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Abstract—Needle Electromyography, in combination with
nerve conduction studies, is the gold standard methodology
for assessing the neurophysiologic effects of neuromuscular
diseases. Muscle categorization is typically based on visual
and auditory assessment of the morphology and activation
patterns of its constituent motor units. A procedure which
is highly dependent on the skills and level of experience of
the examiner. This motivates the development of automated or
semi-automated categorization techniques.
This paper describes a 2-stage Gaussian mixture model based
approach. In the first stage, a muscle is classified as neurogenic
or myopathic. The second stage uses a classifier specific to each
disease category to confirm or refute the disease involvement.
A total of 2556 motor unit potentials sampled from 48 normal,
30 neurogenic and 20 myopathic tibialis anterior muscles were
utilized for this study. The proposed approach showed an
average accuracy of 91.25%, which is higher than the compared
linear and non-linear multi-class schemas. In addition to
improved accuracy, the 2-stage approach is more suitable for
the muscle categorization, because it has a hierarchical decision
structure similar to current clinical practice, and its output can
be interpreted as a measure of confidence.

Keywords-Needle EMG, Decomposition based quantitative
EMG, Muscle categorization, 2-stage approach, Gaussian Mix-
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I. INTRODUCTION

A motor unit (MU) comprises an alpha motor neuron
and all the muscle fibres it drives. Fibres forming a MU
intermingle with fibres of other MUs belonging to the same
muscle. Therefore the activation of a single motor neuron
will produce a distributed contraction across a muscle.
MUs need to be repeatedly activated to maintain or in-
crease muscle force. The neural activation of each MU
can be modelled as a train of impulses. To acquire needle
electromyographic (EMG) signals, a concentric needle or a
monopolar electrode is inserted through the skin into the
subcutaneous tissue or superficial layers of a muscle. Even
though the fibres of the same MU are activated almost
simultaneously, their contributions to a detected motor unit
potential (MUP) are not identical and do not coincide with
each other. Hence, each MU will produce a unique motor

unit potential train (MUPT) which is representative of the
activation and morphology of its fibres.
For a given acquisition protocol (needle type and level of
muscle activation), MUPs belonging to the same MUPT
are expected to have some inherent physiological shape
variability but yet to have similar morphology compared to
the MUPs created by other MUs. A detected needle EMG
signal is the superposition of the MUPTs created by the MUs
contributing to a muscle contraction.
Disorders affecting muscles can be broadly classified as
myopathic or neurogenic. Both of these disorders affect the
MUP morphology and activation patterns of the affected
MUs. Myopthic disorders are characterized by loss of mus-
cle fibres. Therefore more MUs are recruited and required to
fire more often to produce a specific level of muscle force.
On the other hand, neurogenic disorders lead to the loss of
motor neurons. The denervated muscle fibres are reenverated
by axonal sprouts of other surviving MUs, resulting in MUs
with more distributed and larger numbers of fibres. Fewer
MUs are then recruited to reach a specific level of muscle
force.
During the 1940s and 1950s, many studies like [5] cor-
related certain disorders to variations in the morphology
and frequency of the resulting MUPs. In 1954, Buchthal
et al [1] introduced the use of quantitative analysis of EMG
signals or quantitative electromyography (QEMG). QEMG
extracts morphological characteristics describing isolated
MUPs. Muscle characterization is then based on comparison
of the extracted features to reference data of matching age
range, gender, electrode type and other physical parameters.
QEMG is time consuming, when performed manually.
Therefore, current clinical practice is still based on qual-
itative visual and auditory assessment. This assessment is
highly subjective and dependent on experience and skill,
which motivates the development of automated (or semi-
automated) systems to support diagnosis which use QEMG
data.
Suitable quality QEMG data can currently be automatically
obtained using the decomposition based quantitative EMG



(DQEMG) technique described in [10]. However, it is still
not straight forward how to qualitatively create a muscle
characterization using the QEMG data provided, because
of the number of different features generated, dependence
among features, and the overlap of feature value probability
distributions between categories. The focus of this study is to
provide an accurate and consistent muscle characterization
utilizing features extracted by DQEMG. This problem is
challenging for the following reasons:
• The level of disease involvement is not uniform among

all the MUs of the same muscle. For example, a
neurogenic muscle may have slightly affected, severely
affected and normal MUs. There is no clear cut rule
when to consider a muscle to be affected. Clinicians
normally will consider a muscle to be affected, when
they observe ”enough” significantly affected MUs. This
demands that the characterization of each MU be in
the form of a score reflecting disease involvement to
allow aggregation of these scores into an overall muscle
characterization.

• Most of the estimated features suffer from dependence
on the acquisition protocol. The two main sources of
variations are focus (i.e., adjusting the electrode posi-
tion to acquire suitably sharp MUPs) and the level of
contraction [9]. These undesired variations may obscure
discriminability.

• The training dataset is annotated at the muscle level,
consequently each MUP label represents the condition
of the muscle to which the MU belongs rather than
the actual condition of the MU. The dataset is also
highly unbalanced due to the fact that normal muscles
are more likely to happen and the number of sampled
MUs may vary across different muscles.

• Biovariability, poor understanding of the underlying
electrophysiological process, and variation in acquisi-
tion protocols lead to poor agreement among anno-
tators. For instance, Kendall and Werner [4] showed
that agreement among 31 examiners for determining
the exact level of neuropathy was only 46.9%. The
labelling of the training or testing data therefore can’t
be considered certain nor accurate in all cases.

II. LITERATURE REVIEW

In [6], the performance of an artificial neural network
(ANN) trained using both supervised and unsupervised
learning was evaluated. The performance of an ANN and the
K-nearest neighbour (KNN) technique was also compared.
The feature vector was composed of the standard deviation
and mean of 7 time domain features. For supervised training,
back propagation was utilized, while a self organizing fea-
ture map algorithm was used for the unsupervised paradigm.
Both ANN paradigms showed comparable performance with
diagnostic accuracy of 80%, which substantially exceeded
the KNN.

In [7], linear discriminant analysis was used to map
duration, area, turns, and central frequency features into 2
scores. The mapping was a linear function of the features
and was inferred using the training data, so as to maximize
the separability among scores for different classes. The
utilized algorithm also excluded features that didn’t improve
discrimination. The centroid of each categorization was then
evaluated. During classification, the posterior probability
was computed using Bayes’ rule. The likelihood probabili-
ties were estimated using the Euclidean distance from class
centroids assuming features were normally distributed with
equal covariance for all classes. For the first MUP, the prior
probabilities of the classification were based on epidemio-
logical data. The posterior probability of the previous MUP
was then used as the prior probability for subsequent MUPs.
Experimentation showed diagnostic probabilities above 0.95
in 91% of 223 biceps brachii muscles from 80 patients.
During training in [8], repeatable patterns were discovered
from quantized feature vectors. A weight of evidence (WOE)
measure was then estimated to reflect the support or refu-
tation of each of the patterns to one of the classes. During
classification, the summations of the WOE measures for all
patterns for the three classes were then used to evaluate
the posterior probabilities. These MUP characterizations
were then aggregated using Baye’s rule or averaged to
produce a muscle characterization. Experimentation based
on both clinical and simulated data using only 4 time domain
features showed a comparable performance to the method
described in [7]. The WOE measure can also be interpreted
as a level of disease involvement [8].
The method described in [3] is different than the previous 3
approaches, because it uses the raw data of isolated MUPs. A
feature vector constructed from the time samples of 25 msec
of raw EMG data around the peak of a MUP was used to
train 3 support vector machines in a one-against-one setting.
No attempt to categorize the muscles was made. Instead, an
expert was asked to label MUP templates estimated by a
previous stage of the algorithm.
The work presented here is based on a 2-stage approach. In
the first stage, a classifier decides whether a muscle is neu-
rogenic or myopathic. The level of disease involvement (i.e.,
whether the muscle is in fact diseased or normal) is investi-
gated in the second stage using a different classifier for each
disease category. The reasoning behind this approach is that
for most of the QEMG morphological features, normal MUP
values tend to lie between the neurogenic and myopathic
values and therefore the neurogenic and myopathic classes
are well separated. This work also compares the proposed
approach to conventional multi-class linear and non-linear
schemas.



III. METHODOLOGY

A. Overview

The approach is summarized in Figure 1. During decom-
position, DQEMG [10] segments the MUPs. It then uses
a variation of k-means clustering to estimate the number
of MUs contributing significantly to the acquired EMG
signal (i.e., the number of MUPTs expected to account for
the majority of the energy of the acquired signal). It then
employs supervised classification techniques to determine
the membership of each MUP to one of the expected
MUPTs.
Later, each MUPT is represented using a morphological
template and quantitatively described using a feature vector
XMUP . In the first stage, a subvector X∗MUPi

is extracted
and used to characterize the MUP with a Gaussian mixture
model (GMM) to evaluate P (Y |X∗MUPi

), which is the
likelihood that a given MUP was sampled from a myopathic
or neurogenic muscle (i.e., Y ∈ {myo, neuro}). The char-
acterizations of the N MUPs are then aggregated to estimate
an overall muscle characterization P (Y |X∗MUP1

..X∗MUPN
).

If P (Y = neuro|X∗MUP1
..X∗MUPN

) is higher than P (Y =
myo|X∗MUP1

..X∗MUPN
) in the first stage, a possibly dif-

ferent subvector X”
MUPi

is then extracted to characterize
the MUP in the second stage with a GMM to evaluate
P (Yn|X”

MUP ) where Yn ∈ {neuro, normal}. The MUP
characterizations are then aggregated to estimate muscle
characterization P (Yn|X”

MUP1
..X”

MUPN
). The muscle is

categorized as belonging to the muscle category Yn with
the higher muscle characterization. The same steps are
applied when P (Y = myo|X∗MUP1

..X∗MUPN
) is higher,

but using a GMM to evaluate P (Ym|X
′

MUPi
) where Ym ∈

{myo, normal}, and possibly utilizing a different subvector
X

′

MUPi
.

B. Data Acquisition

The needle EMG data was obtained using a disposable
concentric needle electrode. Subjects maintained approxi-
mately 15 seconds of isometric voluntary contraction at a
level that created a detected EMG signal with between 40
to 60 MUPs per second. Data was obtained from 48 normal,
30 neurogenic and 20 myopathic tibialis anterior muscles
annotated by an expert neurophysiologist.
MUPs are therefore annotated with the label of the muscle
in which they were detected and regardless of their actual
condition. This resulted in 1342 MUPs detected in normal
muscles and 659 and 555 MUPs detected in neurogenic
and myopathic muscles, respectively. All data was acquired
under institutional review board approval and sanitized of
any personal identifying information.

C. QEMG Features

Fifteen features were used to describe each MUPT. They
can be broadly classified into 3 categories:

Figure 1. 2-stage GMM based approach block diagram.

• MUP Template morphology features: Which can be
further classified as size features (e.g. area, amplitude,
size index and duration) or complexity features (e.g.
length, phases and turns). Size features mostly capture
global aspects of the MUP template, while complexity
features provide local information.

• Stability features: QEMG features (e.g., jiggle and
shimmer covariance) represent the MUP shape consis-
tency across the constituent MUPs of the same MUPT.
For example, the normalized standard deviation of the
distances of the MUPs of a train to its MUP template.

• Background signal features: These features describe
the background activity from which MUPs are detected.
For instance, acceleration ensemble RMS is the root
mean square of a fixed length window before a MUP.

Other features are derived by mapping and/or normalization
of the above features like area to amplitude ratio and size
index. The resulting features were shown to be immune to
acquisition variations or more discriminative [10].

D. MUP Characterization using GMM

MUP characterization is the evaluation of the probabil-
ity that the MUP under investigation was sampled from
a muscle belonging to a specific class P (Yk|XMUP ),
where Yk is the class label. In the multi-class schema,
Yk ∈ {normal, neurogenic,myopathic}. In the 2-stage
approach, the domain of Yk depends on what the GMM
models. For example, Yk ∈ {neurogenic,myopathic} in



the first stage.
XMUP refers to the feature vector evaluated using DQEMG
corresponding to a given MUPT or a subvector including
features that showed most relevance to the model. The GMM
is a generative probabilistic model. The main assumption is

P (XMUP |Yk) = N(XMUP |µk,Ψ) (1)

where N(XMUP |µ,Ψ) is a multivariate Gaussian distri-
bution. The posterior probability is then calculated using
Bayes’ rule:

P (Yk|XMUP ) =
P (XMUP |Yk)P (Yk)∑
k P (XMUP |Yk)P (Yk)

(2)

During estimation, maximum likelihood is used to estimate
the mean feature vector µk for each class Yk, and the initial
probability P (Yk) for each class. The averaged covariance
matrix Ψ is estimated using:

Ψ =
∑
k

ΨkP (Yk) (3)

E. MUP Characterization using Artificial neural networks
A feed forward ANN is a parametric non-linear mapping

of a feature vector. The model parameters are the weights
connecting the nodes. During training, the back propagation
algorithm was used. The selected transfer function for each
node was a tan-sigmoid and the hidden layer included
18 nodes. The output of each output node zk(XMUP )
corresponds to a different category.

F. Muscle Characterization
A muscle characterization is the probability that the

muscle belongs to a specific class YK given the set of MUPs
detected from it. In this work, it was calculated as the mean
of the MUP characterizations.
Assuming a specific muscle sampling resulted in N MUPS,
the muscle characterization can be estimated as:

P (Yk|XMUP1 , ...XMUPN
) =

∑N
i=1 P (Yk|XMUPi

)

N
(4)

The same is valid for the ANN, but P (Yk|XMUPi
) is

replaced by the node output zk(XMUPi
).

G. Validation and performance metrics
Leave-one-out cross-validation was used. At each itera-

tion, the feature vectors of the MUPs of a given muscle were
used for testing, and the feature vectors of the remaining
MUPs were used for training. For the ANN case, randomly
selected balanced sets for each category were used for the
training to avoid bias.

H. Feature Selection
A variation of backward feature selection described in

Algorithm 1 was used to select the most relevant features.
The objective function was chosen to be the average misclas-
sification rate. The feature selection for the 2-stage approach
was performed per classifier in sequence.

Algorithm 1 Backward Feature Selection
Require: Initial feature set Λ
N ← |Λ|
λN ← Λ
for n = N − 1 downto 1 do

// Form all subsets of length n
A = {S|S ⊆ λn+1 ∧ |S| = n}
Abest = {S∗|S∗ = argminS∈Aobj(S)}

// obj(.) is the objective function.
if |Abest| = 1 then

λn ← S∗ such that Abest = S∗

end if
end for
Return argminλn

obj(λn)

IV. RESULTS

Tables I, II, and III show the confusion matrices for the
discussed methods before and after the feature selection.
Using algorithm 1, three features were selected for the first
stage of the 2-stage approach, 5 features for the classifier
responsible for the myopathic candidates and 6 features for
the classifier responsible for the neurogenic candidate. The
multi-class GMM utilized 8 features and the multi-class
ANN utilized 9 features.

V. DISCUSSION

The 2-stage approach was compared to GMM and ANN
conventional multi-class schema to evaluate its utility. These
two methods were selected from a large of spectrum of
machine learning methods, because they span different clas-
sification paradigms. The GMM method attempts to infer
its hypothesis as a regularized linear combination of fixed
mappings of the feature vector. This is true when the same
covariance matrix is used for all conditional probabilities.
On the other hand, an ANN uses a nonlinear parametrized
mapping.
The results show that the 2-stage approach performed better
than the multi-class GMM. These results are reasonable
because cascading linear classifiers results in a more flexible
non-linear separation hyper-plan. Results also show that the
2-stage approach and the multiclass GMM both performed
better than the multi-class ANN, which might be attributed
to the fact that an ANN is more likely to suffer from over
fitting.
Figure 2 shows that all misclassifications occur at relatively
low values of posterior probability. This suggests the utility
of the estimated posterior probability as a measure of
confidence. Clinicians can be alerted to do more careful
analysis when a categorization is not based on a high pos-
terior probability. This quantitative analysis and automated
characterization is not designed to replace current clinical
practice, because diagnosis is also based on accumulation



Table I
2-STAGE GMM CONFUSION MATRIX

No Feature Selection After Feature Selection
Classified as Classified as

Normal Myopathic Neurogenic Normal Myopathic Neurogenic
Normal 89.58% 0% 10.42% Normal 93.75% 0 6.25%
Myopathic 10% 90% 0 Myopathic 10% 90% 0
Neurogenic 16.67% 0 83.33% Neurogenic 10% 0 90%
Average Accuracy 87.63% Average Accuracy 91.25%

Table II
MULTI-CLASS GMM CONFUSION MATRIX

No Feature Selection After Feature Selection
Classified as Classified as

Normal Myopathic Neurogenic Normal Myopathic Neurogenic
Normal 85.42% 4.16% 10.42% Normal 89.58% 8.33% 2.08%
Myopathic 15% 85% 0 Myopathic 10% 90% 0
Neurogenic 16.67% 0 83.33% Neurogenic 6.67% 0 93.33%
Average Accuracy 84.58% Average Accuracy 90.97%

Table III
MULTI-CLASS ANN CONFUSION MATRIX

No Feature Selection After Feature Selection
Classified as Classified as

Normal Myopathic Neurogenic Normal Myopathic Neurogenic
Normal 90.94% 0.52% 8.54% Normal 86.25% 2.92% 10.83%
Myopathic 12% 88% 0 Myopathic 13% 87% 0
Neurogenic 17.67% 0.33% 82.00% Neurogenic 8.67% 0 91.33%
Average Accuracy 86.98% Average Accuracy 88.19%

Figure 2. The output of the 2-stage approach after feature selection. The muscle characterizations of each muscle category are sorted in ascending order
and shown in a different trace. The green dots represent correctly categorized instances, while the red dots represent misclassified instances.

of evidences from other sources including patient history,
clinical and physical examinations.
Notwithstanding the only marginal, and probably not clin-
ically important, improvement in accuracy of the 2-stage
approach, we believe that the 2-stage approach is more ap-

propriate for muscle categorization, because of the following
reasons:

• The categorization of the second stage of the 2-stage
approach can be interpreted as the likelihood of be-
ing diseased as compared to normal. Moreover, the



estimated posterior probabilities can be utilized as a
measure of confidence.

• The 2-stage approach searches a less complicated hy-
pothesis space than the multi-class GMM and ANN.
Therefore, confidence in the empirical risk is higher
for a given sample size.

• GMM parameter estimation is much faster than the
training of an ANN. This is crucial for this application,
because the system user may wish to add to or tune the
labelled examples.

• After feature selection, the 2-stage GMM resulted in
better performance using fewer features. This could be
attributed to the fact that the feature selection works
better for each classifier independently.

• The 2-stage approach matches more closely the deci-
sion logic currently used by clinicians.

The choice of a GMM to model the conditional probabil-
ities in the two stages is justifiable, because the marginal
conditional probabilities of each feature is either normal or
log normal and therefore this normality is expected to hold
for their joint distribution. It should also be emphasized that
other methods of voting and aggregation of MUP scores are
possible including the Bayesian schema [2].
The GMM multi-class, GMM 2-Stage and ANN multi-class
classifiers had better performance than the pattern discovery
classifiers discussed in [8]. This could be attributed to the
fact that all these methods search a larger hypothesis space
and do not require quantization of feature values. The main
advantage of the pattern discovery approach however, is
transparency. This means that the end users are capable of
interpreting the resulting categorization based on the MUP
feature values.
The 2-stage approach is linear, has low dimensionality and
a clinically relevant hierarchical decision process. However,
the transparency of the 2-stage approach is still an open
question.
It is not straight forward to conclude that these method-
ologies are superior to those described in [3], [6], [7]. A
fair comparison would be based on EMG data acquired
from the same or similar sets of muscles, preferably using
the same acquisition protocol. Another reason that make
such comparison difficult is that the decomposition and
the feature estimations are achieved using different manual,
semi-automatic and automatic techniques across the reported
methods.
The proposed feature selection procedure is a variation of the
backward selection wrapper method. The main difference is
that it doesn’t discard a feature unless there is a significant
advantage. It revealed results that are consistent with the
underlying physiological phenomena. For example, both
neurogenic and myopathic disorders lead to instability across
the ensemble of MUPs of a given MUPT. Therefore, no
stability feature showed relevance in the first stage. Also,

it is worth noting that at least one feature of each category
(size, complexity, stability and background noise) showed
relevance.

VI. CONCLUSION

A 2-stage approach is proposed for muscle categorization
based on decomposition based quantitative needle elec-
tromyography. In the first stage, a muscle is categorized to
be either a neurogenic or myopathic candidate, while the
actual disease involvement is confirmed or refuted in the
second stage. The proposed algorithm showed an average
accuracy of 91.25%. Its performance exceeded linear and
non-linear multi-class classification schemas. The proposed
approach has other advantages including linearity, lower
dimensionality, the possibility of tuning each stage indepen-
dently, the capability of reporting confidence measures and
a hierarchical decision structure that matches current clinical
practice.
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