 0.0 ± 0.0 0.73 ± 0.17 0.19 ± 0.17 0.88 ± 0.12
VICRL 0.0 ± 0.0 0.02 ± 0.02 0.39 ± 0.22 0.07 ± 0.07 0.59 ± 0.23

19

Published as a conference paper at ICLR 2023

Figure D.3: The constraint violation rate (top) and feasible rewards (i.e., the rewards from the
trajectories without constraint violation, bottom) during training.

Table D.4: Testing performance in the realistic environments. We report the feasible rewards (i.e., the
rewards from the trajectories without constraint violation) computed with 50 runs.

HighD Velocity Constraint HighD Distance Constraint
GACL -19.13 ± 2.99 -17.02 ± 3.31
BC2L -0.29 ± 11.18 3.84 ± 11.28
MECL 0.97 ± 11.48 2.15 ± 10.45
VICRL -0.90 ± 11.80 4.60 ± 11.71

Table D.5: Testing performance in the realistic environments. We report the constraint violation rate
computed with 50 runs.

HighD Velocity Constraint HighD Distance Constraint
GACL 0.14 ± 0.09 0.19 ± 0.11
BC2L 0.33 ± 0.15 0.33 ± 0.15
MECL 0.31 ± 0.15 0.41 ± 0.17
VICRL 0.24 ± 0.12 0.31 ± 0.15

20

Published as a conference paper at ICLR 2023

explains why GACL cannot achieve a satisfying performance. Another main limitation of current
baselines is their incapability of preventing the collision events, especially under the car distance
constraints.

Figure D.4: The average velocity (first column), collision rate (second column), off road rate (third
column), time out rate (fourth column) and goal reaching rate (last column) during training. From
left to right, the environments are HighD with the velocity constraints, the distance constraints and
both of these constraints.

D.5 CONSTRAINT VISUALIZATION

Figure D.5 visualizes the learned constraints with 1) partial dependency plots (red curve, on the left)
accompanied by the samples from the constraint distribution (blue points, i.e., PC(c|s, a), marked by
cost) and 2) histograms (blue, on the right) showing the number of states with a specific feature value
(e.g., x position) during testing. The x-axis of these plots show the features where the ground-truth
constraints are defined on (this message is hidden from the agents during training). In order to
understand how well the constraints are captured, we can compare these plots with the definition of
ground truth constraints in Table 1 and Table 3.

21

Published as a conference paper at ICLR 2023

Figure D.5: Visualization the learned constraints by a pair of plots for VICRL-RS (left column) and
(right column) VICRL-VaR. Each pair includes 1) partial dependency plots (red curve, on the left)
accompanied by the samples from the constraint distribution (blue points, i.e., PC(c|s, a), marked
by cost) and 2) histograms (blue, on the right) showing the number of states with a specific feature
value (e.g., x position) during testing. From top to bottom, the testing environments are Blocked
Half-Cheetah, Blocked Ant, Biased Pendulum, Blocked Walker and Blocked Swimmer.

22

Published as a conference paper at ICLR 2023

D.6 CONSTRAINT RECOVERY FROM VIOLATING DEMONSTRATIONS IN OTHER FOUR
ENVIRONMENTS

Figure D.6: The text is the result of the Half-Cheetah environment, and the following is the result of
the other four environments. From top to bottom is Blocked Ant, Blocked Walker, Blocked Swimmer
and Biased Pendulum.

D.7 CONSTRAINT RECOVERY FROM STOCHASTIC ENVIRONMENT IN OTHER FOUR
ENVIRONMENTS

Figure D.7: The text is the result of the Half-Cheetah environment, and the following is the result of
the other four environments. From top to bottom is Blocked Ant, Blocked Walker, Blocked Swimmer
and Biased Pendulum respectively.

E LIMITATIONS, CHALLENGES AND OPEN QUESTIONS

We introduce limitations and challenges in ICRL, as well as open questions for future work.

Constraint Violation. The imitation policies of ICRL agents are updated with RCPO (Tessler et al.,
2019), but Lagrange relaxation methods are sensitive to the initialization of the Lagrange multipliers
and the learning rate. There is no guarantee that the imitation policies can consistently satisfy the
given constraints (Liu et al., 2021). As a result, even when a learned constraint function matches
the ground-truth constraint, the learned policy may not match the expert policy, causing significant
variation in training and sub-optimal model convergence. If we replace the Lagrange relaxation with
Constrained Policy Optimization (CPO) (Achiam et al., 2017; Chow et al., 2019; Yang et al., 2020;
Liu et al., 2020), ICRL may not finish training within a reasonable amount of time since CPO is
computationally more expensive. How to design an efficient policy learning method that matches
ICRL’s iterative updating paradigm will be an important future direction.

Unrealistic Assumptions about Expert Demonstrations. ICRL algorithms typically assume that
the expert demonstrations are optimal in terms of satisfying the constraints and maximizing rewards.
There is no guarantee that these assumptions hold in practice since many expert agents (e.g., humans)
do not always strive for optimality and constraint satisfaction. Previous works (Brown et al., 2019a;b;
Wu et al., 2019; Chen et al., 2020; Tangkaratt et al., 2020; 2021), introduced IRL approaches to learn
rewards from sub-optimal demonstrations, but how to extend these methods to constraint inference is
unclear. A promising direction is to model soft constraints that assume that expert agents only follow
the constraints with a certain probability.

Insufficient Constraint Diversity. ICRL can potentially recover complex constraints, but our bench-
mark mainly considers linear constraints as the ground-truth constraints (although this information is
hidden from the agent). Despite this simplification, our benchmark is still very challenging: a ICRL
agent must identify relevant features (e.g., velocity in x and y coordinates) among all input features
(78 in total) and recover the exact constraint threshold (e.g., 40 m/s). For future work, we will explore
nonlinear constraints and constraints on high-dimensional input spaces (e.g., pixels).

Online versus Offline ICRL. ICRL algorithms commonly learn an imitation policy by interacting
with the environment. The online training nevertheless contradicts with the setting of many realistic
applications where only the demonstration data instead of the environment is available. Given the
recent progress in offline IRL (Jain et al., 2019; Lee et al., 2019; Kostrikov et al., 2020; Garg et al.,
2021), extending ICRL to the offline training setting will be an important future direction.

F SOCIETAL IMPACT

Positive Societal Impacts The ability to discover what can be done and what cannot be done is an
important function of modern AI systems, especially for systems that have frequent interactions with
humans (e.g., house keeping robots and smart home systems). As an important stepping stone towards
the design of effective systems, constraint models can help develop human-friendly AI systems and
facilitate their deployments in real applications.

23

Published as a conference paper at ICLR 2023

24

Published as a conference paper at ICLR 2023

Figure D.6: From left to right, the percentages of trajectories containing violating state-action pairs
are 20%, 50%, and 80%. The environment from top to bottom is Blocked Ant, Blocked Walker,
Blocked Swimmer and Biased Pendulum. Feasible rewards(top) and constraint violation rate(bottom)
are two metrics during training.

Negative Societal Impacts Possible real-world applications of constraint models include au-
tonomous driving systems. Since constraint models are often represented by black-box deep models,
there is no guarantee that the models are trustworthy and interpretable. When an autonomous vehicle
is involved into an accident, it is difficult to identify the cause of this accident, which might cause a
loss of confidence in autonomous systems while negatively impacting society.

25

Published as a conference paper at ICLR 2023

26

Published as a conference paper at ICLR 2023

Figure D.7: From left to right, the transition function has the noises N (0, 0.001),N (0, 0.01), and
N (0, 0.1). The environment from top to bottom is Blocked Ant, Blocked Walker, Blocked Swimmer
and Biased Pendulum. We use feasible rewards(top) and constraint violation rate(bottom) as the two
metrics of the experiment.

27

	Introduction
	Background
	Constrained Reinforcement Learning
	Inverse Constraint Inference

	Evaluation Methods
	Demonstration Generation
	Baselines
	Experiment Setting

	Virtual Environment
	Environment Settings
	Constraint Recovery in the Virtual Environment
	Constraint Recovery from Violating Demonstrations
	Constraint Recovery from Stochastic Environments

	Realistic Environment
	Constraint Recovery in the Realistic Environment
	Multiple Constraints Recovery

	Conclusion
	Related Work
	Discrete Environments
	Environment Settings
	Experiment Results

	More Implementation and Environment Details
	More Information about the Virtual Environments
	More Algorithm
	Hyper-Parameters
	Experimental Equipment and Infrastructures
	Computational Complexity
	Exploring Other Constraints in the Realistic Environments

	More Experimental Results
	Additional Experimental Results in the Virtual Environments
	Additional Experimental Results in the Discrete Environments
	The Complete Results for Testing Performance
	Complementary Results in the Realistic Environment
	Constraint Visualization
	Constraint Recovery From Violating Demonstrations In Other Four Environments
	Constraint Recovery From Stochastic Environment In Other Four Environments

	Limitations, Challenges and Open Questions
	Societal Impact

