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Abstract. Planning as inference recently emerged as a versatile ap-
proach to decision-theoretic planning and reinforcement learning for sin-
gle and multi-agent systems in fully and partially observable domains
with discrete and continuous variables. Since planning as inference es-
sentially tackles a non-convex optimization problem when the states are
partially observable, there is a need to develop techniques that can ro-
bustly escape local optima. We investigate the local optima of finite state
controllers in single agent partially observable Markov decision processes
(POMDPs) that are optimized by expectation maximization (EM). We
show that EM converges to controllers that are optimal with respect
to a one-step lookahead. To escape local optima, we propose two algo-
rithms: the first one adds nodes to the controller to ensure optimality
with respect to a multi-step lookahead, while the second one splits nodes
in a greedy fashion to improve reward likelihood. The approaches are
demonstrated empirically on benchmark problems.

1 Introduction

Toussaint et al. [20] recently showed that policy optimization in probabilistic
domains is equivalent to maximizing the likelihood of normalized rewards. This
connection between planning and inference has opened the door to the applica-
tion of a wide range of machine learning and probabilistic inference techniques.
However, policy optimization in partially observable domains is generally non-
convex, including when reformulated as a likelihood maximization problem. As
a result, policies often get stuck in local optima, which may be far from optimal.

In this paper, we analyze the local optima of finite state controllers in par-
tially observable Markov decision processes (POMDPs) that are optimized by
Expectation Maximization (EM). More precisely, we show that EM optimizes
controllers by essentially performing a one-step lookahead where each parame-
ter is adjusted in isolation (i.e., while keeping the other parameters fixed). We
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propose two techniques to help EM escape local optima. The first technique ex-
tends EM’s one-step forward search to multiple steps. New nodes are added to
the controller when the forward search detects a suboptimal action choice. The
second approach splits controller nodes in two new nodes that are optimized by
EM.

The paper is organized as follows. Sec. 2 reviews POMDPs, finite state con-
trollers and planning as inference. Sec. 3 analyzes the properties of EM’s local
optima. Sec. 4 describes the two techniques to escape local optima. Sec. 5 eval-
uates the escape techniques on benchmark problems. Finally, Sec. 6 concludes
the paper.

2 Background

2.1 Partially Observable Markov Decision Processes

Consider a partially observable Markov decision process (POMDP) described by
a set S of states s, a set A of actions a, a set O of observations o, a stochas-
tic transition function Pr(s′|s, a) = ps′|sa, a stochastic observation function
Pr(o′|s, a) = po′|sa and a reward function R(s, a) = rsa ∈ <. An important class
of policies (denoted by π) are those representable by a stochastic finite state con-
troller (FSC), which is a directed acyclic graph such that each node n chooses
an action a stochastically according to an action distribution π(a|n) = πa|n,
each edge is labeled with an observation o′ that chooses a successor node n′

stochastically according to a successor node distribution Pr(n′|n, o′) = πn′|no′
and the initial node is chosen stochastically according to Pr(n) = πn. The value
V (n, s) = Vns of a FSC is the discounted sum of the rewards earned while ex-
ecuting the policy it encodes. We can compute this value by solving a linear
system:

Vns =
∑
a

πa|nrsa + γ
∑
s′o′n′

ps′|sapo′|saπn′|no′Vn′s′ ∀ns

Hence, for a given initial state distribution (a.k.a. belief) Pr(s) = ps, the value
of the policy is

∑
sn psπnVns. Initial algorithms to optimize FSCs were based on

policy iteration [6], however the size of the controller tends to grow exponentially
with the number of iterations. Alternatively, since there are often good policies
that can be represented by small controllers, one can search for the best controller
with a fixed number of nodes. This search can be formulated as a non-convex
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optimization problem [1]3:

max
πn,πa|n,πn′|no′ ,Vns

∑
sn

psπnVns

s.t. Vns =
∑

as′o′n′

πa|n[rsa + γps′|sapo′|saπn′|no′Vn′s′ ] ∀ns∑
a

πa|n = 1 ∀n, πa|n ≥ 0 ∀an∑
n′

πn′|no′ = 1 ∀no′, πn′|no′ ≥ 0 ∀n′no′

Algorithms to find an optimal policy include gradient ascent [11], sequential
quadratic programming [1], bounded policy iteration [14] and stochastic local
search [3]. However, the non-convex nature of the problem generally prevents
any of these algorithms from finding an optimal controller with certainty.

2.2 Planning as Inference

In another line of research, Toussaint et al. [19] proposed to reformulate policy
optimization as a likelihood maximization problem. The idea is to treat rewards
as random variables by normalizing them. Let R̄ be a binary variable such that

Pr(R̄=true|s, a) = pr̄true|sa = (rsa −min
sa

rsa)/(max
sa

rsa −min
sa

rsa))

Similarly, we treat the decision variables A and N as random variables with
conditional distributions corresponding to πa|n, πn and πn′|no′ . This gives rise to
a graphical model where the value of a policy can be recovered by estimating the
probability that each reward variable is true. However, rewards are discounted
and added together, so Toussaint et al. propose to use a mixture of dynamic
Bayesian networks (DBNs) where each DBN is t time steps long with a single
reward variable at the end and is weighted by a term proportional to γt. Hence,
the value of a policy is proportional to Pr(R̄=true) in this mixture of DBNs.
To optimize the policy, it suffices to search for the distributions πn, πn′|no′ and
πa|n that maximize Pr(R̄=true). This is essentially a maximum a posteriori
estimation problem that can be tackled with algorithms such as Expectation
Maximization (EM) [5]. More specifically, EM alternates between computing
the expectations

E(n|R̄=true, πi) = En|r̄trueπi

E(a, n|R̄=true, πi) = Ean|r̄trueπi

E(n′, o′, n|R̄=true, πi) = En′o′n|r̄trueπi

3 The optimization problem described in [1] assumes a fixed initial node and merges
πa|n and πn′|no′ into a single distribution πan′|no′ , but these differences are irrelevant
for this paper.
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and updating the distributions

πi+1
n = En|r̄trueπi/

∑
n

En|r̄trueπi

πi+1
a|n = Ean|r̄trueπi/

∑
a

Ean|r̄trueπi

πi+1
n′|o′n = En′o′n|r̄trueπi/

∑
n′

En′o′n|r̄trueπi

The expectations are obtained as follows

En|r̄trueπi =
∑
s

psπ
i
nβns (1)

Ean|r̄trueπi =
∑
ss′o′n′

αsnπ
i
a|n[pr̄true|sa + γps′|sapo′|s′aπ

i
n′|o′nβn′s′ ] (2)

En′o′n|r̄trueπi =
∑
ss′a

αsnπ
i
a|nps′|sapo′|s′aπ

i
n′|o′nβn′s′ (3)

where α = limt→∞ αt and β = limt→∞ βt are the forward and backward terms
obtained in the limit according to the following recursions4:

α0
sn = psπn

αts′n′ = bs′πn′ + γ
∑
asno′

αt−1
sn πa|nps′|sapo′|as′πn′|no′ ∀t > 0 (4)

β0
sn =

∑
a

πa|npr̄true|sa

βtsn =
∑

as′n′o′

πa|n[pr̄true|sa + γps′|sapo′|as′πn′|no′β
t−1
s′n′ ] ∀t > 0 (5)

An implication of the reformulation of policy optimization as an inference
problem is that it opens the door to a variety of inference techniques and allows
continuous [7], hierarchical [18], reinforcement learning [21] and multi-agent [8]
variants to be tackled with the same machinery. Nevertheless, an important
problem remains: policy optimization is inherently non-convex and therefore the
DBN mixture reformulation does not get rid of local optima issues.

2.3 State Splitting

Siddiqi et al. [15] recently proposed an approach to discover the number of hidden
states in HMMs by state splitting. Since there is no restriction on the number
of hidden states, this approach can be viewed as a technique to escape local
optima. In Section 4.2, we adapt this approach to POMDP controllers where
internal nodes are split to escape local optima.

4 In practice, α ≈ αt and β ≈ βt for large enough t depending on the discount γ.
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State splitting in HMMs works as follows. Run EM to learn the parameters
of an HMM and Viterbi to find the most likely state paths. Then, for each state
s, investigate the possibility of splitting s in two new states s1 and s2. Let Ts be
the set of time steps where s is the most likely state. Replace the parameters that
involve s by new parameters that involve s1 or s2. Optimize the new parameters
with respect to the time steps in Ts. In other words, clamp the states outside of
Ts to their most likely value and re-run EM to learn the parameters that involve
s1 and s2 while keeping all other parameters fixed. At each iteration, greedily
select the split that improves the model the most, then run full EM to converge
to a new local optimum.

3 Local Optima Analysis

When EM gets trapped in a local optimum, a simple strategy to escape consists
of adding new nodes to the controller. However, unless the new nodes are care-
fully initialized, they will not help EM escape. For instance, as discussed in the
experiments, adding random nodes is ineffective. Hence, there is a need to un-
derstand the conditions under which EM gets trapped so that the new nodes can
be initialized to break those conditions. In this section, we show that EM stops
making progress when the parameters of the nodes are optimal with respect to
a one-step look ahead from a special set of beliefs. Based on this insight, in the
next section, we propose an escape technique that adds nodes to the controller
according to a multi-step lookahead.

Let’s have a closer look at the policy updates performed by EM. In Eq. 1, 2
and 3 the policy terms πin, πia|n and πin′|o′n can be factored out of the sum. This
means that EM performs a multiplicative update:

πi+1
n ∝ πinfn where fn =

∑
s

psβsn (6)

πi+1
a|n ∝ π

i
a|ngan where gan =

∑
ss′o′n

αsn[pr̄true|sa + γps′|sapo′|s′aπ
i
n′|o′nβn′s′ ] (7)

πi+1
n′|o′n ∝ π

i
n′|o′nhn′o′n where hn′o′n =

∑
ss′a

αsnπ
i
a|nps′|s,apo′|s′aβn′s′ (8)

The multiplicative nature of the updates tells us that EM converges to a policy
that chooses an initial node with maximal fn, actions with maximal gan, and
successor nodes n′ with maximal hn′o′n. This is formalized by the following
theorem.

Theorem 1. If a policy π is a stable fixed point of EM (i.e., the fixed point is
an attractor within an ε-hyperball), then

∀n if πn 6= 0 then fn = max
n

fn (9)

∀an if πa|n 6= 0 then gan = max
a

gan (10)

∀n′o′n if πn′|o′n 6= 0 then gn′o′n = max
n′

gn′o′n (11)
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Proof. Suppose that π is a stable fixed point of EM. From (7) it follows that
πa|n = cnπa|ngan with a normalization constant cn. For all non-zero πa|n 6= 0,
all actions in n have the same g-value gan = 1/cn. It remains to show that 1/cn
is also the maximum gan, which we prove by contradiction. Let a∗ be an action
with πa∗|n = 0 at the fixed point, but ga∗n > 1/cn. Consider an infinitesimal
perturbation of the policy such that πa∗|n = ε. Independent of how small ε is,
the probability of a∗ will increase in the next iteration and πa∗|n will diverge
from 0. Therefore, this fixed point is instable. The same reasoning holds for πn
with fn and πn′|o′n with hn′o′n.

Note that in practice, ensuring that parameters never become identically
zero (e.g., by adding the smallest amount of noise in this case) ensures that EM
always converges to such a stable fixed point.

The above theorem also gives a theoretical justification for the “smoothed
greedy” update heuristics often used in practice [18]. Since EM will converge to
a policy where πa|n = 0 for all a, n where gan < maxa gan, then it is reason-
able to update πa|n by moving it towards a greedy policy that assigns non-zero
probability only to the a, n pairs that are maximal in g (and similarly for πn
and πn′|no′). Note however that there is no guarantee that such greedy updates
will converge (they may lead to cycling), but they often speed up convergence
in practice.

Let’s interpret the conditions under which EM converges (i.e., conditions
formalized in Theorem 1) since this will help us derive an escape technique in
the next section. First, we point out that the backward terms βsn in Eq. 5 can be
interpreted as the total expected discounted rewards that will be earned when
executing π from s, n. In other words, it is the value function Vsn of π at s, n.
Similarly, the forward terms αsn in Eq. 4 can be interpreted as the discounted
occupancy frequency of π. In other words, αsn indicates the expected number
of times (discounted by γt for t time steps) that state s is reached in node n
when executing π. We also define bs|n = αns/

∑
s αns to be the belief (e.g.,

state distribution) with respect to node n proportional to αns. Since αn· is the
discounted sum of all reachable beliefs in node n, bs|n can be interpreted as a
weighted average of the reachable beliefs in node n. Based on this, we can show
that fn is the expected value of π when starting its execution in node n. Similarly,
gan is proportional to the Q-function for belief bs|n and hn′o′n is proportional
to the expected value of each successor node for the belief reachable from bs|n
when executing π and receiving observation o′. This becomes evident when we
replace αsn by bs|n and βsn by Vsn in Eq. 6, 7 and 8.

fn ∝
∑
s

psVns (12)

gan ∝
∑
s

bs|n[pr̄true|sn +
∑
s′o′n′

ps′|sapo′|s′aπn′|o′nVn′s′ ] (13)

hn′o′n ∝
∑
sao′

bs|nπa|nps′|sapo′|s′aVn′s′ (14)
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In the limit, since EM chooses an initial node with maximal f value (as well
as actions with maximal g value and successor nodes with maximal h value),
EM implicitly maximizes the initial node value for a fixed policy (as well as
the Q-function for fixed successor node distributions and the successor nodes
value for fixed action distributions). In the following, let us discuss how EM’s
convergence conditions are related to Bellman’s global optimality conditions for
controllers. More specifically, a controller is (globally) optimal when it satisfies
the following condition for all beliefs b reachable in each node n:

Vnb = max
a

rba + γ
∑
o′

po′|bamaxn′Vn′bao′ (15)

where Vnb =
∑
s bsVns, po′|ba =

∑
ss′ bsps′|sapo′|s′a,

rba =
∑
s bsrsa and bao

′

s′ ∝
∑
s bsps′|sapo′|s′a. The above equation can be rewrit-

ten in three optimality conditions for the choice of successor nodes, actions and
initial node:

nbao
′

= argmax
n′

∑
ss′

bsps′|sapo′|s′aVn′s′ ∀bao′ (16)

an = argmax
a

∑
s

bs[rsa + γ
∑
s′o′

ps′|sapo′|s′aVnbao′s′ ] ∀n (17)

n0 = argmax
n

∑
s

psVns (18)

Note the similarity between these equations and the definitions of f , g and h in
Eq. 12, 13 and 14. One important difference is that n0, an and nbao

′
must be op-

timal for all beliefs b reachable in each node n to ensure global optimality, where
as EM only ensures that the initial node, action and successor node choices are
optimal for the single belief bs|n associated with each node n. Another important
difference is that n0, an and nbao

′
must be optimized simultaneously to ensure

global optimality, where as EM adjusts the initial node, action and successor
node distributions separately while keeping the other distributions fixed.

Below, in Theorem 2, we show that the convergence conditions described by
Eq. 9, 10 and 11) are necessary, but not sufficient to ensure global optimality.
Note that EM is already known to converge to local optima and therefore there
must exist conditions that are necessary, but not sufficient. So the point of the
theorem is to show that the particular conditions described by Eq. 9, 10 and 11)
are indeed the ones for controller optimization. We encourage the reader to pay
special attention to the proof since it shows that optimizing the parameters of
the controller by a one-step lookahead from the beliefs bs|n associated with each
node is a sensible thing to do even when these beliefs are not reachable. In the
next section, we use this idea to develop a multi-step forward search from each
bs|n instead of the initial belief to reduce the complexity of the search.

Theorem 2. The conditions described by Eq. 9, 10 and 11 are necessary, but
not sufficient, to ensure global optimality of FSCs.
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Algorithm 1 Forward Search

Function: forwardSearch
Inputs: α, β, π and timeLimit
Output: newN (set of new nodes)
Let bs|n ∝ αns for each n
d← 0
while time < timeLimit do
d← d+ 1
for n ∈ N do

[newN , gain]←
recursiveSearch(bs|n, β, π, d)

if gain > 0 then
return;

end if
end for

end while

Function: recursiveSearch
Inputs: b, β, π and d (depth)
Output: newN (new nodes) and bestGain
bestGain← 0
newN ← ∅
if d = 1 then

Current value: v ← maxn

P
s bsβsn

Compute v∗, nao′ , a∗ (Eq. 15-17)
if v∗ − v > 0 then
bestGain← v∗ − v
newN ← {n}

where πa∗|n = 1, πna∗o′ |o′n = 1
end if

else
for a ∈ A, o′ ∈ O do

[N , gain]←
recursiveSearch(bao′ , β, π, d− 1)

if gain > bestGain then
bestGain← gain
newN ← N ∪ {n}

where πa|n = 1, πlast(N )|no′ = 1
end if

end for
end if

Proof. If bs|n is a reachable belief for each node n, then it is clear that the
conditions described by Eq. 9, 10 and 11 are a subset of the global optimality
conditions and therefore they are necessary, but not sufficient. However, the
beliefs bs|n associated with each node n are not always reachable (even though
they are weighted averages of the reachable beliefs). Nevertheless, we can still
show that the conditions are necessary for optimality by observing that the
beliefs bs|n are convex combinations of the reachable beliefs and therefore have
the same optimal action and successor nodes as the reachable beliefs. Suppose
that a controller is globally optimal, then πa|n and πn′|o′n must be optimal for all
reachable beliefs of node n. We also know that πa|n and πn′|o′n are optimal for
the convex hull of the reachable beliefs in node n since the optimal value function
is piece-wise linear and convex [17], which implies that the value function of node
n is optimal for a polytope of the belief space that includes all reachable beliefs
of node n. We can verify that bs|n is a convex combination of the reachable
beliefs at node n since it is the normalized version of αsn, which is a discounted
sum of reachable beliefs. Hence, whether the beliefs bs|n are reachable or not for
each n, Eq. 9, 10 and 11 hold for (globally) optimal controllers.
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4 Escaping Local Optima

We describe two algorithms to escape local optima. The first approach does a
multi-step forward search to find nodes that can be added to the controller in
such a way that EM can resume its progress. The second approach searches for
a node to be split in two such that optimizing the parameters of the two new
nodes by EM yields the largest improvement.

4.1 Forward Search

Since global optimality is ensured when optimal action and successor node dis-
tributions are used for all reachable beliefs, we could perform a forward search
from the initial belief to add new nodes each time suboptimal actions or successor
nodes are chosen for some reachable beliefs. However, such a search grows expo-
nentially with the planning horizon. In contrast, EM finds a controller where each
action and successor node distribution is optimal according to a forward search
of just one step starting from the belief bs|n associated with each n. We propose
a technique that gradually extends EM’s myopic search by searching increas-
ingly deeper from each bs|n. The optimality conditions become stronger with the
depth of the search and sufficient in the limit. An infinitely deep search verifies
that the controller is optimal for all reachable beliefs while cutting off the search
at a finite depth d ensures that the controller is at most (rmax− rmin)γd/(1−γ)
away from optimal.

Algorithm 1 describes an incremental forward search technique to escape
local optima. The approach verifies whether the action and successor node dis-
tributions are optimal with respect to the value function of the controller for all
beliefs reachable from some bs|n at increasing depth. When a non-optimal action
or successor node choice is detected, a new node is created with optimal action
and successor node distributions. We also create nodes for each belief traversed
on the path since their action and successor node distributions may change too.
These new nodes are added to the controller and the successor node distribu-
tions of the existing nodes are perturbed slightly to include an ε probability of
reaching the new nodes. This is necessary to allow the existing nodes to link to
the new nodes since zero probabilities are fixed points in EM.

Note that starting the multi-step search from each bs|n is fine even when bs|n
is not a reachable belief as described in the proof of Theorem 2. The benefit of
starting the search from each bs|n instead of the initial belief is that a shallower
search is often sufficient to find a suboptimal action choice or successor node.
Recall that each bs|n is a weighted combination of reachable beliefs that may
be arbitrarily deep, hence starting the search from those weighted combinations
may significantly reduce the time of the search.

4.2 Node Splitting

Alternatively, we can escape local optima by adapting the HMM state splitting
approach to POMDP controllers as described in Algorithm 2. For each node of
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Algorithm 2 Node Splitting
Inputs: α, β, π, iters
Output: α, β, π (for split controller)
for nsplit ∈ N do

split nsplit into n1 and n2

initialize the splitted controller such that πa|n1 = πa|n2 = πa|nsplit
, πn′|o′n1 =

πn′|o′n2 = πn′|o′nsplit
, πn1 + πn2 = πnsplit and πn′1|o′n + πn′2|o′n = πn′

split
|o′n.

also split α and β such that αn1 + αn2 = αnsplit , βn1 = βn2 = βnsplit .
for i = 1 to iters do

propagate α and β following Eq. 4 and 5
perform M-step based on α and β

end for
gain(n) = value after M-step

end for
n∗ = argmaxn gain(n)
assign π, α, β to results of splitting n∗

the controller, consider the possibility of splitting that node in two new nodes
n1 and n2. To initialize the split, we replace the parameters that involve the
node nsplit being split by parameters that involve n1 or n2 in a way that does
not change likelihood. More precisely, the parameters πa|n1 , πn′|o′n1 , πa|n2 and
πn′|o′n2 are set equal to πa|nsplit

and πn′|o′nsplit
respectively. As for πn1 , πn2 ,

πn′1|o′n and πn′2|o′n, they are initialized randomly while ensuring that πn1 +
πn2 = πnsplit

and πn′1|o′n + πn′2|o′n = πn′split|o′n. After this neutral initialization
of the split, we optimize the parameters by running EM again. To speed up
computation, we initialize α and β with those of the unsplit controller. This is
similar to keeping the most likely states clamped outside of Ts since α and β
are the forward and backward terms that summarize the computation before
and after a node split. The M-step adapts the new parameters based on the
expectations as usual. After retraining each potential split like this, we select
the split which brought the largest increase in likelihood.

4.3 Computational Complexity

We report the computational complexity of EM, node splitting and forward
search in Table 1. The complexity of EM is equal to the number of iterations I
times the complexity of computing the forward and backward terms in Eq. 4-5,
and the expectations in Eq. 1-3. The forward and backward terms are computed
recursively by executing tmax steps (equal to the planning horizon), where each
step can be performed efficiently by variable elimination with a complexity cor-
responding to the size of the largest factors. Similarly the complexity of the
expectations correspond to the largest factors obtained by variable elimination.

The node splitting technique (Alg. 2) evaluates each split by executing EM.
Since there are |N | possible nodes that can be split and the algorithm incre-
mentally grows the controller by splitting one node at a time until there are |N |
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nodes, the complexity is |N |2 times that of EM. As a result, there is a quartic
dependency on the size of the controller and this is the dominating factor for
large controllers.

The forward search technique (Alg. 1) alternates between EM and adding new
nodes based on a recursive search up to some depth d. This search is exponential
in d with base |A||O|, however one can often reduce this complexity by branch-
and-bound or sub-sampling. Also, the search is performed by increasing the
depth gradually until a non-optimal setting of the parameters is found, at which
point the search is terminated. Since we perform a search from each of the
N nodes and the controller is grown incrementally up to N nodes, the overall
complexity of forward search is |N |2 times that of the recursive search plus |N |
times that of EM. In comparison to node splitting, forward search has a cubic
dependency on the size of the controller and therefore tends to scale better for
large controllers, but it also has an exponential dependency on the search depth.

Table 1. Computational Complexity. Here I is the number of iterations in EM, tmax

is the length of the planning horizon, d is the depth of the forward search and Ō is the
computational complexity with respect to |N | and d only.

Forward-Backward step (FB) (Eq. 4 and 5):
O(tmax(|N ||S|2 + |N |2|S|)) = Ō(|N |2)
Expectation step (Exp) (Eq. 1-3):
O(|N ||A||S|2 + |N ||A||S||O|+ |N |2|S||O|) = Ō(|N |2)
Expectation-Maximization (EM):
O(I(FB + Exp)) = Ō(|N |2)

Node splitting (Alg. 2):
O(|N |2EM) = Ō(|N |4)

Recursive search (RS) (Alg. 1):

O(|N |(|A||O|)d|S|2) = Ō(|N |(|A||O|)d)
Forward search (Alg. 1):

O(|N |2RS + |N |EM) = Ō(|N |3(|A||O|)d)

5 Experiments

We tested four different methods for escaping local optima. The first two are
alternatives that add nodes based on a forward search. The third one is the node
splitting heuristic. The fourth one is a baseline that uses random restarts for all
controller sizes instead of incrementally adding nodes. The detailed settings for
these methods are as follows:

– Forward Search: Starting from a randomly initialized FSC of |N | = |A|
nodes, EM is performed till convergence. Then a forward search of increasing
depth (up to a time limit) is performed from the belief bs|n associated with
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each node according to Algorithm 1. As soon as a non-optimal action or
successor node distribution is discovered, the search is halted and new nodes
for each reachable belief on the current path are added to the controller.

– Forward Search From Init: This technique is the same as the previous one
except that the forward search is performed only from the initial belief ps
(instead of each bs|n. It serves as a baseline to show that forward search from
each bs|n is advantageous.

– Node Splitting: Starting from a randomly initialized FSC of |N | = |A| nodes,
we iterate the node splitting procedure of Algorithm 2 until the controller
reaches a desired size.

– Random Restarts: For each FSC size |N | ∈ {|A|, .., n} we randomly initialize
a FSC and train it with 500 EM iterations. Note that we also implemented a
technique that adds random nodes to escape local optima, but it performed
worse than random restarts, so we only report the performance of random
restarts as the baseline.

The left column of Figure 1 shows the performance of each method as the
number of nodes increases for 6 POMDP benchmarks. Each curve is the median
of 21 runs from different initial random controllers with error bars corresponding
to the 25% and 75% quantiles. For the incremental methods, the curves show
how the value increases as the number of nodes increases; for the random restarts
the results for different |N | are mutually independent.

The Cheese-Taxi (variant from [12]) and Heaven-and-Hell (variant from [3])
problems are known to have difficult local optima in the sense that the optimal
policies include a long sequence of actions such that any small deviation from
that sequence is bad. Hence, policy search techniques have trouble finding this
sequence by gradually refining a policy since that would involve trying nearby
sequences with low values. Only the forward search techniques found good poli-
cies because of their ability to modify sequences of actions in one step by adding
several nodes at once. Forward search from each bs|n finds good policies with
fewer nodes than a forward search from the initial belief because it doesn’t have
to search as deeply. The random restart and node splitting techniques did not
escape the trivial local optima. Since the node splitting technique only changes
one node per step, it cannot change multiple actions at once.

The optimal policy of the Chain-of-Chains problem [18] also includes a long
sequence of actions, however small deviations are not penalized (i.e., no negative
reward), but it will simply take longer for the agent to reach a high rewarding
state. As a result, all techniques eventually find the optimal policy, but the for-
ward search techniques find optimal controllers with much fewer nodes, followed
by node splitting and random restarts.

The Hallway [10], Hallway2 [10] and Machine [4] problems do not have opti-
mal policies with long sequences of actions that must not be deviated from, but
they can still be challenging for policy search techniques that do not explicitly
try to escape local optima such as random restarts. For these problems, splitting
a node or adding a node based on a short forward search tends to be sufficient to
escape local optima. The node splitting technique is generally better because of
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Fig. 1. Performance versus number of nodes (left column) and time (right column).
NB: The graphs are best viewed in color.
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its ability to evaluate more accurately alternative controllers. Alternative splits
are evaluated by re-running EM, which gives a more accurate value than forward
search, which adds a node to correct the policy at some reachable belief without
re-running EM.

The right column of Figure 1 shows the performance as time increases. De-
pending on the problem, different techniques among node splitting, forward
search and forward search from init may be best. As explained in Section 4.3,
forward search tends to scale better than node splitting as the size of the con-
troller increases due to a cubic dependency on the number of nodes (instead of
a quartic dependency for node splitting). This is evident for the hallway and
chain-of-chains problems. However, forward search may spend a lot of time in a
search due to the exponential complexity and it does not necessarily add the best
node since it corrects the first non-optimal parameter that it finds. We believe
this explains the better performance of node splitting for the machine problem.
In general, performing a forward search from each node is advantageous in com-
parison to a single search from the initial belief since a non-optimal parameter is
often found with a shallower search. This explains why forward search performed
better for heaven-hell, hallway, hallway2 and machine. However, when a single
search from the initial belief does not go deeper than multiple searches from
each node, then a single search from the initial belief is faster, which explains
the better performance for chain-of-chains.

In Table 2, we compare the forward search and node splitting techniques to
a leading point-based value iteration technique (SARSOP [9]) and three policy
search techniques for finite state controllers (biased BPI with escape [13], non-
linear optimization (QCLP) [1] and stochastic local search (BBSLS) [3]). The
number of nodes was limited to 30 for cheese-taxi, heaven-hell and chain-of-
chains, and 40 for hallway2, hallway and machine. Since each node leads to one
α-vector in the value function representation, we report the number of alpha-
vectors that is closest to 30 and 40 for SARSOP.

Since the optimal policy is not known for several problems, we also report an
upper bound on the optimal value (computed by SARSOP) as well as the best
value found by SARSOP within 105 seconds when the number of α-vectors is not
bounded. The results for SARSOP and BPI were obtained by running the APPL
package and Poupart’s BPI code. The results for QCLP and BBSLS are taken
from [1] and [3]. When the number of nodes/α-vectors is limited, forward search
achieves the best results for cheese-taxi and heaven-hell, node-splitting achieves
the best results for hallway, hallway2 and machine, and SARSOP achieves the
best results for chain-of-chains. Overall, forward search obtains the most reli-
able results by producing controllers that are close to the bests for all prob-
lems. SARSOP does not perform well when the number of α-vectors is limited,
but can obtain slightly better results when the number of α-vectors is not lim-
ited. Note that SARSOP was specifically designed to use fewer α-vectors than
other point-based techniques including HSVI2 [16]. Compact controllers/value
functions become advantageous for embedded systems with limited memory and
processing power. Furthermore, action selection with controllers is instantaneous
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Table 2. Comparison of the value (average/median over at least 10 runs) for con-
trollers/value functions of different sizes (e.g., # of nodes/α-vectors) indicated in paren-
theses. Here n.a. indicates that the results are not available and ? indicates that the
number of nodes is unknown.

Techniques cheeseT heavenH chainOC hallway2 hallway machine

upper bound 2.48 8.64 157.1 0.88 1.18 66.1
SARSOP (105 sec) 2.48(168) 8.64(1720) 157.1(10) 0.44(3295) 1.01(4056) 63.2(1262)

SARSOP -6.38(40) 0.45(55) 157.1(10) 0.11(50) 0.15(49) 35.7(42)
biased-BPI+escape 2.13(30) 3.50(30) 40.0(30) 0.41(40) 0.94(40) 63.0(30)
QCLP n.a. n.a. n.a. n.a. 0.72(8) 61.0(6)
BBSLS n.a. 7.65(?) n.a. n.a. 0.80(10) n.a.
Forward Search 2.47(19) 8.64(16) 157.1(11) 0.41(40) 0.92(40) 62.6(19)
Node Splitting -20.0(30) 0.00(30) 157.1(23) 0.43(40) 0.95(40) 63.0(16)

since there is no computation, whereas a non-trivial search among all α-vectors
must be performed to execute policies derived from a set of α-vectors.

6 Conclusion

The main contributions of this paper are a characterization of EM’s local optima
and the design of two techniques to help EM escape local optima. We showed
that EM essentially performs a one-step forward search that optimizes the policy
parameters in isolation. Based on this insight, we designed an escape technique
that adds new nodes to the controller when a suboptimal action or successor
node is detected according to a multi-step forward search that extends EM’s
implicit one-step search. We also designed a technique to split nodes in two
and optimize the new parameters by EM. The forward search technique is the
most reliable approach to effectively escape local optima for all 6 benchmark
problems, while the node splitting technique finds slightly better controllers for
the 3 benchmark problems that do not include a stringent sequence of actions
in their optimal policies.

Although there already exist escape techniques for finite state controllers,
none of them can be combined with EM (or planning as inference) since they
rely on specific information computed by the optimization approaches they were
designed for. Hence, assuming that planning as inference will become a leading
POMDP solution technique in the near future, this work resolves an important
issue by mitigating the effect of local optima and improving the reliability of EM.
Our next step is to extend our implementation to factored domains since this is
where planning as inference becomes really attractive. In particular, approximate
inference techniques such as loopy belief propagation and variational techniques
could be integrated within EM and our escape techniques to yield highly scalable
algorithms for factored POMDPs.

This work could be extended in several directions, including hierarchical con-
trollers [18], Mealy finite state machines [2] and multi-agent settings [8], which
all face local optima, but of different nature than those investigated in this paper.
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