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Abstract

Constrained partially observable Markov deci-
sion processes (CPOMDPs) extend the standard
POMDPs by allowing the specification of con-
straints on some aspects of the policy in addition
to the optimality objective for the value function.
CPOMDPs have many practical advantages over
standard POMDPs since they naturally model prob-
lems involving limited resource or multiple ob-
jectives. In this paper, we show that the opti-
mal policies in CPOMDPs can be randomized, and
present exact and approximate dynamic program-
ming methods for computing randomized optimal
policies. While the exact method requires solv-
ing a minimax quadratically constrained program
(QCP) in each dynamic programming update, the
approximate method utilizes the point-based value
update with a linear program (LP). We show that
the randomized policies are significantly better than
the deterministic ones. We also demonstrate that
the approximate point-based method is scalable to
solve large problems.
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a battery-equipped robot whose goal is to accomplish as many
tasks as possible given a finite amount of energy. In fact,
many problems in practice can be naturally formulated us-
ing a set of constraints. For example, POMDP-based spo-
ken dialogue systemiVilliams and Young, 2007have to
successfully complete dialogue tasks while minimizing the
length of dialogues. We can use the CPOMDP to represent
these two criteria by assigning a constant reward-affor
each dialogue turn and a cost bfor each unsuccessful di-
alogue. By bounding the aggregate cost, the optimal pol-
icy from the CPOMDP is guaranteed to achieve certain level
of dialogue success ratég., task completion rate (TCR),
the performance measure which dialogue system experts are
more comfortable with than the value function in standard
POMDPs. Another example is POMDP-based opportunistic
spectrum access (OSAThaoet al, 2007 in wireless com-
munications. OSA seeks to maximize the utilization of wire-
less spectrum by allowing secondary devices to communicate
through the wireless channel that is already allocatedito pr
mary devices. Since the communication collision with the
primary device is potentially dangerous, there are reguwat
requirements on the maximum collision rate that secondary
devices have to meet in order to be approved. Such require-
ments can be naturally modeled as cost constraints, whale th
communication bandwidth is the reward that should be max-

Partially observable Markov decision processes (POMDPSW"Zed'

are widely used for modeling stochastic sequential degisio Despite these advantages, the CPOMDP has not received
problems under partial or uncertain observations. The-staras much attention as its MDP counterpaw,, constrained
dard POMDP model has the reward function which encode$/DPs (CMDPs)[Altman, 1999, with the exception of the

the immediate utility of executing actions in environment dynamic programming method for finding deterministic opti-
states, and the optimal policy is obtained by maximizing themal policies/Isomet al., 2009. In this paper, we first present
long-term reward. However, since the utility depends on-mul a motivating CPOMDP example where the best determinis-

tiple objectives in practice, it is often required to markyal
balance different objectives into the single reward fumtti
until the corresponding optimal policy is satisfactory et

tic policy is suboptimal. We then present our exact and ap-
proximate algorithms for finding randomized optimal poli-
cies in CPOMDPs. The exact algorithm is only of theoretical

domain expert. In addition, application domains of POMDPsinterest, since it is based on solving minimax quadratjycall
generally have well-established measures for evaluating s constrained programs (QCPs) to prune useless policies. The
tems, and the domain experts typically have a hard time unapproximate algorithm is motivated by point-based value it
derstanding the concept of value functions.
Constrained POMDPs (CPOMDPSs) concern the situatiorwhere we collect the samplesadmissible costEPiunovskiy
where there is one criterion (reward) to be maximized whileand Mao, 200Din addition to belief points. It thereby solves

making other criteria (costs) below the prescribed thréggho

eration (PBVI)[Pineauet al, 2004 in standard POMDPs,

linear programs (LPs) instead of computationally demand-

Each criterion is represented using its own reward or cosing minimax QCPs. We demonstrate the scalability of our
function. A typical situation is a resource-limited ageng.,

method on the constrained version of a POMDP problem with



thousands of states.

2 Preiminaries

In this section, we briefly review the definitions of CMDPs
and CPOMDPs. We also explain the suboptimality of deter-
ministic policies for CPOMDPs through an example.

2.1 Constrained POMDPs

The standard, unconstrained POMDP is defined as a tupleigure 1: State transition diagram for the counter example.
(S,A,Z,T,0,R,v,by): Sis the set of states; A is the set The edges are labeled with actions, followed by the cor-
of actionsa; Z is the set of observations T is the transition  responding transition probabilities, immediate rewardd a
function whereT (s, a, s’) denotes the probability?’(s’|s,a)  costs.
of changing to state’ from states by taking actiona; O is
the observation function whei@(s, a, z) denotes the proba- et al, 1999, we may regard a CPOMDP as a CMDP with an
bility P(z|s,a) of making observation when executing ac- uncountable state space. The non-atomic condition is how-
tion a and arriving in state; R is the reward function where ever not met. The initial distribution is atomic since the
R(s,a) denotes the immediate reward of executing action is the only possible initial state. The transition probiikeis,
in states; v € [0,1) is the discount factorby is the initial ~ which are defined as
belief whereb, (s) is the probability that we start in state / _ /

The constra(in)ed POMDP (CPOMDP) is defined as a tuple p'lb,a) =3 . p(¥|b, 0, 2)P(2]b, )
(S, A, Z,T,0, R, {C,}E_ |, {&x}I< |, 7, bo) with the follow- ~ Where

ing additional components: , 1 ifr(ba,z) =V,
. . . p(b ‘baaﬂz) = 0 th Wie
e Ci(s,a) > 0is the cost of typé: incurred for executing otherwise
actiona In states, are also atomic because the probability mass of the tran-
e ¢, is the upper bound on the cumulative cost of tgpe  Sition function is concentrated at a finite number of points

7(b,a,z1),...,7(b,a, zz),1.e, their cumulative distribution

Solving a CPOMDP corresponds to finding an optimal pOI'functions are not necessarily continuous. Therefore, xie e

icy imizeE. [S°° R tence result of deterministic optimal policies for uncabie
maximize B [>2,2 7" R(s:, ar)] state CMDPs cannot be directly applied to CPOMDPs.
subject to the cumulative cost constraints: We can construct examples of CPOMDPs where determin-
ot . istic policies are suboptimal. The simplest case is themlege
Er 2207 Crlse )] < & V. (1) erate CPOMDP with perfectly observable states. It is equiva

Since the state is not directly observable in POMDPs andent to a finite-state CMDP which may not have any optimal
CPOMDPs, we often use the notion of belief, which isPolicy that is deterministic. While the degenerate CPOMDP

the probability distributiorh over the current states’ =  has a finite number of reachable belief states, the following
7(b, a, z) denotes the successor of beliefipon executing:.  €xample has infinitely many reachable beliefs.
and observing, which is computed using Bayes theorem: ~ Consider a CPOMDP withS = {sy, 53,53}, A =

{a1,a2}, Z = {z}. The reward function is defined by as-
V(s')=0(s a,2) > T(s,a,s")b(s)/P(z|b,a). (2)  signingl for performingas in s» and zero for all other cases.
. , L . The cost function is defined by assignihigor performin
2.2 Suboptimality of deterministic policies as in sp Or sy, and zero for allyother%asgs. 'FI)'he transgi]tion
It is well known that optimal policies for CMDPs may be probabilities are shown in Fig. 1, where actionleads to the
randomized. In[Altman, 1999, it is shown that when a absorbing state;. Since there is only one observation, the
CMDRP is feasible, the number of randomizations under aragent cannot exactly figure out the current state. Thergfore
optimal stationary policy is related to the number of con-given the initial beliefoy = [0, 1, 0], the set of reachable be-
straints. More specifically, if we define the number of ran-liefs is {b, = [1 — 0.9¢,0.9,0]}:2,. Note thath; is reached
domizationsm(s,7*) under an optimal policyr* in states only at time steg, and that the agent has only one chance of
as|{a|mr*(a|s) > 0}| — 1, the total number of randomizations receiving a non-zero rewart(b;, a2) = 0.9' by executing
ism(r*) = . cgm(s,7) < K whereK is the number of  ay while this will incur a cost ofl.
constraints. Supposey < ¢ < 1. A deterministic policy cannot execute
It has also been shown that, under the special conditiomactionas earlier thant = 1 because executing it at= 0 will
of non-atomic initial distribution and transition probltiés,  violate the cumulative cost constraint. Hence, the maximum
searching in the space of deterministic policies is sufficie value achievable by a deterministic policy(9~ with the
to find optimal policies in CMDPs with uncountable state cumulative cost of,. However, consider a randomized policy
spaceqFeinberg and Piunovskiy, 20D2A probability dis-  that executes actiom, with probabilityé at¢ = 0, and then,
tribution is defined to be non-atomic if its cumulative distr if actiona; was executed dt= 0, always executes actian
bution function is continuous. Since a POMDP can be formu-att > 1. This policy achieves the value ofé¢+0- (1 —¢) =
lated as an MDP with the continuous belief spl¢aelbling ¢ > 0.9y with the cumulative cost of exactty



3 Exact Dynamic Programming for CPOMDP  “Jjgorithm 1: regress””

In [Isomet al, 2004, a dynamic programming (DP) method ™ jnput : v/

was proposed to findeterministigolicies in CPOMDPs. We output: {(a@*, a®*)}, {I'**}
briefly review the method in order to present our contribatio  foreach a € A and» € Z do

For the sake of presentation, we shall refer to the value (a®* a%*) — (R(-,a),C(-,a))
function of a CPOMDP as the joint function of cumulative rez
reward and cost functions and assume only one constraint | foreach (o ., ) eV'do
E)K = 1) unless explicitly stated otherwise. The DP method i (s) _ S yes T(s,a,8)0(s' a, 2)al, . (s')
y Isomet al.[200d constructs the set af-vector pairs for 0% (s) = S T(s,a,5)0(s, a,2)c; (')
the value function, one for the cumulative reward function Le AP/ steS T e P e
and the other for the cumulative cost function. Therefaoe, f P2 =T U (a5, ai))
each pair of vectorga; ., o; .) in the value functior”’, the —
DP update should compute:
az(y _ R(s,0) T NO(s' Il However, this pruning algorithm has a number of issues.
a; )y (5) iz T 2yes T(s,a,5)0(s', 0, 2)aq,. () First, as described in the previous section, determingsilc
a®?(s) = CI(;\Q) Y wes T(s,a,8)0(s a, 2)c, () cies can be suboptimal in CPOMDPs. Hence, we have to
’ ar a - ’ consider randomized policies which involves taking a con-
V =Usea Bzez {<ai,r » Qe )il vex combination ofv-vectors when checking for dominance.

hich in th ¢ i V1121 pairs of Second, the method will prune away every vector that vislate
which in the worst case will generat||V'|!*! pairs of vec- 0" oymylative cost constraint in each DP update. This may
tors. To mitigate the combinatorial explosion, the method|ead to a suboptimal deterministic policy since it effeetjv

uses incremental prunirigassandrat al, 1997 which in- oo o< thaeveryintermediatet-step policy should satisfy
terleaves pruning useless vectors with generatingectors o o mylative cost constraint; satisfying the long-teum ¢
Shulative cost constraint in Eqgn. 1 does not necessarily mean
"hat the constraint should be satisfied at every time step.
We therefore revise the MILP to the following minimax
guadratically constrained program (QCP):

{au-, ac) In the value function using the following mixed in-
teger linear program (MILP):

ac-b<¢ _ ac-b>b-Y wie .+ h,

(ar —ip) b>h—d'M Vi, b- 3, wici, — ap b > h,

aic-b>d'é Vi, ) ZSGS b(s) =1,
max h| g € {0,1} Vi 3 minmaxhl >0 Vses “)
hob,di ’ & wi, (s) > se s,

Eses b(s) =1, Yiwi =1,

b(s) >0 VseS, w; >0 Vi

h >0, The first and second constraints state thaf i 0, there

n Eexists a convex combination of vectors which incurs less cu-
mulative cost thany. while achieving a higher cumulative
should be included if there exists a beliefvhere it is useful ~reward tham,. at beliefb. Hence, if we obtain a nonnegative
h by maximizing it for beliefb, then (., a.) is not useful

to represent the value function. Féf,., a.) to be useful at . .
b, a.. should satisfy the cumulative cost constraint as state@! Peliefb because we have a better or equally performing

in the first constraint in Egn. 3, ang, should have a higher @ndomized palicy. Since we minimize the maximénover
cumulative reward than any othét; ,, «; ) € V that sat- the entire belief simplex, if the final solutiol is nonnega-
isfies the cumulative cost constraint, - b < ¢ as stated in V& then{a., a.) is not useful at any beligf, and thus it can
the second and third constraints. A variablec {0,1} in- be pruned. Unfortunately, this minimax QCP is computation-

dicates whethew; . violates the cumulative cost constraint at ally demandmg to solve, and thus We propose a pqlnt—based
b. If & — 1, the third constrainty; . - b > ¢ indicates that approximate method for CPOMDPSs in the next section.

o . violates the cumulative cost constraintbaand the sec- .
ond constraint is trivially satisfied. H' = 0, o, must have a 4 Approximate M ethod for CPOMDP
higher cumulative reward tham; , by satisfying the second 4.1 Point-based valueiteration

constraint. If this program is feasible, we have found adfeli
where(a,., a.) is useful, hence the newly created vector wil
not be pruned.

where{w; ., a; ) is thei-th vector pair in the value functio
V, and M is a sufficiently large positive constanta,., c..)

| The point-based value iteration (PBVI) algoritHRineauet
al., 2004 for the standard POMDP uses a finite set of reach-
able beliefsB = {b, b1, ..., b, }, instead of the entire belief
lthe cross-sum operate is defined asA & B = {a + bla € simplex, for planning. Performing DP updates only at the be-
A,b € B} with the summation of pairs a1, as) + (b1, b2) = liefsb € B eliminates the need to solve linear programs (LPs)
(a1 + b1, a2 + ba). for pruninga-vectors in standard POMDPs.



Algorithm 2: updateV = HV’

input : B, V’

output: V

V10

{(a®”, ag")}, {T'*} —regress(V’)

foreach a € A do
[ T o™ ad") @ @.e s T

I UaEA re
foreach b € B do

collected belief. Before presenting our point-based algo-
rithm, we introduce a new variablé, representing the ex-
pected cumulative cost that can be additionally incurred fo
the remaining time step§, ¢ + 1, ...} without violating the
cumulative cost constraint. We call théglmissible cosat
time stept [Piunovskiy and Mao, 20Q0Let W, be the cumu-
lative cost up to time stefp i.e, Wy = 30,77 C(br,a,).
Then the admissible cost at time step- 1 is defined as
diy1 = (¢ — Wy). In other wordsd,. is the differ-
ence between (the maximum expected cumulative cost al-

lowed) andiV; (the cumulative cost incurred so far) rescaled
by 1/4'*1. The admissible cost at time stept+ 1 can be
recursively defined as follows:

dip1 = (@~ W)

| V< VUprune(b,T)

Algorithm 3; prune

input :b, I’
output: T = 7t%(é — Wiy — *C(bs, ay))
LD = L(dy — C(by, ar)). ©)

foreach («..,a.) € I' do
Solve the LP (Eqn. 5) and get the solutibn Therefore, if the agent perfornag, the admissible cost at-1
if h < 0then is updated by Eqn. 6. The initial admissible costjs= ¢.
| T —TU{{e, o)} Note that we use the expected c63th;,a,) instead of
the actually incurred cost when updating the admissiblé cos
This is because the policies in CPOMDPs are not defined
to be contingent on actual costs, in the same way as the
We can adapt the point-based DP update to CPOMDPs ipolicies in standard POMDPs are not contingent on the re-
a simple way. For eadhe B, we enumerate the regressiéns ceived rewards. If we extend the definition of policies to
of a-vectors using Alg. 1. We then prune the dominated vecbe contingent on actual costs, we can adopt some of the ap-
tors using onlyb € B. The complete point-based DP update proaches in MDP such as incorporating actual costs into the
is shown in Alg. 2. Since pruning is confined &) we check  state spacéMeuleauet al, 2009, or using the sample path
the dominance ofi-vectors for eaclh € B, thereby reducing constraint§Ross and Varadarajan, 1989; 1991
the minimax QCP in Eqgn. 4 to the following LP: In order to use the notion of admissible cost in PBVI,
we first sample pairs of beliefs and admissible co#ts=

Qe-b>b- 3w+ h, {(bo,do), (b1,d1), ..., (by,dy)}. For a belief-cost paifb, ),
; b- > wiai, —ay b > h, . the best action is obtained by solving the following LP:
Ig)llaz,( g Zz w; = ].7 ( ) b- ZL Wi ¢ S d,
w; >0 Vi, maxb- Zwiaiﬂ. 27 w; =1, (7)

which has the same formulation as the maximization problem wi 20 Vi,

in Eqgn. 4 except thak is no longer a variable. The pruning where the resulting coefficient; represents the probability

algorithm using the above LP is shown in Alg. 3. of choosing the action corresponding(te ., «; ). Note that
Although this algorithm is based on the enumeration al-there exists a solutiow; with at most two non-zero compo-

gorithm for standard POMDPEMonahan, 1982 we can  nents because the above LP contdlis+ 2 constraints and

easily modify it to perform incremental pruning. However, at leastiV| constraints must be active at extreme points. For

compared to the standard PBVI which maintains only oneCPOMDPs withK constraints, there always exists a solution

a-vector at each belief, this simple point-based algorithmthat will have at mosf{ + 1 non-zero components.

still suffers from the potential combinatorial explosionthe The revised point-based DP update is described in Alg. 4.

number ofa-vectors. This is mainly because, although weFor each belief-cost poirb, d) € B, we construct:

have collected the finite set of reachable beliefs, we Inate (b.d),a . .

collected any information on how much cost can be incurred o = At +y Y g a7

while still SatiSfying the cumulative cost constraint abske Wheredgaz is the best convex combination of the value vec-

beliefs. tors with respect to the next belief and admissible cost, ob-
. . (b,d),a - . _
42 PBVI with admissible cost tained by the LP |.n E(qbr;.) Zac. is obtained a§ the by
o _ . . . _product of computingy,; *~°". Finally, we once again use the
The main idea behind our approximate algorithm is to addiq p j, Eqn. 7 to find the best convex combination of the value
tionally obtain information on the cumulative cost for eachyectors with respect to the current belief and admissib.co

2Regression refers to the multiplication of anvector by the 3We can guarantee at mogk” + 1) vector pairs if we use LP
dynamics of an action-observation pair. solver that always returns an extreme point, e.g., simplex method.



Algorithm 4: updateV = HV’ (PBVI with admissible Algorithm 5: Execution

cost) input :b=by,d=2é
input : B, V' whiletrue do
output: V Solve the LP (Eqn. 7) witltb, d)
Vo Randomly choose the indéxwvith probability w;
{{a®* a®*)}, {T**} —regress( V) Perform the actiom; corresponding tda,,., c; )
foreach (b,d) € B do Receive observation from the environment
foreach a € A do de—ac-b
foreach » € Z do d — 2(d—C(b,a;))
dZ — %(d—C’(b,a))P(z|b,a) b%T(b,a,Z)

Solve the LP (Egn. 7) with
V<0zi7r, Oéi70> e I'v»* and(b, dz),
and get the solutiom,.
d?7z — Zz wiai,r
QQ® = ) Wit e
" = a4y g e
—+ - cost (randomized)

b,d),a b,d),a
F(b7d) N UaGA{<a£' ) ,.ag ) >} ’ —>— reward (randomized) | |
Solve the LP (Eqn. 7) witl'®® and(b, d), and get Qo tastemins)
the solutionw;. e s 1
V - V U {<ai,r7 ai,c) c F(b,d)|wi > 0} Planning horizon

_ Figure 2: Results for the toy problert €& 0.95, v = 0.9).
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Note that eacla?-* is computed by distributing the admis- 5 Experiments
sible cost via%(dfC(b, a))P(z|b,a). Ideally, we shouldnot 5.1 Randomized vs. deter ministic policies

impose such a constraint on each observation to obtain thg/e first experimentally confirm that deterministic policies
best convex combination & However, this will lead to a  cannot represent optimal policies of CPOMDPs using the toy
local combinatorial explosion due to cross-summations, anproblem in Fig. 1. Fig. 2 shows the cumulative reward and
we observed that distributing the admissible cost yieldéd s cost of the deterministic and randomized policies obtalmed
ficiently gooda-vectors while ensuring that the admissible the algorithms. As demonstrated in Sec. 2.2, the determinis
cost constraint is satisfied at tic policy was suboptimal since it had to executeatt = 0

In summary, the algorithm does not depend on crossandasy at¢ = 1 in order to satisfy the cumulative cost con-
summations and maintains at m@&f + 1) vector pairs for  straint. Hence, the deterministic policy achieved the ealfi
each belief, hence a total of at m@$f + 1)|B| vector pairs. 0.9 with the cumulative cost of. The randomized policy

achieved the value af while exactly satisfying the cumula-

4.3 Policy execution tive cost constraint at

In the execution phase, the agent chooses its action with ré2 Quickest change detection

spect to the current belief and admissible cost. The oveWe compare the policies found by the exact and the approxi-
all procedure for the execution phase is shown in Alg. 5.mate methods for CPOMDPs in the Quickest Change Detec-
Specifically, at time step, the optimal randomized action tion (QCD) problem[lsom et al, 2004. The problem has

is calculated by solving the LP in Eqn. 7 with;,d;), and 3 states consisting of PreChange, PostChange, and PostA-
obtaining the solutionv;. The agent selects a vector pair larm. The agent has to alarm as soon as possible after the
(i, o) by randomly choosing the indexwith proba-  state changes to PostChange, while bounding the prolyabilit
bility w;, and then the current admissible cdstis resetto of false alarmj.e., executing the alarm action when the state
d, = a; .-bsince the agent decides to follow the policy corre-is PreChange. We use the discounted version of the problem
sponding to(«; -, o ) Which incurs the expected cumulative with v = 0.95, and set the false alarm probability constraint
cost ofw; . - b for the remaining steps. The new admissibleto ¢ = 0.2.

costd; can be higher or lower than the original admissible Fig. 3 compares the results of the exact and approximate
costd,, but they will be the same in the expectation sincemethods for the discounted QCD problem. Due to the com-
actions are chosen randomly according to thesatisfying  plexity of the MILP in Eqn. 3 and the minimax QCP in Eqn. 4,

dy = >, wi(a;. - by). After executing the action associated the exact methods using MILP and QCP pruning were not
with («; ,, ai.c), the next admissible codi; is then calcu- able to perform DP updates more than 6 and 5 time steps,
lated by Eqn. 6 and the next belief is computed by Eqn. 2 withrespectively. The approximate method used 500 belief-cost
the observation; from the environment. sample pairs, and it was able to perform DP updates more
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Figure 5: Results of PBVI with admissible cost for 3-City
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action, and a constant cost functionlofor issuing a ticket
Figure 4: Planning time for the discounted QCD problem. with wrong origin or destination and 0 otherwise. Hence, the
reward part represents the efficiency (dialogue length}aaed
] ) o cost part represents the accuracy (task completion rate).
than 10 time Steps W|th0ut d|ff|Cu|ty. Furthermore, the p0|- F|g 5 ShOWS the results from the approximate method us-
icy from the approximate method performed close to the ongng 50 belief-cost sample pairs far= 3 with P. = 0.2. This
from the exact method. Fig. 4 compares the planning time foproblem hags| = 1945, |A| = 16, |Z| = 18, andy = 0.95.
eaCh method.NOte that the exact methOd takeS |arge amounaote that the po“cy uses more dia'ogue turns for Sm&ﬂer
a-vectors even though the useless ones are pruned, wheregscurate about the origin and the destination.
the approximate method exhibits its running time lineahis t

planning horizon. 6 Conclusion

5.3 n-city ticketing We showed that optimal policies in CPOMDPs can be ran-

domized, and presented exact and approximate methods for
In order to demonstrate the usefulness of the CPOMDP for{inding randomized policies for CPOMDPs. Experimen-

mulation in spoken dialogue systems and the scalability o al results show that randomized optimal policies are bet-

our approximate method, we show experimental results O%er then deterministic ones, and our point-based method ef-

the n-city ticketing problem[Williams et al, 2009. The ficiently finds approximate solutions. Although we demon-
problem models the dialogue manager agent which inter-

acts with the user to figure out the origin and the destinatio strated CPOMDPs with one constraint, our algorithms nat-
e o 19 . 9 : r‘brally extend to multiple constraints and different disebu
amongn cities for flight reservation. At each time step, the

. ; o factors for each reward or cost function.
agent asks the user for the information about the origin@nd/ Careful readers may note that the policy from our point-
itpﬁéfsesg?ﬁé'gg gSf?ujggtrnllr: fghr?nggléit plﬂr(;:vcg\?eer r%cﬂjueef) ?r:ﬁ)ased method can violate the cost constraints because-the cu
S eecr?reco Hition errors. the observéd user's re:5 ondgeca mulative cost function is constructed using the sampled be-
dﬁ‘ferent frorr?the true res,onse We denote the rgbahn'ﬁt liefs in the same way PBVI approximates the value function.
speech recognition error gs, which is incorporatgd into thé/ If such violation is a serious issue, we can use upper bound
observation probability of the model. We used a constant regpproxmanon techniquet$tauskrecht, 2000for represent-

ward function of—1 for each time step till the terminal submit 9 the cumulative cost functions to absolutely guaranae s
P isfying the cost constraints. However, in our experimeuass,

“4All the experiments were done on a Linux platform with the In- ing the lower bound representation-yectors) yielded fairly
tel Xeon 2.66GHz CPU and 32GB memory. Al the algorithms were900d results. _ _
implemented in Matlab; MILPs and LPs were solved using CPLEX There are several future W_OrkS worth pursuing. First, the
12.1; minimax QCPs were solved usihgi ncon in Matlab forthe ~ proposed method can benefit from adopting state-of-the-art
outer minimization and CPLEX 12.1 for the inner maximization. = POMDP solvers with heuristic belief exploration. Second,



it would be interesting to extend this approach to average reflRoss and Varadarajan, 199K. W. Ross and R. Varadara-

ward and cost criterion models, since a lot of well-estigds
measures are defined using such criterion in practice. y,astl

jan. Multichain Markov decision-processes with a sample
path constraint - a decomposition approabhathematics

it is an open question whether we can extend this approach to of Operations Researchi6(1):195-207, 1991.

factored representation for CPOMDPs.
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