Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Pascal Poupart

David R. Cheriton School of Computer Science

University of Waterloo

Outline

- Review
 - Markov Models
 - Reinforcement Learning
- Some areas of active research relevant to SDS
 - Bayesian Reinforcement Learning (BRL)
 - Inverse Reinforcement Learning (IRL)
 - Predictive State Representations (PSRs)
- Conclusion

Automated System

Abstraction:

Problems:

- Uncertain action effects
- Imprecise percepts
- Unknown environment

Automated System

Spoken Dialogue System:

- Problems:
 - User may not hear/understand system utterances
 - Imprecise speech recognizer
 - Unknown user model

Markov Models

Stochastic Process

- World state changes over time
- Convention:
 - Circle: Random variable
 - Arc: Conditional dependency

Markov Process

- Markov assumption: current state depends only on finite history of past states
 - K-order Markov process:

$$Pr(s_t|s_{t-1},...,s_{t-k},s_{t-k},s_{t-k}) = Pr(s_t|s_{t-1},...,s_{t-k})$$

- Example:
 - N-gram model: Pr(word_i|word_{i-1}, ..., word_{i-n})

Markov Process

- Stationary Assumption: dynamics do not change
 - $Pr(s_t|s_{t-1},...,s_{t-k})$ is same for all t
- Two slices sufficient for a first-order Markov

process...

- Graph:

- Dynamics: $Pr(s_t|s_{t-1})$
- Prior: $Pr(s_0)$

Markov Decision Process

- Intuition: (First-order) Markov Process with...
 - Decision nodes
 - Utility nodes

Markov Decision Process

Definition

- Set of states: S
- Set of actions: A
- Transition model: $T(s_{t-1}, a_{t-1}, s_t) = Pr(s_t | a_{t-1}, s_{t-1})$
- Reward model: $R(s_t, a_t) = r_t$
- − Discount factor: $0 \le \gamma \le 1$
- Goal: find optimal policy
 - Policy π : S \rightarrow A
 - Value: $V^{\pi}(s) = E_{\pi} [\Sigma_t \gamma^t r_t]$
 - Optimal policy π^* : $V^{\pi^*}(s) \ge V^{\pi}(s) \ \forall \pi, s$

MDPs for SDS

- MDPs for SDS: Biermann and Long (1996), Levin and Pieraccini (1997), Singh et al. (1999), Levin et al. (2000)
- Flight booking example:
 - State: Assignment of values to dep. date, dep. time, dep. city and dest. city
 - Actions: any utterance (e.g., question, confirmation)
 - User model: Pr(user response | sys. utterance, state)
 - Rewards: positive reward for correct booking, negative reward for incorrect booking

Value Iteration

- Three families of algorithms:
 - Value iteration, policy iteration, linear programming
- Bellman's equation:
 - $V(s_t) = \max_{a_t} R(s_t, a_t) + \gamma \sum_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) V(s_{t+1})$
 - $a_t^* = argmax_{a_t} R(s_t, a_t) + \gamma \Sigma_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) V(s_{t+1})$
- Value iteration:
 - $-V(s_h) = R(s_h)$
 - $-V(s_{h-1}) = \max_{a_{h-1}} R(s_{h-1}, a_{h-1}) + \gamma \sum_{s_h} Pr(s_h | s_{h-1}, a_{h-1}) V(s_h)$
 - $-V(s_{h-2}) = \max_{a_{h-2}} R(s_{h-2}, a_{h-2}) + \gamma \sum_{s_{h-1}} Pr(s_{h-1}|s_{h-2}, a_{h-2})V(s_{h-1})$

Unrealistic Assumptions

Reinforcement Learning

- Markov Decision Process:
 - S: set of states
 - A: set of actions
 - R(s,a) = r: reward model
 - T(s,a,s') = Pr(s'|s,a): transition function

RL for SDS: Walker et al. (1998), Singh et al. (1999), Scheffler and Yound (1999), Litman et al. (2000), Levin et al. (2000), Pietquin (2004), Georgila et al (2005), Lewis & Di Fabbrizio (2006)

Reinforcement Learning

Algorithms for RL

Model-based RL:

- Estimate T from s,a,s' triples
 - E.g., Max likelihood: Pr(s'|s,a) = #(s,a,s') / #(s,a,•)
- Model learning: offline (corpus of s,a,s' triples) and/or online (s,a,s' directly from env.)

Model-free RL:

- Estimate V* and/or π^* directly
 - E.g., Temporal difference: $Q(s,a) = Q(s,a) + \alpha \left[R(s,a) + \gamma \max_{a'} Q(s',a') Q(s,a) \right]$
- Learning: offline (s,a,s' from simulator)
 online (s,a,s' directly from environment)

Successes of RL

- Backgammon [Tesauro 1995]
 - Temporal difference learning

- Trained by self-play
- Simulator: opponent model consists of itself
- Offline learning: simulated millions of games
- Helicopter control [Ng et al. 2003,2004]
 - PEGASUS: stochastic gradient descent
 - Offline learning: with flight simulator

Outline

- Review
 - Markov Models
 - Reinforcement Learning
- Some areas of active research relevant to SDS
 - Bayesian Reinforcement Learning (BRL)
 - Inverse Reinforcement Learning (IRL)
 - Predictive State Representations (PSRs)
- Conclusion

Assistive Technologies

- Handwashing assistant
 - [Boger et al. IJCAI-05]
- Use RL to adapt to users
 - Start with basic user model
 - Online learning:
 - Adjust model as system interacts with users
 - Bear cost of actions
 - Cannot explore too much
 - Real-time response

Bayesian Model-based RL

- Formalized in Operations Research by Howard and his students at MIT in the 1960s
- In AI: Kaelbling (1992), Meuleau and Bourgine (1999), Dearden & al (1998,1999), Strens (2000), Duff (2003), Wang & al (2005), Poupart & al (2006)
- Advantages
 - Opt. exploration/exploitation tradeoff
 - Encode prior knowledge

less data required

Bayesian Model-based RL

- Disadvantage:
 - Computationally complex
- Poupart et al. (ICML 2006):
 - Optimal value function has simple parameterization
 - i.e., upper envelope of a set of multivariate polynomials
 - BEETLE: Bayesian Exploration/Exploitation Tradeoff in LEarning
 - Exploit polynomial parameterization

Bayesian RL

- Basic Idea:
- Encode unknown prob. by random variables θ
 - i.e., $\theta_{sas'}$ = Pr(s'|s,a): random variable in [0,1]
 - i.e., θ_{sa} = Pr(•|s,a): multinomial distribution
- Model learning: update Pr(θ)
- Pr(θ) tells us which part of the model are not well known and therefore worth exploring

Model Learning

- Assume prior $b(\theta_{sa}) = Pr(\theta_{sa})$
- Learning: compute posterior given s,a,s'

$$-b_{sas'}(\theta_{sa}) = k Pr(\theta_{sa}) Pr(s'|s,a,\theta_{sa}) = k b(\theta_{sa}) \theta_{sas'}$$

Conjugate prior:

- Dirichlet prior → Dirichlet posterior
- $b(\theta_{sa}) = Dir(\theta_{sa}; n_{sa}) = k \prod_{s''} (\theta_{sas''})^{n_{sas''} 1}$

•
$$b_{sas'}(\theta_{sa}) = k b(\theta_{sa}) \theta_{sas'}$$

= $k \Pi_{s''} (\theta_{sas''})^{n_{sas''} - 1 + \delta(s',s'')}$
= $k Dir(\theta_{sa}; n_{sa} + \delta(s',s''))$

Prior Knowledge

Structural priors

- Tie identical parameters
 - If $Pr(\bullet|s,a) = Pr(\bullet|s',a')$ then $\theta_{sa} = \theta_{s'a'}$
- Factored representation
 - DBN: unknown conditional dist.

Informative priors

- No knowledge: uniform Dirichlet
- If $(\theta_1, \theta_2) \sim (0.2, 0.8)$ then set (n_1, n_2) to (0.2k, 0.8k)
 - k indicates the level of confidence

Policy Optimization

Classic RL:

- $V^*(s) = \max_a R(s,a) + \Sigma_{s'} Pr(s'|s,a) V^*(s')$
- Hard to tell what needs to be explored
- Exploration heuristics: ε-greedy, Boltzmann, etc.

Bayesian RL:

- $V^*(s,b) = \max_a R(s,a) + \Sigma_{s'} Pr(s'|s,b,a) V^*(s',b_{sas'})$
- Belief b tells us what parts of the model are not well known and therefore worth exploring
- Optimal exploration/exploitation tradeoff

Value Function Parameterization

- Theorem: V* is the upper envelope of a set of multivariate polynomials (V_s(θ) = max_i poly_i(θ))
- Proof: by induction
 - Define value function in terms of θ instead of b
 - i.e. $V^*(s,b) = \int_{\theta} b(\theta) V_s(\theta) d\theta$
 - Bellman's equation

•
$$V_s(\theta) = \max_a R(s,a) + \Sigma_{s'} Pr(s'|s,a,\theta) V_{s'}(\theta)$$

$$= \max_a k_a + \Sigma_{s'} \theta_{sas'} \max_i poly_i(\theta)$$

$$= \max_i poly_i(\theta)$$

BEETLE Algorithm

- Sample a set of reachable belief points B
- $\vee \leftarrow \{0\}$
- Repeat
 - $\lor' \leftarrow \{\}$
 - For each b in B compute multivariate polynomial
 - $poly_{as'}(\theta) \leftarrow argmax_{poly \in V} \int_{\theta} b_{sas'}(\theta) poly(\theta) d\theta$
 - a* \leftarrow argmax_a $\int_{\theta} b_{sas'}(\theta) R(s,a) + \Sigma_{s'} \theta_{sas'} poly_{as'}(\theta) d\theta$
 - $poly(\theta) \leftarrow R(s,a^*) + \Sigma_{s'} \theta_{sa^*s'} poly_{a^*s'}(\theta)$
 - V' ← V' ∪ {poly}
 - $-\vee\leftarrow\vee$

Bayesian RL

Summary:

- Optimizes exploration/exploitation tradeoff
- Easily encode prior knowledge to reduce exploration

Potential for SDS:

- Online user modeling:
 - Tailor model to specific user with least exploration possible
- Offline user modelling:
 - Large corpus of unlabeled dialogues
 - Labeling takes time
 - Automated selection of a subset of dialogues to be labeled
 - Active learning: Jaulmes, Pineau et al. (2005)

Outline

- Review
 - Markov Models
 - Reinforcement Learning
- Some areas of active research relevant to SDS
 - Bayesian Reinforcement Learning (BRL)
 - Inverse Reinforcement Learning (IRL)
 - Predictive State Representations (PSRs)
- Conclusion

Reward Function

- MDPs: T and R $\rightarrow \pi$
- RL: s,a,s' and R $\rightarrow \pi$
- But R is often difficult to specify!

- SDS booking system:
 - Correct booking: large positive reward
 - Incorrect booking: large negative reward
 - Cost per question: ???
 - Cost per confirmation: ???
 - User frustration: ???

Apprenticeship learning

• Sometimes: expert policy π^+ observable

- Apprenticeship learning:
 - Imitation: $\pi^+ \rightarrow \pi$
 - When T doen't change, just imitate policy directly
 - − Inverse RL: π ⁺ and s,a,s' → R
 - When T could change, estimate R
 - Then do RL: s,a,s' and R $\rightarrow \pi$
 - For different SDS, we have different policies because of different scenarios, but perhaps the same R can be used.

Inverse RL

- In AI: Ng and Russell (2000), Abbeel and Ng (2004), Ramachandran and Amir (2006)
- Bellman's equation:

```
- V(s_t) = \max_{a_t} R(s_t, a_t) + \gamma \sum_{s_{t+1}} Pr(s_{t+1}|s_t, a_t) V(s_{t+1})
```

- Idea: find R such that π^+ is optimal according to Bellman's equation.
- Bayesian Inverse RL:
 - Prior Pr(R)
 - Posterior Pr(R|s,a,s',a',s'',a'',...)

Outline

- Review
 - Markov Models
 - Reinforcement Learning
- Some areas of active research relevant to SDS
 - Bayesian Reinforcement Learning (BRL)
 - Inverse Reinforcement Learning (IRL)
 - Predictive State Representations (PSRs)
- Conclusion

Partially Observable RL

- States are rarely observable
- Noisy sensors: measurements are correlated with states of the world
- Extend Markov models to account for sensor noise
- Recall:
 - Markov Process → HMM
 - MDP → POMDP
 - RL → PORL

Hidden Markov Model

- Intuition: Markov Process with ...
 - Observation variables

Example: speech recognition

Hidden Markov Model

Definition

- Set of states: S
- Set of observations: O
- Transition model: $Pr(s_t|s_{t-1})$
- Observation model: Pr(o_t|s_t)
- Prior: $Pr(s_0)$

Belief monitoring:

```
- Prior: b(s) = Pr(s)
```

- Posterior: $b_{ao}(s') = Pr(s'|a,o)$ = $k \Sigma_s b(s) Pr(s'|s,a) Pr(o|s')$

Partially Observable MDP

- Intuition: HMM with...
 - Decision nodes
 - Utility nodes

Partially Observable MDP

Definition

- Set of actions: A
- Set of observations: O
- Reward model: $R(s_t, a_t) = r_t$
- Set of states: S
- Transition model: $T(s_{t-1}, a_{t-1}, s_t) = Pr(s_t | a_{t-1}, s_{t-1})$
- Observation model: $Z(s_t, o_t) = Pr(o_t|s_t)$
- POMDPs for SDS: Roy et al. (2000), Zhang et al. (2001), Williams et al. (2006), Atrash and Pineau (2006)

Partially Observable RL

- Definition

 - Set of actions: A
 Set of observations: O
 Reward model: R(s_t,a_t) = r_t
 - Set of states: S
 - Transition model: $T(s_{t-1}, a_{t-1}, s_t) = Pr(s_t | a_{t-1}, s_{t-1})$
 - Observation model: $Z(s_t, o_t) = Pr(o_t|s_t)$
- NB: S is generally unknown since it is an unobservable quantity

PORL algorithms

- Model-free PORL:
 - Stochastic gradient descent
- Model-based PORL:
 - Assume S, learn T and Z from a,o,a',o',... sequences
 - E.g. EM algorithm for HMMs
 - But S is really unknown
 - In SDS, S may refer to user intentions, mental state, language knowledge, etc.
 - Learn S, T and Z from a,o,a',o',... sequences
 - E.g., Predictive state representations

Sufficient statistics

Beliefs are sufficient statistics to predict future observations

```
- Pr(o|b) = \Sigma_s b(s) Pr(o|s)

- Pr(o'|b,o,a) = k \Sigma_s b(s) Pr(o|s) \Sigma_{s'} Pr(s'|s,a) Pr(o'|s')

= \Sigma_{s'} b_{o,a}(s') Pr(o'|b_{o,a})
```

Are there more succinct sufficient statistics?

Predictive State Representations

- Belief b
 - vector of probabilities
 - Information to predict future observations
 - After each o,a pair, b is updated to b_{o.a} using T and Z
- Idea: find sufficient statistic x such that
 - x is a vector of real numbers
 - x is a smaller vector than b
 - There exist functions f and g such that
 - f(x) = Pr(o|b)
 - $g(x,a,o) = x_{o,a}$ and f(g(x,a,o)) = Pr(o|b,o,a)

Predictive State Representations

 References: Litman et al. (2002), Poupart and Boutilier (2003), Singh et al. (2003), Rudary and Singh (2004), James and Singh (2004), etc.

Potential for SDS

- Instead of handcrafting state variables, learn a state representation of users from data
- Learn a smaller user model

Conclusion

- Overview of Markov models for SDS
- RL topics of active research relevant to SDS:
 - Bayesian RL: tailor model to specific users
 - Inverse RL: learn reward model
 - PSR: learn state representation of user model
- Fields of machine learning and user modelling could offer more techniques to advance SDS