An Analytic Solution to Discrete Bayesian Reinforcement Learning

Pascal Poupart (U of Waterloo)
Nikos Vlassis (U of Amsterdam)
Jesse Hoey (U of Toronto)
Kevin Regan (U of Waterloo)
Motivation

- Automated assistant
 - [Boger et al. IJCAI-05]

- Use RL to adapt to users
 - Learn through user interactions (no simulation)
 - Bear cost of actions
 - Cannot explore too much
 - Real-time response
Model-Based Bayesian RL

- Model-based Bayesian RL:
 - Naturally optimize exploration/exploitation tradeoff
 - Reduce exploration with prior knowledge
 - Mathematically and computationally complex

- Contributions:
 - Optimal value function has simple parameterization
 - i.e., upper envelope of a set of multivariate polynomials
 - **BEETLE: Bayesian Exploration/Exploitation Tradeoff in LEarning**
 - Exploit polynomial parameterization
Outline

- Bayesian reinforcement learning
- Value function parameterization
- BEETLE algorithm
- Experiments
- Conclusion
Reinforcement Learning

- Markov Decision Process:
 - S: set of states
 - A: set of actions
 - R: set of rewards
 - $T(s,a,s') = \Pr(s'|s,a)$: transition function
 - $U(s,a) = r$: reward function

- Bayesian Model-based Reinforcement Learning
- Encode unknown prob. by random variables θ
 - i.e., $\theta_{sas'} = \Pr(s'|s,a)$: random variable in $[0,1]$
 - i.e., $\theta_{sa} = \Pr(\cdot|s,a)$: multinomial distribution
Model Learning

- Assume prior $b(\theta_{sa}) = \Pr(\theta_{sa})$
- Learning: compute posterior given s, a, s'
 - $b_{sas'}(\theta_{sa}) = k \Pr(\theta_{sa}) \Pr(s'|s, a, \theta_{sa}) = k b(\theta_{sa}) \theta_{sas'}$

- Conjugate prior:
 - Dirichlet prior \rightarrow Dirichlet posterior
- $b(\theta_{sa}) = \text{Dir}(\theta_{sa}; n_{sa}) = k \prod_{s''} (\theta_{sas''})^{n_{sas''} - 1}$
- $b_{sas'}(\theta_{sa}) = k b(\theta_{sa}) \theta_{sas'}$
 - $= k \prod_{s''} (\theta_{sas''})^{n_{sas''} - 1 + \delta(s', s'')}$
 - $= k \text{Dir}(\theta_{sa}; n_{sa} + \delta(s', s''))$
Prior Knowledge

• Structural priors
 – Tie identical parameters
 • If \(\Pr(\cdot|s,a) = \Pr(\cdot|s',a') \) then \(\theta_{sa} = \theta_{s'a'} \)
 – Factored representation
 • DBN: unknown conditional dist.

• Informative priors
 – No knowledge: uniform Dirichlet
 – If \((\theta_1, \theta_2) \sim (0.2, 0.8) \)
 then set \((n_1, n_2) \) to \((0.2k, 0.8k) \)
 • \(k \) indicates the level of confidence
Policy Optimization

• Classic RL:
 – $V^*(s) = \max_a U(s,a) + \sum_{s'} \Pr(s'|s,a) V^*(s')$
 – Hard to tell what needs to be explored
 – Exploration heuristics: ε-greedy, Boltzmann, etc.

• Bayesian RL:
 – $V^*(s,b) = \max_a U(s,a) + \sum_{s'} \Pr(s'|s,b,a) V^*(s',b_{sas'})$
 – Belief b tells us what parts of the model are not well known and therefore worth exploring
 – Optimal exploration/exploitation tradeoff
 – [Dearden 98,99], [Strens 00], [Duff 02], [Wang 05]
Value Function Parameterization

- **Theorem:** V^* is the upper envelope of a set of multivariate polynomials ($V_s(\theta) = \max_i \text{poly}_i(\theta)$)

- **Proof:** by induction
 - Define value function in terms of θ instead of b
 - i.e. $V^*(s,b) = \int_\theta b(\theta) V_s(\theta) \, d\theta$
 - Bellman’s equation
 - $V_s(\theta) = \max_a U(s,a) + \sum_{s'} \Pr(s'|s,a,\theta) \, V_{s'}(\theta)$
 - $= \max_a k_a + \sum_{s'} \theta_{sas'} \max_i \text{poly}_i(\theta)$
 - $= \max_j \text{poly}_j(\theta)$
BEETLE Algorithm

- Sample a set of reachable belief points B
- $V \leftarrow \{0\}$
- Repeat
 - $V' \leftarrow \{\}$
 - For each b in B compute multivariate polynomial
 - $\text{poly}_{as'}(\theta) \leftarrow \arg\max_{\text{poly} \in V} \int \theta \ b_{sas'}(\theta) \ \text{poly}(\theta) \ d\theta$
 - $a^* \leftarrow \arg\max_a \int \theta \ b_{sas'}(\theta) \ R(s,a) + \Sigma_{s'} \ \theta_{sas'} \ \text{poly}_{as'}(\theta) \ d\theta$
 - $\text{poly}(\theta) \leftarrow U(s,a^*) + \Sigma_{s'} \ \theta_{sa^*s'} \ \text{poly}_{a^*s'}(\theta)$
 - $V' \leftarrow V' \cup \{\text{poly}\}$
 - $V \leftarrow V'$
Polynomials

• Computational issue:
 – # of monomials in each polynomial grows by $O(|S|)$ at each iteration

 – $poly(\theta) = U(s,a^*) + \sum_{s'} \theta_{sa^*s'} poly_{a^*s'}(\theta)$
 $= U(s,a^*) + \sum_{s'} \theta_{sas'} \sum_i mono_i(\theta)$
 $= U(s,a^*) + \sum_{i,s'} mono_{i,s'}(\theta)$

• After n iterations: polynomials have $O(|S|^n)$ monomials!
Projection Scheme

• Approximate polynomials by a linear combination of a fixed set of monomial basis functions $\phi_i(\theta)$:
 - i.e. $poly(\theta) \approx \sum_i c_i \phi_i(\theta)$

• Find best coefficients c_i by minimizing L_n norm:
 - $\operatorname{Min}_c \int_{\theta} \left|poly(\theta) - \sum_i c_i \phi_i(\theta)\right|^n d\theta$

• For the Euclidean norm (L_2), this can be done by solving a system of linear equations $Ax = b$ such that
 - $A_{ij} = \int_{\theta} \phi_i(\theta) \phi_j(\theta) d\theta$
 - $b_i = \int_{\theta} poly(\theta) \phi_j(\theta) d\theta$
 - $x_i = c_i$
Basis functions

• Which monomials should we use as basis functions?

• Recall that:
 – \(b_{sas'}(\theta) = k \ b(\theta) \ \theta_{sas'} \)
 – \(poly(\theta) \leftarrow U(s,a) + \sum_{s'} \theta_{sas'} \ poly_{as'}(\theta) \)

• Hence we use beliefs as basis functions
Beetle summary

- Offline: optimize policy at sampled belief points
 - Time: minutes to hours
- Online: learn transition model by belief monitoring
 - Time: fraction of a second

- Advantages:
 - Fast enough for online learning
 - Optimizes exploration/exploitation tradeoff
 - Easy to encode prior knowledge in initial belief

- Disadvantage:
 - Policy may not be good for all belief points
Empirical Evaluation

- Comparison with two heuristics

- **Exploit:** pure exploitation strategy
 - Greedily select best action of the mean model at each time step
 - Slow execution: must solve an MDP at each time step

- **Discrete POMDP:** discretize θ
 - Discretization leads to an exponential number of states
 - Intractable for medium to large problems
Empirical Evaluation

| Problem | |S| | |A| | Free params | Opt | Discrete POMDP | Exploit | Beetle | Beetle time (minutes) |
|-----------|---------------------|----------------|---------------------|--------|----------------|----------|---------------------|-----------------------|------------------------|------------------------|
| Chain1 | 5 | 2 | 1 | 3677 | 3661 ± 27 | 3642 ± 43| 3650 ± 41 | 1.9 |
| Chain2 | 5 | 2 | 2 | 3677 | 3651 ± 32 | 3257 ± 124| 3648 ± 41 | 2.6 |
| Chain3 | 5 | 2 | 40 | 3677 | na-m | 3078 ± 49 | 1754 ± 42 | 32.8 |
| Handw1 | 9 | 2 | 4 | 1153 | 1149 ± 12 | 1133 ± 12 | 1146 ± 12 | 14.0 |
| Handw2 | 9 | 2 | 8 | 1153 | 990 ± 8 | 991 ± 31 | 1082 ± 17 | 55.7 |
| Handw3 | 9 | 6 | 270 | 1083 | na-m | 297 ± 10 | 385 ± 10 | 133.6 |

Informative Priors

<table>
<thead>
<tr>
<th>Problem</th>
<th>Opt</th>
<th>Informative priors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>k = 0</td>
<td>k = 10</td>
<td>k = 20</td>
<td>k = 30</td>
</tr>
<tr>
<td>Chain3</td>
<td>3677</td>
<td>1754 ± 42</td>
<td>3453 ± 47</td>
<td>2034 ± 57</td>
<td>3656 ± 32</td>
</tr>
<tr>
<td>Handw2</td>
<td>1153</td>
<td>1082 ± 17</td>
<td>1056 ± 18</td>
<td>1097 ± 17</td>
<td>1106 ± 16</td>
</tr>
<tr>
<td>Handw3</td>
<td>1083</td>
<td>385 ± 10</td>
<td>540 ± 10</td>
<td>1056 ± 12</td>
<td>1056 ± 12</td>
</tr>
</tbody>
</table>
Learning Curves

- Optimal (utopic)
- Beetle (prior 0)
- Beetle (prior 30)
- Exploit
Conclusion

• Motivation
 – Learning by interaction with environment (no simulation)
 – Bear consequence of actions
 – Minimal exploration
 – Real-time execution

• Bayesian RL
 – Optimizes exploration/exploitation tradeoff
 – Can easily encode prior knowledge to reduce exploration

• Contributions
 – Optimal value function parameterization: as the upper envelope of multivariate polynomials
 – BEETLE algorithm
Future work

- Learn user behaviors for assistive technologies
- Consider partially observable domains
- Learn dynamic transition models
- Consider correlated Dirichlet priors