

“Is the Sky Pure Today?”
AwkChecker: An Assistive Tool for Detecting and

Correcting Collocation Errors

Taehyun Park, Edward Lank, Pascal Poupart, Michael Terry
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, ON, Canada, N2L 3G1
{t2park, lank, ppoupart, mterry}@cs.uwaterloo.ca

ABSTRACT
Collocation preferences represent the commonly used
expressions, idioms, and word pairings of a language.
Because collocation preferences arise from consensus
usage, rather than a set of well-defined rules, they must be
learned on a case-by-case basis, making them particularly
challenging for non-native speakers of a language. To assist
non-native speakers with these parts of a language, we
developed AwkChecker, the first end-user tool geared
toward helping non-native speakers detect and correct
collocation errors in their writing. As a user writes,
AwkChecker automatically flags collocation errors and
suggests replacement expressions that correspond more
closely to consensus usage. These suggestions include
example usage to help users choose the best candidate. We
describe AwkChecker’s interface, its novel methods for
detecting collocation errors and suggesting alternatives, and
an early study of its use by non-native English speakers at
our institution. Collectively, these contributions advance
the state of the art in writing aids for non-native speakers.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Human Factors.
Keywords: Collocation errors, non-native speakers,
linguistic tools, writing aids.
INTRODUCTION
Non-native speakers (NNSs) of a language can learn a
foreign language's rules for spelling and grammar, but a
language's commonly used expressions, idioms, and word
pairings either cannot be described by rules or require
memorization of many special-case rules. For example, a
non-native speaker may ask a person to “take their shoes
down” while the more common expression is to “take their
shoes off.” While the latter phrase is clearly the “correct”
phrase for a native speaker (NS) of English, this
“correctness” is determined by consensus usage rather than

any set of rules related to the English language. This
consensus usage is referred to as a collocation preference,
with violations of these preferences referred to as
collocation errors [8,10,15,16].
The lack of well-defined rules to determine collocation
preferences makes it difficult for non-native speakers to
detect and correct these errors. Spell checkers and grammar
checkers can help ensure one's language is syntactically
and grammatically correct, but these rigid-language tools
offer no assistance in detecting or correcting collocation
errors. Instead, non-native speakers must employ ad-hoc
methods to detect these types of errors. For example, many
NNSs check whether a phrase is commonly used by
observing the number of results returned by search engines
[9,19]. While a clever reappropriation of search engines,
there are obvious limitations to this approach compared to
dedicated linguistic tools. For example, search engines are

Figure 1: AwkChecker's user interface is
depicted with the following callouts: A) flagged
phrases in the composition window; and B) One
of the suggested alternative phrases for
Powerful tea.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’08, October 19-22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

121

of limited help when a NNS must find an alternative phrase
that is more commonly used than their original phrase.
The reappropriation of search engines indicates a clear need
for soft-language tools, tools geared toward aiding NNSs
with the common expressions, idioms and word pairings
that comprise collocation preferences. In this paper, we
present a new tool, AwkChecker, which allows NNSs to
identify and correct collocation errors in their own writing.
AwkChecker uses word-level statistical n-grams and
incorporates algorithms to suggest corrections for four
common types of collocation errors: insertion, deletion,
substitution, and transposition errors.
AwkChecker is implemented within the context of a web-
based text editor that flags collocation errors and suggests
alternatives from which a user can select (Figure 1). As
shown, when users edit text within the window, phrases
that are potentially “awkward” are highlighted by the
interface (Figure 1a). Users can click on awkward phrases
to generate a list of suggested alternatives (Figure 1b). This
list of alternatives includes information about the relative
ubiquity of each alternative within the training corpus. It
also includes example uses for each phrase, showing the
phrase in context with surrounding text. Users can click on
“Next” links to see additional examples of the phrase, thus
allowing them to assess the quality of each alternative.
Because collocation preferences are highly idiosyncratic,
showing phrases from the corpus in context can be crucial
in helping users determine which phrase is most
appropriate given the context of their writing.
The use of n-gram statistics confers a number of benefits,
both from the perspective of detecting collocation errors
and from the perspective of an end-user who must
understand the tool’s capabilities and limitations when
applying the tool. First, because the statistical n-grams are
extracted from an underlying corpus, the system flags
collocation relative to the style of writing within the corpus.
As a result, the tool can be used by NNSs to write in the
style appropriate for different writing tasks, provided a
relevant corpus exists. An example would be using a
medical corpus to flag phrases inappropriate within medical
research writing. Second, the use of n-gram statistics results
in resilience to “messy” data. As one of our corpora, we use
Wikipedia entries, which vary widely in the overall quality
of writing. However, provided the corpus is “correct” more
frequently than it is “incorrect”, collocation errors will be
detected and appropriate corrections suggested. Finally,
because AwkChecker’s likelihood estimate is a function of
an underlying corpus, end-users can more easily understand
the system's capabilities and limitations. This phenomenon
was obvious during thinkaloud evaluations where users
commented on their improved understanding of false
positives (phrases that were flagged as collocation errors
but were not).
There are three primary contributions of this work. First,
this work defines a new mechanism for identifying
collocation errors, defining collocation errors as a function
of the relative frequency of phrase usage within a corpus.

Next, this work presents algorithms for suggesting
alternatives, based on the specific types of errors made by
NNSs. Finally, the web-based interface represents, to the
best of our knowledge, the first tool that allows end-users
to identify and correct their own collocation errors.
Together, these contributions result in a significant advance
in tools to aid NNSs in written composition.
BACKGROUND
Second language (L2) refers to a language that is acquired
after first language (L1). For many, second language
learning is a critical component of their everyday lives. For
example, it is estimated that about 70% of the English
speaking population consists of non-native speakers [4].
However, few linguistic tools exist that are specifically
designed to scaffold language production by second
language learners.
In this section, we describe needs unique to non-native
speakers when attempting to produce “correct” language in
a second language, and contrast these needs with native
speakers’ needs. We also consider the linguistic tools
currently available (e.g., spell checkers, grammar checkers)
and argue that the majority of linguistic tools currently
available primarily cater to the needs of native speakers and
the types of errors they produce, with the unique needs of
NNSs largely unmet. We review research efforts focused
on linguistic aids for NNSs and identify an opportunity for
tools that assist in the detection and correction of one
common type of NNS error, collocation errors.
Language Needs for Non-Native Speakers
As with L1 acquisition, L2 acquisition is a complex
process, the nuances of which are still being discovered.
However, there are some distinct characteristics of L2
acquisition that are noteworthy, especially in the context of
computational tools intended to support language
production by nonnative speakers.
Grammar and essential vocabulary are the first parts of a
language acquired by NNSs. While this acquisition requires
a fair amount of rote memorization (e.g., learning
vocabulary), there are also well-known rules associated
with a language’s grammar (e.g. noun-verb agreement) and
spelling (“i before e, except after c”). Once learned, these
rules help non-native speakers produce new language that
is syntactically and grammatically correct.
Despite knowledge of rules of grammar and spelling, non-
native speakers continue to make a number of language
errors. These errors include those involving determiners
(e.g. a, an, the), prepositions (e.g., to, for, in), and noun-
verb agreement. Some of these errors involve a language’s
grammar rules (e.g., noun-verb agreement) and can be
detected by tools such as grammar checkers. Others require
grammar and language tools geared specifically to the
needs of NNSs. Finally, a third class of errors exist that
result from collocation preferences.
Collocation preferences refer to habitual word
combinations in a language. For example, in English, one
can say there is a “clear sky” to express the notion that
there are no clouds in the sky. However, one would not say

122

“clean sky” or “pure sky,” even though these phrases, at a
basic, fundamental level, convey a similar sentiment to
“clear sky.” When trying to convey this concept, second
language learners cannot know which of the phrases is the
“correct,” more common phrase, except through
experience. That is, there are no rules that dictate that
“clear” is the more appropriate adjective in this
circumstance. Collocations are thus idiosyncratic in nature
since they lack predictable syntactic and semantic features
that one can learn and apply.
Collocation conventions lead to a distinct class of errors,
collocation errors, which are produced by NNSs, but not
NSs. For example, in the Chinese-English Learner Error
Corpus (CLEC), approximately 30% of English as a
Second Language (ESL) writing errors involve different
types of collocation errors [19]. Some experimental
evidence shows that even advanced NNSs have difficulties
with collocation [16]. As such, collocation errors constitute
a significant class of errors produced by non-native
speakers. However, while it can be difficult for non-native
speakers to produce language with correct collocations,
they have little difficulty in understanding the meaning of
phrases when encountered. As we will show, the fact that
collocations can be understood when encountered has
implications for computational aids.
In contrast to the errors described above, native speakers
tend to make relatively simple mechanical errors (e.g.
“then” vs. “than,” “its” vs. “it’s,” etc.). These are errors that
non-native speakers may also make, but are clearly of a
different nature than the types of errors unique to NNSs.
For convenience, we refer to errors produced by NNSs, but
not NSs, as L2 errors. We consider L1 errors as those
errors common to NSs, even though NNSs may also
produce these types of errors. Table 1 summarizes these
two classes of errors.

 L1 Errors L2 Errors
Spelling Homonyms (e.g.,

then, than)
Any, including L1

Grammar Run-on-sentences Verb-noun
agreement
Determiner usage

Style Rare Use of informal
vocabulary

Collocation Rare Various

Table 1: A (non-exhaustive) list of common
language errors made by native speakers (L1
errors) and non-native speakers (L2 errors). Non-
native speakers may make either type of error, but
native speakers rarely make L2 errors.

Given these two primary classes of language errors, we turn
now to a review of linguistic aids.
Linguistic Aids
A wide range of computational tools have been developed
to aid in language production, with spell checkers, grammar
checkers, and translation services the most common. A

number of tutoring (educational) systems have also been
developed to scaffold language learning, though these
systems are, by nature, not general-purpose tools one can
use while writing.
In considering the two general classes of language errors
defined above, it is clear that existing linguistic tools are of
most use for addressing L1 errors. Spell checkers and
grammar checkers help one produce grammatically correct
language, but do not help detect and correct the collocation
errors non-native speakers are prone to make. Thus, these
tools are useful to both NS and NNS, but do not address L2
errors. As these tools allow detection of violations of
linguistic rules, we call these tools rigid-language tools.
It has been frequently noted that the rigid-language tools
designed to detect L1 errors do not effectively address
many L2 errors [7]. To help detect L2 errors, many
nonnative speakers rely on web search engines, especially
when checking for collocation errors [9,19]. To check for a
collocation error, a NNS will submit a phrase to a search
engine. If the phrase returns few “hits,” the NNS can
assume something about the phrase is incorrect. At this
point, the NNS can generate additional phrases to test until
an acceptable candidate is found. While this use of search
engines clearly deviates from their intended use, it provides
an important stopgap for NNSs in need of L2 error
detection. However, there are limitations: Search engines
are not tightly integrated with writing tools, users must
manually produce alternative phrases to test, and most
search engines provide only rudimentary suggestions when
a phrase contains an L2 error.
Noting the limited utility of existing linguistic aids for non-
native speakers, the research community has begun to
actively investigate tools to address this problem space.
Research has focused on the development of a set of
guidelines for the design of L2 error detection tools, the
development of techniques to detect and automatically
correct L2 errors in written documents, and learning aids
for NNSs.
L2 Tool Design Guidelines
In their work developing a Swedish grammar checker,
Knutsson et al studied adoption practices of their grammar
checker by non-native speakers [12,13]. Based on their
study, they developed a set of guidelines for the design of
linguistic tools for NNSs. In particular, they suggest:

• Real-time feedback is always desirable, especially
since it helps one improve one’s understanding of
the language as it is produced

• Tools should not only indicate what is wrong, but
also provide sufficient information (e.g.,
examples, grammar rules, etc.) so that users can
reason about the error and its solution

• The tool should be transparent with respect to its
capabilities and limitations; users should
understand what it can and cannot do

• The tool should not be too technical with its
terminology and should avoid linguistic terms

123

• Users should be able to focus on producing
content, not on low-level details such as spelling,
grammar, etc. That is, the tool should not distract
from their primary goal of communication

These proved useful for a subsequent Swedish grammar
checker designed specifically for NNSs. In a study
involving a class of students learning Swedish with their
NNS grammar tool, the researchers found that deviations
from these guidelines noticeably reduced the tool’s
effectiveness. The strongest conclusion from their study is
that a user’s understanding of the limitations of the tool
resulted in fewer questions about why the system failed to
detect an obvious error or why it flagged a statement that
was clearly correct. As well, providing additional
information about the error to the end-user proved helpful
in judging false positives.
L2 Error Detection Tools
As noted earlier, L2 errors include both grammar errors
(e.g. determiners and prepositions) and collocation errors.
Recognizing that L2 errors are distinct from L1 errors, a
number of research systems have attempted to perform
automatic L2 grammar error checking (e.g. for determiners,
prepositions, etc.) [2,5,7,19].
One common approach taken by these systems is to use a
large reference corpus to develop L2 grammar rules,
essentially a model-based approach to error detection and
correction. Eeg-Olofssons et al created a rule-based
approach to grammar checking geared specifically to L2
errors made by NNS of Swedish [5]. They describe two
types of rules: word and phrase form errors, and preposition
errors. They performed a minor evaluation of their system
on a 2800 word text, manually flagging 40 errors. The
system detected 11 of these 40 errors (recall = 28%), and
resulted in no false positives (precision = 100%).
More recently, Gamon et al have used machine learning
algorithms [7] to create rules for detecting eight different
L2 errors they specify. They report detection and correction
accuracy for their system of 46% for preposition errors and
55% for determiner errors. Performance on the other error
types has not yet been reported. Brockett et al have applied
a statistical machine translation (SMT) technique to detect
and correct countability errors associated with mass nouns
(i.e. errors involving uncountable nouns such as
information, pollution and homework) and report
correction accuracy of 61.81% [2]. A strength of the
model-based approach is the ability to handle arbitrary
input. The systems label parts-of-speech (e.g. noun, verb,
verb-phrase, etc.) and then use their model to validate the
structure of the fragments. However, these models can
over-generalize, producing frequent false negatives that are
not understandable by users.
In contrast to model-based approaches, Yi et al have used
web search hits from search engines to detect and correct
determiner and preposition errors [19]. Their system detects
verb-noun collocations and determiner errors. The system
parses a corpus searching for sentences that are of two
forms: verb-phrase, noun-phrase; and verb-phrase,

prepositional-phrase; noun-phrase. It also identifies all
noun phrases. The system then uses a web search engine to
flag errors and suggest replacements. Their system
identifies determiner errors 41% of the time, and provides a
correct replacement in 63% of these cases. For collocations,
however, the system’s performance is much poorer (recall
= 31%, precision = 37%).
The above L2 error detection tools have been valuable in
improving the state-of-the-art in L2 error detection.
However, they have typically focused on a sub-set of L2
errors, specifically those errors that can be modeled by
grammar rules. These approaches will not detect errors that
result from collocation errors.
Furthermore, because the goal of these L2 error detection
tools has been to improve the recognition of a certain
subset of L2 errors, these tools have not been embedded in
end-user systems. For end-user linguistic tools dealing with
fuzzily-defined linguistic conventions (such as collocation
preferences), the properties of model-based approaches
may be problematic. In particular, using the desiderata of
Knutsson et al [13] and Vernon [20], models may serve to
decrease the transparency of the system, making it difficult
for users to form a mental model that can account for
failures of the system, such as false positives and poor
suggested corrections. As these techniques have not been
realized in end-user tools, these remain important open
questions to investigate.
L2 Tutoring Systems
One area where linguistic tools have been developed for
non-native speakers has been in computer-assisted
language learning (CALL). While most CALL systems
contain a series of pre-specified lessons to support the
learning of vocabulary and grammar, rather than
collocation preferences, one exception to this general trend
is a system proposed by Shei et al. to teach collocation
preferences [18]. The system will first extract collocations
from a reference corpus, a large, correct, collection of
English text. The system will also extract errors from a
learner corpus, a corpus containing multiple instances of
collocation errors. The system will then select collocation
errors from the learner corpus, and NNS can work to
correct the collocation errors. As well, given short phrases
typed by the NNS, the system will determine whether these
phrases are collocation errors or not. While Shei et al. have
performed some proof-of-concept testing of their system’s
techniques, their primary interest is in pedagogical issues in
training professional translators [17]. The proof-of-concept
testing on their proposed system served to inform practices
for translator training, but the system was not deployed for
end-users.
One shortcoming of tutoring systems is that their overall
goal, language instruction, typically results in an interaction
style unsuited to aiding arbitrary writing. Tutoring systems
consider short passages of text and flag errors. The systems
require users to perform corrections immediately, thus
scaffolding the learning process. This short, phrase-based
interaction is useful for improving one’s writing. However,
when composing a document, the need to interact phrase-

124

by-phrase with the system can impede the user’s writing
task.
Summarizing L2 Learner Needs
To summarize, NNSs make a set of errors, L2 errors, which
NSs rarely make. These errors include errors involving
determiners, prepositions, noun-verb agreement, and
collocation errors. In this paper, we are most concerned
with collocation errors, an L2 error that has received little
attention in the past. To aid NNSs in detecting and
correcting errors, linguistic tools for NNS should provide
real-time feedback, information to support reasoning about
errors, a high degree of transparency with respect to the
tool’s functionality and capabilities, and little reliance on
specialized terminology [13,20]. We turn now to a system
we built to detect collocation errors while following these
general guidelines.
AWKCHECKER
System Design: Overview
AwkChecker is a text editor that performs real-time
detection of collocation errors (Figure 2). As the user enters
and edits text, AwkChecker automatically highlights
potential collocation errors. Users can click on highlighted
phrases to receive a list of alternative suggestions.
AwkChecker’s suggestion list includes a relative ranking of
the frequency of each phrase in the corpus. We

experimented with a variety of feedback mechanisms,
including a normalized frequency in the range [0, 1], a bar
graph representation where the length of bars indicated the
frequency of the phrase, and a combination of some
numerical score and graphical representation. While it was
our goal to allow users to quickly perceive relative scores,
these numerical scores became a source of confusion, as the
numerical scores did not map intuitively onto an obvious
measure of frequency. Currently, a phrase’s score is
depicted as an integer value that corresponds to the number
of occurrences of the phrase in the corpus (Figure 3).
Each suggested alternative is shown in the context of a
passage of text from the corpus. The goal of this short
passage is to help users assess the best replacement when
multiple alternatives exist. As well, for users who wish to
improve their language skills, seeing a series of alternative
phrases in context can provide them with examples of
proper use of the phrases. The short passages are drawn at
random from the corpus, and occasionally the alternative
phrases are inappropriate. They may, themselves, be
examples of collocations, or they may not have the same
meaning as the original phrase. To address this, users can
press a “Next” link to see additional examples of the
specific phrase in context (Figure 3).
When correcting awkward phrases, the need for additional
information (rankings, example usage) will naturally vary
from user to user: Some users will be experienced enough
in a language that they merely need to see a phrase to know
it is the desired phrase. For example, they may have seen
the phrase before and were unable to recall the phrase, or
their command of the language is great enough that they
can judge a phrase’s “correctness” by simply reading it.
Other users will need to examine the context surrounding

Figure 2: AwkChecker's user interface.

Figure 3: An enlarged view of the suggestion panel.

Figure 4: Alternative suggestions for the phrase

"clean sky".

125

phrases to make an informed decision. We refer to these
two needs as recognition vs. education. Existing linguistic
tools typically only support recognition and rarely support
the means for end-users to educate themselves about
alternatives. Again, since collocation preferences do not
conform to rules, but reflect consensus usage, this type of
information can be critical for end-users to make effective
use of the tool.
At the top of the suggestion list, a text field is supplied to
enter a short phrase when one wishes to receive a list of
suggested alternatives for a specific phrase (Figure 4). If a
user suspects that another phrase may be a better
alternative, they can verify this by following the “compare
with others” link. A new text field is presented, and the
user can enter the second phrase for comparison. This new
phrase is located in the corpus, a frequency score is
presented, and the user can use contextual information to
determine if this phrase is more correct. This comparison
feature is shown in Figure 5.
Finally, above the composition area, two selectable options
can be used to control the behavior of AwkChecker. These
two additional features are shown in Figure 6. First, users
can select from available underlying corpora. Currently,
our prototype interface includes the Wikipedia corpus and
“.gov” web pages. Users can also customize a threshold for
collocation error detection. A higher threshold improves
recall (more collocation errors are identified), but
negatively impacts precision (more false positives occur).
Depending on their tolerance for false negatives, users can
customize this threshold for their desired system behavior.
Error Detection and Correction: Implementation Details
As noted earlier, to support the detection of collocation
errors and the generation of alternative suggestions,
AwkChecker uses statistical word-level n-grams. N-grams

can be viewed as an n-dimensional table of probabilities.
The value stored in any entry in the table represents the
likelihood that one would randomly observe the string of n
words represented by the entry.
To help NNS detect and correct collocation errors in their
writing, there are three tasks that are realized by
AwkChecker’s back-end algorithms. First, AwkChecker
includes a training interface which analyzes a corpus and
builds a set of statistical n-grams. Second, AwkChecker
analyzes text input by the user against the corpus, now
organized as an n-gram dictionary, to determine whether
any phrase is a collocation error. Finally, if a phrase is
identified as a collocation error, AwkChecker generates a
list of alternatives for a phrase.
Analyzing a Corpus
Detecting and correcting collocation preferences shares
some similarities with spell checking. In spell checkers,
words are compared to a dictionary. If the word is found, it
passes and remains unflagged. However, if the word is not
present in the dictionary, spell checkers suggest a list of
alternatives, typically by measuring the edit distance
between the typed word and dictionary words using a
function called the Levenshtein distance. While we make
use of a similar approach in our L2 error detector, unlike
spell checking, no dictionary exists for collocation
preferences. Thus, a dictionary must first be constructed
before we can detect or correct awkwardness.
AwkChecker builds a dictionary of n-grams (sequences of
words) from a given corpus and records frequencies of each
sequence within the underlying corpus. At present,
AwkChecker builds a dictionary of 2-5 word phrases. All
2-5 word phrases contained in the corpus have associated
frequencies in the dictionary. While n-grams are not a
novel technique, L2 language error detection and correction
typically use more complex linguistic models such as
decision trees, statistical machine translators, and others.
To date, we are unaware of any systems that use n-grams as
their linguistic model for detecting collocation errors.
Algorithmic Basis for Detecting Collocation Errors and
Suggesting Alternatives
In this section, we describe the basis of our technique for
calculating an acceptability metric, which we use to
determine whether a phrase is a collocation error. This
acceptability metric is also used to create a list of
alternative phrases if the phrase being analyzed is classified
as a collocation error.
To detect collocation errors and to find corrections, the
system compares the frequency of any end-user input

Figure 5: Comparing "clean sky" to "white sky".

Figure 6: Selecting from available corpora and
configuring the threshold for flagging collocation
errors.

126

expression (typed into AwkChecker’s text area) of length 2
to 5 to “similar” expressions within the dictionary. A
collocation error is indicated if there exist similar phrases
with much higher frequency than our input phrase.
Similarly, alternatives are suggested by examining phrases
that are similar to the phrase typed by the user for more
likely candidates. Here we focus on the mechanism for
calculating a collocation-error score. We will then discuss
detecting an error and suggesting alternatives.
Given an input expression e = w1 w2 ... wn, we want to find
similar expressions that have the highest probability of
being more acceptable than the current input expression.
Mathematically, we want to find an expression E*, a close
derivative of e, such that:

() () ()cPcePecPE
cc
maxargmaxarg* ==

In this expression, c represents a candidate phrase within
the dictionary, P(c|e) is the probability of candidate phrase
c being the correct phrase given that e was input by the
user. We iterate over all candidates in the dictionary that
are close derivatives of e until we find the most likely
candidate expression. Using a Bayesian relationship, we
model this probability using P(e|c) P(c), where P(e|c) is the
probability of transforming phrase e into phrase c, and P(c)
is the probability of candidate phrase c. P(e|c) and P(c) are
referred to as the error model (EM) and language model
(LM), respectively. Essentially, the above equation states
that if the user typed expression e, then we should flag it as
a collocation error if there is another expression, c, that it
seems the user should have typed. E* is the most likely of
all candidate expressions considered.
Our identification of candidate phrase E*, is inspired by the
Bayesian model described above. We use two functions,
f(e,c) and g(c), to identify E*.

)(),(maxarg* cgcefE
c

=

Presently, g(c) is the frequency of phrase c in the corpus.
The error function, f(e,c) is an analytically derived function
based on the edit distance between e and c. We use the
Levenshtein distance as a measure of edit distance, and
assume that candidates within edit distance 1 are more
probable than candidates at edit distance 2. Given the
relatively short n-grams used, we do not consider edit
distances greater than 2. We also assume that first and last
words are unlikely to be a result of an insertion error, and
that article/preposition deletion and substitution errors are
more likely to occur than other types of collocation errors.
Detecting Collocation Errors
Collocation errors are somewhat unique from L1 errors
(and many L2 errors) in that there is no definitively
“correct” phrase. There are only degrees of acceptability
for any given phrase. We, therefore, define a function that
represents the acceptability of a phrase e as follows:

)(),(max)()(cgcefegeA
c

−=

Given a phrase e, the acceptability of e heavily depends on
the actual usage frequencies. However, if there are better
alternatives, the likelihood of e being awkward increases.
The function A(e) captures these factors by comparing the
frequency of phrase e, g(e), to the product of the cost of
transforming e into c, f(e,c) and the frequency of c, g(c), for
the best alternative phrase in the corpus. If A(e) is less than
a user-customizable threshold, the phrase e is flagged as a
collocation error. To efficiently compute A(e), we employ a
search engine (inverted index), the Wumpus Information
Retrieval System [3]. A A(e) calculation normally takes
less than a millisecond.
Suggesting Alternatives for Flagged Phrases
Correction of an awkward phrase requires a candidate list
of alternative phrases to be created. As noted above, we use
the Levenshtein distance metric to generate a list of
candidates. We apply this metric by first recognizing that a
NNS can introduce four different types of errors into a
phrase: insertion, deletion, transposition, and substitution
errors. We then apply inverse error transforms to the phrase
to create a set of alternative phrases which are then ranked
according to our acceptability metric.
We refer to the possible L2 errors that result in collocation
errors as error transformations. Insertion errors insert a
word in the phrase. For example, the phrase “I went to
home” is a collocation error because the preposition “to” is
inserted. This type of error transformation is often
associated with prepositions and articles. Deletion errors
occur when a word is deleted from a phrase. This error is
commonly associated with articles. For example, in the
phrase “I am student,” the article “a” is missing.
Transposition errors occur when two words are swapped.
For example, “he’s talking with his full mouth” is a
transposition error since the phrase should be “he’s talking
with his mouth full.” Finally, substitution or alternation
errors occur when a non-preferred word is used in place of
a more commonly used word. Substitution errors frequently
result in collocation errors. For example, “make
homework” should be “do homework,” and “clean sky”
should be “clear sky.” Given these four types of error
transforms, we apply a set of inverse error transforms to
generate our candidate list of alternative expressions and
rank these alternatives according to the error and language
models, f(e,c) and g(c), for each phrase.
Modeling insertion and transposition errors is reasonably
simple. For any phrase, we can select individual candidates
to delete or transpose to perform inverse transformations of
insertion and transposition errors. However, precisely
modeling substitution and deletion errors is more
challenging. The inverse transformations for these errors
require the insertion of words, and without some error
model, heuristics must be employed to limit the set of
words considered for the inverse transformations. For these
two error types, we insert or substitute prepositions and
articles (preposition and determiner errors constitute about
12% of ESL errors [7]), synonyms (from WordNet),
allowed verb forms, and singular and plural forms of
nouns. Any error type can occur multiple times within a

127

phrase. As a result, we apply inverse transformations up to
our limit of two errors per phrase.
EVALUATION
The design of AwkChecker is the result of an iterative
design process involving formative testing by non-native
speakers. The system was tested by five non-native
speakers. To speed evaluation, three of the participants
were given an essay written by a non-native speaker to edit,
while two edited their own content. Testing concluded with
semi-structured interviews on the design of the interface,
the features, and the usefulness of AwkChecker.
As noted in the Introduction, AwkChecker is a type of tool
we refer to as a soft-language tool. Our study revealed a
number of insights into how end-users perceive, use, and
desire to use this soft-language tool. We describe our
findings and implications for the design of tools, like
AwkChecker, that support soft-language constraints.
Perceptions of a Soft-Language Tool
As we have argued, the detection and correction of
collocation errors is qualitatively different than that of spell
or grammar checking. In our user studies, we found that the
inherent fuzziness of this component of language required
care in how the tool was positioned as well as how certain
aspects of its functionality were exposed to users (in
particular, the presentation of suggested alternatives).
As users have never encountered a soft-linguistic tool, we
tried several ways of describing what it can do. At first, we
described it simply as a tool that detects “awkwardness” in
one’s speech. However, users found this description vague
and needed more information and context. We also
described its functionality as being similar to using a search
engine to check whether one’s speech conforms to standard
conventions. Users understood this concept, but did not
immediately understand how AwkChecker could improve
upon this ad-hoc method until they encountered an
awkward phrase (“powerful tea”) that they could not fix
with a search engine alone.
Eventually, we found that explaining the system as a
“dictionary of expressions,” constructed from an
underlying corpus, was the best way to position the system.
Furthermore, by indicating that this dictionary of
expressions is built on an underlying corpus, users
attributed false positives to the underlying corpus rather
than any shortcoming of the tool itself. That is, they were
able to build a mental model of the system, its
functionality, and limitations through this description
compared to others.
While users were able to grasp the basic functionality of the
system, AwkChecker’s presentation of suggested
alternatives posed some problems. Originally, AwkChecker
displayed the calculated goodness metrics for each phrase,
but users were not able to understand what this number
was, nor its meaning relative to other scores. We then
switched to showing the number of occurrences in the
underlying corpus. This was more easily understood, but
still required explanation. This particular issue – how to
represent varying levels of confidence in a suggestion –

remains a problem that deserves further investigation so
that end-users can understand, on their own, the notion that
the tool is not authoritative, but a guide.
Patterns of Use and Desired Uses
One of our users, U1, used the system continuously for a
week. The user would have used it as their primary text
editor, but the web-based editor lacks undo and other
features typical of a basic word processor. Despite these
limitations, the user developed regular patterns of usages
that are noteworthy.
U1’s first language is Korean, which does not make use of
articles. Accordingly, U1 employed AwkChecker to check
articles and prepositions. U1 developed one interesting
workaround which suggests a potential design modification
in the future. In particular, when checking prepositions, U1
would often want to check incomplete phrases. For
example, in one instance, U1 wanted to check the phrase,
“pass judgment” where they were unsure whether the
preposition should be “to” or “on” before an object noun.
Rather than define the noun, U1 wanted to specify a pattern
“pass judgment to <noun>,” rather than specifying a noun.
As a workaround, U1 replaced the nouns with “dummy”
articles to compel the system to provide a suggestion.
When correcting their text, users either used recognition or
education to choose the replacement phrase. In the case of
recognition, users relied on past knowledge to choose the
replacement phrase. For example, they may have
previously encountered the correct phrase, but could not
recall it, or they could judge the correctness of a phrase
based on how it “sounded.” In the case of education, the
user needed to educate themselves on the various phrases
by reading the provided examples. In some cases, a
dictionary was required as part of this process because the
alternatives contained new vocabulary to the user. This
finding indicates that supplying a dictionary, accessible
from any part of the system, would be useful.
Notably, when used to educate oneself on new phrases,
AwkChecker is extending one’s capabilities with the
language, something not possible with linguistic aids such
as spell checkers or grammar checkers. It has been found
that NNSs frequently use an “avoidance” strategy when
producing L2, using only words and structures with which
they are confident, while avoiding unfamiliar forms [6].
AwkChecker provides a means by which users can safely
leave their “comfort zone” to push beyond their current
skill set.
The system was found to be useful for correcting direct
translations from one’s native language. Since collocation
preferences generally do not transfer between languages,
this is a natural and perfect use of the system.
Unused Functionality
The original incarnation of AwkChecker contained two
additional features that were not used by participants. A
comparison tool was provided to directly compare the
frequency of phrases in the corpus. This functionality was
designed to allow people to investigate two or more phrases
in parallel when the alternatives were known a priori.

128

However, users seemed satisfied with the basic
functionality of the system and cited the need to manually
enter phrases in text boxes as a deterrent to using this
comparison tool. Furthermore, most of this tool’s
functionality is supported at a basic level by the default
detection algorithm; it is most useful in cases where two or
more phrases are highly distinct to the extent that the
inverse transformations on one would not yield the other
phrases.
A third tool, a phrase analyzer, was also constructed to help
users pinpoint the likely cause of awkwardness in their
phrase. This tool subdivides the phrase into sub-phrases
and rates each sub-phrase. However, users did not seem to
need this additional information; they either wanted to
recognize the correct phrase or educate themselves about
which is the best to choose.
DISCUSSION
AwkChecker determines collocation errors through the use
of n-gram statistics and an underlying corpus. As
mentioned above, in our current implementation, users can
choose to use either the Wikipedia or Gov2 corpora as their
backing corpus.
As we have argued, the choice of collocation error
technique can have important implications for actual end-
user tool use. We consider three implications related to the
use of n-gram statistics and corpora to detect collocation
errors: Its robustness to “messy” data within a learning
corpus, its ability to allow users to generate reasonably
accurate mental models of how the system operates, and its
ability to not only detect collocation errors, but help one to
conform to particular styles of writing by choosing an
appropriate corpus.
Considering Messy Data
Any corpus will contain errors, and the corpora used by
AwkChecker are no exception. For example, Wikipedia
entries vary widely in the overall quality of writing.
However, AwkChecker’s use of n-gram statistics, relative
rankings of results, and example uses for each suggestion
provide a graceful way to handle errors in the underlying
corpus. Examining the nature of errors in a corpus makes
these points clear: If errors are not consistently made for
collocation preferences, then the relative frequency of any
particular collocation error in the underlying corpus will be
significantly less than the consensus usage for a collocation
preference. What this means is that collocation errors in the
underlying text are unlikely to lead to false negatives when
checking a user’s text. By the same token, these source
errors should not, in most cases, appear in the suggestion
list. However, even if they do, the relative rankings
supplied with each suggestion, along with its example
context of use, will help users to discard these examples.
Thus, messy data in a corpus is not a significant concern for
this type of linguistic aid.
Detecting System Failures
When attempting to detect and correct nuanced language
errors such as collocation errors, one must be sensitive to
the fact that the absence of well-defined linguistic rules
means any system that attempts to detect and correct these

types of errors will be prone to false negatives, false
positives, and poor correction suggestions; there will be no
“perfect” system. What becomes important, then, is
ensuring end-users themselves can detect these failings of
the underlying system and reasonably cope with them.
Relating this to Knutsson’s and Vernon’s guidelines, there
is a need for transparency in the system’s design.
There are two important implications related to this specific
form of transparency (i.e., system failures). First, this high-
level need means the choice of underlying algorithms is not
without consequence for end-user interaction. In particular,
given the choice between two methods of detecting and
correcting collocation errors, it may be more desirable to
choose the method whose basic functionality end-users can
more easily understand. In this case, when the system fails,
they will be in a better position to understand how and why
it failed, and thus recover from that failure. As we noted in
the Background section, there are a number of techniques
developed to detect L2 errors, but none have been assessed
with respect to this end-user need. That is, none have
considered the direct link between the underlying detection
algorithms and the user’s ability to effectively make use of
those algorithms.
The second implication for supporting transparency is that
the interface should provide sufficient information so that
users can detect and recover from failure. Again, because
any such tool will be imperfect, users should be able to
determine why a system appears to be making an error in
either the detection or correction process.
AwkChecker’s use of n-gram statistics helps address both
transparency goals. First, basing collocation error detection
on consensus usage rather than derived models helps users
develop reasonably accurate mental models of
AwkChecker’s capabilities and limitations. As we found in
our user evaluation, once users understand that error
detection is based on the notion of the frequency of a
phrase in a corpus, they can more easily account for
mistakes the system may make when flagging awkward
phrases or making suggestions. In contrast, if a model-
based approach were used, it would be more difficult to
understand false positives generated by an overgeneralized
model. Similarly, model-based approaches could lead to
suggested phrases being synthesized that are themselves
examples of collocation errors. Both types of system
failures are potentially more difficult to understand and
explain with model-based approaches than AwkChecker’s
use of n-gram statistics.
Second, as mentioned above, displaying relative rankings
and example context for suggestions can also assist users
when recovering from suspected failures of the system. The
rankings and context guide improve the reliability of end-
user corrections and help to identify false positives.
Writing Styles
While the primary goal of AwkChecker is to detect
collocation errors that NNSs make, AwkChecker can also
be used as a style checker. In considering collocation
preferences, one can create a spectrum of collocation errors

129

ranging from awkward phrasing that no NNS would
produce, to phrases that are acceptable, but not the
preferred phrases, within a particular domain. For example,
in describing medical stitches, a surgeon would tend to say
“sutures” while a lay person would instead say “stitches.”
Both are acceptable, but one is the more preferred word in
certain contexts. In this case, the collocation error is not
one of awkwardness as much as it is one of style.
AwkChecker’s approach to detecting collocation errors
provides a degree of flexibility and customizability in
catering one’s language to a desired style of writing. While
we currently provide a choice of only two corpora, one
could easily generate sets of corpora representing a range
of writing styles, from scientific writing to literature
reviews to urban street slang. One need only obtain a
reasonably sized corpus, have AwkChecker index it, and
then use that as the primary corpus to check consensus
usage.
CONCLUSION AND FUTURE WORK
AwkChecker is the first end-user tool specifically designed
to support the detection and correction of collocation
errors, a type of error common to NNSs. Collocation is
unpredictable using low-level linguistic features such as
syntax and grammar, and it is thus difficult to automatically
correct collocation errors.
In user testing, we observed very positive reactions to our
system. Our participants, all NNSs, had never seen tools
such as ours before. As well, our experiments with various
techniques for describing the system to users demonstrated
that when users understand the characteristics of the
underlying corpus and the mechanism used to flag
collocation errors, they are better able to predict the
limitations of our system, and have a better understanding
of false positives and false negatives.
One feature that was desired by one of the participants was
some mechanism for part-of-speech tagging, for example
that ability to specify a word class as one part of a phrase.
As a result of these observations, we may extend
AwkChecker with part-of-speech tags for correction. We
are also considering developing plug-ins for commercial
word-processors.
While the development of tools for non-native speakers is
an active area of research, much of the work has been
geared toward determiner, preposition, and other
grammatical components of speech which can be specified
with rules. As well, most systems are designed to test
detection and automatic correction algorithms, rather than
as end-user tools to aid non-native speakers with their own
writing.
While addressing these grammatical components of speech
for non-native speakers is an important research goal,
equally (or more [16]) problematic for people acquiring a
second language are the soft constraints, the collocations,
idioms, and common usages that are based on social
consensus, not on syntactic and grammatical rules. In this
work, we describe a new technique, based on statistical
word-level n-grams, to detect collocation errors and suggest

alternative phrases. As well, we incorporate our algorithms
into a tool, AwkChecker, that helps end-users follow these
linguistic conventions in their own writing.
ACKNOWLEDGMENTS
The authors would like to thank the participants in our research
study. Funding for this research was provided by the Natural
Science and Engineering Research Council of Canada.
REFERENCES
1. Bigert, J., Kann, V., Knutsson, O., and Sjobergh, J. Grammar checking

for Swedish second language learners. CALL for the Nordic
Languages: Tools and Methods for Computer Assisted Language
Learning, 33–47.

2. Brockett, C., Dolan, W., and Gamon, M. Correcting ESL errors using
phrasal SMT techniques. Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting
of the ACL (2006), 249–256.

3. Buttcher, S., and Clarke, C. Indexing time vs. query time: trade-offs in
dynamic information retrieval systems. Proceedings of the 14th ACM
international conference on Information and knowledge management
(2005), 317–318.

4. Crystal, D. English as a Global Language. Cambridge University
Press, 2003.

5. Eeg-Olofsson, J., and Knutsson, O. Automatic grammar checking for
second language learners-the use of prepositions, 2003.

6. Ellis, R. The Study of Second Language Acquisition. Oxford
University Press, 1994.

7. Gamon, M., Gao, J., Brockett, C., Klementiev, A., Dolan, W.,
Belenko, D., and Vanderwende, L. Using contextual speller techniques
and language modeling for ESL error correction. Urbana 51, 61801.

8. Granger, S. Prefabricated patterns in advanced EFL writing:
Collocations and formulae. Phraseology: Theory, Analysis, and
Applications (1998), 145–160.

9. Guo, S., and Zhang, G. Building a customized Google-based
collocation collector to enhance language learning. BJET 38 (2007),
747–750.

10. Hill, J., and Lewis, M. Dictionary of selected collocations. Language
Teaching Publications, 1997.

11. Kann, V., Domeij, R., Hollman, J., and Tillenius, M. Implementation
aspects and applications of a spelling correction algorithm. Text as a
Linguistic Paradigm: Levels, Constituents, Constructs. Festschrift in
honour of Ludek Hrebicek 60 (2001), 108–123.

12. Knutsson, O., Pargman, T., and Eklundh, K. Transforming grammar
checking technology into a learning environment for second language
writing. Proceedings of the HLT-NAACL 03 workshop on Building
educational applications using natural language processing-Volume 2
(2003), 38–45.

13. Knuttson, O., Pargman, T., Eklundh, K., and Westlund, S. Designing
and developing a language environment for second language writers.
Computers & Education 49, 4 (2007), 1122–1146.

14. Leed, R., and Nakhimovsky, A. Lexical functions and language
learning. The Slavic and East European Journal 23, 1 (1979), 104–113.

15. Lewis, M. Teaching Collocation: Further Developments in the Lexical
Approach. Language Teaching Publications, 2000.

16. Nesselhauf, N. The use of collocations by advanced learners of
English and some implications for teaching. Applied Linguistics 24, 2
(2003), 223–242.

17. Shei, C., “Combining Translation into the Second Language and
Second Language Learning”, Ph.D. Thesis, University of Edinburgh,
2002.

18. Shei, C., and Pain, H. An ESL writer’s collocational aid. Computer
Assisted Language Learning 13, 2 (2000), 167–182.

19. Yi, X., Gao, J., and Dolan, W. A web-based English proofing system
for English as a Second Language users. At IJCNLP 2008 (2008).

20. Vernon, A. Computerized grammar checkers 2000: capabilities,
limitations, and pedagogical possibilities. Computers and Composition
17, 3 (2000), 329–349.

21. White, L. Second language acquisition: From initial to final state.
Second Language Acquisition and Linguistic Theory (2000).

130

