Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning

Pascal Poupart (University of Waterloo)

INFORMS 2009

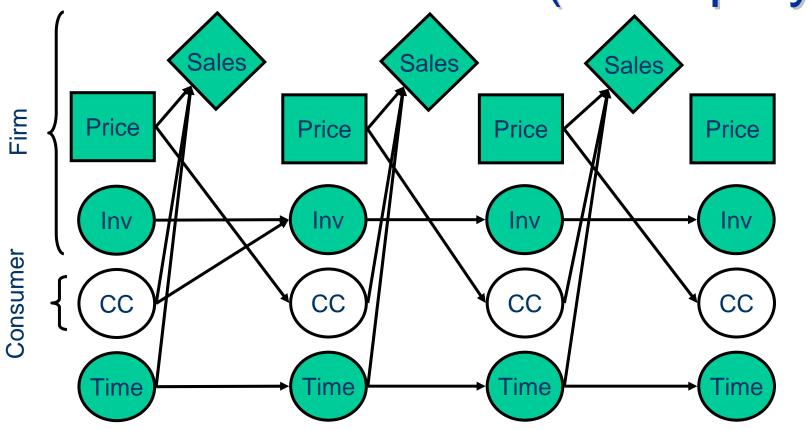
Outline

- Dynamic Pricing as a POMDP
- Symbolic Perseus
 - Generic POMDP solver
 - Point-based value iteration
 - Algebraic decision diagrams
- Experimental evaluation
- Conclusion

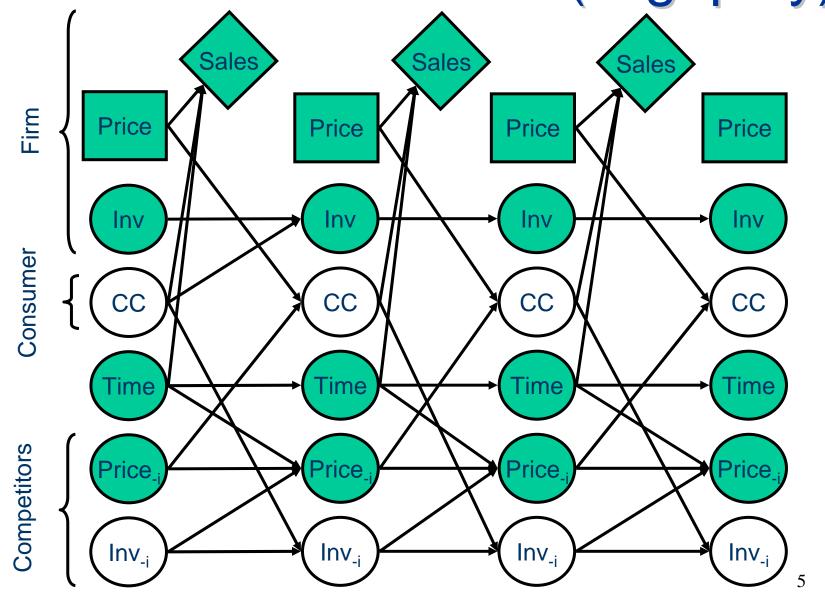
Setting

- One or several firms (monopoly or oligopoly)
- Fixed capacity and fixed number of selling rounds (i.e., sale of seasonal items)
- Finite range of prices
- Unknown and varying demand
- Question: how to dynamically adjust prices to maximize sales?

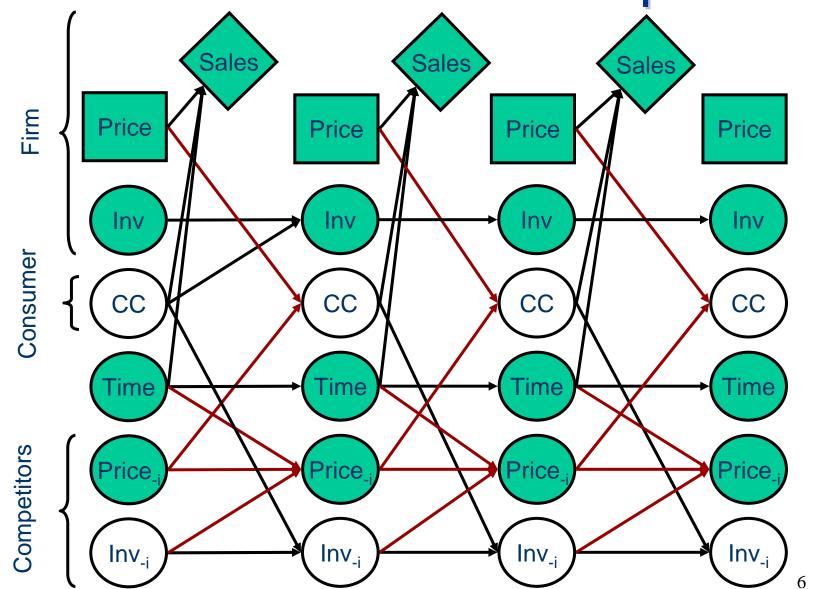
POMDPs Formulation (monopoly)



POMDPs Formulation (oligopoly)



Unknown demand & competitors



Demand Model

Probability that consumer chooses firm i:

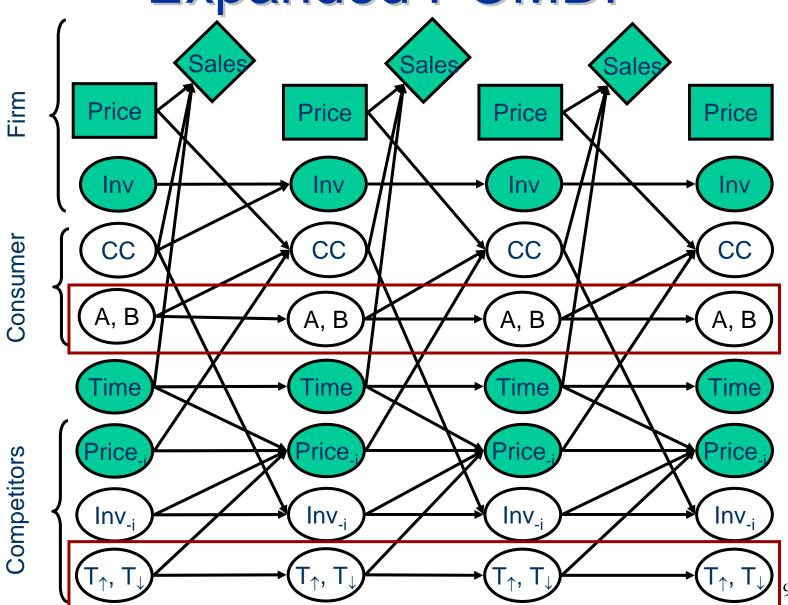
$$Pr(CC=i) = \underbrace{e^{a_i + b_i p_i}}_{\sum_i e^{a_i + b_i p_i} + 1}$$

- Parameters a_i and b_i are unknown
- Learn them
 - From historical data
 - As process evolves

Competitors

- Model each competitor:
 - Pricing strategy: inv/time → price
 - Two thresholds: t_{up} and t_{down}
 - If inv/time < t_{up} → price↑
 - If inv/time > t_{down} → price↓
- Learn thresholds
 - From historical data
 - As process evolves

Expanded POMDP



POMDPs

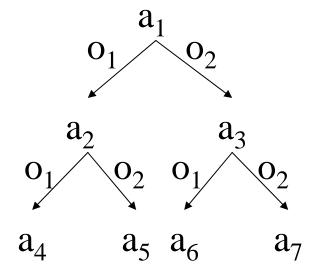
- Partially Observable Markov Decision Processes
 - S: set of states
 - Cross product of domain of all variables
 - $|S| = \prod_i |dom(V_i)|$ (exponentially large!)
 - A: set of actions
 - {price[↑], price[↓], price unchanged}
 - O: set of observations
 - Cross product of domain of observable variables
 - -T(s,a,s') = Pr(s'|s,a): transition function
 - Factored rep: $Pr(s'|s,a) = \prod_i Pr(V_i|parents(V_i))$
 - R(s,a) = r: reward function
 - Sale = price x CC

Belief monitoring

- Belief: b(s)
 - Distribution over states
- Belief update: Bayes theorem
 - $-b_{ao'}(s') = k \Sigma_{s \in S} b(s) Pr(s'|s,a) Pr(o'|a,s')$
 - $-b_{ao'} = < o', a, b >$
- Demand learning and opponent modeling:
 - Implicit learning by belief monitoring

Policy trees

- Policy π
 - Mapping from past actions & obs to next action
 - Tree representation



- Problem: tree grows exponentially with time

Policy Optimization

- Policy $\pi: B \to A$
 - mapping from beliefs to actions
- Value function $V^{\pi}(b) = \Sigma_t \gamma^t E_{b \nmid \pi} [R]$
- Optimal policy π^* :
 - $-V^*(b) \geq V^{\pi}(b)$ for all π,b
- Bellman's Equation:
 - $-V^*(b) = \max_a \mathsf{E}_b[R] + \gamma \Sigma_{o'} \mathsf{Pr}(o'|s,a) V^*(b_{ao'})$

Difficulties

- Exponentially large state space
 - $|\mathbf{S}| = \prod_i |\text{dom}(V_i)|$
 - Solution: algebraic decision diagrams
- Complex policy space
 - Policy π : B → A
 - Continuous belief space
 - Solution: point-based Bellman backups

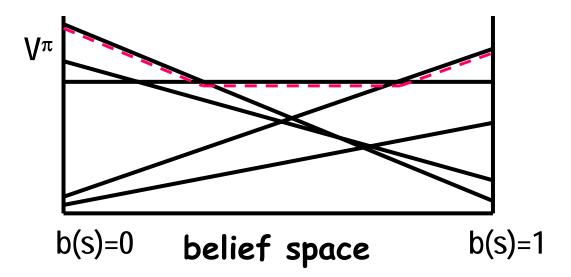
Symbolic Perseus

Point-based + algebraic value iteration + decision diagrams

- Publicly available:
 - http://www.cs.uwaterloo.ca/~ppoupart/software.html
- Has been used to solve POMDPs with millions of states
- Currently used by
 - Intel, Toronto Rehabilitation Institute, Univ of Dundee,
 Technical Univ of Lisbon, Univ of British Columbia,
 Univ of Manchester, Univ of Waterloo

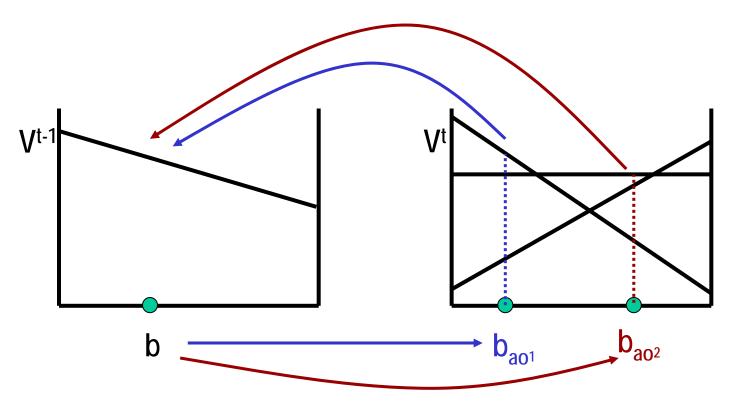
Piecewise linear & convex val fn

- Value of a policy tree β is linear $V^{\beta}(b_0) = \Sigma_{s \in S} b_0(s) V^{\beta}(s)$
- Value of an optimal finite horizon policy is piecewise-linear and convex [SS73]



Point-based value iteration

• Point-based backup (Pineau & al. 2003) $\alpha_{t-1}(b) = \max_{a} \mathsf{E}_{b}[R] + \gamma \; \Sigma_{o'} \, \mathsf{Pr}(o'|s,a) \; \alpha_{t}(b_{ao'})$

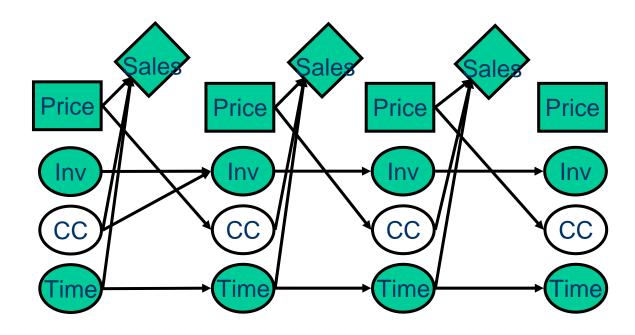


Algebraic Decision Diagrams

First use in MDPs: Hoey et al. 1999

- Factored Representation
 - Exploit conditional independence
 - $Pr(s'|s,a) = \prod_i Pr(V_i|parents(V_i))$
- Automatic State aggregation
 - Exploit context specific independence
 - Exploit sparsity

Factored Representation



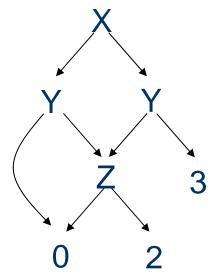
- Transition fn: Pr(s'|s,a)
 - Flat representation: matrix O(|S|²)
 - Factored representation: often O(log |S|)

Computation with Factored Rep

- Belief monitoring:
 - $-b_{ao'}(s') = k Pr(o'|a,s') \Sigma_s b(s) Pr(s'|s,a)$
- Point-based Bellman backup:
 - $-\alpha(s) = \max_{a} R(s,a) + \Sigma_{s'o'} Pr(s'|s,a) Pr(o'|a,s') \alpha_{ao'}(s')$
- Flat representation: O(|S|²)
- Factored representation: often O(|S| log |S|)

Algebraic Decision Diagrams

- Tree-based representation
 - Acyclic directed graph
- Avoid duplicate entries
 - Exploit context
 specific independence
 - Exploit sparsity



Xyz	0
xy~z	0
x~yz	0
x~y~z	2

~xyz	0
~xy~z	2
~x~yz	3
~x~y~z	3

Empirical Results

Monopolistic Dynamic Pricing

Inv / Time	S	SP Value	Upper bound	Runtime (min)
10 / 20	73,920	121	133	19
15 / 30	158,720	152	167	48
20 / 40	275,520	171	187	61
25 / 50	424,320	182	198	161
30 / 60	605,120	188	199	350
35 / 70	817,920	192	199	448

COACH project

- Automated prompting system to help elderly persons wash their hands
- IATSL: Alex Mihailidis, Jesse Hoey, Jennifer Boger et al.

Policy Optimization

- Partially observable MDP:
 - Handle noisy HandLocation and noisy WaterFlow
 - Can adapt to user responsiveness
 - 50,181,120 states, 20 actions, 12 observations
- Approximation: fully observable MDP
 - Assume HandLocation, WaterFlow are fully observable
 - Remove responsiveness user variable
 - 25,090,560 states, 20 actions

Empirical Comparison (Simulation)

DL/RE/AW	PO-	Heur-	Null	CG	CE	fo-
	MDP	istic				MDP
lo/none/never	3.8±1.2	-1.1 ± 0.9	-2.0 ± 0.0	-75.2 ± 3.2	6.8±0.6	9.1±0.4
lo/max/no	3.0 ± 0.5	2.3 ± 0.7	-0.9 ± 0.1	-92.1 ± 4.2	2.8±1.2	6.3±0.7
lo/med/yes	$4.5{\pm}1.1$	3.9 ± 0.6	0.1±0.5	-117.8 ± 4.0	-0.2 ± 0.7	7.4 ± 0.7
med/max/no	1.1±1.0	1.4 ± 0.7	0.2±0.3	-93.6 ± 3.9	3.4 ± 0.8	6.0±0.8
med/min/yes	5.1 ± 0.9	6.3 ± 0.7	3.1±1.5	-118.4 ± 4.3	0.9±0.9	8.1±0.6
hi/med/no	7.1 ± 0.7	5.6 ± 0.4	0.4±0.3	-95.6 ± 3.9	7.2 ± 0.7	9.3±0.6
hi/min/yes	8.3±0.7	9.8 ± 0.6	9.7±0.9	-118.5 ± 4.3	$3.7{\pm}1.0$	9.1±0.7
ρ_0	4.9±1.1	3.8±2.8	0.9±3.3	-97 ± 16	4.2±2.5	8.3±1.1
ρδ	4.8±0.6	4.6±1.0	0.5±2.1	-105 ± 13	2.9±2.4	7.9±0.8

Conclusion

- Natural encoding of Dynamic Pricing as POMDP
 - Demand and competitor learning by belief monitoring
 - Factored model
- Symbolic Perseus (generic POMDP solvers)
 - Point-based value iteration + algebraic decision diagrams
 - Exploit problem specific structure
- Future work
 - Bayesian reinforcement learning
 - Planning as inference