
An Alternative to Variance: Gini Deviation for
Risk-averse Policy Gradient

Yudong Luo1,4, Guiliang Liu2, Pascal Poupart1,4, Yangchen Pan3

1University of Waterloo, 2The Chinese University of Hong Kong, Shenzhen,
3University of Oxford, 4Vector Institute

yudong.luo@uwaterloo.ca, liuguiliang@cuhk.edu.cn,
ppoupart@uwaterloo.ca, yangchen.pan@eng.ox.ac.uk

Abstract
Restricting the variance of a policy’s return is a popular choice in risk-averse
Reinforcement Learning (RL) due to its clear mathematical definition and easy
interpretability. Traditional methods directly restrict the total return variance.
Recent methods restrict the per-step reward variance as a proxy. We thoroughly
examine the limitations of these variance-based methods, such as sensitivity to
numerical scale and hindering of policy learning, and propose to use an alternative
risk measure, Gini deviation, as a substitute. We study various properties of this
new risk measure and derive a policy gradient algorithm to minimize it. Empirical
evaluation in domains where risk-aversion can be clearly defined, shows that our
algorithm can mitigate the limitations of variance-based risk measures and achieves
high return with low risk in terms of variance and Gini deviation when others fail
to learn a reasonable policy.

1 Introduction
The demand for avoiding risks in practical applications has inspired risk-averse reinforcement learning
(RARL). For example, we want to avoid collisions in autonomous driving [1], or avoid huge financial
losses in portfolio management [2]. In addition to conventional RL, which finds policies to maximize
the expected return [3], RARL also considers the control of risk.

Many risk measures have been studied for RARL, for instance, exponential utility functions [4],
value at risk (VaR) [5], conditional value at risk (CVaR) [6, 7], and variance [8, 9]. In this paper, we
mainly focus on the variance-related risk measures given their popularity, as variance has advantages
in interpretability and computation [10, 11]. Such a paradigm is referred to as mean-variance RL.
Traditional mean-variance RL methods consider the variance of the total return random variable.
Usually, the total return variance is treated as a constraint to the RL problem, i.e., it is lower than
some threshold [8, 9, 12]. Recently, [13] proposed a reward-volatility risk measure, which considers
the variance of the per-step reward random variable. [13] shows that the per-step reward variance is
an upper bound of the total return variance and can better capture the short-term risk. [14] further
simplifies [13]’s method by introducing Fenchel duality.

Directly optimizing total return variance is challenging. It either necessitates double sampling [8]
or calls for other techniques to avoid double sampling for faster learning [8, 9, 12]. As for the
reward-volatility risk measure, [13] uses a complicated trust region optimization due to the modified
reward’s policy-dependent issue. [14] overcomes this issue by modifying the reward according to
Fenchel duality. However, this reward modification strategy can possibly hinder policy learning by
changing a “good” reward to a “bad” one, which we discuss in detail in this work.

To overcome the limitations of variance-based risk measures, we propose to use a new risk measure:
Gini deviation (GD). We first review the background of mean-variance RL. Particularly, we explain the
limitations of both total return variance and per-step reward variance risk measures. We then introduce

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

GD as a dispersion measure for random variables and highlight its properties for utilizing it as a risk
measure in policy gradient methods. Since computing the gradient using the original definition of GD
is challenging, we derive the policy gradient algorithm from its quantile representation to minimize it.
To demonstrate the effectiveness of our method in overcoming the limitations of variance-based risk
measures, we modify several domains (Guarded Maze [7], Lunar Lander [15], Mujoco [16]) where
risk-aversion can be clearly verified. We show that our method can learn risk-averse policy with high
return and low risk in terms of variance and GD, when others fail to learn a reasonable policy.

2 Mean-Variance Reinforcement Learning
In standard RL settings, agent-environment interactions are modeled as a Markov decision process
(MDP), represented as a tuple (S,A, R, P, µ0, γ) [17]. S and A denote state and action spaces.
P (·|s, a) defines the transition. R is the state and action dependent reward variable, µ0 is the initial
state distribution, and γ ∈ (0, 1] is the discount factor. An agent follows its policy π : S × A →
[0,+∞). The return at time step t is defined as Gt =

∑∞
i=0 γ

iR(St+i, At+i). Thus, G0 is the
random variable indicating the total return starting from the initial state following π.

Mean-variance RL aims to maximize E[G0] and additionally minimize its variance V[G0][8, 9, 12].
Generally, there are two ways to define a variance-based risk. The first one defines the variance based
on the Monte Carlo total return G0. The second defines the variance on the per-step reward R. We
review these methods and their limitations in the following subsections. We will refer to π, πθ and θ
interchangeably throughout the paper when the context is clear.

2.1 Total Return Variance
Methods proposed by [8, 9, 12] consider the problem

max
π

E[G0], s.t. V[G0] ≤ ξ (1)

where ξ indicates the user’s tolerance of the variance. Using the Lagrangian relaxation procedure [18],
we can transform it to the following unconstrained optimization problem: maxπ E[G0]− λV[G0],
where λ is a trade-off hyper-parameter. Note that the mean-variance objective is in general NP-
hard [19] to optimize. The main reason is that although variance satisfies a Bellman equation, it lacks
the monotonicity of dynamic programming [20].

Double Sampling in total return variance. We first show how to solve unconstrained mean-variance
RL via vanilla stochastic gradient. Suppose the policy is parameterized by θ, define J(θ) = Eπ[G0]
and M(θ) := Eπ

[
(
∑∞

t=0 γ
tR(St, At))

2
]
, then V[G0] = M(θ)− J2(θ). The unconstrained mean-

variance objective is equivalent to Jλ(θ) = J(θ)− λ
(
M(θ)− J2(θ)

)
, whose gradient is

∇θJλ(θt) = ∇θJ(θt)− λ∇θ(M(θ)− J2(θ)) (2)

= ∇θJ(θt)− λ
(
∇θM(θ)− 2J(θ)∇θJ(θ)

)
(3)

The unbiased estimates for ∇θJ(θ) and ∇θM(θ) can be estimated by approximating the expectations
over trajectories by using a single set of trajectories, i.e., ∇θJ(θ) = Eτ [Rτωτ (θ)] and ∇θM(θ) =
Eτ [R

2
τωτ (θ)], where Rτ is the return of trajectory τ and ωτ (θ) =

∑
t ∇θ log πθ(at|st). In contrast,

computing an unbiased estimate for J(θ)∇θJ(θ) requires two distinct sets of trajectories to estimate
J(θ) and ∇θJ(θ) separately, which is known as double sampling.

Remark. Some work claims that double sampling cannot be implemented without having access to a
generative model of the environment that allows users to sample at least two next states [12]. This is,
however, not an issue in our setting where we allow sampling multiple trajectories. As long as we get
enough trajectories, estimating J(θ)∇θJ(θ) is possible.

Still, different methods were proposed to avoid this double sampling for faster learning. Specif-
ically, [8] considers the setting γ = 1 and considers an unconstrained problem: maxθ L1(θ) =
E[G0] − λg

(
V[G0] − ξ

)
, where λ > 0 is a tunable hyper-parameter, and penalty function

g(x) = (max{0, x})2. This method produces faster estimates for E[G0] and V[G0] and a
slower updating for θ at each episode, which yields a two-time scale algorithm. [9] consid-
ers the setting γ < 1 and converts Formula 1 into an unconstrained saddle-point problem:
maxλ minθ L2(θ, λ) = −E[G0] + λ

(
V[G0] − ξ

)
, where λ is the dual variable. This approach

uses perturbation method and smoothed function method to compute the gradient of value functions
with respect to policy parameters. [12] considers the setting γ = 1, and introduces Fenchel duality
x2 = maxy(2xy − y2) to avoid the term J(θ)∇θJ(θ) in the gradient. The original problem is then
transformed into maxθ,y L3(θ, y) = 2y

(
E[G0] +

1
2λ

)
− y2 − E[G2

0], where y is the dual variable.

2

Limitations of Total Return Variance. The presence of the square term R2
τ in the mean-variance

gradient ∇θM(θ) = Eτ [R
2
τωτ (θ)](Equation 2) makes the gradient estimate sensitive to the numerical

scale of the return, as empirically verified later. This issue is inherent in all methods that require
computing ∇θE[G2

0]. Users can not simply scale the reward by a small factor to reduce the magnitude
of R2

τ , since when scaling reward by a factor c, E[G0] is scaled by c but V[G0] is scaled by c2.
Consequently, scaling the reward may lead to different optimal policies being obtained.

2.2 Per-step Reward Variance
A recent perspective uses per-step reward variance V[R] as a proxy for V[G0]. The probability
mass function of R is Pr(R = x) =

∑
s,a dπ(s, a)Ir(s,a)=x, where I is the indicator function, and

dπ(s, a) = (1 − γ)
∑∞

t=0 γ
tPr(St = s,At = a|π, P) is the normalized discounted state-action

distribution. Then we have E[R] = (1− γ)E[G0] and V[G0] ≤ V[R]
(1−γ)2 (see Lemma 1 of [13]). Thus,

[13] considers the following objective

Ĵλ(π) = E[R]− λV[R] = E[R− λ(R− E[R])2] (4)

This objective can be cast as a risk-neutral problem in the original MDP, but with a new reward
function r̂(s, a) = r(s, a) − λ

(
r(s, a) − (1 − γ)E[G0]

)2
. However, this r̂(s, a) is nonstationary

(policy-dependent) due to the occurrence of E[G0], so standard risk-neutral RL algorithms cannot be
directly applied. Instead, this method uses trust region optimization [21] to solve.

[14] introduces Fenchel duality to Equation 4. The transformed objective is Ĵλ(π) = E[R] −
λE[R2] + λmaxy(2E[R]y − y2), which equals to maxπ,y Jλ(π, y) =

∑
s,a dπ(s, a)

(
r(s, a) −

λr(s, a)2 + 2λr(s, a)y
)
− λy2. The dual variable y and policy π are updated iteratively. In each

inner loop k, y has analytical solution yk+1 =
∑

s,a dπk
(s, a)r(s, a) = (1− γ)Eπk

[G0] since it is
quadratic for y. After y is updated, learning π is a risk-neutral problem in the original MDP, but with
a new modified reward

r̂(s, a) = r(s, a)− λr(s, a)2 + 2λr(s, a)yk+1 (5)

Since r̂(s, a) is now stationary, any risk-neutral RL algorithms can be applied for policy updating.

Limitations of Per-step Reward Variance. 1) V[R] is not an appropriate surrogate for V[G0]
due to fundamentally different implications. Consider a simple example. Suppose the policy, the
transition dynamics and the rewards are all deterministic, then V[G0] = 0 while V[R] is usually
nonzero unless all the per-step rewards are equal. In this case, shifting a specific step reward by a
constant will not affect V[G0] and should not alter the optimal risk-averse policy. However, such shift
can lead to a big difference for V[R] and may result in an invalid policy as we demonstrated in later
example. 2) Reward modification hinders policy learning. Since the reward modifications in [13]
(Equation 4) and [14] (Equation 5) share the same issue, here we take Equation 5 as an example. This
modification is likely to convert a positive reward to a much smaller or even negative value due to
the square term, i.e. −λr(s, a)2. In addition, at the beginning of the learning phase, when the policy
performance is not good, y is likely to be negative in some environments (since y relates to E[G0]).
Thus, the third term 2λr(s, a)y decreases the reward value even more. This prevents the agent to visit
the good (i.e., rewarding) state even if that state does not contribute any risk. These two limitations
raise a great challenge to subtly choose the value for λ and design the reward for the environment.

Figure 1: A modified
Guarded Maze [7]. Red
state returns an uncertain
reward (details in text).

Empirical demonstration of the limitations. Consider a maze problem
(a modified version of Guarded Maze [7]) in Figure 1. Starting from
the bottom left corner, the agent aims to reach the green goal state. The
gray color corresponds to walls. The rewards for all states are deter-
ministic (i.e., −1) except for the red state whose reward is a categorical
distribution with mean −1. The reward for visiting the goal is a positive
constant value. To reach the goal, a risk-neutral agent prefers the path at
the bottom that goes through the red state, but V[G0] will be nonzero. A
risk-averse agent prefers the white path in the figure even though E[G0]
is slightly lower, but V[G0] = 0. Per-step reward variance methods aim
to use V[R] as a proxy of V[G0]. For the risk-averse policy leading to
the white path, ideally, increasing the goal reward by a constant will not
effect V[G0], but will make a big difference to V[R]. For instance, when
the goal reward is 10, V[R] = 10. When goal reward is 20, V[R] ≈ 36.4,
which is much more risk-averse. Next, consider the reward modification (Equation 5) for the goal

3

reward when it is 20. The square term in Equation 5 is −400λ. It is very easy to make the goal
reward negative even for small λ, e.g., 0.1. We do find this reward modification prevents the agent
from reaching the goal in our experiments.

3 Gini Deviation as an Alternative of Variance
To avoid the limitations of V[G0] and V[R] we have discussed, in this paper, we propose to use Gini
deviation as an alternative of variance. Also, since GD has a similar definition and similar properties
as variance, it serves as a more reasonable proxy of V[G0] compared to V[R].

3.1 Gini Deviation: Definition and Properties
GD [22], also known as Gini mean difference or mean absolute difference, is defined as follows. For
a random variable X , let X1 and X2 be two i.i.d. copies of X , i.e., X1 and X2 are independent and
follow the same distribution as X . Then GD is given by

D[X] =
1

2
E[|X1 −X2|] (6)

Variance can be defined in a similar way as V[X] = 1
2E[(X1 −X2)

2].
Given samples {x1i }ni=1 from X1 and {x2j}nj=1 from X2. The unbiased empirical estimations for GD
and variance are D̂[X] = 1

2n2

∑n
i=1

∑n
j=1 |x1i − x2j | and V̂[X] = 1

2n2

∑n
i=1

∑n
j=1(x

1
i − x2j)

2.

Both risk profiles aim to measure the variability of a random variable and share similar properties [23].
For example, they are both location invariant, and can be presented as a weighted sum of order
statistics. [23] argues that the GD is superior to the variance as a measure of variability for distributions
far from Gaussian. We refer readers to this paper for a full overview. Here we highlight two properties
of D[X] to help interpret it. Let M denote the set of real random variables and let Mp, p ∈ [1,∞)
denote the set of random variables whose probability measures have finite p-th moment, then

• V[X] ≥
√
3 D[X] for all X ∈ M2.

• D[cX] = cD[X] for all c > 0 and X ∈ M.

The first property is known as Glasser’s inequality [24], which shows D[X] is a lower bound of
V[X] if X has finite second moment. The second one is known as positive homogeneity in coherent
measures of variability [25], and is also clear from the definition of GD in Equation 6. In RL,
considering X is the return variable, this means GD is less sensitive to the reward scale compared
to variance, i.e., scaling the return will scale D[X] linearly, but quadratically for V[X]. We also
provide an intuition of the relation between GD and variance from the perspective of convex order, as
shown in Appendix 7. Note also that while variance and GD are both measures of variability, GD
is a coherent measure of variability [25]. Appendix 12 provides a discussion of the properties of
coherent measures of variability, while explaining the differences with coherent measures of risk
such as conditional value at risk (CVaR).

3.2 Signed Choquet Integral for Gini Deviation
This section introduces the concept of signed Choquet integral, which provides an alternative defini-
tion of GD and makes gradient-based optimization convenient. Note that with the original definition
(Equation 6), it can be intractable to compute the gradient w.r.t. the parameters of a random variable’s
density function through its GD.

The Choquet integral [26] was first used in statistical mechanics and potential theory and was later
applied to decision making as a way of measuring the expected utility [27]. The signed Choquet
integral belongs to the Choquet integral family and is defined as:
Definition 1 ([28], Equation 1). A signed Choquet integral Φh : X → R, X ∈ L∞ is defined as

Φh(X) =

∫ 0

−∞

(
h
(
Pr(X ≥ x)

)
− h(1)

)
dx+

∫ ∞

0

h
(
Pr(X ≥ x)

)
dx (7)

where L∞ is the set of bounded random variables in a probability space, h is the distortion function
and h ∈ H such that H = {h : [0, 1] → R, h(0) = 0, h is of bounded variation}.

This integral has become the building block of law-invariant risk measures 1 after the work of [29, 30].
One reason for why signed Choquet integral is of interest to the risk research community is that it

1Law-invariant property is one of the popular "financially reasonable" axioms. If a functional returns the
same value for two random variables with the same distribution, then the functional is called law-invariant.

4

is not necessarily monotone. Since most practical measures of variability are not monotone, e.g.,
variance, standard deviation, or deviation measures in [31], it is possible to represent these measures
in terms of Φh by choosing a specific distortion function h.
Lemma 1 ([28], Section 2.6). Gini deviation is a signed Choquet integral with a concave h given by
h(α) = −α2 + α, α ∈ [0, 1].

This Lemma provides an alternative definition for GD, i.e., D[X] =
∫∞
−∞ h

(
Pr(X ≥ x)

)
dx, h(α) =

−α2+α. However, this integral is still not easy to compute. Here we turn to its quantile representation
for easy calculation.

Lemma 2 ([28], Lemma 3). Φh(X) has a quantile representation. If F−1
X is continuous, then

Φh(X) =
∫ 0

1
F−1
X (1− α)dh(α), where F−1

X is the quantile function (inverse CDF) of X.

Combining Lemma 1 and 2, D[X] can be computed alternatively as

D[X] = Φh(X) =

∫ 1

0

F−1
X (1− α)dh(α) =

∫ 1

0

F−1
X (α)(2α− 1)dα (8)

With this quantile representation of GD, we can derive a policy gradient method for our new learning
problem in the next section. It should be noted that variance cannot be directly defined by a Φh-like
quantile representation, but as a complicated related representation: V[X] = suph∈H

{
Φh(X) −

1
4∥h

′∥22
}

, where ∥h′∥22 =
∫ 1

0
(h′(p))2dp if h is continuous, and ∥h′∥22 := ∞ if it is not continuous

(see Example 2.2 of [32]). Hence, such representation of the conventional variance measure is not
readily usable for optimization.

4 Policy Gradient for Mean-Gini Deviation
In this section, we consider a new learning problem by replacing the variance with GD. Specifically,
we consider the following objective

max
π

E[G0]− λD[G0] (9)

where λ is the trade-off parameter. To maximize this objective, we may update the policy towards
the gradient ascent direction. Computing the gradient for the first term has been widely studied in
risk-neutral RL [3]. Computing the gradient for the second term may be difficult at the first glance
from its original definition, however, it becomes possible via its quantile representation (Equation 8).

4.1 Gini Deviation Gradient Formula
We first give a general gradient calculation for GD of a random variable Z, whose distribution
function is parameterized by θ. In RL, we can interpret θ as the policy parameters, and Z as the
return under that policy, i.e., G0. Denote the Probability Density Function (PDF) of Z as fZ(z; θ).
Given a confidence level α ∈ (0, 1), the α-level quantile of Z is denoted as qα(Z; θ), and given by

qα(Z; θ) = F−1
Zθ

(α) = inf
{
z : Pr(Zθ ≤ z) ≥ α

}
(10)

For technical convenience, we make the following assumptions, which are also realistic in RL.
Assumption 1. Z is a continuous random variable, and bounded in range [−b, b] for all θ.

Assumption 2. ∂
∂θi
qα(Z; θ) exists and is bounded for all θ, where θi is the i-th element of θ.

Assumption 3. ∂fZ(z;θ)
∂θi

/fZ(z; θ) exists and is bounded for all θ, z. θi is the i-th element of θ.

Since Z is continuous, the second assumption is satisfied whenever ∂
∂θi
fZ(z; θ) is bounded. These

assumptions are common in likelihood-ratio methods, e.g., see [33]. Relaxing these assumptions is
possible but would complicate the presentation.
Proposition 1. Let Assumptions 1, 2, 3 hold. Then

∇θD[Zθ] = −Ez∼Zθ

[
∇θ log fZ(z; θ)

∫ b

z

(
2FZθ (t)− 1

)
dt
]

(11)

Proof. By Equation 8, the gradient of D[Zθ] = Φh(Zθ) (h(α) = −α2 + α, α ∈ [0, 1]) is

∇θD[Zθ] = ∇θΦh(Zθ) =

∫ 1

0

(2α− 1)∇θF
−1
Zθ

(α)dα =

∫ 1

0

(2α− 1)∇θqα(Z; θ)dα. (12)

This requires to calculate the gradient for any α-level quantile of Zθ, i.e., ∇θqα(Z; θ). Based on the

5

assumptions and the definition of the α-level quantile, we have
∫ qα(Z;θ)

−b
fZ(z; θ)dz = α. Taking a

derivative and using the Leibniz rule we obtain

0 = ∇θ

∫ qα(Z;θ)

−b

fZ(z; θ)dz =

∫ qα(Z;θ)

−b

∇θfZ(z; θ)dz +∇θqα(Z; θ)fZ
(
qα(Z; θ); θ

)
(13)

Rearranging the term, we get ∇θqα(Z; θ) = −
∫ qα(Z;θ)

−b
∇θfZ(z; θ)dz ·

[
fZ

(
qα(Z; θ); θ

)]−1
. Plug-

ging back to Equation 12 gives us an intermediate version of ∇θD[Zθ].

∇θD[Zθ] = −
∫ 1

0

(2α− 1)

∫ qα(Z;θ)

−b

∇θfZ(z; θ)dz ·
[
fZ

(
qα(Z; θ); θ

)]−1
dα (14)

By switching the integral order of Equation 14 and applying ∇θ log(x) =
1
x∇θx, we get the final

gradient formula Equation 11. The full calculation is in Appendix 8.1.

4.2 Gini Deviation Policy Gradient via Sampling
In a typical application, Z in Section 4.1 would correspond to the performance of a system, e.g., the
total returnG0 in RL. Note that in order to compute Equation 11, one needs access to ∇θ log fZ(z; θ):
the sensitivity of the system performance to the parameters θ. Usually, the system performance is a
complicated function and calculating its probability distribution is intractable. However, in RL, the
performance is a function of trajectories. The sensitivity of the trajectory distribution is often easy to
compute. This naturally suggests a sampling based algorithm for gradient estimation.

Now consider Equation 11 in the context of RL, i.e., Z = G0 and θ is the policy parameter.

∇θD[G0] = −Eg∼G0

[
∇θ log fG0(g; θ)

∫ b

g

(
2FG0(t)− 1

)
dt
]

(15)

To sample from the total return variable G0, we need to sample a trajectory τ from the environment
by executing πθ and then compute its corresponding return Rτ := r1 + γr2 + ...+ γT−1rT , where
rt is the per-step reward at time t, and T is the trajectory length. The probability of the sampled
return can be calculated as fG0

(Rτ ; θ) = µ0(s0)
∏T−1

t=0 [πθ(at|st)p(rt+1|st, at)]. The gradient of
its log-likelihood is the same as that of P (τ |θ) = µ0(s0)

∏T−1
t=0 [πθ(at|st)p(st+1|st, at)], since

the difference in transition probability does not alter the policy gradient. It is well known that
∇θ logP (τ |θ) =

∑T−1
t=0 ∇θ log πθ(at|st).

For the integral part of Equation 15, it requires the knowledge of the CDF of G0. In practice, this
means we should obtain the full value distribution of G0, which is usually not easy. One common
approach to acquire an empirical CDF or quantile function (inverse CDF) is to get the quantile samples
of a distribution and then apply some reparameterization mechanism. For instance, reparameterization
is widely used in distributional RL for quantile function estimation. The quantile function has been
parameterized as a step function [34, 35], a piece-wise linear function [36], or other higher order spline
functions [37]. In this paper, we use the step function parameterization given its simplicity. To do so,
suppose we have n trajectory samples {τi}ni=1 from the environment and their corresponding returns
{Rτi}ni=1, the returns are sorted in ascending order such that Rτ1 ≤ Rτ2 ≤ ... ≤ Rτn , then each Rτi

is regarded as a quantile value of G0 corresponding to the quantile level αi =
1
2 (

i−1
n + i

n), i.e., we
assume qαi

(G0; θ) = Rτi . This strategy is also common in distributional RL, e.g., see [34, 38]. The
largest return Rτn is regarded as the upper bound b in Equation 15.

Thus, given ordered trajectory samples {τi}ni=1, an empirical estimation for GD policy gradient is (a
detailed example is given in Appendix 8.2)

− 1

n− 1

n−1∑
i=1

ηi

T−1∑
t=0

∇θ log πθ(ai,t|si,t), where ηi =
n−1∑
j=i

2j

n

(
Rτj+1 −Rτj

)
−

(
Rτn −Rτi

)
(16)

The sampled trajectories can be used to estimate the gradient for E[G0] in the meantime, e.g., the well
known vanilla policy gradient (VPG), which has the form Eτ [Rτ

∑T−1
t=0 ∇θ log πθ(at|st)]. It is more

often used as Eτ [
∑T−1

t=0 ∇θ log πθ(at|st)gt], where gt =
∑T−1

t′=t γ
t′−tr(st′ , at′), which is known to

have lower variance. Usually gt is further subtracted by a value function to improve stability, called
REINFORCE with baseline. Apart from VPG, another choice to maximize E[G0] is using PPO [39].

4.3 Incorporating Importance Sampling
For on-policy policy gradient, samples are abandoned once the policy is updated, which is expensive
for our gradient calculation since we are required to sample n trajectories each time. To improve

6

the sample efficiency to a certain degree, we incorporate importance sampling (IS) to reuse samples
for multiple updates in each loop. For each τi, the IS ratio is ρi =

∏T−1
t=0 πθ(ai,t|si,t)/πθ̂(ai,t|si,t),

where θ̂ is the old policy parameter when {τi}ni=1 are sampled. Suppose the policy gradient for
maximizing E[G0] is REINFORCE baseline. With IS, the empirical mean-GD policy gradient is

1

n

n∑
i=1

ρi

T−1∑
t=0

∇θ log πθ(ai,t|si,t)(gi,t − V (si,t)) +
λ

n− 1

n−1∑
i=1

ρiηi

T−1∑
t=0

∇θ log πθ(ai,t|si,t) (17)

where gi,t is the sum of rewards-to-go as defined above. V (si,t) is the value function. The first part
can also be replaced by PPO-Clip policy gradient. Then we have

1

n

n∑
i=1

T−1∑
t=0

∇θ min
(πθ(ai,t|si,t)
πθ̂(ai,t|si,t)

Ai,t, f(ϵ, Ai,t)
)
+

λ

n− 1

n−1∑
i=1

ρiηi

T−1∑
t=0

∇θ log πθ(ai,t|si,t) (18)

where Ai,t is the advantage estimate, and f() is the clip function in PPO with ϵ being the clip range,
i.e. f(ϵ, Ai,t) = clip(

πθ(ai,t|si,t)
πθ̂(ai,t|si,t) , 1− ϵ, 1 + ϵ)Ai,t.

The extreme IS values ρi will introduce high variance to the policy gradient. To stabilize learning, one
strategy is that in each training loop, we only select τi whose ρi lies in [1− δ, 1+ δ], where δ controls
the range. The updating is terminated if the chosen sample size is lower than some threshold, e.g.,
β · n, β ∈ (0, 1). Another strategy is to directly clip ρi by a constant value ζ, i.e., ρi = min(ρi, ζ),
e.g., see [40]. In our experiments, we use the first strategy for Equation 17, and the second for
Equation 18. We leave other techniques for variance reduction of IS for future study. The full
algorithm that combines GD with REINFORCE and PPO is in Appendix 9.

5 Experiments
Our experiments were designed to serve two main purposes. First, we investigate whether the
GD policy gradient approach could successfully discover risk-averse policies in scenarios where
variance-based methods tend to fail. To accomplish this, we manipulated reward choices to assess the
ability of the GD policy gradient to navigate risk-averse behavior. Second, we sought to verify the
effectiveness of our algorithm in identifying risk-averse policies that have practical significance in
both discrete and continuous domains. We aimed to demonstrate its ability to generate meaningful
risk-averse policies that are applicable and valuable in practical settings.

Baselines. We compare our method with the original mean-variance policy gradient (Equation 2,
denoted as MVO), Tamar’s method [8] (denoted as Tamar), MVP [12], and MVPI [14]. Specifically,
MVO requires multiple trajectories to compute J(θ)∇θJ(θ). We use n

2 trajectories to estimate J(θ)
and another n

2 to estimate ∇θJ(θ), where n is the sample size. MVPI is a general framework for
policy iteration whose inner risk-neutral RL solver is not specified. For the environment with discrete
actions, we build MVPI on top of Q-Learning or DQN [41]. For continuous action environments,
MVPI is built on top of TD3 [42] as in [14]. We use REINFORCE to represent the REINFORCE
with baseline method. We use MG as a shorthand of mean-GD to represent our method. In each
domain, we ensure each method’s policy or value nets have the same neural network architecture.

For policy updating, MVO and MG collect n episodes before updating the policy. In contrast,
Tamar and MVP update the policy after each episode. Non-tabular MVPI updates the policy at each
environment step. In hyperparameter search, we use the parameter search range in MVPI [14] as
a reference, making reasonable refinements to find an optimal parameter setting. Please refer to
Appendix 10 for any missing implementation details. Code is available at2.

5.1 Tabular case: Modified Guarded Maze Problem
This domain is a modified Guarded Maze [7] that was previously described in Section 2.2. The
original Guarded Maze is asymmetric with two openings to reach the top path (in contrast to a single
opening for the bottom path). In addition, paths via the top tend to be longer than paths via the
bottom. We modified the maze to be more symmetric in order to reduce preferences arising from
certain exploration strategies that might be biased towards shorter paths or greater openings, which
may confound risk aversion. Every movement before reaching the goal receives a reward of −1
except moving to the red state, where the reward is sampled from {−15,−1, 13} with probability
{0.4, 0.2, 0.4} (mean is −1) respectively. The maximum episode length is 100. MVO and MG collect
n = 50 episodes before updating the policy. Agents are tested for 10 episodes per evaluation.

2https://github.com/miyunluo/mean-gini

7

Figure 2: (a) Policy evaluation return and (b,c) optimal risk-aversion rate v.s. training episodes in
Maze. Curves are averaged over 10 seeds with shaded regions indicating standard errors. For optimal
risk-aversion rate, higher is better.

The failure of variance-based baselines under simple reward manipulation. We first set the goal
reward to 20. Here, we report the optimal risk-aversion rate achieved during training. Specifically,
we measure the percentage of episodes that obtained the optimal risk-averse path, represented by the
white color path in Figure 1, out of all completed episodes up to the current stage of training.

Notice that MVO performs well in this domain when using double sampling to estimate its gradient.
Then we increase the goal reward to 40. This manipulation does not affect the return variance of the
optimal risk-averse policy, since the reward is deterministic. However, the performances of MVO,
Tamar, MVP all decrease, since they are more sensitive to the numerical scale of the return (due to
the E[G2

0] term introduced by variance). MVPI is a policy iteration method in this problem, whose
learning curve is not intuitive to show. It finds the optimal risk-averse path when the goal reward is
20, but it fails when the goal reward is 40. An analysis for MVPI is given in Appendix 10.2.2. We
compare the sensitivity of different methods with respect to λ in Appendix 10.2.4.

Remark. Scaling rewards by a small factor is not an appropriate approach to make algorithms less
sensitive to the numerical scale for both total return variance and per-step reward variance, since it
changes the original mean-variance objective in both cases.

5.2 Discrete control: LunarLander

Figure 3: (a) Policy evaluation
return and (b) left-landing rate
(i.e., risk-averse landing rate) v.s.
training episodes in LunarLander.
Curves are averaged over 10 seeds
with shaded regions indicating stan-
dard errors. For landing left rate,
higher is better.

This domain is taken from OpenAI Gym Box2D environ-
ments [15]. We refer readers to its official documents for the
full description. Originally, the agent is awarded 100 if it comes
to rest. We divide the ground into two parts by the middle line
of the landing pad, as shown in Figure 10 in Appendix. If the
agent lands in the right area, an additional noisy reward sam-
pled from N (0, 1) times 90 is given. A risk-averse agent should
learn to land at the left side as much as possible. We include
REINFORCE as a baseline to demonstrate the risk-aversion of
our algorithm. REINFORCE, MVO and MG collect n = 30
episodes before updating their policies. Agents are tested for
10 episodes per evaluation.

We report the rate at which different methods land on the left in
Figure 3(b) (we omit the failed methods), i.e, the percentage of
episodes successfully landing on the left per evaluation. MVO,
Tamar, and MVP do not learn reasonable policies in this domain
according to their performances in Figure 3(a). MVP learns to
land in the middle of the learning phase, but soon after fails to
land. Since successfully landing results in a large return (suc-
cess reward is 100), the return square term (E[G2

0]) introduced
by variance makes MVP unstable. MVPI also fails to land
since V[R] is sensitive to the numerical scale of rewards. In this
domain, the success reward is much larger than other reward
values. Furthermore, reward modification in MVPI turns large
success rewards into negative values, which prevents the agent
from landing on the ground. MG achieves a comparable return
with REINFORCE, but clearly learns a risk-averse policy by
landing more on the left.

8

Figure 4: (a,c,e) Policy evaluation return and (b,d,f) location visiting rate v.s. training episodes in
Mujoco of episode-based methods. Curves are averaged over 10 seeds with shaded regions indicating
standard errors. For location visiting rate, lower is better.

5.3 Continuous control: Mujoco

Mujoco [16] is a collection of robotics environments with continuous states and actions in OpenAI
Gym [15]. Here, we selected three domains (InvertedPendulum, HalfCheetah, and Swimmer) that
are conveniently modifiable, where we are free to modify the rewards to construct risky regions
in the environment (Through empirical testing, risk-neutral learning failed when similar noise was
introduced to other Mujoco domains. Consequently, identifying the cause for the failure of risk-averse
algorithms on other domains became challenging). Motivated by and following [43, 44], we define
a risky region based on the X-position. For instance, if X-position > 0.01 in InvertedPendulum,
X-position < −3 in HalfCheetah, and X-position > 0.5 in Swimmer, an additional noisy reward
sampled from N (0, 1) times 10 is given. Location information is appended to the agent’s observation.
A risk-averse agent should reduce the time it visits the noisy region in an episode. We also include
the risk-neutral algorithms as baselines to highlight the risk-aversion degree of different methods.

All the risk-averse policy gradient algorithms still use VPG to maximize the expected return in
InvertedPendlulum (thus the risk-neutral baseline is REINFORCE). Using VPG is also how these
methods are originally derived. However, VPG is not good at more complex Mujoco domains, e.g.,
see [45]. In HalfCheetah and Swimmer, we combine those algorithms with PPO-style policy gradient
to maximize the expected return. Minimizing the risk term remains the same as their original forms.
MVPI is an off-policy time-difference method in Mujoco. We train it with 1e6 steps instead of as
many episodes as other methods. MVO and MG sample n = 30 episodes in InvertedPendulum and
n = 10 in HalfCheetah and Swimmer before updating policies. Agents are tested for 20 episodes
per evaluation. The percentage of time steps visiting the noisy region in an episode is shown in
Figure 4(b,d,f). Compared with other return variance methods, MG achieves a higher return while
maintaining a lower visiting rate. Comparing MVPI and TD3 against episode-based algorithms like
MG is not straightforward within the same figure due to the difference in parameter update frequency.
MVPI and TD3 update parameters at each environment time step. We shown their learning curves in
Figure 5. MVPI also learns risk-averse policies in all three domains according to its learning curves.

We further design two domains using HalfCheetah and Swimmer. The randomness of the noisy
reward linearly decreases when agent’s forward distance grows. To maximize the expected return
and minimize risk, the agent has to move forward as far as possible. The results are shown in
Figures 18,19 in Appendix. In these two cases, only MG shows a clear tendency of moving forward,
which suggests our method is less sensitive to reward choices compared with methods using V[R].
The return variance and GD during learning in the above environments are also reported in Ap-
pendix 10. In general, when other return variance based methods can find the risk-averse policy, MG
maintains a lower or comparable return randomness when measured by both variance and GD. When

9

Figure 5: (a,c,e) Policy evaluation return and (b,d,f) location visiting rate v.s. training episodes
in Mujoco of TD3 and MVPI. Curves are averaged over 10 seeds with shaded regions indicating
standard errors. For location visiting rate, lower is better.

other methods fail to learn a reasonably good risk-averse policy, MG consistently finds a notably
higher return and lower risk policy compared with risk-neutral methods. MVPI has the advantage to
achieve low return randomness in location based risky domains, since minimizing V[R] naturally
avoids the agent from visiting the noisy region. But it fails in distance-based risky domains.

6 Conclusion and Future Work
This paper proposes to use a new risk measure, Gini deviation, as a substitute for variance in mean-
variance RL. It is motivated to overcome the limitations of the existing total return variance and
per-step reward variance methods, e.g., sensitivity to numerical scale and hindering of policy learning.
A gradient formula is presented and a sampling-based policy gradient estimator is proposed to
minimize such risk. We empirically show that our method can succeed when the variance-based
methods will fail to learn a risk-averse or a reasonable policy. This new risk measure may inspire a
new line of research in RARL. First, one may study the practical impact of using GD and variance
risk measures. Second, hybrid risk-measure may be adopted in real-world applications to leverage
the advantages of various risk measures.

Limitations and future work. Our mean-GD policy gradient requires sampling multiple trajectories
for one parameter update, making it less sample efficient compared to algorithms that can perform
updates per environment step or per episode. As a result, one potential avenue for future work is to
enhance the sample efficiency of our algorithm. This can be achieved by more effectively utilizing
off-policy data or by adapting the algorithm to be compatible with online, incremental learning.

Acknowledgments and Disclosure of Funding
We thank Ruodu Wang from University of Waterloo and Han Wang from University of Alberta for
valuable discussions and insights. Resources used in this work were provided, in part, by the Province
of Ontario, the Government of Canada through CIFAR, companies sponsoring the Vector Institute
https://vectorinstitute.ai/partners/ and the Natural Sciences and Engineering Council
of Canada. Yudong Luo is also supported by a David R. Cheriton Graduate Scholarship, a President’s
Graduate Scholarship, and an Ontario Graduate Scholarship. Guiliang Liu’s research was in part
supported by the Start-up Fund UDF01002911 of the Chinese University of Hong Kong, Shenzhen.
Yangchen Pan acknowledges funding from the Turing AI World Leading Fellow.

References
[1] Mohammad Naghshvar, Ahmed K Sadek, and Auke J Wiggers. Risk-averse behavior planning

for autonomous driving under uncertainty. arXiv preprint arXiv:1812.01254, 2018.

10

https://vectorinstitute.ai/partners/

[2] Tomas Björk, Agatha Murgoci, and Xun Yu Zhou. Mean–variance portfolio optimization with
state-dependent risk aversion. Mathematical Finance: An International Journal of Mathematics,
Statistics and Financial Economics, 24(1):1–24, 2014.

[3] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[4] Vivek S Borkar. Q-learning for risk-sensitive control. Mathematics of operations research,
27(2):294–311, 2002.

[5] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. The Journal of Machine Learning Research,
18(1):6070–6120, 2017.

[6] Yinlam Chow and Mohammad Ghavamzadeh. Algorithms for cvar optimization in mdps.
Advances in neural information processing systems, 27, 2014.

[7] Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Efficient risk-
averse reinforcement learning. Advances in Neural Information Processing Systems, 35:32639–
32652, 2022.

[8] Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk
criteria. International Conference on Machine Learning, 2012.

[9] Prashanth La and Mohammad Ghavamzadeh. Actor-critic algorithms for risk-sensitive mdps.
Advances in neural information processing systems, 26, 2013.

[10] Harry M Markowitz and G Peter Todd. Mean-variance analysis in portfolio choice and capital
markets, volume 66. John Wiley & Sons, 2000.

[11] Duan Li and Wan-Lung Ng. Optimal dynamic portfolio selection: Multiperiod mean-variance
formulation. Mathematical finance, 10(3):387–406, 2000.

[12] Tengyang Xie, Bo Liu, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming
Lyu, and Daesub Yoon. A block coordinate ascent algorithm for mean-variance optimization.
Advances in Neural Information Processing Systems, 31, 2018.

[13] Lorenzo Bisi, Luca Sabbioni, Edoardo Vittori, Matteo Papini, and Marcello Restelli. Risk-averse
trust region optimization for reward-volatility reduction. International Joint Conference on
Artificial Intelligence, 2020.

[14] Shangtong Zhang, Bo Liu, and Shimon Whiteson. Mean-variance policy iteration for risk-
averse reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 10905–10913, 2021.

[15] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[16] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012.

[17] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[18] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
48(3):334–334, 1997.

[19] Shie Mannor and John Tsitsiklis. Mean-variance optimization in markov decision processes.
International Conference on Machine Learning, 2011.

[20] Matthew J Sobel. The variance of discounted markov decision processes. Journal of Applied
Probability, 19(4):794–802, 1982.

11

[21] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[22] Corrado Gini. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni
statistiche.[Fasc. I.]. Tipogr. di P. Cuppini, 1912.

[23] Shlomo Yitzhaki et al. Gini’s mean difference: A superior measure of variability for non-normal
distributions. Metron, 61(2):285–316, 2003.

[24] Gerald J Glasser. Variance formulas for the mean difference and coefficient of concentration.
Journal of the American Statistical Association, 57(299):648–654, 1962.

[25] Edward Furman, Ruodu Wang, and Ričardas Zitikis. Gini-type measures of risk and variability:
Gini shortfall, capital allocations, and heavy-tailed risks. Journal of Banking & Finance,
83:70–84, 2017.

[26] Gustave Choquet. Theory of capacities. In Annales de l’institut Fourier, volume 5, pages
131–295, 1954.

[27] Michel Grabisch. The application of fuzzy integrals in multicriteria decision making. European
journal of operational research, 89(3):445–456, 1996.

[28] Ruodu Wang, Yunran Wei, and Gordon E Willmot. Characterization, robustness, and aggregation
of signed choquet integrals. Mathematics of Operations Research, 45(3):993–1015, 2020.

[29] Shigeo Kusuoka. On law invariant coherent risk measures. In Advances in mathematical
economics, pages 83–95. Springer, 2001.

[30] Bogdan Grechuk, Anton Molyboha, and Michael Zabarankin. Maximum entropy principle with
general deviation measures. Mathematics of Operations Research, 34(2):445–467, 2009.

[31] R Tyrrell Rockafellar, Stan Uryasev, and Michael Zabarankin. Generalized deviations in risk
analysis. Finance and Stochastics, 10(1):51–74, 2006.

[32] Fangda Liu, Jun Cai, Christiane Lemieux, and Ruodu Wang. Convex risk functionals: Repre-
sentation and applications. Insurance: Mathematics and Economics, 90:66–79, 2020.

[33] Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[34] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[35] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pages
1096–1105. PMLR, 2018.

[36] Fan Zhou, Zhoufan Zhu, Qi Kuang, and Liwen Zhang. Non-decreasing quantile function
network with efficient exploration for distributional reinforcement learning. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages
3455–3461, 8 2021.

[37] Yudong Luo, Guiliang Liu, Haonan Duan, Oliver Schulte, and Pascal Poupart. Distributional
reinforcement learning with monotonic splines. In International Conference on Learning
Representations, 2022.

[38] Yuguang Yue, Zhendong Wang, and Mingyuan Zhou. Implicit distributional reinforcement
learning. Advances in Neural Information Processing Systems, 33:7135–7147, 2020.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

[40] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and
learning systems: The example of computational advertising. Journal of Machine Learning
Research, 14(11), 2013.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[42] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[43] Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforce-
ment learning. In International Conference on Machine Learning, pages 7390–7399. PMLR,
2021.

[44] Guiliang Liu, Yudong Luo, Ashish Gaurav, Kasra Rezaee, and Pascal Poupart. Benchmarking
constraint inference in inverse reinforcement learning. In International Conference on Learning
Representations, 2023.

[45] OpanAI. Performance in each mujoco environment. https://spinningup.openai.com/
en/latest/spinningup/bench.html.

[46] Arjun K Gupta and Mohammad AS Aziz. Convex ordering of random variables and its
applications in econometrics and actuarial science. European Journal of Pure and Applied
Mathematics, 3(5):779–785, 2010.

[47] Michael Rothschild and Joseph E Stiglitz. Increasing risk: I. a definition. In Uncertainty in
Economics, pages 99–121. Elsevier, 1978.

[48] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of
risk. Mathematical finance, 9(3):203–228, 1999.

[49] Takuya Hiraoka, Takahisa Imagawa, Tatsuya Mori, Takashi Onishi, and Yoshimasa Tsuruoka.
Learning robust options by conditional value at risk optimization. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

[50] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt:
Learning robust neural network policies using model ensembles. In International Conference
on Learning Representations, 2016.

[51] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. Advances in neural information processing systems, 28,
2015.

[52] Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst cases policy gradients.
arXiv preprint arXiv:1911.03618, 2019.

[53] Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Wcsac: Worst-case
soft actor critic for safety-constrained reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 10639–10646, 2021.

13

https://spinningup.openai.com/en/latest/spinningup/bench.html
https://spinningup.openai.com/en/latest/spinningup/bench.html

Supplementary Information

7 Convex Order, Gini Deviation, and Variance

Convex order describes dominance in terms of variability and is widely used in actuarial science.
Definition 2 ([46]). Consider two random variables X and Y , X is called convex order smaller than
Y , succinctly X ≤cx Y , if E[ψ(X)] ≤ E[ψ(Y)], for all convex function ψ(), assuming that both
expectations exist.
In convex order X ≤cx Y , Y is also called a mean-preserving spread of X [47], which intuitively
means that Y is more spread-out (and hence more random) than X . Thus, it is often desirable for a
measure of variability to be monotone with respect to convex order [25]. Both variance and GD, as a
measure of variability, are consistent with convex order, i.e.,

• If X ≤cx Y , then V[X] ≤ V[Y] for all X,Y ∈ M
• If X ≤cx Y , then D[X] ≤ D[Y] for all X,Y ∈ M

Proof. It is immediate that X ≤cx Y implies E[X] = E[Y]. If we take convex function ψ(x) = x2,
we can get the order of variance V[X] ≤ V[Y]. For the proof of GD, please refer to the following
Lemma. Recall that GD can be expressed in the form of signed Choquet integral with a concave
function h.
Lemma 3 ([28],Theorem 2). Convex order consistency of a signed Choquet integral is equivalent
to its distortion function h being concave, i.e., X ≤cx Y if and only if the signed Choquet integral
Φh(X) ≤ Φh(Y) for all concave functions h ∈ H.

8 GD Gradient Formula Calculation
8.1 General GD Gradient Formula
Proposition 1. Let Assumptions 1, 2, 3 hold. Then

∇θD[Zθ] = −Ez∼Zθ

[
∇θ log fZ(z; θ)

∫ b

z

(
2FZθ (t)− 1

)
dt
]

(11)

Consider a random variable Z, whose distribution function is controlled by θ. Recall that qα(Z; θ)
represents the α-level quantile of Zθ. According to Equation 14, the gradient of GD is

∇θD[Zθ] = ∇θΦh(Zθ) = −
∫ 1

0

(2α− 1)

∫ qα(Z;θ)

−b

∇θfZ(z; θ)dz
1

fZ
(
qα(Z; θ); θ

)dα
To make the integral over α clearer, we rewrite qα(Z; θ) as F−1

Zθ
(α), where FZθ

is the CDF.

∇θD[Zθ] = −
∫ 1

0

(2α− 1)

∫ F−1
Zθ

(α)

−b

∇θfZ(z; θ)dz
1

fZ(F
−1
Zθ

(α); θ)
dα

Switching the integral order, we get

∇θD[Zθ] = −
∫ b

−b

∫ 1

FZθ
(z)

(2α− 1)∇θfZ(z; θ)
1

fZ(F
−1
Zθ

(α); θ)
dαdz

= −
∫ b

−b

∇θfZ(z; θ)

∫ 1

FZθ
(z)

(2α− 1)
1

fZ(F
−1
Zθ

(α); θ)
dαdz

(19)

Denote t = F−1
Zθ

(α), then α = FZθ
(t). Here, we further change the inner integral from dα to

dFZθ
(t), i.e., dα = dFZθ

(t) = fZ(t; θ)dt. The integral range for t is now from F−1
Zθ

(FZθ
(z)) = z

to F−1
Zθ

(1) = b.

∇θD[Zθ] = −
∫ b

−b

∇θfZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
) 1

fZ(t; θ)
dFZθ

(t) dz

= −
∫ b

−b

∇θfZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
)
dt dz

(20)

14

Figure 6: An example of parameterizing (inverse) CDF given six quantiles. The function is highlighted
in the bold line of orange color.

Applying ∇θ log(x) =
1
x∇θx to ∇θfZ(z; θ), we have

∇θD[Zθ] = −
∫ b

−b

fZ(z; θ)∇θ log fZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
)
dt dz

= −Ez∼Zθ

[
∇θ log fZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
)
dt
] (21)

8.2 GD Policy Gradient via Sampling
Following Section 4.2, we consider estimating the following equation via sampling.

∇θD[G0] = −Eg∼G0

[
∇θ log fG0

(g; θ)

∫ b

g

(
2FG0

(t)− 1
)
dt
]

Here sampling from G0 corresponds to sampling trajectory τ with its return Rτ from the envi-
ronment. As discussed in the main paper, for a trajectory τi, ∇θ log fG0(Rτi , θ) is estimated as∑T−1

t=0 ∇θ log πθ(ai,t|si,t) .

The CDF function FG0 is parameterized by a step function given its quantiles {Rτi}ni=1, which
satisfy Rτ1 ≤ Rτ2 ≤ ... ≤ Rτn . An example of the step function is shown in Figure 6. With this
parameterization, the integral over CDF can be regarded as the area below the step function.

Thus, for each τi, the integral over CDF is approximated as (Rτn is treated as b)∫ Rτn

Rτi

2FG0
(t)dt ≈

n−1∑
j=i

2× j

n

(
R(τj+1)−R(τj)

)
(22)

Aggregating all the calculations together yields Equation 16.

9 Mean-GD Policy Gradient Algorithm
We consider maximizing E[G0]− λD[G0] in this paper. Maximizing the first term, i.e., E[G0] has
been widely studied in risk-neutral RL. For on-policy policy gradient, we can use vanilla policy
gradient (VPG), e.g., REINFORCE with baseline, or more advanced techniques like PPO [39].

To make fair comparison with other risk-averse policy gradient methods, we first initialize mean-GD
policy gradient with VPG. To improve sample efficiency, we incorporate IS for multiple updates.
Taking advantage of having n samples, we can select those trajectories whose IS ratio is in the range
[1 − δ, 1 + δ] for calculation to reduce gradient variance. In more complex continuous domains,
e.g., Mujoco, we combine GD policy gradient with PPO since VPG is not good at Mujoco [45].
However, in this case, policy may have a significant difference per update, where the former IS
selection strategy can no longer be applied. Then we directly clip the IS ratio by a constant, though it
is biased [40]. The full algorithms are summarized in Algorithm 1 and 2. We omit the parameters for
PPO in Algorithm 2 for simplicity. We still report the PPO parameter settings in Section 10.

15

Algorithm 1 Mean-Gini Deviation Policy Gradient (with REINFORCE baseline)

Input: Iterations number K, sample size n, inner update number M , policy learning rate αθ, value
learning rate αϕ, importance sampling range δ, inner termination parameter β, trade-off parameter
λ.
Initialize policy πθ parameter θ, value Vϕ parameter ϕ.
for k = 1 to K do

Sample n trajectories {τi}ni=1 by πθ, compute return {R(τi)}ni=1
Compute rewards-to-go for each state in τi: gi,t
for m = 1 to M do

Compute importance sampling ratio for each trajectory {ρi}ni=1
Select D = {τs} whose ρs ∈ [1− δ, 1 + δ]
Sort trajectories such that R(τ1) ≤ ... ≤ R(τ|D|)
if |D| < n · β then

break
end if
mean_grad = 0, gini_grad = 0
for i = 1 to |D| do

mean_grad += ρi ·
∑T−1

0 ∇θ log πθ(ai,t|si,t)(gi,t − V ϕ(si,t))

Update Vϕ by mean-squared error 1
T

∑T−1
t=0 (Vϕ(si,t)− gi,t)

2 with learning rate αϕ

end for
for i = 1 to |D| − 1 do

gini_grad += −ρi · ηi
∑T−1

t=0 ∇θ log πθ(ai,t|si,t), where
ηi =

∑|D|−1
j=i

2j
|D| (Rj+1 −Rj)− (R|D| −Ri)

end for
Update πθ by

(
1

|D| mean_grad - λ
|D|−1 gini_grad

)
with learning rate αθ (Equation 17)

end for
end for

10 Experiments Details
10.1 General Descriptions of Different Methods
Among the methods compared in this paper, Tamar [8] and MVP [12] are on-policy policy gradient
methods. MVO and MG are policy gradient methods, but sample n trajectories and use IS to update.
Non-tabular MVPI [14] is an off-policy time-difference method.

Policy gradeint methods. MVO, Tamar, MVP, are originally derived based on VPG. Since VPG is
known to have a poor performance in Mujoco, we also combined these mean-variance methods with
PPO. Thus these mean-variance methods and our mean-GD method have different instantiations to
maximize the expected return in different domains:

• With VPG: in Maze, LunarLander, InvertedPendulum.
• With PPO: in HalfCheetah, Swimmer.

When the risk-neutral policy gradient is VPG, for MVO and MG, it is REINFORCE with baseline;
for Tamar and MVP, we strictly follow their papers to implement the algorithm, where no value
function is used. MVO and MG collect n trajectories and use the IS strategy in Algorithm 1 to update
policies. Tamar and MVP do not need IS, and update policies at the end of each episode.

When the risk-neutral policy gradient is PPO, we augment PPO with the variance or GD policy
gradient from the original methods. MVO and MG collect n trajectories and use the IS strategy in
Algorithm 2 to compute the gradient for the risk term. Tamar and MVP still update policies once at
the end of each episode.

MVPI. We implemented three versions of MVPI in different domains:

• Tabular: in Maze, MVPI is a policy iteration method (Algorithm 1 in [14]).
• With DQN: in LunarLander, since this environment has discrete action space.
• With TD3: in InvertedPendulum, HalfCheetah, Swimmer, since these environments have

continuous action space.

16

Algorithm 2 Mean-Gini Deviation Policy Gradient (with PPO)

Input: Iterations number K, sample size n, inner update number M , policy learning rate αθ, value
learning rate αϕ, importance sampling clip bound ζ, trade-off parameter λ.
Initialize policy πθ parameter θ, value Vϕ parameter ϕ.
for k = 1 to K do

Sample n trajectories {τi}ni=1 by πθ, compute return {R(τi)}ni=1
Compute rewards-to-go for each state in τi: gi,t
Compute advantages for each state-action in τi: A(si,t, ai,t) based on current Vϕ
for m = 1 to M do

Compute importance sampling ratio for each trajectory {ρi}ni=1, and ρi = min(ρi, b)
Sort trajectories such that R(τ1) ≤ ... ≤ R(τn)
mean_grad = 0, gini_grad = 0
for i = 1 to n do

mean_grad += PPO-Clip actor grad
Update Vϕ by mean-squared error 1

T

∑T−1
t=0 (Vϕ(si,t)− gi,t)

2 with learning rate αϕ

end for
for i = 1 to n− 1 do

gini_grad += −ρi · ηi
∑T−1

t=0 ∇θ log πθ(ai,t|si,t), where
ηi =

∑n−1
j=i

2j
n (Rj+1 −Rj)− (Rn −Ri)

end for
Update πθ by

(
1
nT mean_grad - λ

(n−1)T gini_grad
)

with learning rate αθ (Equation 18)
end for

end for

We summarize the components required in different methods in Table 1.

Table 1: Model components in different methods
Policy func Value func Additional training variables

MVO-VPG
√ √

MVO-PPO
√ √

Tamar-VPG
√

× J,V (mean,variance)
Tamar-PPO

√ √
J,V (mean,variance)

MVP-VPG
√

× y (dual variable)
MVP-PPO

√ √
y (dual variable)

MG-VPG
√ √

MG-PPO
√ √

MVPI-Q-Learning ×
√

MVPI-DQN ×
√

MVPI-TD3
√ √

10.2 Modified Guarded Maze Problem
The maze consists of a 6× 6 grid. The agent can visit every free cell without a wall. The agent can
take four actions (up, down, left, right). The maximum episode length is 100.

Policy function. For methods requiring a policy function, i.e., MVO, Tamar, MVP, MG, the policy is
represented as

πθ(a|s) =
eϕ(s,a)·θ∑
b e

ϕ(s,b)·θ (23)

where ϕ(s, a) is the state-action feature vector. Here we use one-hot encoding to represent ϕ(s, a).
Thus, the dimension of ϕ(s, a) is 6× 6× 4. The derivative of the logarithm is

∇θ log πθ = ϕ(s, a) · θ − log
(∑

b

eϕ(s,b)·θ
)

(24)

Value function. For methods requiring a value function, i.e., REINFORCE baseline used in MVO and
MG, and Q-learning in MVPI, the value function is represented as Vω(s) = ϕ(s) · ω or Qω(s, a) =
ϕ(s, a) · ω. Similarly, ϕ(s) is a one-hot encoding.

17

Optimizer. The policy and value loss are optimized by stochastic gradient descent (SGD).

10.2.1 Learning Parameters
We set discount factor γ = 0.999.

MVO: policy learning rate is 1e-5 ∈{5e-5, 1e-5, 5e-6}, value function learning rate is 100 times
policy learning rate. λ = 1.0 ∈{0.6, 0.8, 1.0, 1.2}. Sample size n = 50. Maximum inner update
number M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

Tamar: policy learning rate is 1e-5 ∈{5e-5, 1e-5, 5e-6}, J, V learning rate is 100 times policy
learning rate. Threshold b = 50 ∈{10, 50, 100}, λ = 0.1 ∈{0.1, 0.2, 0.4}.

MVP: policy learning rate is 1e-5∈{5e-5, 1e-5, 5e-6}, y learning rate is the same. λ = 0.1 ∈{0.1,
0.2, 0.4}.

MG: policy learning rate is 1e-4∈{5e-4, 1e-4, 5e-5}, value function learning rate is 100 times policy
learning rate. λ = 1.2 ∈{0.8, 1.0, 1.2}. Sample size n = 50. Maximum inner update number
M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

MVPI: Q function learning rate 5e-3∈{5e-3, 1e-3, 5e-4}, λ = 0.2 ∈{0.2, 0.4, 0.6}.

10.2.2 Analysis for MVPI in Maze (MVPI-Q-Learning)
MVPI-Q-Learning finds the optimal risk-averse path when goal reward is 20 but fails when goal
reward is 40. Since it is not intuitive to report the learning curve for a policy iteration method where
its reward is modified in each iteration, we give an analysis here.

The value of dual variable y in Equation 5 is (1− γ)E[G0] given the current policy. Recall that the
maximum episode length is 100. At the beginning, when the Q function is randomly initialized (i.e.,
it is a random policy), E[G0] =

∑99
t=0 0.999

t(−1) ≈ −95.2. Thus y = (1 − 0.999) × (−95.2) =
−0.0952, the goal reward after modification is rgoal = 20− 0.2× 202 + 2× 0.2× 20× y ≈ −60.7.
For the red state, its original reward is sampled from {−15,−1, 13}. After the reward modification,
it becomes sampling from {−59.4,−1.16,−21.2}. Thus the expected reward of the red state is now
rred = 0.4× (−59.4) + 0.2× (−1.16) + 0.4× (−21.2) = −32.472. Given the maximum episode
length is 100, the optimal policy is still the white path in Figure 1. (Because the expected return for
the white path is

∑9
t=0 0.999

t(−1) + 0.99910(−60.7) ≈ −70. The expected return for a random
walk is

∑99
t=0 0.999

t(−1) ≈ −95.2. The expected return for the shortest path going through the red
state is even lower than the white path since the reward of the red state after modification is pretty
negative: −32.472.)

However, when goal reward is 40, after modification, the goal reward becomes rgoal = 40− 0.2×
402 + 2× 0.2× 40× y ≈ −281.5. In this case, the optimal policy has to avoid the goal state since it
leads to a even lower return.

10.2.3 Return Variance and Gini Deviation in Maze
We report the return’s variance and GD during learning for different methods, as shown in Figure 7
and 8. Tamar [8] is unable to reach the goal in both settings. MVO fails to reach the goal when the
return magnitude increases. MVP [12]’s optimal risk-aversion rate is much lower than MG. MG
can learn a risk averse policy in both settings with lower variance and GD, which suggests it is less
sensitive to the return numerical scale.

Figure 7: Expected return, return variance and Gini deviation of different methods in Maze when
goal reward is 20. Curves are averaged over 10 seeds with shaded regions indicating standard errors.

18

Figure 8: Expected return, return variance and Gini deviation of different methods in Maze when
goal reward is 40. Curves are averaged over 10 seeds with shaded regions indicating standard errors.

10.2.4 Sensitivity to Trade-off Parameter
We report the learning curves of total return based methods with different λ when goal reward is 20
in Figure 9. The learning parameters are the same as shown in Section 10.2.1.

10.3 LunarLander Discrete
The agent’s goal is to land the lander on the ground without crashing. The state dimension is 8. The
action dimension is 4. The detailed reward information is available at this webpage 3. We divide the
whole ground into left and right parts by the middle line of the landing pad as shown in Figure 10. If
the agent lands in the right part, an additional noisy reward signal sampled from N (0, 1) tims 90 is
given. We set the maximum episode length to 1000. Note that the original reward for successfully
landing is 100, thus the numerical scale of both return and reward is relatively large in this domain.

Policy function. The policy is a categorical distribution in REINFORCE, MVO, Tamar, MVP and
MG, modeled as a neural network with two hidden layers. The hidden size is 128. Activation is
ReLU. Softmax function is applied to the output to generate categorical probabilities.

Value function. The value function in REINFORCE, MVO, MG, and Q function in MVPI-DQN is a
neural network with two hidden layers. The hidden size is 128. Activation is ReLU.

Optimizer. The optimizer for policy and value functions is Adam.

10.3.1 Learning Parameters
Discount factor is γ = 0.999

REINFORCE (with baseline): the policy learning rate is 7e-4 ∈ {7e-4, 3e-4, 7e-5}, value function
learning rate is 10 times policy learning rate.

MVO: policy learning rate is 7e-5 ∈ {7e-4, 3e-4, 7e-5}, value function learning rate is 10 times
policy learning rate. λ = 0.4 ∈ {0.4, 0.6, 0.8}. Sample size n = 30. Maximum inner update number
M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

Tamar: policy learning rate is 7e-5 ∈ {7e-4, 3e-4, 7e-5}. J, V learning rate is 100 times the policy
learning rate. Threshold b = 50 ∈ {10,50,100}. λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MVP: policy learning rate is 7e-5 ∈ {7e-4, 3e-4, 7e-5}. y learning rate is the same. λ = 0.2 ∈ {0.2,
0.4, 0.6}.

MG: policy learning rate is 7e-4 ∈ {7e-4, 3e-4, 7e-5}, value function learning rate is 10 times policy
learning rate. λ = 0.6 ∈ {0.4, 0.6, 0.8}. Sample size n = 30. Maximum inner update number
M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

MVPI: Q function learning rate is 7e-4 ∈ {7e-4, 3e-4, 7e-5}, λ = 0.2 ∈ {0.2, 0.4, 0.6}. Batch size is
64.

10.3.2 Return Variance and Gini Deviation in LunarLander
The return’s variance and GD of different methods during training is shown in Figure 11. All the
risk-averse methods, apart from ours, fail to learn a reasonable policy in this domain. Our method
achieves a comparable return, but with lower variance and GD compared with risk-neutral method.

3https://www.gymlibrary.dev/environments/box2d/lunar_lander/

19

Figure 9: Policy evaluation return and optimal risk-aversion rate v.s. training episodes in Maze (goal
reward is 20) for MVO, Tamar, MVP, and MG with different λ. The reasonable λ range varies in
different methods. Curves are averaged over 10 seeds with shaded regions indicating standard errors.

20

Figure 10: Divide the ground of LunarLander into left and right parts by the middle (red) line. If
landing in the right area, an additional reward sampled from N (0, 1) times 90 is given.

Figure 11: Return variance and Gini deviation of different methods in LunarLander. Curves are
averaged over 10 seeds with shaded regions indicating standard errors.

10.4 InvertedPendulum

(The description of the Mujoco environments can be found at this webpage 4.)

The agent’s goal is to balance a pole on a cart. The state dimension is 4 (X-position is already
contained). The action dimension is 1. At each step, the environment provides a reward of 1.
If the agent reaches the region X-coordinate > 0.01, an additional noisy reward signal sampled
from N (0, 1) times 10 is given. To avoid the initial random speed forcing the agent to the X-
coordinate > 0.01 region, we decrease the initial randomness for the speed from U(−0.01, 0.01)
to U(−0.0005, 0.0005), where U() represents the uniform distribution. The game ends if angle
between the pole and the cart is greater than 0.2 radian or a maximum episode length 500 is reached.

Policy function. The policy is a normal distribution in REINFORCE, and VPG based methods
(MVO, Tamar, MVP, and MG), modeled as a neural network with two hidden layers. The hidden size
is 128. Activation is ReLU. Tanh is applied to the output to scale it to (−1, 1). The output times the
maximum absolute value of the action serves as the mean of the normal distribution. The logarithm
of standard deviation is an independent trainable parameter.

The policy is a deterministic function in TD3 and MVPI, modeled as a neural network with two
hidden layers. The hidden size is 128. Activation is ReLU. Tanh is applied to the output to scale it to
(−1, 1). The output times the maximum absolute value of the action is the true action executed in the
environment.

Value function. The value function in REINFORCE, VPG based MVO, VPG based MG, TD3, and
MVPI is a neural network with two hidden layers. The hidden size is 128. Activation is ReLU.

Optimizer. Optimizer for both policy and value function is Adam.

10.4.1 Learning Parameters
Discount factor γ = 0.999.

REINFORCE (with baseline): policy learning rate is 1e-4 ∈ {1e-4, 5e-5, 5e-4}, value function
learning rate is 10 times policy learning rate.

4https://www.gymlibrary.dev/environments/mujoco/

21

MVO: policy learning rate is 1e-5 ∈ {1e-4, 5e-5, 1e-5}, value function learning rate is 10 times
policy learning rate. λ = 0.6 ∈ {0.2, 0.4, 0.6}. Sample size n = 30. Maximum inner update number
M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

Tamar: policy learning rate is 1e-5 ∈ {1e-4, 5e-5, 1e-5}. J, V learning rate is 100 times policy
learning rate. Threshold b = 50 ∈ {10,50,100}. λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MVP: policy learning rate is 1e-5 ∈ {1e-4, 5e-4, 1e-5}. y learning rate is the same. λ = 0.2 ∈ {0.2,
0.4, 0.6}.

MG: policy learning rate is 1e-4 ∈ {1e-4, 5e-5, 1e-4}, value function learning rate is 10 times policy
learning rate. λ = 1.0 ∈ {0.6, 1.0, 1.4}. Sample size n = 30. Maximum inner update number
M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

MVPI: Policy and value function learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, λ = 0.2 ∈ {0.2, 0.4, 0.6}.
Batch size is 256.

TD3: Policy and value function learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}. Batch size is 256.

10.4.2 Return Variance and Gini Deviation in InvertedPendulum
The return varaince and GD of different methods are shown in Figure 12 and 13.

0 20 40 60 80 100 120
Episodes(1k)

0

5000

10000

15000

20000

25000

30000

35000
InvertedPendulum, Return Variance

REINFORCE
MVO (failed)
Tamar (failed)
MVP (failed)
MG

0 20 40 60 80 100 120
Episodes(1k)

0

20

40

60

80

100
InvertedPendulum, Return Gini Deviation

REINFORCE
MVO (failed)
Tamar (failed)
MVP (failed)
MG

Figure 12: Return variance and Gini deviation of policy gradient methods in InvertedPendulum.
Curves are averaged over 10 seeds with shaded regions indicating standard errors.

0 20 40 60 80 100
Steps(10k)

0

5000

10000

15000

20000

25000

InvertedPendulum, Return Variance

TD3
MVPI

0 20 40 60 80 100
Steps(10k)

0

10

20

30

40

50

60

70

InvertedPendulum, Return Gini Deviation

TD3
MVPI

Figure 13: Return variance and Gini deviation of TD3 and MVPI in InvertedPendulum. Curves are
averaged over 10 seeds with shaded regions indicating standard errors.
10.5 HalfCheetah
The agent controls a robot with two legs. The state dimension is 18 (add X-position). The action
dimension is 6. The reward is determined by the speed between the current and the previous time
step and a penalty over the magnitude of the input action (Originally, only speed toward right is
positive, we make the speed positive in both direction so that agent is free to move left or right). If
the agent reaches the region X-coordinate < −3, an additional noisy reward signal sampled from
N (0, 1) times 10 is given. The game ends when a maximum episode length 500 is reached.

Policy function. The policy is a normal distribution in PPO, and PPO based methods (MVO, Tamar,
MVP, and MG). The architecture is the same as in InvertedPendulum. Hidden size is 256.

The policy of TD3 and MVPI is the same as in InvertedPendulum. Hidden size is 256.

Value function. The value function in PPO, PPO based methods (MVO, Tamar, MVP, and MG), TD3
and MVPI is a neural network with two hidden layers. The hidden size is 256. Activation is ReLU.

Optimizer. Optimizer for policy and value is Adam.

22

10.5.1 Learning Parameters

Discount factor is γ = 0.99.

Common parameters of PPO and PPO based methods. GAE parameter: 0.95, Entropy coef: 0.01,
Critic coef: 0.5, Clip ϵ: 0.2, Grad norm: 0.5.

PPO. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the same. Inner
update number M = 5.

MVO. policy learning rate 7e-5 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the same. Sample
size n = 10. Inner update number 5.

Tamar. policy learning rate 7e-5 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the same. J, V
learning rate is 100 times policy learning rate. Threshold b = 50 ∈ {10,50,100}. λ = 0.2 ∈ {0.2, 0.4,
0.6}.

MVP. policy learning rate 7e-5 ∈ {3e-4, 7e-5, 1e-5}, value function and y learning rate is the same.
λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MG. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the same. Sample
size n = 10. Inner update number M = 5.

TD3. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the same. Batch
size is 256.

MVPI. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the same. λ =
0.2 ∈ {0.2, 0.4, 0.6}. Batch size is 256.

10.5.2 Return Variance and Gini Deviation in HalfCheetah
See Figures 14 and 15.

0 5 10 15 20 25 30
Episodes(1k)

0

50000

100000

150000

200000

HalfCheetah, Return Variance

PPO
MVO (failed)
Tamar (failed)
MVP (failed)
MG

0 5 10 15 20 25 30
Episodes(1k)

50

100

150

200

HalfCheetah, Return Gini Deviation

PPO
MVO (failed)
Tamar (failed)
MVP (failed)
MG

Figure 14: Return variance and Gini deviation of on-policy methods in HalfCheetah. Curves are
averaged over 10 seeds with shaded regions indicating standard errors

0 20 40 60 80 100
Steps(10k)

0

10000

20000

30000

40000

50000

60000

70000

80000

HalfCheetah, Return Variance

TD3
MVPI

0 20 40 60 80 100
Steps(10k)

0

20

40

60

80

100

120

140

HalfCheetah, Return Gini Deviation

TD3
MVPI

Figure 15: Return variance and Gini deviation of off-policy methods in HalfCheetah. Curves are
averaged over 10 seeds with shaded regions indicating standard errors
10.6 Swimmer
The agent controls a robot with two rotors (connecting three segments) and learns how to move.
The state dimension is 10 (add XY-positions). The action dimension is 2. The reward is determined
by the speed between the current and the previous time step and a penalty over the magnitude of
the input action (Originally, only speed toward right is positive, we make the speed positive in both
direction so that agent is free to move left or right). If agent reaches the region X-coordinate > 0.5,
an additional noisy reward signal sampled from N (0, 1) times 10 is given. The game ends when a
maximum episode length 500 is reached.

23

The neural network architectures and learning parameters are the same as in HalfCheetah.

10.6.1 Return Variance and Gini Deviation in Swimmer

See Figures 16 and 17.

0 5 10 15 20 25 30
Episodes(1k)

0

5000

10000

15000

20000

25000

30000

Swimmer, Return Variance

PPO
MVO
Tamar
MVP
MG

0 5 10 15 20 25 30
Episodes(1k)

10

20

30

40

50

60

70

80

90

Swimmer, Return Gini Deviation

PPO
MVO
Tamar
MVP
MG

Figure 16: Return variance and Gini deviation of on-policy methods in Swimmer. Curves are averaged
over 10 seeds with shaded regions indicating standard errors

0 20 40 60 80 100
Steps(10k)

0

5000

10000

15000

20000

25000

30000

35000

Swimmer, Return Variance

TD3
MVPI

0 20 40 60 80 100
Steps(10k)

20

40

60

80

100

Swimmer, Return Gini Deviation

TD3
MVPI

Figure 17: Return variance and Gini deviation of off-policy methods in Swimmer. Curves are
averaged over 10 seeds with shaded regions indicating standard errors

11 Additional Results

We design two other senarios in HalfCheetah and Swimmer (marked as HalfCheetah1 and Swimmer1
in the figure’s caption). Here the randomness of the noisy reward linearly decreases over the forward
distance (right direction) the agent has covered. To encourage the agent to move forward, only the
forward speed is positive. The additional noisy reward is sampled from N (0, 1) times 10 times 1− X

20
if X-position > 0. To maximize the expected return and minimize the risk, the agent should move
forward as far as possible.

The learning parameters are the same as Section 10.5.

The distance agents covered in these two environments are shown in Figures 18 19.

Figure 18: The distance agents covered in HalfCheetah1. Curves are averaged over 10 seeds with
shaded regions indicating standard errors.

24

Figure 19: The distance agents covered in Swimmer1. Curves are averaged over 10 seeds with shaded
regions indicating standard errors.

12 Additional Related Work and Discussion

12.1 Coherent measure of variability and risk

This paper focuses on the measure of variability, i.e., the dispersion of a random variable. Both
variance and Gini deviation are measures of variability as discussed in Sections 2 and 3. Gini
deviation is further known as a coherent measure of variability.

Another widely adopted risk measure is conditional value at risk (CVaR), which is a coherent risk
measure [48]. Coherence is usually important in financial domains. Consider a continuous random
variable Z with the cumulative distribution function F (z) = P (Z ≤ z). The value at risk (VaR) or
quantile at confidence level α ∈ (0, 1] is defined as VaRα(Z) = min{z|F (z) ≥ α}. Then the CVaR
at confidence level α is defined as

CVaRα(Z) =
1

α

∫ α

0

VaRβ(Z)dβ (25)

Due to the nature of CVaR of only considering the tailed quantiles, it does not capture the variability
of Z beyond the quantile level α. Thus it is not considered as a measure of variability. In [25],
measures of variability and measures of risk are clearly distinguished and their coherent properties
are different. We summarize their properties here [25].

Consider a measure ρ : M → (−∞,∞]

• (A) Law-invariance: if X,Y ∈ M have the same distributions, then ρ(X) = ρ(Y)

• (A1) Positive homogeneity: ρ(λX) = λρ(X) for all λ > 0, X ∈ M
• (A2) Sub-additivity: ρ(X + Y) ≤ ρ(X) + ρ(Y) for X,Y ∈ M
• (B1) Monotonicity: ρ(X) ≤ ρ(Y) when X ≤ Y , X,Y ∈ M
• (B2) Translation invariance: ρ(X −m) = ρ(X)−m for all m ∈ R, X ∈ M
• (C1) Standardization: ρ(m) = 0 for all m ∈ R
• (C2) Location invariance: ρ(X −m) = ρ(X) for all m ∈ R, X ∈ M

Coherent measure of variability: A measure of variability is coherent if it satisfies properties (A),
(A1), (A2), (C1) and (C2). An example is Gini deviation.

Coherent risk measure: A risk measure is coherent if it satisfies properties (A1), (A2), (B1) and
(B2). An example is CVaR.

12.2 CVaR optimization in RL

CVaR focuses on the extreme values of a random variable and is usually adopted in RL domains
to avoid catastrophic outcomes. Policy gradient is an important method to optimize CVaR, e.g.,
see [33][49][7]. Since CVaR focuses on the worst returns, policy gradient techniques often ignore
high-return trajectories [33, 50]. [7] proposed cross entropy soft risk optimization to improve sample
efficiency by optimizing with respect to all trajectories while maintaining risk aversion. A time
difference method is proposed in [51]. CVaR is also used for action selection in distributional RL
literature, e.g., see [35][52][53].

25

	Introduction
	Mean-Variance Reinforcement Learning
	Total Return Variance
	Per-step Reward Variance

	Gini Deviation as an Alternative of Variance
	Gini Deviation: Definition and Properties
	Signed Choquet Integral for Gini Deviation

	Policy Gradient for Mean-Gini Deviation
	Gini Deviation Gradient Formula
	Gini Deviation Policy Gradient via Sampling
	Incorporating Importance Sampling

	Experiments
	Tabular case: Modified Guarded Maze Problem
	Discrete control: LunarLander
	Continuous control: Mujoco

	Conclusion and Future Work
	Convex Order, Gini Deviation, and Variance
	GD Gradient Formula Calculation
	General GD Gradient Formula
	GD Policy Gradient via Sampling

	Mean-GD Policy Gradient Algorithm
	Experiments Details
	General Descriptions of Different Methods
	Modified Guarded Maze Problem
	Learning Parameters
	Analysis for MVPI in Maze (MVPI-Q-Learning)
	Return Variance and Gini Deviation in Maze
	Sensitivity to Trade-off Parameter

	LunarLander Discrete
	Learning Parameters
	Return Variance and Gini Deviation in LunarLander

	InvertedPendulum
	Learning Parameters
	Return Variance and Gini Deviation in InvertedPendulum

	HalfCheetah
	Learning Parameters
	Return Variance and Gini Deviation in HalfCheetah

	Swimmer
	Return Variance and Gini Deviation in Swimmer

	Additional Results
	Additional Related Work and Discussion
	Coherent measure of variability and risk
	CVaR optimization in RL

