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ABSTRACT 
Collocation preferences represent the commonly used 
expressions, idioms, and word pairings of a language. 
Because collocation preferences arise from consensus 
usage, rather than a set of well-defined rules, they must be 
learned on a case-by-case basis, making them particularly 
challenging for non-native speakers of a language. To assist 
non-native speakers with these parts of a language, we 
developed AwkChecker, the first end-user tool geared 
toward helping non-native speakers detect and correct 
collocation errors in their writing. As a user writes, 
AwkChecker automatically flags collocation errors and 
suggests replacement expressions that correspond more 
closely to consensus usage. These suggestions include 
example usage to help users choose the best candidate. We 
describe AwkChecker’s interface, its novel methods for 
detecting collocation errors and suggesting alternatives, and 
an early study of its use by non-native English speakers at 
our institution. Collectively, these contributions advance 
the state of the art in writing aids for non-native speakers. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
General terms: Human Factors. 
Keywords: Collocation errors, non-native speakers, 
linguistic tools, writing aids. 
INTRODUCTION 
Non-native speakers (NNSs) of a language can learn a 
foreign language's rules for spelling and grammar, but a 
language's commonly used expressions, idioms, and word 
pairings either cannot be described by rules or require 
memorization of many special-case rules. For example, a 
non-native speaker may ask a person to “take their shoes 
down” while the more common expression is to “take their 
shoes off.” While the latter phrase is clearly the “correct” 
phrase for a native speaker (NS) of English, this 
“correctness” is determined by consensus usage rather than 

any set of rules related to the English language. This 
consensus usage is referred to as a collocation preference, 
with violations of these preferences referred to as 
collocation errors [8,10,15,16]. 
The lack of well-defined rules to determine collocation 
preferences makes it difficult for non-native speakers to 
detect and correct these errors. Spell checkers and grammar 
checkers can help ensure one's language is syntactically 
and grammatically correct, but these rigid-language tools 
offer no assistance in detecting or correcting collocation 
errors. Instead, non-native speakers must employ ad-hoc 
methods to detect these types of errors. For example, many 
NNSs check whether a phrase is commonly used by 
observing the number of results returned by search engines 
[9,19]. While a clever reappropriation of search engines, 
there are obvious limitations to this approach compared to 
dedicated linguistic tools. For example, search engines are 

Figure 1: AwkChecker's user interface is 
depicted with the following callouts: A) flagged 
phrases in the composition window; and B) One 
of the suggested alternative phrases for 
Powerful tea. 
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of limited help when a NNS must find an alternative phrase 
that is more commonly used than their original phrase. 
The reappropriation of search engines indicates a clear need 
for soft-language tools, tools geared toward aiding NNSs 
with the common expressions, idioms and word pairings 
that comprise collocation preferences. In this paper, we 
present a new tool, AwkChecker, which allows NNSs to 
identify and correct collocation errors in their own writing. 
AwkChecker uses word-level statistical n-grams and 
incorporates algorithms to suggest corrections for four 
common types of collocation errors: insertion, deletion, 
substitution, and transposition errors.  
AwkChecker is implemented within the context of a web-
based text editor that flags collocation errors and suggests 
alternatives from which a user can select (Figure 1). As 
shown, when users edit text within the window, phrases 
that are potentially “awkward” are highlighted by the 
interface (Figure 1a). Users can click on awkward phrases 
to generate a list of suggested alternatives (Figure 1b). This 
list of alternatives includes information about the relative 
ubiquity of each alternative within the training corpus. It 
also includes example uses for each phrase, showing the 
phrase in context with surrounding text. Users can click on 
“Next” links to see additional examples of the phrase, thus 
allowing them to assess the quality of each alternative. 
Because collocation preferences are highly idiosyncratic, 
showing phrases from the corpus in context can be crucial 
in helping users determine which phrase is most 
appropriate given the context of their writing. 
The use of n-gram statistics confers a number of benefits, 
both from the perspective of detecting collocation errors 
and from the perspective of an end-user who must 
understand the tool’s capabilities and limitations when 
applying the tool. First, because the statistical n-grams are 
extracted from an underlying corpus, the system flags 
collocation relative to the style of writing within the corpus. 
As a result, the tool can be used by NNSs to write in the 
style appropriate for different writing tasks, provided a 
relevant corpus exists. An example would be using a 
medical corpus to flag phrases inappropriate within medical 
research writing. Second, the use of n-gram statistics results 
in resilience to “messy” data. As one of our corpora, we use 
Wikipedia entries, which vary widely in the overall quality 
of writing. However, provided the corpus is “correct” more 
frequently than it is “incorrect”, collocation errors will be 
detected and appropriate corrections suggested. Finally, 
because AwkChecker’s likelihood estimate is a function of 
an underlying corpus, end-users can more easily understand 
the system's capabilities and limitations. This phenomenon 
was obvious during thinkaloud evaluations where users 
commented on their improved understanding of false 
positives (phrases that were flagged as collocation errors 
but were not). 
There are three primary contributions of this work. First, 
this work defines a new mechanism for identifying 
collocation errors, defining collocation errors as a function 
of the relative frequency of phrase usage within a corpus. 

Next, this work presents algorithms for suggesting 
alternatives, based on the specific types of errors made by 
NNSs. Finally, the web-based interface represents, to the 
best of our knowledge, the first tool that allows end-users 
to identify and correct their own collocation errors. 
Together, these contributions result in a significant advance 
in tools to aid NNSs in written composition.  
BACKGROUND 
Second language (L2) refers to a language that is acquired 
after first language (L1). For many, second language 
learning is a critical component of their everyday lives. For 
example, it is estimated that about 70% of the English 
speaking population consists of non-native speakers [4]. 
However, few linguistic tools exist that are specifically 
designed to scaffold language production by second 
language learners. 
In this section, we describe needs unique to non-native 
speakers when attempting to produce “correct” language in 
a second language, and contrast these needs with native 
speakers’ needs. We also consider the linguistic tools 
currently available (e.g., spell checkers, grammar checkers) 
and argue that the majority of linguistic tools currently 
available primarily cater to the needs of native speakers and 
the types of errors they produce, with the unique needs of 
NNSs largely unmet. We review research efforts focused 
on linguistic aids for NNSs and identify an opportunity for 
tools that assist in the detection and correction of one 
common type of NNS error, collocation errors. 
Language Needs for Non-Native Speakers 
As with L1 acquisition, L2 acquisition is a complex 
process, the nuances of which are still being discovered. 
However, there are some distinct characteristics of L2 
acquisition that are noteworthy, especially in the context of 
computational tools intended to support language 
production by nonnative speakers. 
Grammar and essential vocabulary are the first parts of a 
language acquired by NNSs. While this acquisition requires 
a fair amount of rote memorization (e.g., learning 
vocabulary), there are also well-known rules associated 
with a language’s grammar (e.g. noun-verb agreement) and 
spelling (“i before e, except after c”). Once learned, these 
rules help non-native speakers produce new language that 
is syntactically and grammatically correct. 
Despite knowledge of rules of grammar and spelling, non-
native speakers continue to make a number of language 
errors. These errors include those involving determiners 
(e.g. a, an, the), prepositions (e.g., to, for, in), and noun-
verb agreement. Some of these errors involve a language’s 
grammar rules (e.g., noun-verb agreement) and can be 
detected by tools such as grammar checkers. Others require 
grammar and language tools geared specifically to the 
needs of NNSs. Finally, a third class of errors exist that 
result from collocation preferences.  
Collocation preferences refer to habitual word 
combinations in a language. For example, in English, one 
can say there is a “clear sky” to express the notion that 
there are no clouds in the sky. However, one would not say 
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“clean sky” or “pure sky,” even though these phrases, at a 
basic, fundamental level, convey a similar sentiment to 
“clear sky.” When trying to convey this concept, second 
language learners cannot know which of the phrases is the 
“correct,” more common phrase, except through 
experience. That is, there are no rules that dictate that 
“clear” is the more appropriate adjective in this 
circumstance. Collocations are thus idiosyncratic in nature 
since they lack predictable syntactic and semantic features 
that one can learn and apply. 
Collocation conventions lead to a distinct class of errors, 
collocation errors, which are produced by NNSs, but not 
NSs. For example, in the Chinese-English Learner Error 
Corpus (CLEC), approximately 30% of English as a 
Second Language (ESL) writing errors involve different 
types of collocation errors [19]. Some experimental 
evidence shows that even advanced NNSs have difficulties 
with collocation [16]. As such, collocation errors constitute 
a significant class of errors produced by non-native 
speakers. However, while it can be difficult for non-native 
speakers to produce language with correct collocations, 
they have little difficulty in understanding the meaning of 
phrases when encountered. As we will show, the fact that 
collocations can be understood when encountered has 
implications for computational aids. 
In contrast to the errors described above, native speakers 
tend to make relatively simple mechanical errors (e.g. 
“then” vs. “than,” “its” vs. “it’s,” etc.). These are errors that 
non-native speakers may also make, but are clearly of a 
different nature than the types of errors unique to NNSs. 
For convenience, we refer to errors produced by NNSs, but 
not NSs, as L2 errors. We consider L1 errors as those 
errors common to NSs, even though NNSs may also 
produce these types of errors. Table 1 summarizes these 
two classes of errors. 

 L1 Errors  L2 Errors  
Spelling Homonyms (e.g., 

then, than) 
Any, including L1 

Grammar Run-on-sentences Verb-noun 
agreement 
Determiner usage 

Style Rare Use of informal 
vocabulary 

Collocation Rare Various 

Table 1: A (non-exhaustive) list of common 
language errors made by native speakers (L1 
errors) and non-native speakers (L2 errors). Non-
native speakers may make either type of error, but 
native speakers rarely make L2 errors. 

Given these two primary classes of language errors, we turn 
now to a review of linguistic aids. 
Linguistic Aids 
A wide range of computational tools have been developed 
to aid in language production, with spell checkers, grammar 
checkers, and translation services the most common. A 

number of tutoring (educational) systems have also been 
developed to scaffold language learning, though these 
systems are, by nature, not general-purpose tools one can 
use while writing. 
In considering the two general classes of language errors 
defined above, it is clear that existing linguistic tools are of 
most use for addressing L1 errors. Spell checkers and 
grammar checkers help one produce grammatically correct 
language, but do not help detect and correct the collocation 
errors non-native speakers are prone to make. Thus, these 
tools are useful to both NS and NNS, but do not address L2 
errors. As these tools allow detection of violations of 
linguistic rules, we call these tools rigid-language tools. 
It has been frequently noted that the rigid-language tools 
designed to detect L1 errors do not effectively address 
many L2 errors [7]. To help detect L2 errors, many 
nonnative speakers rely on web search engines, especially 
when checking for collocation errors [9,19]. To check for a 
collocation error, a NNS will submit a phrase to a search 
engine. If the phrase returns few “hits,” the NNS can 
assume something about the phrase is incorrect. At this 
point, the NNS can generate additional phrases to test until 
an acceptable candidate is found. While this use of search 
engines clearly deviates from their intended use, it provides 
an important stopgap for NNSs in need of L2 error 
detection. However, there are limitations: Search engines 
are not tightly integrated with writing tools, users must 
manually produce alternative phrases to test, and most 
search engines provide only rudimentary suggestions when 
a phrase contains an L2 error. 
Noting the limited utility of existing linguistic aids for non-
native speakers, the research community has begun to 
actively investigate tools to address this problem space. 
Research has focused on the development of a set of 
guidelines for the design of L2 error detection tools, the 
development of techniques to detect and automatically 
correct L2 errors in written documents, and learning aids 
for NNSs. 
L2 Tool Design Guidelines 
In their work developing a Swedish grammar checker, 
Knutsson et al studied adoption practices of their grammar 
checker by non-native speakers [12,13]. Based on their 
study, they developed a set of guidelines for the design of 
linguistic tools for NNSs. In particular, they suggest: 

• Real-time feedback is always desirable, especially 
since it helps one improve one’s understanding of 
the language as it is produced 

• Tools should not only indicate what is wrong, but 
also provide sufficient information (e.g., 
examples, grammar rules, etc.) so that users can 
reason about the error and its solution 

• The tool should be transparent with respect to its 
capabilities and limitations; users should 
understand what it can and cannot do 

• The tool should not be too technical with its 
terminology and should avoid linguistic terms 
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• Users should be able to focus on producing 
content, not on low-level details such as spelling, 
grammar, etc. That is, the tool should not distract 
from their primary goal of communication 

These proved useful for a subsequent Swedish grammar 
checker designed specifically for NNSs. In a study 
involving a class of students learning Swedish with their 
NNS grammar tool, the researchers found that deviations 
from these guidelines noticeably reduced the tool’s 
effectiveness. The strongest conclusion from their study is 
that a user’s understanding of the limitations of the tool 
resulted in fewer questions about why the system failed to 
detect an obvious error or why it flagged a statement that 
was clearly correct. As well, providing additional 
information about the error to the end-user proved helpful 
in judging false positives.  
L2 Error Detection Tools 
As noted earlier, L2 errors include both grammar errors 
(e.g. determiners and prepositions) and collocation errors. 
Recognizing that L2 errors are distinct from L1 errors, a 
number of research systems have attempted to perform 
automatic L2 grammar error checking (e.g. for determiners, 
prepositions, etc.) [2,5,7,19]. 
One common approach taken by these systems is to use a 
large reference corpus to develop L2 grammar rules, 
essentially a model-based approach to error detection and 
correction. Eeg-Olofssons et al created a rule-based 
approach to grammar checking geared specifically to L2 
errors made by NNS of Swedish [5]. They describe two 
types of rules: word and phrase form errors, and preposition 
errors. They performed a minor evaluation of their system 
on a 2800 word text, manually flagging 40 errors. The 
system detected 11 of these 40 errors (recall = 28%), and 
resulted in no false positives (precision = 100%). 
More recently, Gamon et al have used machine learning 
algorithms [7] to create rules for detecting eight different 
L2 errors they specify. They report detection and correction 
accuracy for their system of 46% for preposition errors and 
55% for determiner errors. Performance on the other error 
types has not yet been reported. Brockett et al have applied 
a statistical machine translation (SMT) technique to detect 
and correct countability errors associated with mass nouns 
(i.e. errors involving uncountable nouns such as 
information, pollution and homework) and report 
correction accuracy of 61.81% [2]. A strength of the 
model-based approach is the ability to handle arbitrary 
input. The systems label parts-of-speech (e.g. noun, verb, 
verb-phrase, etc.) and then use their model to validate the 
structure of the fragments. However, these models can 
over-generalize, producing frequent false negatives that are 
not understandable by users. 
In contrast to model-based approaches, Yi et al have used 
web search hits from search engines to detect and correct 
determiner and preposition errors [19]. Their system detects 
verb-noun collocations and determiner errors. The system 
parses a corpus searching for sentences that are of two 
forms: verb-phrase, noun-phrase; and verb-phrase, 

prepositional-phrase; noun-phrase. It also identifies all 
noun phrases. The system then uses a web search engine to 
flag errors and suggest replacements. Their system 
identifies determiner errors 41% of the time, and provides a 
correct replacement in 63% of these cases. For collocations, 
however, the system’s performance is much poorer (recall 
= 31%, precision = 37%).  
The above L2 error detection tools have been valuable in 
improving the state-of-the-art in L2 error detection. 
However, they have typically focused on a sub-set of L2 
errors, specifically those errors that can be modeled by 
grammar rules. These approaches will not detect errors that 
result from collocation errors. 
Furthermore, because the goal of these L2 error detection 
tools has been to improve the recognition of a certain 
subset of L2 errors, these tools have not been embedded in 
end-user systems. For end-user linguistic tools dealing with 
fuzzily-defined linguistic conventions (such as collocation 
preferences), the properties of model-based approaches 
may be problematic. In particular, using the desiderata of 
Knutsson et al [13] and Vernon [20], models may serve to 
decrease the transparency of the system, making it difficult 
for users to form a mental model that can account for 
failures of the system, such as false positives and poor 
suggested corrections. As these techniques have not been 
realized in end-user tools, these remain important open 
questions to investigate. 
L2 Tutoring Systems 
One area where linguistic tools have been developed for 
non-native speakers has been in computer-assisted 
language learning (CALL). While most CALL systems 
contain a series of pre-specified lessons to support the 
learning of vocabulary and grammar, rather than 
collocation preferences, one exception to this general trend 
is a system proposed by Shei et al. to teach collocation 
preferences [18]. The system will first extract collocations 
from a reference corpus, a large, correct, collection of 
English text. The system will also extract errors from a 
learner corpus, a corpus containing multiple instances of 
collocation errors. The system will then select collocation 
errors from the learner corpus, and NNS can work to 
correct the collocation errors. As well, given short phrases 
typed by the NNS, the system will determine whether these 
phrases are collocation errors or not. While Shei et al. have 
performed some proof-of-concept testing of their system’s 
techniques, their primary interest is in pedagogical issues in 
training professional translators [17]. The proof-of-concept 
testing on their proposed system served to inform practices 
for translator training, but the system was not deployed for 
end-users. 
One shortcoming of tutoring systems is that their overall 
goal, language instruction, typically results in an interaction 
style unsuited to aiding arbitrary writing. Tutoring systems 
consider short passages of text and flag errors. The systems 
require users to perform corrections immediately, thus 
scaffolding the learning process. This short, phrase-based 
interaction is useful for improving one’s writing. However, 
when composing a document, the need to interact phrase-
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by-phrase with the system can impede the user’s writing 
task. 
Summarizing L2 Learner Needs 
To summarize, NNSs make a set of errors, L2 errors, which 
NSs rarely make. These errors include errors involving 
determiners, prepositions, noun-verb agreement, and 
collocation errors. In this paper, we are most concerned 
with collocation errors, an L2 error that has received little 
attention in the past. To aid NNSs in detecting and 
correcting errors, linguistic tools for NNS should provide 
real-time feedback, information to support reasoning about 
errors, a high degree of transparency with respect to the 
tool’s functionality and capabilities, and little reliance on 
specialized terminology [13,20]. We turn now to a system 
we built to detect collocation errors while following these 
general guidelines. 
AWKCHECKER 
System Design: Overview 
AwkChecker is a text editor that performs real-time 
detection of collocation errors (Figure 2). As the user enters 
and edits text, AwkChecker automatically highlights 
potential collocation errors. Users can click on highlighted 
phrases to receive a list of alternative suggestions. 
AwkChecker’s suggestion list includes a relative ranking of 
the frequency of each phrase in the corpus. We 

experimented with a variety of feedback mechanisms, 
including a normalized frequency in the range [0, 1], a bar 
graph representation where the length of bars indicated the 
frequency of the phrase, and a combination of some 
numerical score and graphical representation. While it was 
our goal to allow users to quickly perceive relative scores, 
these numerical scores became a source of confusion, as the 
numerical scores did not map intuitively onto an obvious 
measure of frequency. Currently, a phrase’s score is 
depicted as an integer value that corresponds to the number 
of occurrences of the phrase in the corpus (Figure 3).   
Each suggested alternative is shown in the context of a 
passage of text from the corpus. The goal of this short 
passage is to help users assess the best replacement when 
multiple alternatives exist. As well, for users who wish to 
improve their language skills, seeing a series of alternative 
phrases in context can provide them with examples of 
proper use of the phrases. The short passages are drawn at 
random from the corpus, and occasionally the alternative 
phrases are inappropriate. They may, themselves, be 
examples of collocations, or they may not have the same 
meaning as the original phrase. To address this, users can 
press a “Next” link to see additional examples of the 
specific phrase in context (Figure 3). 
When correcting awkward phrases, the need for additional 
information (rankings, example usage) will naturally vary 
from user to user: Some users will be experienced enough 
in a language that they merely need to see a phrase to know 
it is the desired phrase. For example, they may have seen 
the phrase before and were unable to recall the phrase, or 
their command of the language is great enough that they 
can judge a phrase’s “correctness” by simply reading it. 
Other users will need to examine the context surrounding 

 
Figure 2: AwkChecker's user interface. 

 
Figure 3: An enlarged view of the suggestion panel. 

 
Figure 4: Alternative suggestions for the phrase 

"clean sky". 
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phrases to make an informed decision. We refer to these 
two needs as recognition vs. education. Existing linguistic 
tools typically only support recognition and rarely support 
the means for end-users to educate themselves about 
alternatives. Again, since collocation preferences do not 
conform to rules, but reflect consensus usage, this type of 
information can be critical for end-users to make effective 
use of the tool. 
At the top of the suggestion list, a text field is supplied to 
enter a short phrase when one wishes to receive a list of 
suggested alternatives for a specific phrase (Figure 4). If a 
user suspects that another phrase may be a better 
alternative, they can verify this by following the “compare 
with others” link. A new text field is presented, and the 
user can enter the second phrase for comparison. This new 
phrase is located in the corpus, a frequency score is 
presented, and the user can use contextual information to 
determine if this phrase is more correct. This comparison 
feature is shown in Figure 5. 
Finally, above the composition area, two selectable options 
can be used to control the behavior of AwkChecker. These 
two additional features are shown in Figure 6. First, users 
can select from available underlying corpora. Currently, 
our prototype interface includes the Wikipedia corpus and 
“.gov” web pages. Users can also customize a threshold for 
collocation error detection. A higher threshold improves 
recall (more collocation errors are identified), but 
negatively impacts precision (more false positives occur). 
Depending on their tolerance for false negatives, users can 
customize this threshold for their desired system behavior. 
Error Detection and Correction: Implementation Details 
As noted earlier, to support the detection of collocation 
errors and the generation of alternative suggestions, 
AwkChecker uses statistical word-level n-grams. N-grams 

can be viewed as an n-dimensional table of probabilities. 
The value stored in any entry in the table represents the 
likelihood that one would randomly observe the string of n 
words represented by the entry.  
To help NNS detect and correct collocation errors in their 
writing, there are three tasks that are realized by 
AwkChecker’s back-end algorithms. First, AwkChecker 
includes a training interface which analyzes a corpus and 
builds a set of statistical n-grams. Second, AwkChecker 
analyzes text input by the user against the corpus, now 
organized as an n-gram dictionary, to determine whether 
any phrase is a collocation error. Finally, if a phrase is 
identified as a collocation error, AwkChecker generates a 
list of alternatives for a phrase. 
Analyzing a Corpus 
Detecting and correcting collocation preferences shares 
some similarities with spell checking. In spell checkers, 
words are compared to a dictionary. If the word is found, it 
passes and remains unflagged. However, if the word is not 
present in the dictionary, spell checkers suggest a list of 
alternatives, typically by measuring the edit distance 
between the typed word and dictionary words using a 
function called the Levenshtein distance. While we make 
use of a similar approach in our L2 error detector, unlike 
spell checking, no dictionary exists for collocation 
preferences. Thus, a dictionary must first be constructed 
before we can detect or correct awkwardness. 
AwkChecker builds a dictionary of n-grams (sequences of 
words) from a given corpus and records frequencies of each 
sequence within the underlying corpus. At present, 
AwkChecker builds a dictionary of 2-5 word phrases. All 
2-5 word phrases contained in the corpus have associated 
frequencies in the dictionary. While n-grams are not a 
novel technique, L2 language error detection and correction 
typically use more complex linguistic models such as 
decision trees, statistical machine translators, and others. 
To date, we are unaware of any systems that use n-grams as 
their linguistic model for detecting collocation errors. 
Algorithmic Basis for Detecting Collocation Errors and 
Suggesting Alternatives 
In this section, we describe the basis of our technique for 
calculating an acceptability metric, which we use to 
determine whether a phrase is a collocation error. This 
acceptability metric is also used to create a list of 
alternative phrases if the phrase being analyzed is classified 
as a collocation error.  
To detect collocation errors and to find corrections, the 
system compares the frequency of any end-user input 

 
Figure 5: Comparing "clean sky" to "white sky". 

 
Figure 6: Selecting from available corpora and 
configuring the threshold for flagging collocation 
errors. 
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expression (typed into AwkChecker’s text area) of length 2 
to 5 to “similar” expressions within the dictionary. A 
collocation error is indicated if there exist similar phrases 
with much higher frequency than our input phrase. 
Similarly, alternatives are suggested by examining phrases 
that are similar to the phrase typed by the user for more 
likely candidates. Here we focus on the mechanism for 
calculating a collocation-error score. We will then discuss 
detecting an error and suggesting alternatives. 
Given an input expression e = w1 w2 ... wn, we want to find 
similar expressions that have the highest probability of 
being more acceptable than the current input expression. 
Mathematically, we want to find an expression E*, a close 
derivative of e, such that:  

( ) ( ) ( )cPcePecPE
cc
maxargmaxarg* ==  

In this expression, c represents a candidate phrase within 
the dictionary, P(c|e) is the probability of candidate phrase 
c being the correct phrase given that e was input by the 
user. We iterate over all candidates in the dictionary that 
are close derivatives of e until we find the most likely 
candidate expression. Using a Bayesian relationship, we 
model this probability using P(e|c) P(c), where P(e|c) is the 
probability of transforming phrase e into phrase c, and P(c) 
is the probability of candidate phrase c. P(e|c) and P(c) are 
referred to as the error model (EM) and language model 
(LM), respectively. Essentially, the above equation states 
that if the user typed expression e, then we should flag it as 
a collocation error if there is another expression, c, that it 
seems the user should have typed. E* is the most likely of 
all candidate expressions considered. 
Our identification of candidate phrase E*, is inspired by the 
Bayesian model described above. We use two functions, 
f(e,c) and g(c), to identify E*. 

)(),(maxarg* cgcefE
c

=  

Presently, g(c) is the frequency of phrase c in the corpus. 
The error function, f(e,c) is an analytically derived function 
based on the edit distance between e and c. We use the 
Levenshtein distance as a measure of edit distance, and 
assume that candidates within edit distance 1 are more 
probable than candidates at edit distance 2. Given the 
relatively short n-grams used, we do not consider edit 
distances greater than 2. We also assume that first and last 
words are unlikely to be a result of an insertion error, and 
that article/preposition deletion and substitution errors are 
more likely to occur than other types of collocation errors. 
Detecting Collocation Errors 
Collocation errors are somewhat unique from L1 errors 
(and many L2 errors) in that there is no definitively 
“correct” phrase. There are only degrees of acceptability 
for any given phrase. We, therefore, define a function that 
represents the acceptability of a phrase e as follows: 

)(),(max)()( cgcefegeA
c

−=  

Given a phrase e, the acceptability of e heavily depends on 
the actual usage frequencies. However, if there are better 
alternatives, the likelihood of e being awkward increases. 
The function A(e) captures these factors by comparing the 
frequency of phrase e, g(e), to the product of the cost of 
transforming e into c, f(e,c) and the frequency of c, g(c), for 
the best alternative phrase in the corpus. If A(e) is less than 
a user-customizable threshold, the phrase e is flagged as a 
collocation error. To efficiently compute A(e), we employ a 
search engine (inverted index), the Wumpus Information 
Retrieval System [3]. A A(e) calculation normally takes 
less than a millisecond. 
Suggesting Alternatives for Flagged Phrases 
Correction of an awkward phrase requires a candidate list 
of alternative phrases to be created. As noted above, we use 
the Levenshtein distance metric to generate a list of 
candidates. We apply this metric by first recognizing that a 
NNS can introduce four different types of errors into a 
phrase: insertion, deletion, transposition, and substitution 
errors. We then apply inverse error transforms to the phrase 
to create a set of alternative phrases which are then ranked 
according to our acceptability metric.  
We refer to the possible L2 errors that result in collocation 
errors as error transformations. Insertion errors insert a 
word in the phrase. For example, the phrase “I went to 
home” is a collocation error because the preposition “to” is 
inserted. This type of error transformation is often 
associated with prepositions and articles. Deletion errors 
occur when a word is deleted from a phrase. This error is 
commonly associated with articles. For example, in the 
phrase “I am student,” the article “a” is missing. 
Transposition errors occur when two words are swapped. 
For example, “he’s talking with his full mouth” is a 
transposition error since the phrase should be “he’s talking 
with his mouth full.” Finally, substitution or alternation 
errors occur when a non-preferred word is used in place of 
a more commonly used word. Substitution errors frequently 
result in collocation errors. For example, “make 
homework” should be “do homework,” and “clean sky” 
should be “clear sky.” Given these four types of error 
transforms, we apply a set of inverse error transforms to 
generate our candidate list of alternative expressions and 
rank these alternatives according to the error and language 
models, f(e,c) and g(c), for each phrase.  
Modeling insertion and transposition errors is reasonably 
simple. For any phrase, we can select individual candidates 
to delete or transpose to perform inverse transformations of 
insertion and transposition errors. However, precisely 
modeling substitution and deletion errors is more 
challenging. The inverse transformations for these errors 
require the insertion of words, and without some error 
model, heuristics must be employed to limit the set of 
words considered for the inverse transformations. For these 
two error types, we insert or substitute prepositions and 
articles (preposition and determiner errors constitute about 
12% of ESL errors [7]), synonyms (from WordNet), 
allowed verb forms, and singular and plural forms of 
nouns. Any error type can occur multiple times within a 
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phrase. As a result, we apply inverse transformations up to 
our limit of two errors per phrase. 
EVALUATION 
The design of AwkChecker is the result of an iterative 
design process involving formative testing by non-native 
speakers. The system was tested by five non-native 
speakers. To speed evaluation, three of the participants 
were given an essay written by a non-native speaker to edit, 
while two edited their own content. Testing concluded with 
semi-structured interviews on the design of the interface, 
the features, and the usefulness of AwkChecker. 
As noted in the Introduction, AwkChecker is a type of tool 
we refer to as a soft-language tool. Our study revealed a 
number of insights into how end-users perceive, use, and 
desire to use this soft-language tool. We describe our 
findings and implications for the design of tools, like 
AwkChecker, that support soft-language constraints. 
Perceptions of a Soft-Language Tool 
As we have argued, the detection and correction of 
collocation errors is qualitatively different than that of spell 
or grammar checking. In our user studies, we found that the 
inherent fuzziness of this component of language required 
care in how the tool was positioned as well as how certain 
aspects of its functionality were exposed to users (in 
particular, the presentation of suggested alternatives).  
As users have never encountered a soft-linguistic tool, we 
tried several ways of describing what it can do. At first, we 
described it simply as a tool that detects “awkwardness” in 
one’s speech. However, users found this description vague 
and needed more information and context. We also 
described its functionality as being similar to using a search 
engine to check whether one’s speech conforms to standard 
conventions. Users understood this concept, but did not 
immediately understand how AwkChecker could improve 
upon this ad-hoc method until they encountered an 
awkward phrase (“powerful tea”) that they could not fix 
with a search engine alone. 
Eventually, we found that explaining the system as a 
“dictionary of expressions,” constructed from an 
underlying corpus, was the best way to position the system. 
Furthermore, by indicating that this dictionary of 
expressions is built on an underlying corpus, users 
attributed false positives to the underlying corpus rather 
than any shortcoming of the tool itself. That is, they were 
able to build a mental model of the system, its 
functionality, and limitations through this description 
compared to others. 
While users were able to grasp the basic functionality of the 
system, AwkChecker’s presentation of suggested 
alternatives posed some problems. Originally, AwkChecker 
displayed the calculated goodness metrics for each phrase, 
but users were not able to understand what this number 
was, nor its meaning relative to other scores. We then 
switched to showing the number of occurrences in the 
underlying corpus. This was more easily understood, but 
still required explanation. This particular issue – how to 
represent varying levels of confidence in a suggestion – 

remains a problem that deserves further investigation so 
that end-users can understand, on their own, the notion that 
the tool is not authoritative, but a guide.  
Patterns of Use and Desired Uses 
One of our users, U1, used the system continuously for a 
week. The user would have used it as their primary text 
editor, but the web-based editor lacks undo and other 
features typical of a basic word processor. Despite these 
limitations, the user developed regular patterns of usages 
that are noteworthy. 
U1’s first language is Korean, which does not make use of 
articles. Accordingly, U1 employed AwkChecker to check 
articles and prepositions. U1 developed one interesting 
workaround which suggests a potential design modification 
in the future. In particular, when checking prepositions, U1 
would often want to check incomplete phrases. For 
example, in one instance, U1 wanted to check the phrase, 
“pass judgment” where they were unsure whether the 
preposition should be “to” or “on” before an object noun. 
Rather than define the noun, U1 wanted to specify a pattern 
“pass judgment to <noun>,” rather than specifying a noun. 
As a workaround, U1 replaced the nouns with “dummy” 
articles to compel the system to provide a suggestion. 
When correcting their text, users either used recognition or 
education to choose the replacement phrase. In the case of 
recognition, users relied on past knowledge to choose the 
replacement phrase. For example, they may have 
previously encountered the correct phrase, but could not 
recall it, or they could judge the correctness of a phrase 
based on how it “sounded.” In the case of education, the 
user needed to educate themselves on the various phrases 
by reading the provided examples. In some cases, a 
dictionary was required as part of this process because the 
alternatives contained new vocabulary to the user. This 
finding indicates that supplying a dictionary, accessible 
from any part of the system, would be useful. 
Notably, when used to educate oneself on new phrases, 
AwkChecker is extending one’s capabilities with the 
language, something not possible with linguistic aids such 
as spell checkers or grammar checkers. It has been found 
that NNSs frequently use an “avoidance” strategy when 
producing L2, using only words and structures with which 
they are confident, while avoiding unfamiliar forms [6]. 
AwkChecker provides a means by which users can safely 
leave their “comfort zone” to push beyond their current 
skill set. 
The system was found to be useful for correcting direct 
translations from one’s native language. Since collocation 
preferences generally do not transfer between languages, 
this is a natural and perfect use of the system. 
Unused Functionality 
The original incarnation of AwkChecker contained two 
additional features that were not used by participants. A 
comparison tool was provided to directly compare the 
frequency of phrases in the corpus. This functionality was 
designed to allow people to investigate two or more phrases 
in parallel when the alternatives were known a priori. 

128



 

 

However, users seemed satisfied with the basic 
functionality of the system and cited the need to manually 
enter phrases in text boxes as a deterrent to using this 
comparison tool. Furthermore, most of this tool’s 
functionality is supported at a basic level by the default 
detection algorithm; it is most useful in cases where two or 
more phrases are highly distinct to the extent that the 
inverse transformations on one would not yield the other 
phrases. 
A third tool, a phrase analyzer, was also constructed to help 
users pinpoint the likely cause of awkwardness in their 
phrase. This tool subdivides the phrase into sub-phrases 
and rates each sub-phrase. However, users did not seem to 
need this additional information; they either wanted to 
recognize the correct phrase or educate themselves about 
which is the best to choose. 
DISCUSSION 
AwkChecker determines collocation errors through the use 
of n-gram statistics and an underlying corpus. As 
mentioned above, in our current implementation, users can 
choose to use either the Wikipedia or Gov2 corpora as their 
backing corpus. 
As we have argued, the choice of collocation error 
technique can have important implications for actual end-
user tool use. We consider three implications related to the 
use of n-gram statistics and corpora to detect collocation 
errors: Its robustness to “messy” data within a learning 
corpus, its ability to allow users to generate reasonably 
accurate mental models of how the system operates, and its 
ability to not only detect collocation errors, but help one to 
conform to particular styles of writing by choosing an 
appropriate corpus. 
Considering Messy Data 
Any corpus will contain errors, and the corpora used by 
AwkChecker are no exception. For example, Wikipedia 
entries vary widely in the overall quality of writing. 
However, AwkChecker’s use of n-gram statistics, relative 
rankings of results, and example uses for each suggestion 
provide a graceful way to handle errors in the underlying 
corpus. Examining the nature of errors in a corpus makes 
these points clear: If errors are not consistently made for 
collocation preferences, then the relative frequency of any 
particular collocation error in the underlying corpus will be 
significantly less than the consensus usage for a collocation 
preference. What this means is that collocation errors in the 
underlying text are unlikely to lead to false negatives when 
checking a user’s text. By the same token, these source 
errors should not, in most cases, appear in the suggestion 
list. However, even if they do, the relative rankings 
supplied with each suggestion, along with its example 
context of use, will help users to discard these examples. 
Thus, messy data in a corpus is not a significant concern for 
this type of linguistic aid. 
Detecting System Failures 
When attempting to detect and correct nuanced language 
errors such as collocation errors, one must be sensitive to 
the fact that the absence of well-defined linguistic rules 
means any system that attempts to detect and correct these 

types of errors will be prone to false negatives, false 
positives, and poor correction suggestions; there will be no 
“perfect” system. What becomes important, then, is 
ensuring end-users themselves can detect these failings of 
the underlying system and reasonably cope with them. 
Relating this to Knutsson’s and Vernon’s guidelines, there 
is a need for transparency in the system’s design. 
There are two important implications related to this specific 
form of transparency (i.e., system failures). First, this high-
level need means the choice of underlying algorithms is not 
without consequence for end-user interaction. In particular, 
given the choice between two methods of detecting and 
correcting collocation errors, it may be more desirable to 
choose the method whose basic functionality end-users can 
more easily understand. In this case, when the system fails, 
they will be in a better position to understand how and why 
it failed, and thus recover from that failure. As we noted in 
the Background section, there are a number of techniques 
developed to detect L2 errors, but none have been assessed 
with respect to this end-user need. That is, none have 
considered the direct link between the underlying detection 
algorithms and the user’s ability to effectively make use of 
those algorithms. 
The second implication for supporting transparency is that 
the interface should provide sufficient information so that 
users can detect and recover from failure. Again, because 
any such tool will be imperfect, users should be able to 
determine why a system appears to be making an error in 
either the detection or correction process. 
AwkChecker’s use of n-gram statistics helps address both 
transparency goals. First, basing collocation error detection 
on consensus usage rather than derived models helps users 
develop reasonably accurate mental models of 
AwkChecker’s capabilities and limitations. As we found in 
our user evaluation, once users understand that error 
detection is based on the notion of the frequency of a 
phrase in a corpus, they can more easily account for 
mistakes the system may make when flagging awkward 
phrases or making suggestions. In contrast, if a model-
based approach were used, it would be more difficult to 
understand false positives generated by an overgeneralized 
model. Similarly, model-based approaches could lead to 
suggested phrases being synthesized that are themselves 
examples of collocation errors. Both types of system 
failures are potentially more difficult to understand and 
explain with model-based approaches than AwkChecker’s 
use of n-gram statistics. 
Second, as mentioned above, displaying relative rankings 
and example context for suggestions can also assist users 
when recovering from suspected failures of the system. The 
rankings and context guide improve the reliability of end-
user corrections and help to identify false positives. 
Writing Styles 
While the primary goal of AwkChecker is to detect 
collocation errors that NNSs make, AwkChecker can also 
be used as a style checker. In considering collocation 
preferences, one can create a spectrum of collocation errors 
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ranging from awkward phrasing that no NNS would 
produce, to phrases that are acceptable, but not the 
preferred phrases, within a particular domain. For example, 
in describing medical stitches, a surgeon would tend to say 
“sutures” while a lay person would instead say “stitches.” 
Both are acceptable, but one is the more preferred word in 
certain contexts. In this case, the collocation error is not 
one of awkwardness as much as it is one of style. 
AwkChecker’s approach to detecting collocation errors 
provides a degree of flexibility and customizability in 
catering one’s language to a desired style of writing. While 
we currently provide a choice of only two corpora, one 
could easily generate sets of corpora representing a range 
of writing styles, from scientific writing to literature 
reviews to urban street slang. One need only obtain a 
reasonably sized corpus, have AwkChecker index it, and 
then use that as the primary corpus to check consensus 
usage. 
CONCLUSION AND FUTURE WORK 
AwkChecker is the first end-user tool specifically designed 
to support the detection and correction of collocation 
errors, a type of error common to NNSs. Collocation is 
unpredictable using low-level linguistic features such as 
syntax and grammar, and it is thus difficult to automatically 
correct collocation errors.  
In user testing, we observed very positive reactions to our 
system. Our participants, all NNSs, had never seen tools 
such as ours before. As well, our experiments with various 
techniques for describing the system to users demonstrated 
that when users understand the characteristics of the 
underlying corpus and the mechanism used to flag 
collocation errors, they are better able to predict the 
limitations of our system, and have a better understanding 
of false positives and false negatives.  
One feature that was desired by one of the participants was 
some mechanism for part-of-speech tagging, for example 
that ability to specify a word class as one part of a phrase. 
As a result of these observations, we may extend 
AwkChecker with part-of-speech tags for correction. We 
are also considering developing plug-ins for commercial 
word-processors. 
While the development of tools for non-native speakers is 
an active area of research, much of the work has been 
geared toward determiner, preposition, and other 
grammatical components of speech which can be specified 
with rules. As well, most systems are designed to test 
detection and automatic correction algorithms, rather than 
as end-user tools to aid non-native speakers with their own 
writing.  
While addressing these grammatical components of speech 
for non-native speakers is an important research goal, 
equally (or more [16]) problematic for people acquiring a 
second language are the soft constraints, the collocations, 
idioms, and common usages that are based on social 
consensus, not on syntactic and grammatical rules. In this 
work, we describe a new technique, based on statistical 
word-level n-grams, to detect collocation errors and suggest 

alternative phrases. As well, we incorporate our algorithms 
into a tool, AwkChecker, that helps end-users follow these 
linguistic conventions in their own writing. 
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