Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Pascal Poupart
David R. Cheriton School of Computer Science
University of Waterloo
Outline

• Review
 – Markov Models
 – Reinforcement Learning

• Some areas of active research relevant to SDS
 – Bayesian Reinforcement Learning (BRL)
 – Inverse Reinforcement Learning (IRL)
 – Predictive State Representations (PSRs)

• Conclusion
Automated System

• Abstraction:

• Problems:
 – Uncertain action effects
 – Imprecise percepts
 – Unknown environment
Automated System

• Spoken Dialogue System:

 Book flight

 Booking system

 utterance

 Speech recognizer

 user

• Problems:
 – User may not hear/understand system utterances
 – Imprecise speech recognizer
 – Unknown user model
Markov Models

Markov Process

MDP

HMM

DBN

POMDP

PO-RL

RL

Decision making

Learning

Partial observability
Stochastic Process

• World state changes over time

• Convention:
 – Circle: Random variable
 – Arc: Conditional dependency
 • Stochastic dynamics: \(\Pr(s_{t+1}|s_t, \ldots, s_0) \)

Too many dependencies!
• **Markov assumption**: current state depends only on finite history of past states

 – K-order Markov process:
 \[Pr(s_t|s_{t-1},...,s_{t-k},s_{t-k+1},...,s_0) = Pr(s_t|s_{t-1},...,s_{t-k}) \]

• **Example**:

 – N-gram model: \(Pr(\text{word}_i|\text{word}_{i-1},...,\text{word}_{i-n}) \)
• **Stationary Assumption:** dynamics do not change
 – $\Pr(s_t|s_{t-1},\ldots,s_{t-k})$ is same for all t

• Two slices sufficient for a first-order Markov process…
 – Graph:
 – Dynamics: $\Pr(s_t|s_{t-1})$
 – Prior: $\Pr(s_0)$
Markov Decision Process

- Intuition: (First-order) Markov Process with...
 - Decision nodes
 - Utility nodes
Markov Decision Process

• Definition
 – Set of states: S
 – Set of actions: A
 – Transition model: $T(s_{t-1},a_{t-1},s_t) = \Pr(s_t|a_{t-1},s_{t-1})$
 – Reward model: $R(s_t,a_t) = r_t$
 – Discount factor: $0 \leq \gamma \leq 1$

• Goal: find optimal policy
 – Policy π: $S \rightarrow A$
 – Value: $V^\pi(s) = E_\pi \left[\sum_t \gamma^t r_t \right]$
 – Optimal policy π^*: $V^{\pi^*}(s) \geq V^{\pi}(s) \ \forall \pi,s$
MDPs for SDS

• MDPs for SDS: Biermann and Long (1996), Levin and Pieraccini (1997), Singh et al. (1999), Levin et al. (2000)

• Flight booking example:
 – State: Assignment of values to dep. date, dep. time, dep. city and dest. city
 – Actions: any utterance (e.g., question, confirmation)
 – User model: Pr(user response | sys. utterance, state)
 – Rewards: positive reward for correct booking, negative reward for incorrect booking
Value Iteration

• Three families of algorithms:
 - Value iteration, policy iteration, linear programming

• Bellman’s equation:
 - \(V(s_t) = \max_{a_t} R(s_t, a_t) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_t, a_t) V(s_{t+1}) \)
 - \(a_t^* = \arg\max_{a_t} R(s_t, a_t) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_t, a_t) V(s_{t+1}) \)

• Value iteration:
 - \(V(s_h) = R(s_h) \)
 - \(V(s_{h-1}) = \max_{a_{h-1}} R(s_{h-1}, a_{h-1}) + \gamma \sum_{s_h} \Pr(s_h|s_{h-1}, a_{h-1}) V(s_h) \)
 - \(V(s_{h-2}) = \max_{a_{h-2}} R(s_{h-2}, a_{h-2}) + \gamma \sum_{s_{h-1}} \Pr(s_{h-1}|s_{h-2}, a_{h-2}) V(s_{h-1}) \)
Unrealistic Assumptions

• Transition (user) model known:
 – How to learn a good user model?

• Reward model known:
 – How to assess user preferences?

• Speech recognizer flawless:
 – How to account for ASR errors?
Reinforcement Learning

- Markov Decision Process:
 - S: set of states
 - A: set of actions
 - $R(s,a) = r$: reward model
 - $T(s,a,s') = \Pr(s'|s,a)$: transition function

Algorithms for RL

- **Model-based RL:**
 - Estimate T from s, a, s' triples
 - E.g., Max likelihood: $\Pr(s'|s,a) = \#(s,a,s') / \#(s,a,\cdot)$
 - Model learning: **offline** (corpus of s,a,s' triples) and/or **online** (s,a,s' directly from env.)

- **Model-free RL:**
 - Estimate V^* and/or π^* directly
 - E.g., Temporal difference:
 $$Q(s,a) = Q(s,a) + \alpha \left[R(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$
 - Learning: **offline** (s,a,s' from simulator) **online** (s,a,s' directly from environment)
Successes of RL

• Backgammon [Tesauro 1995]
 – Temporal difference learning
 – Trained by self-play
 – Simulator: opponent model consists of itself
 – Offline learning: simulated millions of games

• Helicopter control [Ng et al. 2003, 2004]
 – PEGASUS: stochastic gradient descent
 – Offline learning: with flight simulator
Outline

• Review
 – Markov Models
 – Reinforcement Learning

• Some areas of active research relevant to SDS
 – Bayesian Reinforcement Learning (BRL)
 – Inverse Reinforcement Learning (IRL)
 – Predictive State Representations (PSRs)

• Conclusion
Assistive Technologies

- Handwashing assistant
 - [Boger et al. IJCAI-05]

- Use RL to adapt to users
 - Start with basic user model
 - Online learning:
 - Adjust model as system interacts with users
 - Bear cost of actions
 - Cannot explore too much
 - Real-time response
Bayesian Model-based RL

• Formalized in Operations Research by Howard and his students at MIT in the 1960s

• Advantages
 – Opt. exploration/exploitation tradeoff
 – Encode prior knowledge

 \(\text{less data required} \)
Bayesian Model-based RL

• Disadvantage:
 – Computationally complex

• Poupart et al. (ICML 2006):
 – Optimal value function has simple parameterization
 • i.e., upper envelope of a set of multivariate polynomials
 – BEETLE: Bayesian Exploration/Exploitation Tradeoff in LEarning
 • Exploit polynomial parameterization
Bayesian RL

- Basic Idea:
- Encode unknown prob. by random variables θ
 - i.e., $\theta_{sas'} = \Pr(s'|s,a)$: random variable in $[0,1]$
 - i.e., $\theta_{sa} = \Pr(\bullet|s,a)$: multinomial distribution

- Model learning: update $\Pr(\theta)$
- $\Pr(\theta)$ tells us which part of the model are not well known and therefore worth exploring
Model Learning

• Assume prior $b(\theta_{sa}) = \Pr(\theta_{sa})$

• Learning: compute posterior given s,a,s'
 - $b_{sas'}(\theta_{sa}) = k \Pr(\theta_{sa}) \Pr(s'|s,a,\theta_{sa}) = k b(\theta_{sa}) \theta_{sas'}$

• Conjugate prior:
 - Dirichlet prior \rightarrow Dirichlet posterior

• $b(\theta_{sa}) = \text{Dir}(\theta_{sa}; n_{sa}) = k \prod_{s''} (\theta_{sas''})^{n_{sas''}} - 1$

• $b_{sas'}(\theta_{sa}) = k b(\theta_{sa}) \theta_{sas'}$
 - $= k \prod_{s''} (\theta_{sas''})^{n_{sas''}} - 1 + \delta(s',s'')$
 - $= k \text{Dir}(\theta_{sa}; n_{sa} + \delta(s',s''))$
Prior Knowledge

- **Structural priors**
 - Tie identical parameters
 - If $Pr(\cdot|s,a) = Pr(\cdot|s',a')$ then $\theta_{sa} = \theta_{s'a'}$
 - Factored representation
 - DBN: unknown conditional dist.

- **Informative priors**
 - No knowledge: uniform Dirichlet
 - If $(\theta_1, \theta_2) \sim (0.2, 0.8)$ then set (n_1, n_2) to $(0.2k, 0.8k)$
 - k indicates the level of confidence
Policy Optimization

• Classic RL:
 – \(V^*(s) = \max_a R(s,a) + \sum_{s'} \Pr(s'|s,a) V^*(s') \)
 – Hard to tell what needs to be explored
 – Exploration heuristics: \(\varepsilon \)-greedy, Boltzmann, etc.

• Bayesian RL:
 – \(V^*(s,b) = \max_a R(s,a) + \sum_{s'} \Pr(s'|s,b,a) V^*(s',b_{sas'}) \)
 – Belief \(b \) tells us what parts of the model are not well known and therefore worth exploring
 – Optimal exploration/exploitation tradeoff
Value Function Parameterization

- **Theorem:** V^* is the upper envelope of a set of multivariate polynomials ($V_s(\theta) = \max_i \text{poly}_i(\theta)$)

- **Proof:** by induction
 - Define value function in terms of θ instead of b
 - i.e. $V^*(s,b) = \int_\theta b(\theta) V_s(\theta) \, d\theta$
 - Bellman’s equation
 - $V_s(\theta) = \max_a R(s,a) + \sum_{s'} \Pr(s'|s,a,\theta) \ V_{s'}(\theta)$
 - $= \max_a k_a + \sum_{s'} \theta_{sas'} \max_i \text{poly}_i(\theta)$
 - $= \max_j \text{poly}_j(\theta)$
BEETLE Algorithm

- Sample a set of reachable belief points B
- \(V \leftarrow \{0\} \)
- Repeat
 - \(V' \leftarrow \{} \)
 - For each b in B compute multivariate polynomial
 - \(\text{poly}_{as'}(\theta) \leftarrow \arg\max_{\text{poly} \in V} \int_\theta b_{sas'}(\theta) \text{poly}(\theta) \, d\theta \)
 - \(a^* \leftarrow \arg\max_a \int_\theta b_{sas'}(\theta) R(s,a) + \sum_{s'} \theta_{sas'} \text{poly}_{as'}(\theta) \, d\theta \)
 - \(\text{poly}(\theta) \leftarrow R(s,a^*) + \sum_{s'} \theta_{sa^*s'} \text{poly}_{a^*s'}(\theta) \)
 - \(V' \leftarrow V' \cup \{\text{poly}\} \)
 - \(V \leftarrow V' \)
Bayesian RL

• **Summary:**
 - Optimizes exploration/exploitation tradeoff
 - Easily encode prior knowledge to reduce exploration

• **Potential for SDS:**
 - **Online user modeling:**
 • Tailor model to specific user with least exploration possible
 - **Offline user modelling:**
 • Large corpus of unlabeled dialogues
 • Labeling takes time
 • Automated selection of a subset of dialogues to be labeled
 • Active learning: Jaulmes, Pineau et al. (2005)
Outline

• Review
 – Markov Models
 – Reinforcement Learning

• Some areas of active research relevant to SDS
 – Bayesian Reinforcement Learning (BRL)
 – Inverse Reinforcement Learning (IRL)
 – Predictive State Representations (PSRs)

• Conclusion
Reward Function

• MDPs: T and $R \rightarrow \pi$
• RL: $s, a, s', R \rightarrow \pi$
• But R is often difficult to specify!

• SDS booking system:
 – Correct booking: large positive reward
 – Incorrect booking: large negative reward
 – Cost per question: ???
 – Cost per confirmation: ???
 – User frustration: ???

Apprenticeship learning

- Sometimes: expert policy π^+ observable

- Apprenticeship learning:
 - Imitation: $\pi^+ \rightarrow \pi$
 - When T doesn’t change, just imitate policy directly
 - Inverse RL: π^+ and $s,a,s' \rightarrow R$
 - When T could change, estimate R
 - Then do RL: s,a,s' and $R \rightarrow \pi$
 - For different SDS, we have different policies because of different scenarios, but perhaps the same R can be used.
Inverse RL

• In AI: Ng and Russell (2000), Abbeel and Ng (2004), Ramachandran and Amir (2006)

• Bellman’s equation:
 \[V(s_t) = \max_{a_t} R(s_t, a_t) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_t, a_t) V(s_{t+1}) \]

• Idea: find \(R \) such that \(\pi^+ \) is optimal according to Bellman’s equation.

• Bayesian Inverse RL:
 – Prior \(\Pr(R) \)
 – Posterior \(\Pr(R|s,a,s',a',s'',a'',\ldots) \)
Outline

• Review
 – Markov Models
 – Reinforcement Learning

• Some areas of active research relevant to SDS
 – Bayesian Reinforcement Learning (BRL)
 – Inverse Reinforcement Learning (IRL)
 – Predictive State Representations (PSRs)

• Conclusion
Partially Observable RL

• States are rarely observable
• Noisy sensors: measurements are correlated with states of the world
• Extend Markov models to account for sensor noise

• Recall:
 – Markov Process \rightarrow HMM
 – MDP \rightarrow POMDP
 – RL \rightarrow PORL
Hidden Markov Model

• Intuition: Markov Process with …
 – Observation variables

• Example: speech recognition
Hidden Markov Model

• Definition
 – Set of states: S
 – Set of observations: O
 – Transition model: \(\Pr(s_t | s_{t-1}) \)
 – Observation model: \(\Pr(o_t | s_t) \)
 – Prior: \(\Pr(s_0) \)

• Belief monitoring:
 – Prior: \(b(s) = \Pr(s) \)
 – Posterior: \(b_{ao}(s') = \Pr(s'|a,o) \)
 \[= k \sum_s b(s) \Pr(s'|s,a) \Pr(o|s') \]
Partially Observable MDP

- Intuition: HMM with...
 - Decision nodes
 - Utility nodes
Partially Observable MDP

- Definition
 - Set of actions: A
 - Set of observations: O
 - Reward model: $R(s_t, a_t) = r_t$
 - Set of states: S
 - Transition model: $T(s_{t-1}, a_{t-1}, s_t) = \Pr(s_t | a_{t-1}, s_{t-1})$
 - Observation model: $Z(s_t, o_t) = \Pr(o_t | s_t)$

Partially Observable RL

• Definition
 – Set of actions: A
 – Set of observations: O
 – Reward model: $R(s_t, a_t) = r_t$
 – Set of states: S
 – Transition model: $T(s_{t-1}, a_{t-1}, s_t) = \Pr(s_t | a_{t-1}, s_{t-1})$
 – Observation model: $Z(s_t, o_t) = \Pr(o_t | s_t)$

• NB: S is generally unknown since it is an unobservable quantity
PORL algorithms

• Model-free PORL:
 – Stochastic gradient descent

• Model-based PORL:
 – Assume S, learn T and Z from a,o,a’,o’,… sequences
 • E.g. EM algorithm for HMMs
 • But S is really unknown
 • In SDS, S may refer to user intentions, mental state, language knowledge, etc.
 – Learn S, T and Z from a,o,a’,o’,… sequences
 • E.g., Predictive state representations
Sufficient statistics

• Beliefs are sufficient statistics to predict future observations
 – \(\Pr(o|b) = \sum_s b(s) \Pr(o|s) \)
 – \(\Pr(o'|b,o,a) = k \sum_s b(s) \Pr(o|s) \sum_{s'} \Pr(s'|s,a) \Pr(o'|s') \)
 = \(\sum_{s'} b_{o,a}(s') \Pr(o'|b_{o,a}) \)
 – …

• Are there more succinct sufficient statistics?
Predictive State Representations

• Belief b
 – vector of probabilities
 – Information to predict future observations
 – After each o,a pair, b is updated to $b_{o,a}$ using T and Z

• Idea: find sufficient statistic x such that
 – x is a vector of real numbers
 – x is a smaller vector than b
 – There exist functions f and g such that
 • $f(x) = \Pr(o|b)$
 • $g(x,a,o) = x_{o,a}$ and $f(g(x,a,o)) = \Pr(o|b,o,a)$
Predictive State Representations

- References: Litman et al. (2002), Poupart and Boutilier (2003), Singh et al. (2003), Rudary and Singh (2004), James and Singh (2004), etc.

- Potential for SDS
 - Instead of handcrafting state variables, learn a state representation of users from data
 - Learn a smaller user model
Conclusion

• Overview of Markov models for SDS

• RL topics of active research relevant to SDS:
 – Bayesian RL: tailor model to specific users
 – Inverse RL: learn reward model
 – PSR: learn state representation of user model

• Fields of machine learning and user modelling could offer more techniques to advance SDS