
Partially Observable Mean Field Reinforcement Learning
Sriram Ganapathi Subramanian

University of Waterloo

Waterloo, Canada

s2ganapa@uwaterloo.ca

Matthew E. Taylor

University of Alberta, Dept. of Computing Science

Alberta Machine Intelligence Institute (Amii)

Edmonton, Canada

matthew.e.taylor@ualberta.ca

Mark Crowley

University of Waterloo

Waterloo, Canada

mcrowley@uwaterloo.ca

Pascal Poupart

University of Waterloo, Waterloo, Canada

Vector Institute, Toronto, Canada

ppoupart@uwaterloo.ca

ABSTRACT
Traditional multi-agent reinforcement learning algorithms are not

scalable to environments with more than a few agents, since these

algorithms are exponential in the number of agents. Recent research

has introduced successful methods to scale multi-agent reinforce-

ment learning algorithms to many agent scenarios using mean field

theory. Previous work in this field assumes that an agent has access

to exact cumulative metrics regarding the mean field behaviour of

the system, which it can then use to take its actions. In this paper,

we relax this assumption and maintain a distribution to model the

uncertainty regarding the mean field of the system. We consider

two different settings for this problem. In the first setting, only

agents in a fixed neighbourhood are visible, while in the second

setting, the visibility of agents is determined at random based on

distances. For each of these settings, we introduce a 𝑄-learning

based algorithm that can learn effectively. We prove that this 𝑄-

learning estimate stays very close to the Nash 𝑄-value (under a

common set of assumptions) for the first setting. We also empiri-

cally show our algorithms outperform multiple baselines in three

different games in the MAgents framework, which supports large

environments with many agents learning simultaneously to achieve

possibly distinct goals.

KEYWORDS
Multi-Agent Reinforcement Learning, Reinforcement Learning,Mean

Field Theory, Partial Observation

ACM Reference Format:
Sriram Ganapathi Subramanian, Matthew E. Taylor, Mark Crowley, and Pas-

cal Poupart. 2021. Partially Observable Mean Field Reinforcement Learning.

In Proc. of the 20th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 16 pages.

1 INTRODUCTION
Multi-agent systems involve several learning agents that are learn-

ing simultaneously in an environment to solve a task or satisfy an

objective. These agents may have to compete or cooperate with

each other in the given context. Multi-agent systems are non sta-

tionary [9], making it hard to derive learning policies that are as

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

effective as in the single agent context. As the number of learning

agents increases, the possible number of learning situations in the

environment increases exponentially. Many algorithms introduced

in the Multi-Agent Reinforcement Learning (MARL) literature suf-

fer from scalability issues [4, 13], and hence are typically not well

suited for environments in which agents are infinite in the limit,

called many agent systems. Mean field theory has been used to

scale MARL to many agent scenarios in previous research efforts

[31, 32], most of which have assumed some notion of aggregation

that is made available by an engine or is directly observable in the

environment. For example, Guo et al. [7] assume that a population

distribution parameter can be obtained from the game engine and

Yang et al. [32] assume that the mean action of all agents in the

environment can be observed directly by all agents.

Partial observability is an important research area in single agent

reinforcement learning (RL) [8, 11, 34], but these advances are not

applicable to the many agent RL paradigm, since the stationary

environment assumption is broken. Also, partial observation in

single agent RL corresponds only to partial observability of state

features, but in multi-agent systems this could also correspond to

partial observability of other agents.

This paper relaxes the assumption that agents observe the aggre-

gate state variable in a mean field update. Instead, we maintain a

belief over the aggregate parameter that is used to help agent action

selection. We focus on discrete state and action space Markov deci-

sion processes (MDPs) and modify the update rules from Yang et

al. [32] to relax the assumptions of (1) global state availability and

(2) exact mean action information for all agents. We consider two

settings in this paper. The Fixed Observation Radius (FOR) setting as-
sumes that all agents in each agent’s small field of view are always

observed (and those outside the radius are not). The Probabilistic
Distance-based Observability (PDO) setting relaxes FOR such that

we model the probability of an agent seeing another agent as a

function of the distance between them (and this distribution de-

fines what agents are “viewable”). We introduce a new 𝑄-learning

algorithm for both settings, addressing the Partially Observable
Mean Field (POMF)𝑄-learning problem, using Bayesian updates

to maintain a distribution over the mean action parameter.

This paper’s contributions are to (1) introduce two novel POMF

settings, (2) introduce two novel algorithms for these settings, (3)

prove that the first algorithm ends up close to the Nash 𝑄-value

[10], and (4) empirically show that both algorithms outperform ex-

isting baselines in three complex, large-scale tasks. We will assume

stationary strategies as do other related previous work [10] [32].

Our full paper with appendices is available on arXiv [24].

2 BACKGROUND CONCEPTS
Reinforcement learning [25] is a problem formulated on top

of MDPs ⟨𝑆,𝐴, 𝑃, 𝑅⟩, where 𝑆 is the state space that contains the

environmental information accessible to an agent at each time step,

𝐴 gives the actions that the agent can take at each time step, the

reward function 𝑅 provides real-valued rewards at each time step,

and the transition dynamics 𝑃 is the probability of moving to a

state 𝑠 ′ when the agent takes action 𝑎 at state 𝑠 . 𝑄-learning [30]

learns a policy (𝑆 ↦→ 𝐴) by updating 𝑄-values based on experience.

Stochastic games generalize from single agent to𝑁 -agentMDPs.

Each step in a stochastic game (a stage game) depends on the ex-

periences of the agents in previous stages. A 𝑁 -player stochastic

game is defined as a tuple ⟨𝑆,𝐴1, . . . , 𝐴𝑁 , 𝑅1, . . . , 𝑅𝑁 , 𝑃,𝛾⟩, where
𝑆 is the state space, 𝐴 𝑗

is the action space of agent 𝑗 , and 𝑅 𝑗 :

𝑆 × 𝐴1 · · · × 𝐴𝑁 → ℜ is the reward function of agent 𝑗 . Agents

maximize their discounted sum of rewards with 𝛾 ∈ [0, 1) as
the discount factor. From this formulation, it can be seen that

agents can have completely different reward functions (competitive

and competitive-cooperative games) or can agree to maintain a

shared reward structure (cooperative games). Transition function

𝑝 : 𝑆 × 𝐴1 · · · × 𝐴𝑁 → Ω(𝑆), returns the probability distribu-

tion over the next state (Ω(𝑆)) when the system transitions from

state 𝑠 given actions (𝑎1, . . . , 𝑎𝑁) for all agents. The joint action is

𝒂 =
Δ [𝑎1, . . . , 𝑎𝑁]. The transition probabilities are assumed to satisfy∑
𝑠′ 𝑝 (𝑠 ′ |𝑠, 𝑎1, · · · , 𝑎𝑁) = 1. The joint policy (strategy) of agents can

be denoted by 𝝅 =
Δ [𝜋1, . . . , 𝜋𝑁]. Given an initial state 𝑠 , the value

function of agent 𝑗 is the expected cumulative discounted reward

given by 𝑣
𝑗
𝝅 (𝑠) =

∑∞
𝑡=0 𝛾

𝑡E𝝅 ,𝑝 [𝑟 𝑗𝑡 |𝑠0 = 𝑠]. The 𝑄-function can then

be formulated as 𝑄
𝑗
𝜋 (𝑠, 𝒂) = 𝑟 𝑗 (𝑠, 𝒂) + 𝛾E𝑠′∼𝑝 [𝑣 𝑗𝜋 (𝑠 ′)], where 𝑠 ′

represents the next state.

Nash Q-learning: Hu and Wellman [10] extended the Nash

equilibrium solution concept in game theory to stochastic games.

The Nash equilibrium of a general sum stochastic game is defined

as a tuple of strategies (𝜋1∗ , · · · , 𝜋𝑁∗), such that for all 𝑠 ∈ 𝑆 [10],

𝑣𝑖 (𝑠, 𝜋1∗ , · · · , 𝜋𝑖∗, · · · , 𝜋𝑁∗) ≥ 𝑣𝑖 (𝑠, 𝜋1∗ , · · · , 𝜋𝑖 , · · · , 𝜋𝑁∗) ∀𝜋𝑖 ∈ Π𝑖

Here, 𝑣𝑖 denotes the value function of agent 𝑖 . This implies that no

agent can deviate from its equilibrium strategy and get a strictly

higher payoff when all other agents are playing their equilibrium

strategies. The Nash 𝑄-function, 𝑄𝑖
∗ (𝑠, 𝒂), is the sum of agent 𝑖’s

current reward and its discounted future rewards when all agents

follow the Nash equilibrium strategy. Hu and Wellman proved

that under a set of assumptions, the Nash operator defined by

H Nash𝑸 (𝑠, 𝒂) = E𝑠′∼𝑝 [𝒓 (𝑠, 𝒂) + 𝛾𝒗Nash (𝑠 ′)] converges to the 𝑄

value of the Nash equilibrium. Here, 𝑸 =
Δ [𝑄1, . . . , 𝑄𝑁], 𝒓 (𝑠, 𝒂) =

[𝑟1 (𝑠, 𝒂), . . . , 𝑟𝑁 (𝑠, 𝒂)] and 𝒗𝑁𝑎𝑠ℎ (𝑠) =Δ [𝑣1𝝅∗ (𝑠), . . . , 𝑣
𝑁
𝝅∗ (𝑠)].

Mean field reinforcement learning extends the stochastic

game framework to environments where the number of agents are

infinite in the limit [14]. All agents are assumed to be indistinguish-

able and independent from each other. In this case, all the agents in

the environment can be approximated as a single virtual agent to

which the learning agent (called the central agent) formulates best

response strategies. Yang et al. [32] approximates the multi-agent

𝑄-function by the mean field 𝑄-function (MFQ) using an additive

decomposition and Taylor’s expansion (Eq. 1).

𝑄 𝑗 (𝑠𝑡 , a𝑡) ≈ 𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
𝑗
𝑡) (1)

The MFQ is recurrently updated using Eqs. 2 – 5:

𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
𝑗
𝑡) = (1 − 𝛼)𝑄

𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
𝑗
𝑡) + 𝛼 [𝑟

𝑗
𝑡 + 𝛾𝑣

𝑗 (𝑠𝑡+1)] (2)

where 𝑣 𝑗 (𝑠𝑡+1) =
∑
𝑎
𝑗

𝑡+1

𝜋 𝑗 (𝑎 𝑗
𝑡+1 |𝑠𝑡+1, 𝑎

𝑗
𝑡)𝑄

𝑗 (𝑠𝑡+1, 𝑎 𝑗𝑡+1, 𝑎
𝑗
𝑡) (3)

𝑎
𝑗
𝑡 =

1

𝑁 𝑗

∑
𝑘≠𝑗

𝑎𝑘𝑡 , 𝑎
𝑘
𝑡 ∼ 𝜋𝑘 (·|𝑠𝑡 , 𝑎𝑘𝑡−1) (4)

and 𝜋 𝑗 (𝑎 𝑗𝑡 |𝑠𝑡 , 𝑎
𝑗

𝑡−1) =
exp(−𝛽𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎

𝑗

𝑡−1))∑
𝑎
𝑗′
𝑡 ∈𝐴 𝑗

exp(−𝛽𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗
′
𝑡 , 𝑎

𝑗

𝑡−1))
(5)

𝑟
𝑗
𝑡 is the reward for agent 𝑗 , 𝑠𝑡 is the (global) old state, 𝑠𝑡+1 is the
(global) resulting state, 𝛼 is the learning rate, 𝑣 𝑗 is the value function

of 𝑗 and 𝛽 is the Boltzmann parameter. 𝑎
𝑗
𝑡 denotes the (discrete)

action of agent 𝑗 represented as a one-hot encoding whose compo-

nents are one of the actions in the action space. The 𝑎
𝑗
𝑡 is the mean

action of all other agents apart from 𝑗 and 𝜋 denotes the Boltzmann

policy. In Eq. 3, there is no expectation over 𝑎 𝑗 , because Yang et

al. [32] guaranteed that the MFQ updates will be greedy in the limit

(𝑡 −→ ∞). Finally, 𝑁 𝑗
is the number of agents in the neighbourhood

of 𝑗 . We highlight that, for the mean action calculation in Eq. 4, the

policies of all other agents needs to be maintained by the central

agent. Now, this policy can only be obtained by observing all other

agents at every time step, which is a strong assumption in a large

environment with many agents. Yang et al., overcome this prob-

lem by introducing neighbourhoods. However, the neighbourhood
needs to be large enough to contain the whole environment for

these methods to work, as agents can go in and out of the neigh-

bourhoods and go out of vicinity otherwise, which will make the

computation of mean action as in Eq. 4 inapplicable. In our work,

we will relax this strong assumption in estimating the mean field

action. We will not assume the observability of all other agents.

3 PARTIALLY OBSERVABLE MEAN FIELD
Q-LEARNING: FOR

In this section, we study the Fixed Observation Radius (FOR) ver-

sion of our problem, where all agents within a fixed neighbourhood

from the central agent are visible to the central agent, and the oth-

ers are not visible. Our setting is same as that in Yang et al. [32] but

we proceed to relax the assumption of global state observability.

We modify the update in Eqs. 2 – 5 by maintaining a categorical

distribution for the mean action parameter (𝑎). We will only use

the local state 𝑠 𝑗 of agent 𝑗 and not the global state. Eq. 6 gives

our corresponding 𝑄 update equation. Since the conjugate prior

of a categorical distribution is the Dirichlet distribution, we use a

Dirichlet prior for this parameter. Let 𝐿 be the size of the action

space. Let 𝜂 denote the parameters of the Dirichlet (𝜂1, . . . , 𝜂𝐿),
𝜃 denote a categorical distribution (𝜃1, . . . , 𝜃𝐿), and X denote an

observed action sample (𝑥1, . . . , 𝑥𝐺) of𝐺 agents. Then the Dirichlet

for agent 𝑗 can be given byD 𝑗 (𝜃 |𝜂) ∝ 𝜃𝜂1−1
1
· · · 𝜃𝜂𝐿−1

𝐿
and the like-

lihood is given by 𝑝 (X|𝜃) ∝ 𝜃 [X=1]
1

· · · 𝜃 [X=𝐿]
𝐿

∝ 𝜃𝑐1
1
· · · 𝜃𝑐𝐿

𝐿
, where

[𝑋 = 𝑖] is the Iverson bracket, which evaluates to 1 if 𝑋 = 𝑖 and 0

otherwise. This value corresponds to the number of occurrences of

each category (𝑐1, . . . , 𝑐𝐿), denoted by 𝑐 . Using a Bayesian update,

the posterior is a Dirichlet distribution given by Eq. 7 where the

parameters of this Dirichlet are given by D 𝑗 (𝜃 |𝜂 + 𝑐).
The modified 𝑄 updates are:

𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡) = (1 − 𝛼)𝑄

𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡) + 𝛼 [𝑟

𝑗
𝑡 + 𝛾𝑣 (𝑠

𝑗

𝑡+1)] (6)

D 𝑗 (𝜃) ∝ 𝜃𝜂1−1+𝑐1
1

· · · 𝜃𝜂𝐿−1+𝑐𝐿
𝐿

; D 𝑗 (𝜃 |𝜂 + 𝑐) (7)

Where 𝑣 𝑗 (𝑠 𝑗
𝑡+1) =

∑
𝑎
𝑗

𝑡+1

𝜋 𝑗 (𝑎 𝑗
𝑡+1 |𝑠

𝑗

𝑡+1, 𝑎
𝑗
𝑡)𝑄

𝑗 (𝑠 𝑗
𝑡+1, 𝑎

𝑗

𝑡+1, 𝑎
𝑗
𝑡) (8)

𝑎
𝑗
𝑖,𝑡
∼ D 𝑗 (𝜃 ;𝜂 + 𝑐); 𝑎

𝑗
𝑡 =

1

S

𝑖=S∑
𝑖=1

𝑎
𝑗
𝑖,𝑡

(9)

and 𝜋 𝑗 (𝑎 𝑗𝑡 |𝑠
𝑗
𝑡 , 𝑎

𝑗

𝑡−1) =
exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗

𝑡−1))∑
𝑎
𝑗′
𝑡 ∈𝐴 𝑗

exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗 ′
𝑡 , 𝑎

𝑗

𝑡−1))
(10)

We have replaced the mean field aggregation from Yang et al. (Eq.

4) with the Bayesian updates of the Dirichlet distribution from

Eq. 7 and we take S samples from this distribution in Eq. 9 to

estimate the partially observable mean action (𝑎). This approach

relaxes the assumption of complete observability of the global state.

We use samples from the Dirichlet to introduce noise in the mean

action parameter, enabling further exploration and helping agents

to escape local optima. Being stuck in a local optimum is one of

the major reasons for poor performance of learning algorithms in

large scale systems. For example, Guo et al. [7] show that MFQ and

Independent 𝑄-learning (IL) [27] remain stuck at a local optimum

and do not move towards a global optimum in many settings, even

after many training episodes. Yang et al. also report that the Mean

Field Actor Critic (MFAC) and MFQ algorithms may remain stuck

at a local optimum for a long period of training episodes in a simple

Gaussian squeeze environment as the number of agents becomes

exponentially large. Intuitively, this problem is even worse in a

partially observable setting as the agents get a smaller observation

and their best response policy is directed towards this observation

sample. Sampling methods as in Eq. 9 are also used in established

algorithms like Thompson sampling [19, 28]. Finally, we update

the Boltzmann policy like Yang et al. in Eq. 10. We provide more

theoretical guarantees for our update equations in Section 6.

This version of our problem is generally applicable to many

different environments. However, in some domains, agents may

not be able to see all the other agents in the vicinity, but closer

agents will have a high probability of being seen. The next section

considers a new version of our problem where some special kinds

of distributions are used to model the observed agents.

4 PARTIALLY OBSERVABLE MEAN FIELD
Q-LEARNING: PDO

This section considers the Probabilistic Distance-based Observabil-

ity (PDO) problem, assuming that each agent can observe other

agents with some probability that decreases as distance increases.

We introduce a distance vector D that represents the distance

of other agents in the environment to the central agent. Hence,

D = (𝑑1, . . . , 𝑑𝑁), where 𝑑𝑖 denotes the distance of agent 𝑖 from
the central agent. We use the exponential distribution to model the

probability of the distance of agent 𝑖 from the central agent. Expo-

nential distribution assigns a higher probability to smaller distances

and this probability exponentially drops off as distance increases.

Since, in a large environment the agents that matter are closer to

the central agent, than far off, the exponential distribution is appro-

priate to model this variable. We drop the subscript of 𝑑 for clarity.

This distribution is parameterized by
ˆ𝜃 so that 𝑑 | ˆ𝜃 ∝ exp(ˆ𝜃). Since

the conjugate prior of the exponential distribution is the gamma

distribution, we use a gamma prior, and the prior distribution is

parameterised by 𝛼, 𝛽 . Hence, we write ˆ𝜃 ∝ 𝐺𝑎𝑚𝑚𝑎(𝛼, ˆ𝛽).
We also maintain an additional parameter 𝑏𝑖 that determines

whether a given agent 𝑖 is visible to the central agent 𝑗 . The variable

𝑏𝑖 takes two values: 1 if this agent is in the field of view and 0

if this agent is not in the field of view. Again, we will drop the

subscript of 𝑏. We maintain a Bernoulli distribution conditioned

on the distance 𝑑 . The probability that an agent at a distance 𝑑

is visible is given by 𝑃𝑟 (𝑏 = 1|𝑑, 𝜆) = 𝜆𝑒−𝑑𝜆 . Note that this is

not an exponential distribution, but rather a Bernoulli distribution

with a probability defined by the same algebraic formula as the

exponential distribution. In this setting, we will assume that the

central agent will see varying numbers of other agents based on

this distribution. Since the parameter 𝜆 cannot be estimated by

an agent from observation (the agent needs to know which other

agents it is seeing and not seeing to infer 𝜆), we will assume that

the scalar value of 𝜆 is common knowledge for all the agents. Since

𝜆𝑒−𝜆𝑑 should be in [0, 1] because it is a probability, only 𝜆 values
in [0, 1] satisfy this requirement. We will fix the value of 𝜆 to be

1, but it could be any other value in the given range. This gives a

definite distribution that determines the conditional of 𝑏. We are

particularly interested in the posterior term 𝑃𝑟 (ˆ𝜃 |𝑑,𝑏 = 1), which
denotes the probability of

ˆ𝜃 , given the distance 𝑑 of another agent

𝑖 , and that 𝑖 is in the field of view of the central agent 𝑗 .

𝑃𝑟 (ˆ𝜃 |𝑑,𝑏 = 1) ∝ 𝑃𝑟 (𝑑 | ˆ𝜃, 𝑏 = 1)𝑃𝑟 (ˆ𝜃 |𝑏 = 1) ∝ 𝑃𝑟 (𝑑 | ˆ𝜃, 𝑏 = 1)𝑃𝑟 (ˆ𝜃)
(11)

In the last term of Eq. 11, the variable 𝜃 does not depend on the

variable 𝑏, so we remove the conditional. Now consider,

𝑃𝑟 (𝑑 | ˆ𝜃, 𝑏 = 1) = 𝑃𝑟 (𝑑,𝑏 | ˆ𝜃)/𝑃𝑟 (𝑏 | ˆ𝜃)

= 𝑃𝑟 (𝑏 = 1| ˆ𝜃, 𝑑)𝑃𝑟 (𝑑 | ˆ𝜃)/𝑃𝑟 (𝑏 = 1| ˆ𝜃)

= 𝑃𝑟 (𝑏 = 1|𝑑)𝑃𝑟 (𝑑 | ˆ𝜃)/𝑃𝑟 (𝑏 = 1| ˆ𝜃)

= 𝜆𝑒−𝑑𝜆 ˆ𝜃𝑒−𝑑
ˆ𝜃 /
∫
𝑑

𝑃𝑟 (𝑏 = 1|𝑑)𝑃𝑟 (𝑑 | ˆ𝜃)

= 𝑒−𝑑 ˆ𝜃𝑒−𝑑
ˆ𝜃 /
∫ 𝑑=∞

𝑑=0

ˆ𝜃𝑒−𝑑
ˆ𝜃𝜆𝑒−𝑑𝜆 = 𝑒−𝑑 ˆ𝜃𝑒−𝑑

ˆ𝜃 /
∫ 𝑑=∞

𝑑=0

ˆ𝜃𝑒−𝑑 (
ˆ𝜃+1)

= 𝑒−𝑑 ˆ𝜃𝑒−𝑑
ˆ𝜃 (ˆ𝜃 + 1)/ ˆ𝜃 (12)

Applying Eq. 12 in Eq. 11,

𝑃𝑟 (ˆ𝜃 |𝑑, 𝑏 = 1) ∝ 𝐺𝑎𝑚𝑚𝑎(𝛼, ˆ𝛽) × 𝑒−𝑑 ˆ𝜃𝑒−𝑑
ˆ𝜃 (ˆ𝜃 + 1)/ ˆ𝜃

∝ ˆ𝜃𝛼−1𝑒−
ˆ𝛽 ˆ𝜃 × 𝑒−𝑑 ˆ𝜃𝑒−𝑑

ˆ𝜃 (ˆ𝜃 + 1)/ ˆ𝜃
∝ ˆ𝜃𝛼𝑒−

ˆ𝜃 (ˆ𝛽+𝑑−𝑑/ ˆ𝜃) + ˆ𝜃𝛼−1𝑒−
ˆ𝜃 (ˆ𝛽+𝑑−𝑑/ ˆ𝜃)

The posterior of
ˆ𝜃 is therefore given by a mixture of Gamma distri-

butions (i.e.,𝐺𝑎𝑚𝑚𝑎(𝛼 +1, 𝑑 + ˆ𝛽−𝑑/ ˆ𝜃) and𝐺𝑎𝑚𝑚𝑎(𝛼,𝑑 + ˆ𝛽−𝑑/ ˆ𝜃)).
We can obtain a single Gamma posterior, corresponding to a pro-

jection of this mixture of Gammas, by updating the new value of 𝛼

as 𝛼 + 0.5. We sample from this single Gamma distribution to get a

new parameter 𝜆 (Eq. 15). We denote the Gamma distribution for

the agent 𝑗 using superscript 𝑗 (Eq. 14). Hence, we get:

𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡 , 𝜆

𝑗

𝑡) = (1 − 𝛼)𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡 , 𝜆

𝑗

𝑡) + 𝛼 [𝑟
𝑗
𝑡 + 𝛾𝑣

𝑗 (𝑠 𝑗
𝑡+1)]

(13)

ˆ𝜃𝑃 ∝ 𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼 + 1, 𝑑 + ˆ𝛽 − 𝑑/ ˆ𝜃) +𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼,𝑑 + ˆ𝛽 − 𝑑/ ˆ𝜃)
(14)

Where:

𝜆
𝑗

𝑖,𝑡 ∼ [𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼 + 0.5, 𝑑 + ˆ𝛽 − 𝑑/ ˆ𝜃)]; 𝜆
𝑗

𝑡 =
1

G

𝑖=G∑
𝑖=1

𝜆
𝑗

𝑖,𝑡 (15)

𝑣 𝑗 (𝑠 𝑗
𝑡+1) =

∑
𝑎
𝑗

𝑡+1

𝜋 𝑗 (𝑎 𝑗
𝑡+1 |𝑠

𝑗

𝑡+1, 𝑎
𝑗
𝑡 , 𝜆𝑡)𝑄

𝑗 (𝑠 𝑗
𝑡+1, 𝑎

𝑗

𝑡+1, 𝑎
𝑗
𝑡 , 𝜆

𝑗

𝑡) (16)

𝜋 𝑗 (𝑎 𝑗𝑡 |𝑠
𝑗
𝑡 , 𝑎

𝑗

𝑡−1, 𝜆
𝑗

𝑡−1) =
exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗

𝑡−1, 𝜆
𝑗

𝑡−1))∑
𝑎
𝑗′
𝑡 ∈𝐴 𝑗

exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗 ′

𝑡 , 𝑎
𝑗

𝑡−1, 𝜆
𝑗

𝑡−1))

(17)

All the variables above have the same meaning as in Eqs. 6 – 10.

The estimate of the 𝑎 is obtained as in Eq. 9. The
ˆ𝜃𝑃 denotes the

new (posterior) value of
ˆ𝜃 . The 𝜆 parameter is updated by sampling

from the Gamma distribution, as in Eq. 15, by taking G samples.

5 ALGORITHM IMPLEMENTATIONS
The implementation of POMFQ follows prior work [32] that uses

neural networks — 𝑄-functions are parameterized using weights 𝜙 ,

but tabular representations or other function approximators should

also work. Our algorithms are an integration of the respective up-

date equations with Deep𝑄-learning (DQN) [18]. Algorithm 1 gives

pseudo code for the algorithm for the “FOR” case and Algorithm

2 for the “PDO” case. The lines in Algorithm 2 that have changed

from Algorithm 1 are marked in blue. We provide a complexity

analysis of our algorithms in Appendix F.

6 THEORETICAL RESULTS
The goal of this section is to show that our FOR 𝑄-updates are

guaranteed to converge to the Nash 𝑄-value. We will begin by

providing a technical result that is generally applicable for any

stochastic processes of which the 𝑄-function is a specific example.

Then we have a sequence of theorems that lead us to bound the

difference between the POMF 𝑄-value and the Nash 𝑄-value in the

limit (𝑡 −→ ∞). We outline a number of common assumptions that

are needed to prove these theorems. For the purposes of a direct

comparison of the POMF 𝑄-function and the Nash 𝑄-function, we

assume that we have a system of 𝑁 agents where agents have the

full global state available and thus have the ability to perform a

MFQ update (Eqs. 2 – 5) or a POMFQ update (Eqs. 6 – 10). By

the definition of a Nash equilibrium, every agent should have the

knowledge of every other agent’s strategy. To recall, in a Nash

Algorithm 1 Partially observable mean field 𝑄 Learning - FOR

1: Initialize the weights of𝑄-functions𝑄
𝜙 𝑗 ,𝑄𝜙 𝑗

_

for all agents 𝑗 ∈ 1, . . . , 𝑁 .

2: Initialize the Dirichlet parameter D 𝑗 (𝜃) for all agents 𝑗 .
3: Initialize the mean action 𝑎 𝑗

for each agent 𝑗 ∈ 1, . . . , 𝑁 .

4: Initialize the total steps (T) and total episodes (E).

5: while Episode < E do
6: while Step < T do
7: For each agent 𝑗 , sample 𝑎 𝑗

from the policy induced by𝑄
𝜙 𝑗 according to

Eq. 10 with the current mean action �̃� 𝑗
and the exploration rate 𝛽 .

8: For each agent 𝑗 , update its Dirichlet distribution (Eq. 7).

9: For each agent 𝑗 , compute the new mean action �̃� 𝑗
(Eq. 9).

10: Execute the joint action a = [𝑎1, . . . , 𝑎𝑁]. Observe the rewards r =

[𝑟 1, . . . , 𝑟𝑁] and the next state s’ = [𝑠′1, . . . , 𝑠′𝑁].
11: Store ⟨s, a, r, s’, ã⟩ in replay buffer 𝐵, where ã=[�̃�1, . . . , �̃�𝑁] is the mean

action.

12: end while
13: while 𝑗 = 1 to 𝑁 do
14: Sample a minibatch of K experiences ⟨s, a, r, s’, ã⟩ from 𝐵.

15: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾𝑣𝑃𝑂𝑀𝐹

𝜙 𝑗
_

(𝑠′) according to Eq. 8.

16: Update Q network by minimizing the loss 𝐿 (𝜙 𝑗)= 1

𝑘

∑(𝑦 𝑗 −
𝑄

𝜙 𝑗 (𝑠 𝑗 , 𝑎 𝑗 , �̃� 𝑗))2 .
17: end while
18: Update params of target network for each agent 𝑗 : 𝜙 𝑗

_
← 𝜏𝜙 𝑗 + (1 − 𝜏)𝜙 𝑗

_
.

19: end while

Algorithm 2 Partially observable mean field 𝑄 Learning - PDO

1: Initialize the weights of𝑄 functions𝑄
𝜙 𝑗 ,𝑄𝜙 𝑗

_

for all agents 𝑗 ∈ 1, . . . , 𝑁 .

2: Initialize the Dirichlet parameter 𝜃 in D 𝑗 (𝜃) for all agents 𝑗 .
3: Initialize 𝛼 and

ˆ𝛽 in𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼, ˆ𝛽) for all agents 𝑗 ∈ 1, . . . , 𝑁 .

4: Initialize the mean action 𝑎 𝑗
for each agent 𝑗 ∈ 1, . . . , 𝑁 .

5: Initialize the total steps (T) and total episodes (E).

6: while Episode < E do
7: while Step < T do
8: For each agent 𝑗 sample 𝑎 𝑗

from the policy induced by𝑄
𝜙 𝑗 according to

Eq. 17 with the current mean action �̃� 𝑗
and the exploration rate 𝛽 .

9: For each agent 𝑗 update its Dirichlet distribution (Eq. 7).

10: For each agent 𝑗 , update its Gamma distribution (Eq. 14).

11: For each agent 𝑗 , compute the new mean action �̃� 𝑗
(Eq. 9).

12: For each agent j, update parameter 𝜆 (Eq. 15).

13: Execute the joint action a = [𝑎1, . . . , 𝑎𝑁]. Observe the rewards r =

[𝑟 1, . . . , 𝑟𝑁] and the next state s’ = [𝑠′1, . . . , 𝑠′𝑁].
14: Store ⟨s, a, r, s’, ã,𝝀⟩ in replay buffer𝐵, s.t. ã=[�̃�1, ..., �̃�𝑁],𝝀=[𝜆1, ..., 𝜆𝑁]
15: end while
16: while 𝑗 = 1 to 𝑁 do
17: Sample minibatch of K experiences ⟨s, a, r, s’, ã,𝝀⟩ from 𝐵.

18: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾𝑣𝑃𝑂𝑀𝐹

𝜙 𝑗
_

(𝑠′) according to Eq. 16.

19: Update Q network by minimizing 𝐿 (𝜙 𝑗)= 1

𝑘

∑(𝑦 𝑗−𝑄
𝜙 𝑗 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗 , 𝜆))2 .

20: end while
21: Update params of target network for each agent 𝑗 : 𝜙 𝑗

_
← 𝜏𝜙 𝑗 + (1 − 𝜏)𝜙 𝑗

_
.

22: end while

equilibrium, no agent will have an incentive to unilaterally deviate,

given the knowledge of other agent strategies. Our objective is also

to make a direct comparison between the POMFQ update and the

MFQ update and hence we will use the FOR setting algorithms

of POMFQ update in the theoretical analysis as it is most directly

related to MFQ. In this section, we will show that a representative

agent 𝑗 ’s𝑄-value will remain at least within a small distance of the

Nash 𝑄-value in the limit (𝑡 −→ ∞) as it performs a POMFQ update,

which tells us that, in the worst case, the agents stay very close

to the Nash equilibrium. We have provided a proof sketch for all

our theorems in this section while the complete versions of our

proofs can be found in Appendix A. In a mean field setting, the

homogeneity of agents allows us to drop the agent index 𝑗 [14] for

the value and 𝑄-function, which we adopt for clarity. Also, “w.p.1”

represents “with probability one”.

Consider an update equation of the following form (using the

Tsitsiklis [29] formulation):

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝛼𝑖 (𝑡) (𝐹𝑖 (𝑥𝑖 (𝑡)) − 𝑥𝑖 (𝑡) +𝑤𝑖 (𝑡)) (18)

Here, 𝑥 (𝑡) is the value of vector 𝑥 at time 𝑡 and 𝑥𝑖 (𝑡) denotes its 𝑖th
component. Let, 𝐹 be a mapping from R𝑛

into itself. Let 𝐹1, . . . , 𝐹𝑛
: R𝑛 → R be the component mappings of 𝐹 , that is 𝐹 (𝑥) =

(𝐹1 (𝑥), . . . , 𝐹𝑛 (𝑥)) for all 𝑥 ∈ R𝑛
. Also,𝑤𝑖 (𝑡) is a noise term, and

𝑥𝑖 (𝑡) can be defined as 𝑥𝑖 (𝑡) = (𝑥1 (𝜏𝑖
1
(𝑡)), · · · , 𝑥𝑛 (𝜏𝑖𝑛 (𝑡))), where

each 𝜏𝑖
𝑗
(𝑡) satisfies 0 ≤ 𝜏𝑖

𝑗
(𝑡) ≤ 𝑡 .

Next, we state some assumptions. The first three are the same

as those in Tsitsiklis [29], but we modify the fourth assumption.

The first assumption guarantees that old information is eventu-

ally discarded with probability one. The second assumption is a

measurability condition and the third assumption is the learning

rate condition, both of which are common in RL [26] [29]. The

Assumption 4, is a condition on the 𝐹 mapping, which is a weaker

version than the fourth assumption in Tsitsiklis [29].

Assumption 1. For any 𝑖 and 𝑗 , lim𝑡→∞ 𝜏𝑖𝑗 (𝑡) = ∞ w.p.1.

Assumption 2. a) 𝑥 (0) is F (0)-measurable
b) For every 𝑖 , 𝑗 , and 𝑡 ,𝑤𝑖 (𝑡) is F (𝑡 + 1)-measurable
c) For every 𝑖 , 𝑗 , and 𝑡 , 𝛼𝑖 (𝑡) and 𝜏𝑖𝑗 (𝑡) are F (𝑡)-measurable
d) For every 𝑖 and 𝑡 , we have E[𝑤𝑖 (𝑡) |F (𝑡)] = 0

e) For deterministic constants 𝐴 and 𝐵,

E[𝑤2

𝑖 (𝑡) |F (𝑡)] ≤ 𝐴 + 𝐵𝑚𝑎𝑥 𝑗𝑚𝑎𝑥𝜏≤𝑡 |𝑥 𝑗 (𝜏) |
2

Assumption 3. The learning rates satisfy 0 ≤ 𝛼𝑖 (𝑡) < 1.

Assumption 4. a) The mapping 𝐹 is monotone; that is, if 𝑥 ≤ 𝑦,
then 𝐹 (𝑥) ≤ 𝐹 (𝑦)
b) The mapping 𝐹 is continuous
c) In the limit (𝑡 −→ ∞), the mapping 𝐹 is bounded in an interval
[𝑥∗ − 𝐷 , 𝑥∗ + 𝐷], where 𝑥∗ is some arbitrary point
d) If 𝑒 ∈ R𝑛 is the vector with all components equal to 1, and 𝑝 is a
positive scalar then, 𝐹 (𝑥) −𝑝𝑒 ≤ 𝐹 (𝑥 −𝑝𝑒) ≤ 𝐹 (𝑥 +𝑝𝑒) ≤ 𝐹 (𝑥) +𝑝𝑒

Now, we will state our first theorem. Theorem 1 is a technical

result that we obtain by extending Theorem 2 in Tsitsiklis [29]. We

will use this result to derive the main result in Theorem 4.

Theorem 1. A stochastic process of the form given in Eq. 18 re-
mains bounded in the range [𝑥∗ − 2𝐷, 𝑥∗ + 2𝐷] in the limit, if As-
sumptions 1 – 4 hold, and if the process is guaranteed not to diverge
to infinity. 𝐷 is the bound on the 𝐹 mapping in Assumption 4(c).

Proof (Sketch). Since the stochastic process in Eq. 18 is guaran-

teed to stay bounded (Assumption 4(c)), one can find other processes

that lower bounds and upper bounds this process. Let us assume

that we can show that the process in Eq. 18 always stays bounded

by these two processes after some finite time 𝑡 (that is for all 𝑡 ′ ≥ 𝑡).
Now, if we can prove that the process 𝐴 is upper bounded by a

finite value, this value will be the upper bound of the process in Eq.

18 after 𝑡 as well. Similarly, the lower bound of 𝐿 will be its lower

bound (after time 𝑡). □

Now we state three more assumptions, as used earlier [32].

Assumption 5. Each action-value pair is visited infinitely often
and the reward stays bounded.

Assumption 6. The agents’ policy is Greedy in the Limit with
Infinite Exploration (GLIE).

Assumption 7. The Nash equilibrium can be considered a global
optimum or a saddle point in every stage game of the stochastic game.

Assumption 5 is very common in RL [26]. Assumption 6 is needed

to ensure that the agents are rational [32] and this is satisfied

for POMFQ as the Boltzmann policy is known to be GLIE [21].

Assumption 7 has been adopted by previous researchers [10, 32].

Hu and Wellman [10] consider this to be a strong assumption, but

they note that this assumption is needed to prove convergence in

theory, even though it is not needed to observe convergence in

practice.

Let 𝑎𝑖 be a component of vector 𝑎 and 𝑎𝑖 be a component of

vector 𝑎. Now, we make a comparison between mean actions of the

MFQ update (Eq. 4) and the POMFQ update (Eq. 9).

Theorem 2. The MFQ mean action and the POMFQ mean action
both satisfy

|𝑎𝑖,𝑡 − 𝑎𝑖,𝑡 | ≤
√

1

2𝑛
log

2

𝛿

as time 𝑡 −→ ∞, with probability >= 𝛿 , where 𝑛 is the number of
samples observed. 𝑎 is the mean action as obtained from the Dirichlet
in Eq. 9 and 𝑎 is the mean action in Eq. 4.

Proof (Sketch). This theorem is an application of the Hoeffd-

ing’s bound which provides a probabilistic bound for the difference

between the sample mean and the the true mean of a distribution.

As 𝑎 is an empirical mean of the samples 𝑛 observed at each time

step, the Hoeffding’s bound is applied to obtain the result. □

Theorem 3. When the 𝑄-function is Lipschitz continuous (with
constant M) with respect to mean actions, then the POMF 𝑄-function
will satisfy the following relationship:

|𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1)−𝑄𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) | ≤ 𝑀×𝐿×log
2

𝛿
× 1

2𝑛
(19)

as 𝑡 −→ ∞ with probability ≥ (𝛿)𝐿−1, where 𝐿 = |𝐴| and 𝑛 is the
number of samples.

Proof (Sketch). Once we have the bound on the mean actions

of POMFQ update and MFQ update as in Theorem 2, with the

assumption of Lipschitz continuity, a corresponding bound can be

derived for the respective𝑄-functions too. This is done by applying

the bound of the mean actions in the Lipschitz condition. □

From Theorem 3, we can see that in a similar setting, the POMFQ

updates will not see a significant degradation in performance as

compared to the MFQ updates. The probability of this holding is

inversely proportional to the size of the action space available to

each agent. In Theorem 3, the bound is between two 𝑄-functions

with the same state and action, but with different mean actions. Let

𝑍 = 𝑀×𝐿× log 2

𝛿
× 1

2𝑛 and from Theorem 3, |𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) −
𝑄𝑀𝐹 (𝑠, 𝑎𝑡 , 𝑎𝑡−1) | ≤ 𝑍 . Now, we would like to directly compare the

value estimates of POMFQ andMFQ updates. Consider two different

actions 𝑎 𝑗 and 𝑏 𝑗 for agent 𝑗 . Under the assumption that the mean

field 𝑄-function is 𝐾-Lipschitz continuous with respect to actions,

|𝑄𝑀𝐹 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗

𝑡−1) −𝑄
𝑀𝐹 (𝑠 𝑗𝑡 , 𝑏

𝑗
𝑡 , 𝑎

𝑗

𝑡−1) | ≤ 𝐾 |𝑎
𝑗
𝑡 − 𝑏

𝑗
𝑡 | ≤ 𝐾

√
2 (20)

In the last step, we applied the fact that all components of 𝑎 𝑗 and

𝑏 𝑗 are less than or equal to 1 (a one hot encoding). Assume that the

optimal action for 𝑄𝑃𝑂𝑀𝐹
is 𝑎∗ and for 𝑄𝑀𝐹

is 𝑏∗. Now consider,

|𝑣𝑃𝑂𝑀𝐹 (𝑠𝑡+1) − 𝑣𝑀𝐹 (𝑠𝑡+1) |

= |max

𝑎𝑡+1
𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡+1, 𝑎𝑡+1, 𝑎𝑡) −max

𝑏𝑡+1
𝑄𝑀𝐹 (𝑠𝑡+1, 𝑏𝑡+1, 𝑎𝑡) |

= |𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡+1, 𝑎∗𝑡+1, 𝑎𝑡) −𝑄
𝑀𝐹 (𝑠𝑡+1, 𝑎∗𝑡+1, 𝑎𝑡)

+𝑄𝑀𝐹 (𝑠𝑡+1, 𝑎∗𝑡+1, 𝑎𝑡) −𝑄
𝑀𝐹 (𝑠𝑡+1, 𝑏∗𝑡+1, 𝑎𝑡) | ≤ 𝑍 + 𝐾

√
2 =
Δ
𝐷

(21)

In the first step we apply the fact that the Boltzmann policy will

become greedy in the limit (𝑡 −→ ∞). The last step is coming from

Eqs. 19 and 20. We also reiterate that the Lipschitz continuity as-

sumptions on the 𝑄-function are consistent with prior work [32].

Theorem 4. When we update the 𝑄 functions using the partially
observable update rule in Eq. 6, the process satisfies the condition in
the limit (𝑡 →∞):

|𝑄∗ (𝑠𝑡 , 𝒂𝑡) −𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡) | ≤ 2𝐷

when Assumptions 3, 5, and 7 hold. Here 𝑄∗ is the Nash Q-value
and 𝐷 is the bound for value functions in Eq. 21. This holds with
probability at least 𝛿𝐿−1, where 𝐿 = |𝐴|.

Proof (Sketch). This result is an application of Theorem 1,

where we show that all the assumptions of Theorem 1 are satisfied

by the conditions in this theorem. □

It is important to note that we need only threeminor assumptions

(Assumptions 3, 5, and 7) to hold for Theorem 4, which is our main

theoretical result. Theorem 4 shows that the POMFQ updates stay

very close to the Nash equilibrium in the limit (𝑡 −→ ∞). The lower
bound on the probability of this is high for a small action space and

low for a large action space. In a multi-agent setting, the𝑄-updates

are in the form of POMFQ updates, and do not have the (intuitive)

effect of having any fixed point as commonly seen in RL. Theorem

4 proves our update rule is very close to the Nash equilibrium, a

stationary point for the stochastic game. Hence, the policy in Eq. 5

is approximately close to this stationary point, which guarantees

that it becomes (asymptotically) stationary in the limit (𝑡 −→ ∞).
The distance between the POMF 𝑄-function and the Nash 𝑄-

function is inversely proportional to the number of samples from

the Dirichlet (𝑛). If the agent chooses to take a large number of

samples, the POMF𝑄-estimate is very close to the Nash𝑄-estimate,

but this may lead to a degradation in performance due to having no

additional exploratory noise as discussed in Section 3. In MARL, the

Nash equilibrium is not a guarantee of optimal performance, but

only a fixed point guarantee. The (self-interested) agents would still

take finite samples, for better performance. To balance the theory

and performance, the value of 𝑛 should not be too high nor too low.

Appendix C provides an experimental illustration of Theorem

4 in the Ising model, a mathematical model used to describe the

magnetic spins of atomic particles. This model was also used in [32].

We show that the distance (error) of the POMF 𝑄-function (tabular

implementation of the FOR updates) from the Nash 𝑄-function

stays bounded after a finite number of episodes as in Theorem 4.

7 EXPERIMENTS AND RESULTS
This section empirically demonstrates that using POMFQ updates

will result in better performance in a partially observable envi-

ronment than when using the MFQ updates. All the code for the

experiments is open sourced [5].

We design three cooperative-competitive games for each of the

two problems (FOR and PDO) within the MAgent framework [33]

to serve as testbeds. We will provide the important elements of

these experimental domains here, while the comprehensive details

(including exact reward functions and hyperparameter values) are

deferred to Appendix D. For all games, we have a two stage process:

training and faceoff (test). We consider four algorithms for all the

games: MFQ, MFAC, IL, and POMFQ. In each stage, there are two

groups of agents: group A and group B. Since the agents do not

know what kind of opponents they will see in the faceoff stage,

they train themselves against another group that plays the same

algorithm in the training stage. Thus, in the training stage, each

algorithm will train two networks (groups A and B). In the faceoff

stage, groups trained by different algorithms fight against each

other. Our formulation is consistent with past research using the

MAgent framework [6, 32]. We plot the rewards obtained by group

A in each episode for the training stage (group B also shows similar

trends — our games are not zero sum) and the number of games won

by each algorithm in the faceoff stage. For statistical significance, we

report p-values of an unpaired 2-sided t-test for particular episodes

in the training stage and a Fischer’s exact test for the average

performances in the faceoff stage. We treat p-values of less than

0.05 as statistically significant differences. The tests are usually

conducted between POMFQ and next best performing algorithm in

the final episode of training for the training results.

The Multibattle game has two groups of agents fight against each

other. There are 25 agents in each group for a total of 50. Agents

learn to cooperate within the group and compete across the group to

win. We analyse both the FOR and PDO cases. In FOR, information

about nearby agents is available, but agents further than 6 units are

hidden. In PDO, the game engine maintains a Bernoulli distribution

of visibility of each agent from every other agent as discussed in

Section 4. Based on this probability, each agent in PDO could see

different numbers of other agents at each time step. MFQ andMFAC

use a frequentist strategy where agents observed at each time step

are aggregated (Eq. 4) to obtain a mean action.We run 3000 episodes

of training in FOR and 2000 episodes in PDO. Each episode has a

maximum of 500 steps. For the faceoff, group A trained using the

first algorithm and group B trained using the second algorithm

fight against each other for 1000 games. We report all results as an

average of 20 independent runs for both training and faceoff (with

standard deviation). In our experiments, an average of 6 – 8 agents

out of 50 agents are visible to the central agent at a given time step

(averaged over the length of the game). Note that we use 50 agents

per game, more agents are used in previous research [6, 32]. In our

case, the ratio of agents seen vs. the total number of agents matters

more than the simple absolute number of agents in the competition.

In the FOR setting of the Multibattle domain (Figure 1 (a)) the

POMFQ algorithm plays the FOR variant (Algorithm 1). POMFQ

dominates other baselines from about 1800 episodes (p < 0.3) until

the end (p < 0.03). We see that MFAC quickly falls into a poor local

optimum and never recovers. The poor performance of MFAC in the

MAgent games, compared to the other baselines, is consistent with

previous work [6, 32]. Faceoff in the FOR case (Figure 1(c)) shows

that POMFQ wins more than 50% of the games against others (p

< 0.01). An ablation study in Appendix E shows that performance

improves with increase in viewing distance.

In the PDO setting, we use both the FOR variant of POMFQ algo-

rithm (no 𝜆 parameter) and the PDO variant of POMFQ algorithm

(Algorithm 2). We differentiate these two algorithms in the legends

of Figures 1(b) and 1(d). The FOR variant loses out to the PDO

algorithm that explicitly tracks the 𝜆 parameter (p < 0.02). If an

algorithm bases decisions only on 𝑎, as in Algorithm 1, the agents

do not know how risk seeking or risk averse their actions should

be (when agents nearby are not visible). In this game, agents can

choose to make an attack (risk seeking) or a move (risk averse). The

additional parameter 𝜆 helps agents understand the uncertainty

in not seeing some agents when making decisions. The PDO al-

gorithm takes a lead over the other algorithms from roughly 900

episodes (p < 0.04) and maintains the lead until the end (p < 0.03).

In faceoff, PDO wins more than 50% (500) of the games against all

other algorithms as seen in Figure 1(d) (p < 0.01).

The second game, Battle-Gathering, is similar to the Multibattle

game where a set of two groups of 50 agents are fighting against

each other to win a battle, but with an addition of food resources

scattered in the environment. All the agents are given an additional

reward when capturing food, in addition to killing the competition

(as in Multibattle). The training and faceoff are conducted similar

to Multibattle game. Figure 2(a) shows that the POMFQ algorithm

dominates the other three algorithms from about 900 episodes (p

< 0.03) till the end (p < 0.01). In the comparative battles (Figure

2(c)), POMFQ has a clear lead over other algorithms (p < 0.01).

MFQ and IL are similar in performance and MFAC loses to all other

algorithms. We also observe this in the PDO domain train (p < 0.02,

Figure 2(b)) and test experiments (p < 0.01, Figure 2(d)).

The third game is a type of Predator-Prey domain, where there

are two groups — predators and prey. There are a total of 20 predator

agents and 40 prey agents in our domain. The predators are stronger

than the prey and have an objective of killing the prey. The prey

are faster than the predator and try to escape from the predators.

The training is conducted and rewards are plotted using the same

procedure as in the Multibattle domain. Training performances are

in Figures 3(a) and 3(c). The standard deviation of the performance

in this game is considerably higher than the previous two games

because we have two completely different groups that are trying

to outperform each other in the environment. At different points

in training, one team may have a higher performance than the

other, and this lead can change over time. In the first setting, Figure

3(a), we can see that the POMFQ (FOR) shows a small lead over

other baseline algorithms (at the end of training, p < 0.1). In the

direct faceoff (Figure 3(c)), POMFQ wins more games than the other

algorithms (p < 0.01), In the PDO setting too, the POMFQ-PDO

algorithm has an edge over the others during the training phase

(p < 0.4) and the testing (p < 0.01)(Figure 3(b) and 3(d)). As the

p-values for the training suggest, POMFQ can be seen to have a

better performance, but the results are not statistically significant.

The faceoff results, on the other hand, are statistically significant (p

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 1: Multibattle results. The * in the legend of test plots
denotes the opponent. For example, first orange bar (from
the left) in the bar plots is result for IL. vs MFQ. The dashed
lines indicate bars that we set for symmetry. We do not run
faceoff experiments between the same algorithm.

< 0.01). We have run training for 2000 games and faceoff for 1000

games in the last two domains.

In three semantically different domains, we have shown that in

the partially observable case, the MFQ and MFAC algorithms using

frequentist strategies do not provide good performances. Also, the

frequentist strategies (MFQ and MFAC) have worse performance in

the harder PDO domain compared to the FOR domain. Sometimes,

they also lose out to a simpler algorithm that does not even track

the mean field parameter (IL). The FOR and PDO algorithms gives

the best performance across both settings, as evidenced by the

training and the test results. The training results clearly show that

POMFQ never falls into a very poor local optimum like MFAC

often does. The test results show that in a direct face-off, POMFQ

outperforms all other algorithms. The p-values indicate that our

results are statistically significant. Additionally, in Appendix B, we

provide comparisons of the POMFQ - FOR and PDO algorithms

with two more baselines, recurrent versions of IL and MFQ, in the

same three MAgent domains and the results show that POMFQ has

clear advantages compared to these recurrent baselines as well.

8 RELATEDWORK
Mean field games were introduced by Lasry and Lions [14], ex-

tending mean field theory [20, 22] to the stochastic games frame-

work. The stochastic games formulation was obtained by extending

MDPs to MARL environments [10, 15]. Recent research has actively

used the mean field games construct in a MARL setting, allowing

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 2: Training and faceoff results of Battle-Gathering
game.

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 3: Training and faceoff results of Predator-Prey game.

tractable solutions in environments in which many agents partic-

ipate. Model-based solutions have also been tried in this setting

[12], but the model is specific to the application domain and these

methods do not generalize well. Subramanian and Mahajan [23] an-

alyze the problem using a stationary mean field. In contrast to our

approach, this paper needs strict assumptions regarding this station-

arity, which do not hold in practice. Mguni et al. [16] approaches this

problem using the fictitious play technique. They provide strong

theoretical properties for their algorithms, but only in the finite

time horizon case. These results do not directly hold for infinite

horizons. Additionally, strict assumptions on the reward function

and fictitious property [1] assumption makes their algorithms less

generally applicable. In fictitious play, each agent assumes that its

opponents are playing stationary strategies. Thus, the response of

each agent is a best response to the empirical frequency of their

opponents. Another work by the same authors [17] introduces an

algorithm and provides theoretical analysis for the mean field learn-

ing problem in cooperative environments. Our methods, on the

other hand, work for both cooperative and competitive domains.

Along the same lines, the work by Elie et al. [2, 3] contributes ficti-

tious play based techniques to solve mean field games with general

theoretical properties based on quantifying the errors accumulated

at each time step. However, the strict assumptions on the reward

function in addition to the fictitious play assumption is also present

in the work by Elie et al. In our work, the agents do not make the

fictitious play assumption for best responses. Yang et al. [32] do not

have the limitations of other works noted here, but it assumes the

global state is observable for all agents and a local action is taken

from it. This has been relaxed by us.

9 CONCLUSION
This paper considers many agent RL problems where the exact

cumulative metrics regarding the mean field behaviour is not avail-

able and only local information is available. We used two variants

of this problem and provided practical algorithms that work in both

settings. We empirically showed that our approach is better than

previous methods that used a simple aggregate of neighbourhood

agents to estimate the mean field action. We theoretically showed

that POMFQ stays close to the Nash𝑄 under common assumptions.

In future work, we would like to relax some assumptions about

the Bayesian approach using conjugate priors and make our analy-

sis more generally applicable. Additionally, different observation

distributions could allow the direction of view to determine the

“viewable” agents, such as when agents in front of another agent

are more likely to be seen than agents behind it.

10 ACKNOWLEDGEMENTS
Resources used in preparing this research were provided by the

province of Ontario and the government of Canada through CIFAR,

NSERC and companies sponsoring the Vector Institute. Part of this

work has taken place in the Intelligent Robot Learning Lab at the

University of Alberta, which is supported in part by research grants

from the Alberta Machine Intelligence Institute (Amii), CIFAR, and

NSERC.

REFERENCES
[1] Ulrich Berger. 2007. Brown’s original fictitious play. Journal of Economic Theory

135, 1 (2007), 572–578.

[2] Romuald Elie, Julien Pérolat, Mathieu Laurière, Matthieu Geist, and Olivier

Pietquin. 2019. Approximate fictitious play for mean field games. arXiv preprint
arXiv:1907.02633 (2019).

[3] Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier

Pietquin. 2020. On the Convergence of Model Free Learning in Mean Field

Games. In AAAI Conference on Artificial Intelligence (AAAI 2020).
[4] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter

Abbeel, and Igor Mordatch. 2018. Learning with opponent-learning awareness. In

Proceedings of the 17th International Conference on Autonomous Agents and Multi-
Agent Systems. International Foundation for Autonomous Agents and Multiagent

Systems, 122–130.

[5] Sriram Ganapathi Subramanian. [n.d.]. Partially Observable Mean Field Rein-

forcement Learning. https://github.com/Sriram94/pomfrl

[6] Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E. Taylor, and Nidhi

Hegde. 2020. Multi Type Mean Field Reinforcement Learning. In Proceedings
of the Autonomous Agents and Multi Agent Systems (AAMAS 2020). IFAAMAS,

Auckland, New Zealand.

[7] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. 2019. Learning mean-field

games. In Advances in Neural Information Processing Systems. 4967–4977.
[8] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent Q-learning for

partially observable MDPs. In 2015 AAAI Fall Symposium Series.
[9] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A survey and

critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (2019), 750–797.

[10] Junling Hu and Michael P Wellman. 2003. Nash Q-learning for general-sum

stochastic games. Journal of machine learning research 4, Nov (2003), 1039–1069.

[11] Peter Karkus, David Hsu, and Wee Sun Lee. 2017. QMDP-net: Deep learning for

planning under partial observability. In Advances in Neural Information Processing
Systems. 4694–4704.

[12] Arman C Kizilkale and Peter E Caines. 2012. Mean field stochastic adaptive

control. IEEE Trans. Automat. Control 58, 4 (2012), 905–920.
[13] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-

theoretic approach to multiagent reinforcement learning. In Advances in Neural
Information Processing Systems. 4190–4203.

[14] Jean-Michel Lasry and Pierre-Louis Lions. 2007. Mean field games. Japanese
journal of mathematics 2, 1 (2007), 229–260.

[15] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-

forcement learning. In Machine learning proceedings 1994. Elsevier, 157–163.
[16] David Mguni, Joel Jennings, and Enrique Munoz de Cote. 2018. Decentralised

learning in systems with many, many strategic agents. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[17] David Mguni, Joel Jennings, Emilio Sison, Sergio Valcarcel Macua, Sofia Ceppi,

and Enrique Munoz de Cote. 2019. Coordinating the Crowd: Inducing Desirable

Equilibria in Non-Cooperative Systems. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. International Founda-
tion for Autonomous Agents and Multiagent Systems, 386–394.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529–533.
[19] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.

Deep exploration via bootstrapped DQN. In Advances in neural information
processing systems. 4026–4034.

[20] P Ring. 1996. Relativistic mean field theory in finite nuclei. Progress in Particle
and Nuclear Physics 37 (1996), 193–263.

[21] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. 2000.

Convergence results for single-step on-policy reinforcement-learning algorithms.

Machine learning 38, 3 (2000), 287–308.

[22] H Eugene Stanley and Guenter Ahlers. 1973. Introduction to phase transitions

and critical phenomena. Physics Today 26 (1973), 71.

[23] Jayakumar Subramanian and Aditya Mahajan. 2019. Reinforcement learning in

stationary mean-field games. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for

Autonomous Agents and Multiagent Systems, 251–259.

[24] Sriram Ganapathi Subramanian, Matthew E. Taylor, Mark Crowley, and Pascal

Poupart. 2020. Partially Observable Mean Field Reinforcement Learning. (2020).

arXiv:2012.15791 [cs.MA]

[25] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[26] Csaba Szepesvári and Michael L Littman. 1999. A unified analysis of value-

function-based reinforcement-learning algorithms. Neural Computation 11, 8

(1999), 2017–2060.

[27] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[28] William R Thompson. 1933. On the likelihood that one unknown probability

exceeds another in view of the evidence of two samples. Biometrika 25, 3/4 (1933),
285–294.

[29] John N Tsitsiklis. 1994. Asynchronous stochastic approximation and Q-learning.

Machine learning 16, 3 (1994), 185–202.

[30] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[31] Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan Zha. 2018.

Learning Deep Mean Field Games for Modeling Large Population Behavior. In

International Conference on Learning Representations (ICLR).
[32] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmäs-

san, Stockholm Sweden, 5567–5576.

[33] Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang,

and Yong Yu. 2018. Magent: A many-agent reinforcement learning platform for

artificial collective intelligence. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[34] Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. 2017. On improving

deep reinforcement learning for POMDPs. arXiv preprint arXiv:1704.07978 (2017).

https://github.com/Sriram94/pomfrl
https://arxiv.org/abs/2012.15791

A PROOF FOR THEOREMS
All the theorems from the main paper are repeated here. The de-

tailed proofs of these theorems are given. No new theorems are

provided in this section.

Theorem 1. A stochastic process of the form given in Eq. 18 re-
mains bounded in the range [𝑥∗ − 2𝐷, 𝑥∗ + 2𝐷] in the limit, if As-
sumptions 1 – 4 hold, and if the process is guaranteed not to diverge
to infinity. 𝐷 is the bound on the 𝐹 mapping in Assumption 4(c).

Proof. Let 𝑝 be an arbitrary scalar such that

𝑥∗ − 𝑝𝑒 ≤ 𝑥 (𝑡) ≤ 𝑥∗ + 𝑝𝑒; ∀𝑡 > 𝑡 ′.
Such a 𝑝 is possible because the theorem assumes that the process

𝑥 (𝑡) will not diverge to infinity. Here 𝑡 ′ is a point after which the

mapping 𝐹 is bounded in [𝑥∗ − 𝐷, 𝑥∗ + 𝐷]. We can find such a 𝑡 ′

with a high probability due to Assumption 4(c). Our proof lies in the

space of 𝑡 such that 𝑡 > 𝑡 ′. Now, let us consider, 𝐿0 = (𝐿0
1
, . . . , 𝐿0𝑛) =

𝑥∗ − 𝑝𝑒 and 𝐴0 = (𝐴0

1
, . . . , 𝐴0

𝑛) = 𝑥∗ + 𝑝𝑒 . Recall that 𝑝 and 𝐷 are

scalars and 𝑒 is a vector with all components equal to 1. From now

on we will use 𝑝 and 𝐷 to denote 𝑝𝑒 and 𝐷𝑒 respectively. Let us

define two sequences 𝐴𝑘 and 𝐿𝑘 such that

𝐴𝑘+1 =
𝐴𝑘 + 𝐹 (𝐴𝑘) + 𝐷

2

, 𝑘 ≥ 0 (22)

and

𝐿𝑘+1 =
𝐿𝑘 + 𝐹 (𝐿𝑘) − 𝐷

2

, 𝑘 ≥ 0

Lemma 1. For every 𝑘 ≥ 0, we have

𝐹 (𝐴𝑘) ≤ 𝐴𝑘+1 ≤ 𝐴𝑘 + 𝐷, (23)

and
𝐹 (𝐿𝑘) ≥ 𝐿𝑘+1 ≥ 𝐿𝑘 − 𝐷 (24)

Proof. The proof is by induction on 𝑘 .

Consider,

𝐹 (𝐴0) = 𝐹 (𝑥∗ + 𝑝)
≤ 𝐹 (𝑥∗) + 𝑝
≤ 𝑥∗ + 𝑝 + 𝐷
≤ 𝐴0 + 𝐷

(25)

The second step is from Assumption 4(d) and the third step is

from Assumption 4(c).

Now,

𝐴1 =
𝐴0+𝐹 (𝐴0)+𝐷

2

≤ 𝐴0+𝐴0+𝐷+𝐷
2

= 𝐴0 + 𝐷

In the above equation, we have applied the inequality for 𝐹 (𝐴0)
obtained in Eq. 25.

Let us assume that

𝐴𝑘+1 ≤ 𝐴𝑘 + 𝐷
This will imply, due to the monotonicity assumption, that

𝐹 (𝐴𝑘+1) ≤ 𝐹 (𝐴𝑘 + 𝐷) ≤ 𝐹 (𝐴𝑘) + 𝐷

Now consider,

𝐴𝑘+2 =
𝐴𝑘+1 + 𝐹 (𝐴𝑘+1) + 𝐷

2

(26)

and

𝐴𝑘+1 = 𝐴𝑘+𝐹 (𝐴𝑘)+𝐷
2

𝐴𝑘+1 + 𝐷 =
𝐴𝑘+𝐷+𝐹 (𝐴𝑘)+𝐷+𝐷

2

𝐴𝑘+1 + 𝐷 ≥ 𝐴𝑘+1+𝐹 (𝐴𝑘+1)+𝐷
2

𝐴𝑘+1 + 𝐷 ≥ 𝐴𝑘+2

This proves that 𝐴𝑘+1 ≤ 𝐴𝑘 + 𝐷 .
From the definition of 𝐴𝑘+1, we find that

𝐴𝑘+1 = 𝐴𝑘+𝐹 (𝐴𝑘)+𝐷
2

2𝐴𝑘+1 ≥ 𝐴𝑘+1 + 𝐹 (𝐴𝑘)

𝐴𝑘+1 ≥ 𝐹 (𝐴𝑘)

Hence, we find that 𝐹 (𝐴𝑘) ≤ 𝐴𝑘+1, proving Eq. 23.
Using an entirely symmetrical argument, we can also prove that

Eq. 24 is true. □

Lemma 2. The sequence𝐴𝑘 will converge to a point upper bounded
by 𝑥∗+2𝐷 and the sequence 𝐿𝑘 will converge to a point lower bounded
by 𝑥∗ − 2𝐷 .

Proof. Wewill first show that the sequence𝐴𝑘 remains bounded

from below by 𝑥∗−𝐷 . That is, we will show that𝐴𝑘 ≥ 𝑥∗−𝐷 for all

𝑘 . This is true for𝐴0
, by definition. Suppose that𝐴𝑘 ≥ 𝑥∗−𝐷 . Then,

by monotonicity and Assumption 4(c), 𝐹 (𝐴𝑘) ≥ 𝐹 (𝑥∗−𝐷) ≥ 𝑥∗−𝐷 ,
from which the inequality 𝐴𝑘+1 ≥ 𝐹 (𝐴𝑘) ≥ 𝑥∗ − 𝐷 follows (from

Lemma 1).

Let us consider a B such that, B ≫ 𝐷 and B > 𝑝 . Now, since 𝐷

is the bound of the 𝐹 mapping, but 𝑝 is arbitrary, we can find such a

B for a small 𝐷 (we will show that 𝐷 is small in our application in

Theorem 4). Our objective is to prove that the sequence𝐴𝑘 is upper

bounded by 𝑥∗ + B. This is true for 𝐴0
by definition. Let us assume

that𝐴𝑘 ≤ 𝑥∗+B. Then the inequality𝐴𝑘 +𝐷 ≤ 𝑥∗+B+𝐷 ≈ 𝑥∗+B
follows. This implies that 𝐴𝑘+1 ≤ 𝐴𝑘 + B from Lemma 1. Hence

the sequence 𝐴𝑘 also has an upper bound.

Now we have from Lemma 1,

𝐴𝑘+1 ≤ 𝐴𝑘 + 𝐷
𝐴𝑘+2 ≤ 𝐴𝑘+1 + 𝐷

Subtracting we get,

𝐴𝑘+2 −𝐴𝑘+1 ≤ 𝐴𝑘+1 −𝐴𝑘

This shows that 𝐴𝑘 sequence has its first difference reducing.

So either this sequence should converge to a point or it should

diverge to infinity (it cannot oscillate). Now, since we proved that

𝐴𝑘 is upper bounded and lower bounded by some value, it has to

converge to a point. Let that point be 𝐴∗.
We have from Eq. 22:

𝐴∗ = 𝐴∗+𝐹 (𝐴∗)+𝐷
2

2𝐴∗ ≤ 𝐴∗ + 𝑥∗ + 𝐷 + 𝐷

𝐴∗ ≤ 𝑥∗ + 2𝐷
In the above equation, we used the fact that 𝐹 is upper bounded

by 𝑥∗ + 𝐷 .
Thus, the fixed point for the sequence 𝐴𝑘 is upper bounded by

𝑥∗ + 2𝐷 .
Using a completely symmetrical argument, we can prove that

the fixed point of 𝐿𝑘 is lower bounded by 𝑥∗ − 2𝐷 .
□

We will now show that for every 𝑘 , there exists some time 𝑡𝑘
such that,

𝐿𝑘 ≤ 𝑥 (𝑡) ≤ 𝐴𝑘 , ∀𝑡 ≥ 𝑡𝑘 (27)

Once this is proved, 𝑥 (𝑡) can be shown to remain in the bound

𝑥∗ − 2𝐷 and 𝑥∗ + 2𝐷 from Lemma 2. We can see that Eq. 27 is true

for 𝑘 = 0, with 𝑡0 = 0, by definition of 𝐴0
and 𝐿0. Proceeding with

induction on 𝑘 , we fix some 𝑘 and assume that there exists some 𝑡𝑘
so that the Eq. 27 holds. Let 𝑡 ′

𝑘
be such that for every 𝑡 ≥ 𝑡 ′

𝑘
for every

𝑖, 𝑗 , we have 𝜏𝑖
𝑗
(𝑡) ≥ 𝑡𝑘 . Such a 𝑡 ′

𝑘
exists because of Assumption 1.

In particular, we have

𝐿𝑘 ≤ 𝑥𝑖 (𝑡) ≤ 𝐴𝑘 , ∀𝑡 ≥ 𝑡 ′
𝑘

Let𝑊𝑖 (0) = 0 and

𝑊𝑖 (𝑡 + 1) = (1 − 𝛼𝑖 (𝑡))𝑊𝑖 (𝑡) + 𝛼𝑖 (𝑡)𝑤𝑖 (𝑡), 𝑡 ≥ 𝑡0
Now, we can rearrange the terms to get

𝑊𝑖 (𝑡 + 1) − 𝛼𝑖 (𝑡)𝑤𝑖 (𝑡) = (1 − 𝛼𝑖 (𝑡))𝑊𝑖 (𝑡)
This sequence will converge to 0 in the limit (𝑡 −→ ∞) by the

condition on 𝛼𝑖 (𝑡) from Assumption 3. This assumption implies

that

Π∞𝜏=0 (1 − 𝛼𝑖 (𝜏)) = 0

Thus the sequence𝑊𝑖 will converge to 𝛼𝑖 (𝑡)𝑤𝑖 (𝑡). Now, by As-

sumption 2, we can redefine𝑤𝑖 (𝑡) such that it goes to 0 in the limit

(𝑡 −→ ∞). We then have lim𝑡→∞𝑊𝑖 (𝑡) = 0.

For any time 𝑡0, we also define𝑊𝑖 (𝑡0; 𝑡0) = 0 and

𝑊𝑖 (𝑡 + 1; 𝑡0) = (1 − 𝛼𝑖 (𝑡))𝑊𝑖 (𝑡 ; 𝑡0) + 𝛼𝑖 (𝑡)𝑤𝑖 (𝑡), 𝑡 ≥ 𝑡0 (28)

For every 𝑡0 then we can have lim𝑡→∞𝑊𝑖 (𝑡 ; 𝑡0) = 0 using a

similar argument as above (also see Lemma 2 in Tsitsiklis [29]).

We also define a sequence 𝑋𝑖 (𝑡), 𝑡 ≥ 𝑡 ′𝑘 by letting 𝑋𝑖 (𝑡 ′𝑘) = 𝐴
𝑘
𝑖

and

𝑋𝑖 (𝑡 + 1) = (1 − 𝛼𝑖 (𝑡))𝑋𝑖 (𝑡) + 𝛼𝑖 (𝑡)𝐹𝑖 (𝐴𝑘), 𝑡 ≥ 𝑡 ′
𝑘

(29)

Lemma 3.

𝑥𝑖 (𝑡) ≤ 𝑋𝑖 (𝑡) +𝑊𝑖 (𝑡 ; 𝑡 ′𝑘),∀𝑡 ≥ 𝑡
′
𝑘

Proof. Refer to Lemma 6 in Tsitsiklis [29] for proof. □

We define a 𝛿𝑘 be equal to minimum of (𝐴𝑘
𝑖
+ 2𝐷 − 𝐹𝑖 (𝐴𝑘))/4,

where the minimum is taken over all 𝑖 for which (𝐴𝑘
𝑖
+2𝐷−𝐹𝑖 (𝐴𝑘))

is positive. 𝛿𝑘 is well defined and positive due to Lemma 2 and the

lower bound of 𝐴𝑘 and upper bound of 𝐹 .
Let us define a 𝑡

′′

𝑘
≥ 𝑡 ′

𝑘
,

Π
𝑡
′′
𝑘
−1

𝜏=𝑡 ′
𝑘

(1 − 𝛼𝑖 (𝜏)) ≤
1

4

(30)

and for all 𝑡 ≥ 𝑡 ′′
𝑘
and all 𝑖 .

𝑊𝑖 (𝑡 ; 𝑡 ′𝑘) ≤ 𝛿𝑘 (31)

The condition in Eq. 30 is possible due to Assumption 3. The con-

dition in Eq. 31 is possible because𝑊𝑖 (𝑡 ; 𝑡 ′𝑘) from Eq. 28 converges

to 0 as discussed earlier.

Lemma 4. We have 𝑥𝑖 (𝑡) ≤ 𝐴𝑘+1𝑖
, for all 𝑖 and 𝑡 ≥ 𝑡 ′′

𝑘

Proof. Eq. 29 and the relation 𝑋𝑖 (𝑡 ′𝑘) = 𝐴
𝑘
𝑖
makes the process

𝑋𝑖 a convex combination of 𝐴𝑘
𝑖
and 𝐹𝑖 (𝐴𝑘). The coefficient of 𝐴𝑘

𝑖

is equal to Π𝑡−1
𝜏=𝑡 ′

𝑘

(1 − 𝛼 (𝜏)), whose maximum value is
1

4
. It follows

that

𝑋𝑖 (𝑡) ≤

1

4
𝐴𝑘
𝑖
+ 3

4
𝐹𝑖 (𝐴𝑘) = 1

2
𝐴𝑘
𝑖
+ 1

2
𝐹𝑖 (𝐴𝑘) + 𝐷

2
− 1

4
(𝐴𝑘

𝑖
− 𝐹𝑖 (𝐴𝑘)) − 𝐷

2

𝑋𝑖 (𝑡) ≤ 1

2
𝐴𝑘
𝑖
+ 1

2
𝐹𝑖 (𝐴𝑘) + 𝐷

2
− 1

4
(𝐴𝑘

𝑖
− 𝐹𝑖 (𝐴𝑘) + 2𝐷)

𝑋𝑖 (𝑡) ≤ 𝐴𝑘+1𝑖
− 𝛿𝑘

𝑋𝑖 (𝑡) ≤ 𝐴𝑘+1𝑖
−𝑊𝑖 (𝑡 ; 𝑡 ′𝑘)

Now, using the result in Lemma 3,

𝑥𝑖 (𝑡) ≤ 𝑋𝑖 (𝑡) +𝑊𝑖 (𝑡 ; 𝑡 ′𝑘)

𝑥𝑖 (𝑡) ≤ 𝐴𝑘+1𝑖
−𝑊𝑖 (𝑡 ; 𝑡 ′𝑘) +𝑊𝑖 (𝑡 ; 𝑡 ′𝑘)

𝑥𝑖 (𝑡) ≤ 𝐴𝑘+1𝑖

This implies that 𝑥𝑖 (𝑡) ≤ 𝐴𝑘+1𝑖
for all 𝑡 ≥ 𝑡 ′′

𝑘
.

□

By an entirely symmetrical argument, we can also establish that

𝑥𝑖 (𝑡) ≥ 𝐿𝑘+1
𝑖

for all 𝑡 greater than some 𝑡
′′′

𝑘
. This concludes the

proof of the theorem.

□

Theorem 2. The MFQ mean action and the POMFQ mean action
both satisfy

|𝑎𝑖,𝑡 − 𝑎𝑖,𝑡 | ≤
√

1

2𝑛
log

2

𝛿

as time 𝑡 −→ ∞, with probability >= 𝛿 , where 𝑛 is the number of
samples observed. 𝑎 is the mean action as obtained from the Dirichlet
in Eq. 9 and 𝑎 is the mean action in Eq. 4.

Proof. Using the Hoeffding’s inequality, if a set of random vari-

ables (𝑋1, · · · , 𝑋𝑛) are bounded by the intervals [𝑎𝑖 , 𝑏𝑖], then the

following is true:

𝑃 (|𝑋 − E[𝑋] | ≥ 𝑢) ≤ 2 exp

(−2𝑛2𝑢2∑𝑛
𝑖=1 (𝑏𝑖 − 𝑎𝑖)2

)
(32)

where 𝑛 is the number of samples. 𝑃 denotes the probability and 𝑢

is an arbitrary bound.

Eq. 9 samples some 𝑎 to estimate the partially observable Q

function 𝑄𝑃𝑂𝑀𝐹 , as seen in update Eq. 8. This is set to be 𝑋 in

Eq. 32 and its expected value then will be true mean field action 𝑎.

In this setting, we have assumed that all agents have global state

availability. Therefore all the agents in the environment are visible

and all actions of the agents can be used to update the Dirichlet

distribution, which holds the estimate of POMFQmean action. Note

that in each step, a very large number of agent actions are visible

(we assume there are 𝑁 agents in the environment where 𝑁 is

very large). Thus, the Dirichlet mean will become close to the true

underlying 𝑎. Since the agent is taking only a finite sample from

the Dirichlet to update the POMF 𝑄-function, the empirical mean

will be 𝑎.

Therefore, from Eq. 32 we have,

𝑃 (|𝑎𝑖,𝑡 − 𝑎𝑖,𝑡 | ≥ 𝑢) ≤ 2 exp

(−2𝑛2𝑢2∑𝑛
𝑗=1 (𝑏 𝑗 − 𝑎 𝑗)2

)
The samples are in the range [0, 1] and therefore we set 𝑏 𝑗 = 1

and 𝑎 𝑗 = 0 We set the right hand side of Eq. 32 to 𝛿 to get the

relation

𝑢 =

√
1

2𝑛 log
2

𝛿

which proves the theorem. □

Theorem 3. When the 𝑄-function is Lipschitz continuous (with
constant M) with respect to mean actions, then the POMF 𝑄-function
will satisfy the following relationship:

|𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) −𝑄𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) | ≤ 𝑀 × 𝐿 × log
2

𝛿
× 1

2𝑛

as 𝑡 −→ ∞ with probability ≥ (𝛿)𝐿−1, where 𝐿 = |𝐴| and 𝑛 is the
number of samples.

Proof. Consider a 𝑄-function that is Lipschitz continuous for

all 𝑎 and 𝑎. Then we get,

|𝑄 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) −𝑄 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) | ≤ 𝑀 |𝑎𝑡−1 − 𝑎𝑡−1 |
Now, from Theorem 2, we get,

|𝑄 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) −𝑄 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) | ≤ 𝑀 × 𝐿 × (
√

1

2𝑛 log
2

𝛿
)2

In the first step, we are taking the magnitude of the difference

between the mean action vectors, hence we multiply the bound in

Theorem 2 with all the components of the vectors (𝑎 and 𝑎). The

total number of components are equal to the action space 𝐿. Since

the bound for Theorem 2 is with probability ≥ 𝛿 the probability

of this theorem would be at least 𝛿𝐿−1, since we have 𝐿 random

variables, and when we fix the first 𝐿 − 1 random variables, the last

one is deterministic as all the components of 𝑎 satisfy the relation

that sum of the individual components will be 1 (one hot encoding).

All the components of 𝑎 also satisfy this relation as 𝑎 is a normalized

sample obtained from the Dirichlet.

Then, from the definition of POMF 𝑄-function and MFQ 𝑄-

function, the theorem follows.

□

Theorem 4. When we update the 𝑄 functions using the partially
observable update rule in Eq. 6, the process satisfies the condition in
the limit (𝑡 →∞):

|𝑄∗ (𝑠𝑡 , 𝒂𝑡) −𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡) | ≤ 2𝐷

when Assumptions 3, 5, and 7 hold. Here 𝑄∗ is the Nash Q-value
and 𝐷 is the bound for value functions in Eq. 21. This holds with
probability at least 𝛿𝐿−1, where 𝐿 = |𝐴|.

Proof. We start by proving all the assumptions needed for The-

orem 1 and then apply Theorem 1 to prove this theorem.

We can write the 𝑄 update from Eq. 6 using the formula:

𝑄𝑃𝑂𝑀𝐹
𝑡+1 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) =

𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) + 𝛼𝑡 [𝑟

𝑗
𝑡 + 𝛾𝑣𝑃𝑂𝑀𝐹

𝑡 (𝑠 𝑗
𝑡+1) −𝑄

𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡)]
(33)

Let 𝐹 be defined as

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1, 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡)) = E[𝑟

𝑗] + 𝛾E[𝑣𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)] (34)

and the value function from Eq. 8 be

𝑣𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1) =
∑
𝑎 𝑗

𝜋
𝑗
𝑡 (𝑎

𝑗 |𝑠 ′, 𝑎 𝑗)𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1, 𝑎
𝑗 , 𝑎 𝑗) (35)

Using Eq. 34, then Eq. 33 can be written as

𝑄𝑃𝑂𝑀𝐹
𝑡+1 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) = 𝑄𝑃𝑂𝑀𝐹

𝑡 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡)+

𝛼𝑡 [𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡)) −𝑄𝑃𝑂𝑀𝐹

𝑡 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡) +𝑤𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , �̃�

𝑗
𝑡)]

where

𝑤𝑡 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡) = 𝑟

𝑗 − E[𝑟 𝑗] + 𝛾𝑣𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1) − 𝛾E[𝑣
𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)]

Assumption 1 is satisfied, since we are setting 𝜏𝑖
𝑗
(𝑡) = 𝑡 in Eq.

33. Our formulation is the same as that in Tsitsiklis [29] where

the 𝑄 function is not allowed any outdated information from the

previous steps in the current update. Assumption 1 only needed

to guarantee that, if old information were used, that would be

eventually discarded w.p.1.

To satisfy all the measurability conditions of Assumption 2, let

F𝑡 be a 𝜎-field generated by random variables in all history of

the stochastic game till 𝑡 : (𝑠𝑡 , 𝛼𝑡 , 𝒂𝑡 , 𝑟𝑡−1, 𝜏𝑡 , · · · , 𝑠1, 𝛼1, 𝒂1, 𝜏1, 𝑄0).
Let 𝑄𝑡 be a random variable from this trajectory and is hence

F𝑡 -measurable. Thus, from Eq. 34, we can see that 𝐹 will also be F𝑡 -
measurable. This satisfies Assumptions 2(a), (b), and (c). Assumption

2(d) can be directly verified from Eq. 34. From Assumption 5 it can

be shown that the action-value function and the value function

remain bounded and hence we can find arbitrary constants 𝐴 and

𝐵 such that Assumption 2(e) will hold.

To prove Assumption 4(a), note that the 𝐹 mapping in Eq. 34 will

increase or decrease only as the term 𝑣𝑃𝑂𝑀𝐹
increases or decreases

for a given reward function. Now 𝑣𝑃𝑂𝑀𝐹
depends on 𝑄𝑃𝑂𝑀𝐹

. As

𝑄𝑃𝑂𝑀𝐹
increases or decreases then 𝑣𝑃𝑂𝑀𝐹

also increases or de-

creases for a stationary policy. Thus the monotonicity condition

(Assumption 4(a)) is proved. Because the function is a linear func-

tion, the continuity condition is also proved (Assumption 4(b)).

Hence, the first two conditions of Assumption 4 are satisfied.

Using Eq. 34 we can write:

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡)) =

E[𝑟 𝑗] + 𝛾E[𝑣𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)] + 𝛾 [E[𝑣
𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)] − E[𝑣
𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)]]

= E[𝑟 𝑗 + 𝛾 [𝑣𝑁𝑎𝑠ℎ
𝑡 (𝑠 𝑗

𝑡+1)]] + E(𝛾 [𝑣
𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1) − 𝑣
𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)])

+E(𝛾 [𝑣𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1) − 𝑣
𝑁𝑎𝑠ℎ
𝑡 (𝑠 𝑗

𝑡+1)]) ≤ 𝑄
∗ (𝑠 𝑗𝑡 , 𝒂

𝑗
𝑡) + 𝐷

Also we have,

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡))

= E[𝑟 𝑗 + 𝛾 [𝑣𝑁𝑎𝑠ℎ
𝑡 (𝑠 𝑗

𝑡+1)]] + E(𝛾 [𝑣
𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1) − 𝑣
𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)])−

E[𝛾 [𝑣𝑁𝑎𝑠ℎ
𝑡 (𝑠 𝑗

𝑡+1) − 𝑣
𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1)]] ≥ 𝑄
∗ (𝑠 𝑗𝑡 , 𝒂

𝑗
𝑡) − 𝐷

In the above two equations we use the fact that in the limit

(𝑡 −→ ∞) the mean field value function becomes equal to the Nash

value function given Assumption 7 (see Theorem 1 in Yang et al.

[32] for the proof). Thus, that term can be dropped. This proves

Assumption 4(c).

Now to prove Assumption 4(d), consider,

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) + 𝑝)

= E[𝑟 𝑗] + 𝛾 [𝑋𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1, 𝑎
𝑗 , 𝑎 𝑗) + 𝑝]

= E[𝑟 𝑗] + 𝛾 [𝑋𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1, 𝑎
𝑗 , 𝑎 𝑗)] + 𝛾𝑝]

(36)

where 𝑋 =
∑
𝑎 𝑗 𝜋

𝑗
𝑡 (𝑎 𝑗 |𝑠 ′, 𝑎

𝑗).

Now consider,

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡)) + 𝑝

= E[𝑟 𝑗] + 𝛾 [𝑋𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗

𝑡+1, 𝑎
𝑗 , 𝑎 𝑗)] + 𝑝

(37)

Since, 𝛾 ≤ 1, from Eqs. 36 and 37, we find that

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) + 𝑝) ≤ 𝐹 (𝑄

𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡)) + 𝑝 (38)

By a symmetric argument, we can prove

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡)) − 𝑝 ≤ 𝐹 (𝑄

𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) − 𝑝)

and the condition

𝐹 (𝑄𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) − 𝑝) ≤ 𝐹 (𝑄

𝑃𝑂𝑀𝐹
𝑡 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗
𝑡) + 𝑝)

will hold by monotonicity.

Thus, all the conditions of Assumption 4 have been proved.

Consider the POMF 𝑄-update in Eq. 6. Notice that if the reward

function 𝑟 is guaranteed to be bounded, then the 𝑄-function will

also be bounded as there are no other variables that 𝑄 depends

on, which can make it diverge to infinity. Since Assumption 5

guarantees that the reward function will stay bounded, the value

and action-value functions will also stay bounded. This will mean

that the entire stochastic process as given in Theorem 1 remains

bounded. Now, with all conditions met, we can prove that the

partially observable mean field 𝑄 function will either converge or

oscillate in a small range (𝑄∗ (𝑠𝑡 , 𝒂𝑡) − 2𝐷,𝑄∗ (𝑠𝑡 , 𝒂𝑡) + 2𝐷) in the

limit (𝑡 −→ ∞) according to Theorem 1. □

B RECURRENT BASELINES
This section describes our comparisons of the POMFQ - FOR and

PDO algorithms with recurrent versions of IL and MFQ (denoted

as RIL and RMFQ respectively). We report all results for 20 inde-

pendent runs as done for the comparisons in Section 7.

Multibattle game results are given in Figure 4. In the FOR do-

main, Figure 4(a), we can see that the recurrent algorithms fall into

a local optimum early on and do not improve much, similar to the

performance of MFAC. The reason for this could be that the recur-

rent network provides a larger amount of information to the agent

at each time step because the state is recurrently fed back to the

network as an input. In a mean field setting, this may not a good

idea since there is already an overload of information available to

each agent, and the superior performance of POMFQ is due to the

fact that it supplies exactly the right amount of information needed

to calculate the best response at each time step. In the test battles

for FOR (Figure 4 (c)), POMFQ (FOR) comfortably beats RIL (p <

0.01) and RMFQ (p < 0.01). This performance advantage is also seen

in the PDO setting, where the POMFQ (PDO) beats RIL and RMFQ

in both the train (Figure 4(b), p < 0.01) and test experiments (Figure

4(d), p < 0.01).

In the Battle-Gathering (Figure 5) we still see that the POMFQ

beats the recurrent baselines in both training and test performances

in both the domains. However, it is interesting to note that in both

the FOR (Figure 5 (a)) and PDO (Figure 5 (b)) experiments, both the

recurrent baselines learn to perform reasonably well and do not fall

into a trivial local optimum like in the Multibattle game. Recall that

this game has two tasks, one is to gather as many food particles as

possible and the other is to kill the enemies. The recurrent baselines

seem to learn to perform one of the tasks very well (gathering food),

but still lose out to POMFQ, which learns to perform both the tasks

reasonably well. The test results in Figure 5(c) and (d) also show the

performance advantage of POMFQ against the recurrent baselines

in this domain. The train results have p < 0.04 and test results have

p < 0.02 for the comparisons between POMFQ and the next best

performing recurrent algorithm.

For the Predator-Prey domain, the results are given in Figure

6. In this domain too, POMFQ algorithm beats the performance of

both the recurrent baselines in the training experiments (Figure 6(a)

and (b) with p < 0.06) as well as the test experiments (Figure 6(c) and

(d)) with p < 0.03). Like comparisons with the other algorithms for

the Predator-Prey domain, our training results are not statistically

significant but the test results are statistically significant.

C ISING MODEL
The Ising model was introduced as a stochastic game by Yang et al.

[32]. The energy function of this model determines that the overall

energy of the system stays low when each agent chooses to spin

in a direction that is consistent with its neighbours. In this game,

each agent has a choice of one of the two actions (spinning up or

spinning down) and obtains rewards proportional to the number of

agents spinning in the same direction in the neighbourhood. We

use the same settings and parameters for the Ising model as in Yang

et al. [32]. Particularly, each agent obtains rewards [-2.0, -1.0, 0.0,

1.0, 2.0] based on the number of neighbours [0,1,2,3,4] spinning in

the same direction as itself in each stage game. Refer to [32] for

more details on this domain. We set the temperature 𝜏 of the ising

model to 0.8. We use this domain to give a practical illustration of

the tabular version of our algorithm on a simple domain and to

verify Theorem 4. The Ising model used in our implementation is a

stateless system with a total of 100 agents and the Nash𝑄-function

of this stochastic game is exactly obtainable [32]. We implement

the POMFQ (FOR) algorithm on this domain and calculate the mean

square error (MSE) between the 𝑄-values of each agent’s action

with the Nash𝑄-value at each stage. The average of this error across

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 6: Predator-Prey results with recurrent baselines

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 4: Multibattle results with recurrent baselines

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 5: Battle-Gathering results with recurrent baselines

all the 100 agents is plotted against number of episodes in Figure 7,

along with the 95% confidence interval shaded out around each

point. From the plot it can be seen that the MSE steadily reduces and

its 95% confidence interval stays bounded by the line representing

the value of 𝐷/10 line after a finite number of episodes. This is a

stronger result than Theorem 4 where we had proved that the error

will be bounded by 2𝐷 . This shows that there is some scope for a

stronger version of Theorem 4 as well. Substituting the value of 𝛿

as 0.95 in Theorem 2 we can calculate the value of the constant 𝐷

used in Theorem 4. Notice that 𝐷 as given in Eq. 21 is the sum of

two other constants 𝑍 and 𝐾 . We set the value of the number of

samples 𝑛 drawn from the Dirichlet at each time step to be 10000

and hence from Theorem 3 it can be seen that constant 𝑍 ≈ 0. Now

to calculate the Lipschitz constant 𝐾 , we calculate the difference

between the MFQ 𝑄-values between the two actions for the given

state and mean action as in Eq 20. Since we start all the 𝑄-values

with an initialization of 0, the value of 𝐾 (and hence, 𝐷) is 0 at the

beginning of Figure 7. However, once learning takes place and the

𝑄-values change, we see a finite value of 𝐷 . As the 𝑄-values move

closer to convergence, the value of 𝐷 also converges to a finite

value as seen in Figure 7. This value is used to compare the mean

squared error of the 𝑄-values in Figure 7.

D EXPERIMENTAL DETAILS
In this section, we provide more details regarding the game domains

and hyperparameters of our algorithms.

Figure 7: Ising model: Mean square distance between the 𝑄-
values and Nash 𝑄-values

D.1 MAgent Games
The state space in our MAgent games do not have layers containing

spatial information, as in the default state space in MAgents. We

modify the state space to contain complete information (position,

health, group information) about the viewable agents along with

the individual agent features (already available in MAgent). All the

agents at a distance of the view range from the central agent are

visible in the FOR setting and for the PDO domains the viewable

agents are sampled from the Bernoulli distribution, in all the games.

Additionally, for the Battle-Gathering game, the position of all the

food in the environment is available to all agents in their observa-

tion of the state. For all the games, we assume that at any given

time step any agent cannot process more than 20 other agents and

hence at most the 20 closest agents are considered. The action space

for all the games includes move and attack actions. There are a total

of 21 actions, with 13 move actions (move to one of the 13 cells

in a unit circle, refer to [33] for more details) and 8 attack actions

(attack one of the 8 nearest cells in a unit circle).

Note that training is decentralized at the group level. Agents

are independent in terms of the information that they act on: if an

agent were to try to account for the group’s full observation space,

they would quickly become overwhelmed in this setting. Agents do

not use separate neural networks for each agent as the complexity

would be linear in the number of agents. Instead, agents in a group

train on, and use, a single neural network. This is consistent with

Yang et al.’s battle games [32] and the MAgent baselines [33].

In the faceoff experiments for the Multibattle and the Battle-

Gathering games, for every 1000 game set, group A from the first

algorithm and group B trained using the second algorithm fight

against each other for the first 500 games and group B from the

first algorithm and group A from the second algorithm fights for

the second 500 games. The team that has the highest number of

agents alive at the end of a game (500 steps) wins the battle. If both

teams have the same number of agents alive, then the team that gets

the highest reward at the end is the winner. For the Predator-Prey

game, the faceoff contest is conducted similar to the Multibattle

game, but with a small change in how the winners are determined.

The winner is the group with the most agents alive at the end of

the game. If two groups have the same agents alive, then the game

is considered to be a draw. Since we start with more prey (40) than

predators (20), we have a fair contest in the faceoff as the predators

have to kill many more prey to win the game and the prey have to

attempt to escape the predators.

The reward function for theMultibattle domain gives every agent

a -0.005 reward for each step and a -0.1 for attacking an empty grid

(a needless attack). The agents get a +200 for killing opponents

and a +0.2 for successfully attacking. Each agent has a health of

10 which must be exhausted by damage before the agent dies. All

the agents are of size 1 unit width and 1 unit height and have a

speed of 2 units per turn. In the Battle-Gathering domain, agents

get a +80 for capturing food and a +5 for killing opponents with all

other rewards being similar to the Multibattle domain. For both the

Multibattle and Battle-Gathering domains, the view range is 6 units.

In the Predator-Prey domain, the predators and prey have different

reward functions. The predators have sizes of width 2 units and

height 2 units with a maximum health point of 10 units. They have

a speed of 2 units. The prey have sizes of width 1 unit and height

1 unit and a maximum health point of 2 units. The speed of prey

is 2.5 units. The speed determines the size of the circle where the

cells containing a valid move direction lies (refer to [33] for more

details). The view range of predators are 7 units and the view range

of prey are 6 units. The predators get a +1 for attacking prey and the

prey get a -1 for being attacked. The predators receive a reward of

+100 for killing prey. The predators get a -0.3 for making a needless

attack. The prey get a -0.5 for dying (dead penalty). The reward

function for all the three domains are same for the FOR and PDO

settings. The rewards in all the MAgent games is per agent. That

is, each agent gets an individual reward based on its actions in the

environment. However, we sum all the rewards obtained by the

agents in a team for our training plots in the paper.

Across our three domains there is more useful information avail-

able in the local observation, which makes it easier for algorithms

that do not model partial information. Unlike Multibattle, Battle-

Gathering has food available in the local observation that agents

can capture. Predator-Prey has more agents (60) with distinct roles

(predators must only attack and prey must escape) that makes mod-

elling partial information less important. Consequently, as seen in

the experimental results, the performance gain in using POMFQ

instead ofMFQ ismaximized inMultibattle, and decreases for Battle-

Gathering and Predator-Prey. Yet, POMFQ beats MFQ in all games.

This can be observed across the two settings (FOR and PDO) and in

both the train and test experiments. IL loses out in Battle-Gathering

compared to POMFQ as the independent strategy finds it difficult

to balance the twin goals (capturing food and killing opponents).

D.2 Hyperparameters
The hyperparameters of IL, RIL,MFQ, RMFQ and POMFQ are almost

the same. The learning rate is 𝛼 = 10
−4

and the exploration rate 𝛽

decays from 1 to 0 linearly during the 2000 (or 3000 as the case may

be) rounds of training. The discount factor𝛾 is 0.95, the size of replay

buffer is 2
10
, and the mini batch size is 64. POMFQ always takes 100

samples for all sampling steps in both the algorithms. The recurrent

baselines (RIL and RMFQ) contains a GRU (gated recurrent unit)

layer in addition to the fully connected layers. We take 100 samples

in all sampling steps (i.e. from Dirichlet and Gamma distributions).

MFAC has the same learning rate and batch size as the other three

algorithms, the temperature of soft-max layer of actor is 𝜏 = 0.1,

the coefficient of entropy in the total loss is 0.08, and the coefficient

of value in the total loss is 0.1.

Most hyperparameters are same as those maintained by Yang et

al. [32] in their battle game experiments.

Each training of 2000 rounds takes a wall clock time of 18 – 24

hours to complete on a virtual machine with 2 GPUs and 50 GB

of memory. The test experiments take approximately 12 hours to

complete 1000 rounds on a similar virtual machine.

E ABLATION STUDY
In this section, we perform an ablation study by varying the neigh-

bourhood distance and study the performance of the POMFQ (FOR)

algorithm.

Figure 8 shows the results of an ablation study where we change

the distance of neighbourhood view in the Multibattle game. We

study the neighbourhood viewable distances of 2 units, 4 units,

6 units, 8 units, and 10 units. These are denoted as r2, r4, r6, r8,

and r10 respectively in Figure 8. Our results are averaged over 20

independent trials similar to the other experiments. The experiment

is here is similar to our train experiments, where the POMFQ(FOR)

algorithm competes against itself. In r2, groups A and B can see a

distance of 2, and in r10, groups A and B can all see a distance of

10. When the average number of agents seen is higher (because the

observation distance is higher), we expect the reward will be greater

than or equal to the case where the average number of agents seen

is lower due to the observation distance being lower. The Figure 8

shows that performance does steadily increase as we increase the

neighbourhood distance. When more agents in the environment

are seen by the central agent, more useful information is available

about the environment — as expected, this impacts performance

positively. As an example, once the agents are able to see a larger

distance, they do need to indiscriminately employ the attack action

that entails a penalty for usage against an empty neighbour (reward

function in Appendix D).

It is important to note that these games are not zero sum games

(reward functions are in Appendix D). We have empirically seen

that when agents have access to limited information they quickly

fall into sub-optimal performance based on the limited neighbour-

hood they can see. In this case, they are calculating their actions

based on limited information and strategies are sub-optimal. When

more information is available to the agents, their performance in-

creases as they take into account a larger context before deciding

best response strategies. In Figure 8, we see that there is almost no

difference in performance between r8 and r10 — when the distance

increases, the actions of agents at a large distance does not have a

considerable impact on the performance of the central agent. The

performance of the agent when the viewing distance is 2 units and

4 units are also not much different but overall, but the setting with

distance 4 units just outperforms the setting with distance of 2 units

(p < 0.4). The performance with distance 6 units is in between the

performance with 4 units distance (p < 0.2) and 8 units distance

(p < 0.2). Despite seeing the described performances, it should be

noted that these differences are not statistically significant as p <

0.2. The difference between r2 and r10 has p < 0.01, which is sta-

tistically significant. Additionally, we see some unusual behaviour

of unlearning in the case of r2. The agents could have started off

being aggressive due to higher exploration but switched to more

defensive strategies later on due to the availability of very less

information. Nonetheless, this does not change the core message

of this section.

Figure 8: Multibattle (FOR case) with varying viewing dis-
tance

F COMPLEXITY ANALYSIS
A tabular version of our algorithm is linear in number of states,

polynomial in the number of actions, and constant in the number

of agents. The guarantees are similar to the paper from Hu and

Wellman [10], except that their algorithm is exponential in the

number of agents. The time complexity is also same as the space

complexity as in the worst case, each entry in the table has to be

accessed and updated.

Note that the approach by Yang et al. [32] has exponential space

complexity in the number of agents, since each agent has to main-

tain the Q tables for every other agent to obtain the action of other

agents in Eq. 3. This is much worse than our space complexity.

	Abstract
	1 Introduction
	2 Background Concepts
	3 Partially Observable Mean Field Q-Learning: FOR
	4 Partially Observable Mean Field Q-Learning: PDO
	5 Algorithm Implementations
	6 Theoretical Results
	7 Experiments and Results
	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Proof for Theorems
	B Recurrent baselines
	C Ising model
	D Experimental Details
	D.1 MAgent Games
	D.2 Hyperparameters

	E Ablation study
	F Complexity analysis

