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Abstract. This paper presents a real-time system to assist persons with de-
mentia during handwashing. Assistance is given in the form of verbal and/or
visual prompts, or through the enlistment of a human caregiver’s help. The
system uses only video inputs, and combines a Bayesian sequential estimation
framework for tracking hands and towel, with a decision theoretic framework
for computing policies of action – specifically a partially observable Markov
decision process (POMDP). A key element of the system is the ability to
estimate and adapt to user states, such as awareness, responsiveness and
overall dementia level. We demonstrate the system in a set of simulation
experiments, and we show examples of real-time interactions with actors.

1 Introduction

Older adults living with cognitive disabilities (such as Alzheimer’s disease or other
forms of dementia) have difficulty completing activities of daily living (ADLs), and
are usually assisted by a human caregiver who prompts them when necessary. The
dependence on a caregiver is difficult for the patient, and can lead to feelings of
anger and helplessness, particularly for private ADLs such as using the washroom.
Computerized cognitive assistive technologies (CATs) are devices that may have the
potential to allow this elderly population to complete such ADLs more indepen-
dently by non-invasively monitoring the users during the task, providing guidance
or assistance when necessary. This paper presents a real-time system for assisting
persons with dementia during handwashing. The system was built upon three pre-
vious versions, each relaxing restrictive assumptions in previous iterations [10, 1].

Several intelligent systems that use AI techniques are currently being developed
for the older adult population [6, 12]. These projects are similar to the work de-
scribed in this paper in that they incorporate AI and a decision-theoretic approach.
In particular, the Autominder System [13], one aspect of the Nursebot Project, ap-
plies a POMDP in the development of the planning and scheduling aspect of the
system [12]. However, these systems are mainly used as scheduling and memory aids,
and do not incorporate user attitude modeling or planning for prompting. Our sys-
tem for assisting persons with dementia during handwashing consists of four basic
components, as shown in Figure 1. Video from a camera mounted above a sink is
input to a system to track objects of interest (e.g hands and towel). Object positions
are passed to a belief monitor that estimates the progress of the user as a belief state.
A policy then maps the belief to an action for the system to take, usually an audio
or video prompt or a call for human assistance.
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Fig. 1. Schematic of the system with images of test washroom.
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Fig. 2. Three flocks of 5 color features, or specks, tracking hands and towel.

For tracking, we use a mixed-state data-driven Bayesian sequential estimation
method using flocks of color features [3], which allow objects to be robustly tracked
over long periods of time, through large changes in shape and through partial occlu-
sions. Flocking concepts have been used to deterministically track an object with a
moving camera using KLT features [7]. Our belief monitoring and policy systems use
a partially observable Markov decision process (POMDP), and a heuristic for the
temporal abstraction between tracking and actions. The POMDP includes a model
of the user’s mental state, such as responsiveness or overall dementia level, and allows
monitoring of these user attitude traits. We denote these mental states in this paper
as the user’s attitude. Our previous work has demonstrated the handtracker [3], and
a fully observable version of the POMDP model [1]. This paper makes two novel con-
tributions. The first is a demonstration of a new POMDP model that uses only video
inputs, and that can monitor (unobserved) user attitude. The second contribution
is a demonstration of the complete, working system in real time with actors.

2 Hand and towel tracking

To track the hands and towel over long periods of time, we implement a particle-filter
based tracker using flocks of features as our appearance model. A flock consists of a
group of distinct members that are similar in appearance and that move congruously,
but that can exhibit small individual differences. A flock has the properties that
no member is too close to another member, and that no member is too far from
the center of the flock. The flocking concept helps to enforce spatial coherence of
features across an object, while having enough flexibility to adapt quickly to large
shape changes and occlusions. Figure 2(a) shows three flocks of 5 color features
tracking two hands and a towel. Figure 2(b)–(d) show the same three flocks later in



the sequence, during occlusions and shape changes. The flocks maintain the track,
even though the object shapes have changed.

More formally, a flock, φ, is a tuple {Nf ,θf ,W,v, ξc, ξu} where Nf is the number
of features in the flock, θf = {cf ,Σf} is a global Gaussian color model for all flock

members, W is a set of Nf features, wi = {xi,ωi}
Nf

i=1, with image positions xi,
and feature parameters ωi that describe image appearance. We use a simple type of
feature, a color speck, which is a set of Np = 4 pixels in a 2 × 2 square, with a local
Gaussian color model, ωo = {co,Σo}. The likelihood of observing an image z given
a flock φ, assumes that each feature generates parts of the image independently,

L(z|φ) =
∏Nf

i=1 L(z|wi,θf ). The likelihood of image z, given a speck, w, in a flock
with color model θf , is a product over speck pixels of two Gaussians

L(z|w,θf ) ∝

Np∏

j=1

e−γo min(cp, 1

2
(zj−co)′Σo(zj−co))e−γc min(cp, 1

2
(zj−cf )′Σf (zj−cf ))

where zj = z(xj) is the image color values at speck pixel xj . The specks conform
to the flock’s color model, θf , as well as to their local color distribution through
θo. Finally, a constant “background” density, cp, gives better performance under
occlusions, allowing some members of the flock to be “lost” (e.g. on an occluding
object). The parameters γo and γc control the tradeoff between the local and global
color models. The flock’s position is updated sequentially using the standard two-
step Bayesian sequential estimation recursion [2]. The dynamics of a flock is given
by three terms. First, the flock members move according to some mean velocity, but
with independent Gaussian noise. Second, the flock has a collision penalty function
that varies inversely with the distance between flock members. Third, the flock has
a union penalty function that varies proportionally to the distance between flock
members and the flock mean position. The collision and union penalties are both
implemented using pairwise potentials, expressed as a Gibbs distribution.

To allow for multi-modality, we use a sequential Monte-Carlo approximation
(particle filter) [2], in which the target distribution is represented using a weighted
set of samples. In the handwashing scenario, the tracking must be robust over long
periods of time, and must be able to re-initialise if the track is lost, such as when
hands leave the scene. Therefore, we augment our tracking method with mixed state
dynamics [5], and a data-driven proposal [11]. A mixed-state tracker has dynamics
noise, Σv, that varies depending on how accurately the particle filter is estimated
to be tracking. The proposal uses samples generated from a combination of the
dynamics process and a separate, data-driven process. Our data-driven proposal uses
the feature model θf to build a probability map over the input image by thresholding
the image, and median filtering the result to remove small components. We then
choose the connected component closest to the particle being updated in this binary
image and build a normalised map from which we draw flock samples.

3 POMDP model

A discrete-time POMDP consists of: a finite set S of states; a finite set A of actions;
a stochastic transition model Pr : S ×A → ∆(S), with Pr(t|s, a) denoting the prob-
ability of moving from state s to t when action a is taken; a finite observation set



O; a stochastic observation model with Pr(o|s) denoting the probability of making
observation o while the system is in state s; and a reward assigning R(s, a, t) to state
transition s to t induced by action a. The POMDP can be used to monitor beliefs
about the system state, or to compute a policy that maximizes the expected dis-
counted sum of rewards attained by the system. Since the system state is not known
with certainty, a policy maps belief states (i.e., distributions over S) into choices of
actions. We refer to [8] for an overview of POMDPs. The model we currently use is
specified manually, using prior knowledge of the domain.

3.1 Handwashing States and Dynamics

The handwashing task is modeled as a POMDP with 9 state variables, 3 observation
variables, and 25 actions. There are 207360 states and 198 observations. The state
space can be divided into two important factors: task and attitude. We use the
term sequence to denote a single handwashing event, and trial to denote a set of
handwashing sequences, possibly on different days over the course of many weeks.

The task is described by two variables, planstep and behavior. The plansteps
break the handwashing task down into eight situations, and the user’s behaviors
cause transitions in the plansteps as shown in Figure 3. The user behaviors can be
one of six activities: using soap, at water, at tap, at sink, drying, or away. Note that,
whereas planstep is sufficient to characterise the state of the hands behavior is also
needed to fully monitor the progress. For example, a user can be in planstep a with
hands at the soap (trying to get to e) or at taps (trying to get to b).
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Fig. 3. Simplified view of the planstep transitions for the handwashing problem. The
plansteps are shown along with the state of the hands (dirty,soapy,clean,wet,dry) and the
water flow (on/off). Transitions are for pairs of pre/post action behaviors for the null ac-
tion. An underscore ( ) means any behavior and ∼b means any behavior other than b. A
question mark, ? indicates a probabilistic transition.

The user attitude has three factors: dementia level = {low,med,high}, giving the
user’s overall level of dementia (low dementia means more demented), awareness =
{never,no,yes}, telling whether the user is aware of what they are doing in the task,
and responsiveness = {none,max,med,min}, giving what type of prompts the user
is responsive to. We assume that dementia level does not change over a clinical trial
(about 4-6 weeks). However, as we discuss in Section 3.1, and as we show in our
results, our model can be used to estimate a particular user’s level of dementia over
the course of a clinical trial. A user’s responsiveness is constant for a sequence, but
can change from sequence to sequence (e.g. from day to day). Thus, when a user
enters the washroom, we have some (fixed) prior belief about her level of responsive-
ness, but this prior is reset after each sequence. Finally, the user’s awareness is can
change during a sequence, depending on a number of factors, such as whether she is



given prompts, whether a human caregiver intervenes, and also her dementia level.
If dementia level is low, the user is less likely to gain awareness. If dementia level is
high (less demented), the user is more likely to become and remain aware.

There are two important factors in the dynamics of the POMDP. First, the
behavior dynamics are that the user will do the “right thing” if they are either
aware, or if they are not aware, but they are responsive and have been given the
correct prompt. Otherwise, they will do nothing (or something different). Second,
the planstep dynamics are that behavior changes cause planstep transitions as shown
in Figure 3. Some transitions (marked with a ? in Figure 3) include the probability
that the user has abandoned her attempt. For example, if the user is in planstep a,
and moves her hands from the taps to the sink, then the probability that she turned
the water on may be less than one - she may have abandoned the task. Specific
probability values can be set for particular users and tap/soap configurations.

There are three types of action the system can take: to do nothing, to prompt,
or to call for human assistance. The prompts correspond to the transitions shown
in Figure 3. Each prompt comes in three levels of specificity: minimal, medium,
and maximal. A minimally specific prompt to use soap could be simply the verbal
prompt “Use the soap now”, whereas a maximally specific version might add the
user’s name, some information about location and color of the soap (e.g. “John, use
the soap on your left in the pink bottle”), and may include a video demonstration.

There are three observation variables in the model. The planstep observation
(PSO), is the caregiver’s indication of the planstep after an intervention. The system
must gain information after an intervention to avoid repeatedly calling for assistance.
The hand location observation (HL), comes from the hand tracker as described in
Section 2, and gives the current locations of the hands and towel. The mean positions
of the three tracks are spatially discretised into a coarse and pre-defined set of areas
using threshold distances to each object (e.g. taps, soap), and combined to form
the values for HL. Examples include both at soap and water towel meaning one is at
water and one at towel. These observations are conditioned on the behavior.

The temporal abstraction that maps between the video frame rate and the
prompting rate is accomplished by a heuristic that updates the belief state in one of
two situations. First, when the belief state is going to change significantly. Second,
if the person has not changed her behavior (e.g. has not moved) for a long period of
time, termed a timeout. These explicit timeouts are the third observation, and are
an indication that the user is not aware. In the POMDP, we condition the timeout
observation on the joint pre- and post-action behaviors being identical. Since the
behaviors are conditioned on the awareness, a timeout will give evidence for lower
awareness. Note that in some situations, the behavior may remain the same without
a timeout if the hands are moving to different locations.

The POMDP model also estimates a particular user’s attitude over time. In
particular, the model can estimate a user’s level of dementia by watching her long-
term handwashing behavior over multiple sequences. The ability to estimate user
traits allows the model to report such findings to carers, and can also give the
model information that can be leveraged in the policy. When a new user starts using
the system, the dementia level variable has some prior distribution set based on the
population of users. Over the course of each handwashing sequence, this distribution
will shift slightly. If we then propagate this information from sequence to sequence
(this is the only variable whose information is propagated), then we get a long-term
estimate of the user’s dementia level. We show examples of this in Section 4.



3.2 Rewards and Solutions

The reward combines large rewards for task completion, costs for prompts propor-
tional to specificity due to the inducement of feelings of reduced independence in
the user, and large costs for caregiver calls if the user is aware or responsive.

The size of our model puts it well beyond the reach of any exact solution tech-
niques. We used a point-based approximate solution technique based on the Perseus
algorithm [15], which solves the POMDP only for a specific set of belief points. Our
approach reconstructs the Perseus algorithm, taking into account the structure in
the system dynamics and rewards. That is, there are many conditional indepen-
dencies between variables over time, and in the reward function, that a solution
technique can leverage by representing the dynamics and rewards as algebraic deci-
sion diagrams (ADDs) [14]. Our approach makes three additional approximations.
First, we put a cap on the complexity of the value function (the number of alpha
vectors). Typically, this bound only causes minimal decrease in the quality of a so-
lution. Second, we merge states with values that differ by less than the Bellman
error [16]. This error shrinks to zero as the computation converges, preserving op-
timality. Third, we only compute over observations with a significant probability
of occurrence. This fast technique is related to a general method for dealing with
large observation spaces [4]. We solved the POMDP using 150 alpha vectors and 65
iterations in 42 hours on a dual Intel R© 2.40GHz XEONTM CPU with 4Gb of RAM,
using about 2Gb of memory maximum.

We also developed a simple heuristic policy as an alternative to the computed one.
The heuristic policy has a fixed set of hand-crafted thresholds on the belief distribu-
tion, and attempts to prompt when the user is not aware, and does so at whatever
level of responsiveness is most likely. If the user is unaware and unresponsive, then
the human caregiver is called. Other policies we compare against are the Nil policy,
which always does nothing, the CG policy, which always calls the caregiver, and
the certainty-equivalent (CE) policy, which looks at the most likely state given the
current belief, and then acts according to the policy derived for the fully observable
model (MDP). Finally, we can compare these values to the expected value achieved
by the fully observable MDP with no observation noise, a utopic upper bound that
may never be achievable even by an optimal POMDP policy.

4 Implementation and Results

The complete system runs on a Dell laptop with Intel R© core 2 duo processor with
2GB of RAM, and uses an external monitor to play the prompts. The camera is Point
Grey Research R© DragonFly IITM . The full system processes 640 × 350 frames at
19 Hz, or 320×240 frames at 40 Hz. The tracker, the belief state monitor and policy,
and the prompting system operate as separate processes communicating through a
UDP-based IPC mechanism. A fourth process is a central broker [9] through which
all data channels pass, and that fills requests from clients for the data.

4.1 Simulations

Simulations use two models: the first is the true user model, in which we set an
initial user type by specifying the user attitude: dementia level, responsiveness and
awareness, and the second is the system’s POMDP that interacts with the true



DL RE AW POMDP Heuristic Nil CG CE fo-MDP
lo none never 6.4 ± 0.4 −0.7 ± 0.6 −1.8 ± 0.0 −73.3 ± 2.5 6.8 ± 0.6 9.0 ± 0.5
lo max no 3.1 ± 0.7 1.9 ± 1.0 −0.8 ± 0.1 −89.6 ± 3.7 3.5 ± 1.3 6.6 ± 0.6
lo med yes 5.6 ± 0.4 4.2 ± 0.8 0.6 ± 0.3 −115.5 ± 3.5 1.3 ± 0.8 7.8 ± 0.8

med max no 2.8 ± 0.5 1.3 ± 0.9 0.1 ± 0.3 −91.6 ± 3.8 3.7 ± 0.6 6.1 ± 0.6
med min yes 5.7 ± 1.5 6.5 ± 1.1 3.1 ± 1.8 −115.9 ± 3.4 1.7 ± 1.5 8.2 ± 0.6
hi med no 7.6 ± 0.6 6.3 ± 0.6 0.5 ± 0.5 −93.7 ± 3.3 7.3 ± 1.0 9.7 ± 0.5
hi min yes 9.8 ± 0.7 10.3 ± 0.4 10.0 ± 0.7 −116.1 ± 3.3 4.6 ± 0.5 9.3 ± 0.6

overall 6.0 ± 2.0 3.9 ± 3.6 1.0 ± 3.5 −95.3 ± 15.7 4.7 ± 3.0 8.5 ± 1.3

Table 1. Mean rewards gathered over 20 simulation trials, averaged over 10 experiments.
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Fig. 4. Progression of dementia level estimates over 20 simulations for different user atti-
tudes. Solid line: mean; dashed lines: max and min over 10 experiments.

model, and attempts to estimate the state of the user and take actions accordingly.
These simulations only evaluate the decision making part of the system - they do
not simulate actual video sequences or the hand-tracker behavior. For simulations
regarding hand-tracking, see [3]. We evaluate the simulations by looking at the av-
erage discounted reward over time, and compare the heuristic and POMDP policies.
We also look at the long term dynamics of dementia level.

A simulation experiment involved a set of 20 simulations of handwashing, each
for 50 steps. The dementia level belief was propagated across the 20 simulations,
and we did 10 experiments with different random seeds. Table 1 shows the mean
rewards averaged over the 10 experiments for representative user types, comparing
the POMDP policy, the four heuristic policies, and the MDP upper bound. Table 1
also shows the average over all user types, showing that overall, the POMDP policy
performs best, but not significantly better than the heuristic or certainty equivalent
(CE) policy, while the call-caregiver policy (CG) is an expensive lower bound. For
particular user types, we see that the CE approach does better if the user starts the
trial less aware. This is because the CE approach uses a more aggressive prompting
strategy due to the collapse of the belief to a single state. For example, if the belief
state is close to uniform, the optimal (POMDP) policy may be to wait and see
what the user does, to try to gain some information, whereas the CE approach will
commit to some state, possibly causing a prompt to be issued. The CE strategy
works poorly when the user is more aware. The Nil policy works best when the user
is least demented and most aware (since doing nothing is close to optimal anyways).

Figure 4 shows the progression of the belief that the dementia level is equal to the
true dementia level over the 20 simulated sequences, averaged over 10 experiments.
The maximum, mean and minimum values at each time step are shown. We see
that for the extreme dementia/responsiveness/awareness levels, the POMDP learns
the correct dementia level quickly. However, for intermediate dementia levels, the



POMDP learns more slowly. This is reasonable since for these intermediate cases,
behaviors that could be seen in either extreme might be observed.

4.2 Actor Trials

Real-time trials were conducted in a laboratory with actors behaving according to
different subject types. The camera was mounted 1.65m above the sink, and 320x180
images were processed at 47 fps. The maximum specificity prompts included video
demonstrations. Four different scenarios were tested by two different actors.

In the first scenario, the user just sits and does nothing at all with her hands on
the edge of the sink. The system prompts her to use the soap with medium specificity
after 7 seconds, and then again with maximum specificity after 30 seconds, finally
calling for human assistance after 55 seconds. The POMDP’s belief in the user’s
attitude after this first episode had shifted towards dementia level = lo, awareness
= never and responsiveness = none. In second scenario, the user completed all steps
of the task in about 35 seconds without needing any assistance. The POMDP suc-
cessfully tracked her behaviors and correctly inferred that planstep=k was reached.
The POMDP’s belief in the user’s attitude after the trial was nearly uniform over
dementia level (shifted from lo initially), and had shifted towards aware = yes. The
belief about responsiveness did not change since no prompts were given.

Figure 5 shows the third scenario, in which the subject completes some steps
without assistance, but gets stuck and requires prompting to complete others. The
subject initially turns the tap on and gets her hands wet (planstep b at 6s) without
assistance, but then does not progress to the next step. A timeout occurs at 21s,
and the awareness begins to decrease. The subject still has not used the soap at 29s
and the system prompts her to do so with medium specificity. She responds at 47s
after yet another timeout, and the responsiveness shifts toward max. At 49s the user
has not left the soap, so system prompts to use the pump with minimum specificity.
Another prompt to turn the water off is enough for the subject to finish the task.

Figure 6 shows the fourth scenario, in which the subject requires prompting for
every step and is responsive only at maximum specificity. The user does not respond
to a medium specificity prompt, and the system switches to maximum specificity,
which works for the remainder of the task. Notice how, between 100-120s, the system
is uncertain about the planstep, due to the hands momentarily moving out of the
water region. This uncertainty is resolved by 130s and the end of the task is detected.

5 Conclusions and Future Work

We have presented a system for assisting a person with dementia complete the
task of handwashing that combines a flexible object tracker with monitoring and
decision making using a partially observable Markov decision process (POMDP).
We demonstrated the system in simulations and with actors. The system will be
used in clinical trials in Toronto, Canada, in spring 2007.

The reward function, currently specified by hand, encapsulates a great deal of
prior information from carers and users, that should be carefully elicited from the
target population. The benefit of framing the problem using a decision theoretic
model is that it provides a theoretically well founded model within which we can
start to investigate questions of preference and value tradeoffs that are inherent in
cognitive assistive technologies. Another benefit of the system we have developed
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Fig. 5. Scenario three, summarized belief state, observations, timeouts (stars) and prompts.
Cropped images show samples drawn from the three particle filters for hands and towel.

is its ability to generalise to other ADL. We are currently looking at implementing
the same system for other important washroom ADL, such as toothbrushing, and
eventually, toileting. Finally, we are investigating methods for learning the model
from data, and for integrating the tracker uncertainty into the decision making.
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