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Abstract

Power priors allow us to introduce into a Bayesian algorithm a relative precision
parameter that controls the influence of external evidence on a new task. Such
evidence, often available as historical data, can be quite useful when learning a
new task from reinforcement. In this paper, we study the use of power priors in
Bayesian reinforcement learning. We start by describing the basics of power prior
distributions. We then develop power priors for unknown Markov decision pro-
cesses incorporating historical data. Finally, we apply the power priors approach
to learning an intervention timing task.

1 Introduction

It is often the case that decision makers may have access to evidence on previously accomplished
tasks. Such evidence, typically in the form of historical data, can be very useful when learning to
accomplish a new task. In lifelong robotic tasks, for example, historical data gathered from previous
time periods and on one or more tasks may provide useful prior information for new tasks. This is
especially so when the new tasks only differ slightly from the previous tasks. In general, historical
data may be elicited from diverse sources of which raw historical data obtained from similar previ-
ous tasks is the most natural. Other sources include expert opinion, case-specific information, and
functional model of data - empirical and/or theoretical.

When historical data is available, we would like to incorporate the data into the current task by
appropriately weighing the historical data in our quantification of prior distribution on the task’s
model parameters. Unfortunately, translating external evidence into a prior distribution is one of
the most difficult and controversial aspect of Bayesian framework especially when such evidence is
subjective and pre-learning. Nevertheless, a variety of approaches exists for incorporating external
evidence into Bayesian framework ([18], pages (148–157)), one of such is the power priors Bayesian
analysis.

The basic idea of power priors is to introduce into the inference algorithm a relative precision pa-
rameter that controls the influence of the historical data on the current task. The power prior is
constructed by raising the likelihood function of the model parameters, based on the historical data,
to a suitable power to discount the historical data relative to the current data. The initial idea of the
power priors originated from studies of conjugate priors for exponential families by Diaconis and
Ylvisaker [5] and Morris [14]. Ibrahim and Chen [7] developed the idea further.
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Following the seminal work of Ibrahim, Chen and Sinha [9] in their extensive study of the theoretical
properties of power priors, the power priors approach has gained wide popularity and has been
applied to a wide variety of Bayesian inference problems which predominantly involve parametric
and non-parametric regression modelling (see [8] for numerous examples). Our focus in this paper
is on extending the power priors approach to Bayesian inference in reinforcement learning based on
models of unknown Markov decision processes (MDPs). Bayesian framework have been considered
from the outset for MDPs [3, 13] and interest has re-emerged in this framework (see, for example,
[16, 19, 23]). Our work on power priors complements emerging research on model transfer for
reinforcement learning where prior information from previous tasks are used to speed up learning
on a new task [11, 20, 21].

The remainder of this paper is structured into four sections. Section two contains an overview of the
power priors approach. We introduce in section three the development of power priors for process
models and in section four we report on a numerical example that applies the power priors approach
to learning an MDP-based optimal intervention timing task. We conclude the paper in section five.

2 The Power Priors & Related Work

Let us consider a model that has unknown parameters θ that is of interest. We would like to incor-
porate historical data, denoted by Dh, when making inference about θ. We assume that θ follows a
probability distribution and that, given θ, the historical data Dh and current data D are independent
random samples.

Let L(θ;Dh) be the likelihood function of θ based on the historical data. Ibrahim and Chen [7]
define the power prior of θ as:

f(θ|Dh, δ) ∝ L(θ;Dh)
δ
f(θ) (1)

in which, f(θ) is the initial prior (‘pre-prior’) distribution about θ before any historical data is made
available and δ (0 ≤ δ ≤ 1) is a relative precision parameter that weights the historical data relative
to the likelihood of the current task. The boundary values of δ gives two interesting cases. The
contribution of historical data to the power prior is nil when δ = 0. The case of δ = 1 results in full
incorporation of the historical data. In the latter case, equal weight is given to both L(θ;Dh) and
the initial prior distribution f(θ). δ controls the heaviness of the tails of the prior for θ. The tails of
the power prior become heavier as the value of δ reduces. A full weight (δ = 1) is seldom practical
because the historical and current datasets may not be homogenous, and the size of the historical
data may overwhelm information contained in the pre-prior.

Taking account of the marginal probability of the historical data, the posterior probability of θ given
the historical data is expressed for a fixed δ as follows

f(θ|Dh, δ) =
L(θ;Dh)δf(θ)∫

Θ
L(θ;Dh)δf(θ)dθ

(2)

Rather than have a fixed relative precision parameter in (1 and 2) above, more flexibility may be
achieved in weighting the historical data by making the precision parameter a random variable. This
is particularly appealing since, typically, the precision parameter is not necessarily pre-determined.
In essence, the power prior f(θ|Dh, δ) in (1 and 2) can be extended by specifying a prior distribution
for θ and including the distribution in a joint power prior of (θ, δ) of the form [7]:

f(θ, δ|Dh) ∝ L(θ;Dh)δf(θ)f(δ) (3)

in which f(δ) is the prior distribution for the precision parameter δ taken as a random variable. In
the same vein, we can extend (2) as follows,

f(θ, δ|Dh) ∝ L(θ;Dh)δf(θ)f(δ)∫
Θ
L(θ;Dh)δf(θ)dθ

(4)

constrained to δ’s that makes the denominator of (4) finite [6].

There are advantages associated with making δ a random variable instead of a fixed variable. First,
a random δ allows the tails of the marginal distribution of θ to be heavier than the tails with δ fixed.
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Secondly, a random δ brings about flexibility in expressing uncertainty associated with δ via a prior
distribution. A natural prior for δ would be a Beta(α, β) distribution or, since 0 ≤ δ ≤ 1, simply
a Beta(α = 1, β = 1) distribution i.e. the uniform[0, 1] distribution which presumes an equal
likelihood for δ to fall anywhere between 0 and 1. The former, i.e. Beta prior, is mostly preferred
[4, 6, 7, 9] for its simplicity. The later, i.e. the uniform prior, expresses the idea of a ‘vague’ prior
information on δ. The decision maker may influence the prior weight on the historical data by
adjusting the hyper parameters α, β that specify the prior distribution for δ.

The power priors approach falls within the realms of prior engineering, i.e. the quantification /
construction of prior distributions, for which there is a sizeable literature. Specifically, a number
of authors have described techniques for using ‘imaginary’ or ‘fictitious’ data to modify a pre-prior
distribution [10, 15, 22]. Kárný et. al. [10] focused on deriving quantitative expressions of prior
information contained both in prior data and individual pieces of expert information. They expressed
the individual pieces of expert information in a common form called ‘fictitious’ data. Neal [15]
showed how a prior distribution formulated for a simpler, more easily understood, model can be
used to modify the prior distribution of a more complex model. He used imaginary data drawn from
the simpler ‘donor’ model to condition the more complex ‘recipient’ model. Tesar’s [22] approach
centres on minimizing Kullback-Leibler distance between empirical and model distributions.

3 Power Priors for Process Models

We assume that the task to accomplish is modelled as a standard Markov decision processes (MDP)
〈S,A,R,P〉 with finite state and action sets S,A, reward function R : S 7→ R, and dynamics
P . The dynamics P refers to a set of transition distributions pass′ that captures the probability of
reaching state s′ after we execute an action a at state s such that s, s′ ∈ S. We assume throughout
thatR is known but not the dynamics P of the MDP. Once the dynamics is learnt, the problem in the
MDP is straightforwardly finding a policy π : S 7→ A that optimise the expected discounted total
reward V = E(

∑∞
t=1 γ

t−1rt), where rt is the reward received t steps into the future and γ ∈ [0, 1]
is a discount factor.

In a standard Bayesian framework, we assume that there is a spaceP of unknown transition functions
(parametric process models) for the MDP and that there exists a belief state over this space. The
belief state defines a probability density f(P |M) over the MDPs. The density is parameterised by
M ∈ M. In the Bayesian approach, the unknown parameter P is treated as a random variable,
and a prior distribution f(P |M) is chosen to represent what one knows about the parameter before
observing transitions. In particular, f(P |M) is the task-specific prior describing actual beliefs which
may be a non-informative prior when we have no prior knowledge about P .

At each step in the environment, we start at state s, choose an action a and then observe a new state
s′ and a reward r. We summarise our experience by a sequence of experience tuple < s, a, r, s′ >.
When we observe transitions, we update the prior with the new experience. Given an experience
tuple < s, a, r, s′ > we can compute the posterior belief state by Bayes rule:

f(P |M) =
f(< s, a, r, s′ > |P )f(P |M)

f(< s, a, r, s′ >)

=
1
Z
f(< s, a, r, s′ > |P )f(P |M) (5)

in which Z is a normalising constant. Thus, the standard Bayesian approach starts with a prior
probability distribution over all possible MDPs (we assume that the sets of possible states, actions,
and rewards are delimited in advance). As we gain experience, the approach focuses the mass of the
posterior distribution on those MDPs in which the observed experience tuples are most probable.
In summary, we update the prior with each data point 〈s, a, r, s′〉 to obtain a posterior M which we
use to approximate the expected state values. The Bayesian estimator of expected return under the
optimal policy is:

Vs(M) = E[Ṽs|M ] =
∫
P
Vs(P )f(P |M)dP (6)

where Vs(P ) is the value of s given the transition function P . When this integral is evaluated we
transform our problem into one of solving an MDP with unknown transition probabilities, defined
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on the information spaceM×S:

Vs(M) = maxa {
∑
s

p̄ass′(M)(rass′ + γVs′(T ass′(M)))} (7)

in which, for convenience, the transformation on M due to a single observed transition s
a,r
; s′

is denoted (T ass′(M)), p̄ass′(M) is the marginal expectation of the posterior distribution, and rass′
is the reward associated with the transition s

a,r
; s′. The optimal policy is to act greedily with

respect to the Bayes Q-values. Typically, prior update and computation of posterior distribution are
rendered tractable by assuming a convenient, natural conjugate, prior M which is a product of local
independent densities for each transition distribution.

Suppose there is an historical dataset Dh from related ‘donor’ tasks that contains a sequence of
experience tuples < s, a, r, s′ >, with the same state and action space as that of the current ‘recip-
ient’ task. We assume that the prior distribution f(P |M) is a pre-prior that was formulated prior
to a knowledge of Dh. Now consider a binomial transition model for a two-state MDP where the
unknown process parameter P follows a binomial distribution. The accepted family of conjugate
priors for a binomial distribution is the beta family. The probability density of the Beta distribution
for variables ~p as with parameters M = [~ma

s : ∀s ∈ S ∀a ∈ A] is defined by:

f(P |M) =
1

Z(M)

A∏
a=1

S∏
s=1

(p as1)m
a
s1−1(1− p as1)

mas2−1
ma
s1,m

a
s2 > 0 ∀s ∈ S ∀a ∈ A (8)

The parameters ~m a
s = {ma

s1,m
a
s2} can be interpreted as prior observation counts for events gov-

erned by ~p as . The normalisation constant Z(M) is:

Z(M) =
A∏
a=1

∏S
s=1 Γ(ma

s1)Γ(ma
s2)

Γ(
∑S
s=1 ~m

a
s)

=
A∏
a=1

∏S
s=1 Γ(~ma

s)

Γ(
∑S
s=1 ~m

a
s)

(9)

The power prior distribution of f(P |M,Mh, δ) can be written as:

f(P |M,Mh, δ) =
A∏
a=1

S∏
s=1

Γ(δma,h
s1 +ma

s1 + δma,h
s2 +ma

s2)

Γ(δma,h
s1 +ma

s1)Γ(δma,h
s2 +ma

s2)
(pas1)δm

a,h
1 +mas1−1(1− pas1)δm

a,h
s2 +mas2−1

(10)

this is a product of local independent Beta densities
∏A
a=1

∏S
s=1 Beta(δma,h

s1 +ma
s1, δm

a,h
s2 +ma

s2).
In (10), the parameter Mh = [~ma,h

s : ∀s ∈ S ∀a ∈ A] captures the historical data and δ is the
relative precision parameter. Combining the power prior distribution with the likelihood based on
the current data Md from a sequence of experience tuple < s, a, r, s′ > on the current task, we
obtain the posterior distribution f(P |M,Mh, δ,Md) of the form

∏A
a=1

∏S
s=1 Beta(δma,h

s1 +ma
s1 +

ma,d
s1 , δm

a,h
s2 +ma

s2 +ma,d
s2 ).

In learning a new RL task, a salient problem is how to establish an optimal relative precision param-
eter δ at the start of learning when no current data is available. As learning progresses, experience is
increasingly acquired on the current task and the actual weight of external evidence becomes clearer.
The temporal distribution of δ can be accurately represented by a Beta distribution parameterized
by two positive shape parameters, denoted by αδ and βδ , i.e. f(δ) = Beta(αδ, βδ). Assuming that
αδ and βδ are both known for a class of tasks to which the new task belongs, the joint posterior
distribution for (P, δ) for a binomial transition model is:

f(P, δ|M,Mh, αδ, βδ) =
A∏
a=1

S∏
s=1

(pas1)δm
a,h
s1 +mas1−1(1− pas1)δm

a,h
s2 +mas2−1

B(δma,h
s1 +ma

s1, δm
a,h
s2 +ma

s2)

δαδ−1(1− δ)βδ−1

B(αδ, βδ)
(11)

where B(i, j)stands for Γ(i)Γ(j)
Γ(i+j) . The marginal posterior distribution of δ can be obtained by inte-

grating P out in equation (11). Similarly, the marginal posterior distribution of P can be derived by
integrating δ out in equation (11).
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While a Beta prior for δ may be mathematically convenient it may be too restrictive and not readily
account for ‘margin of novelty’ of the new (recipient) task. An alternative to the prior for δ in (11)
lies in using a mixture of Beta distribution with density:

f(δ) = ρ
δαδ−1(1− δ)βδ−1

B(αδ, βδ)
+ (1− ρ) (12)

that is a two component mixture Beta(αδ, βδ) and Beta(1, 1) of δ combined with weights ρ ∈ [0, 1]
and (1− ρ) respectively. ρ is a ‘knowledge factor’ that measures the similarity between the donors
and the recipient task and (1− ρ) is an ‘innovation factor’ that measures the newness quality of the
recipient task. For multiple donors, with some donors more similar than others to the recipient task,
the mixture of Beta distribution concept (12) can be extended to incorporate multiple knowledge
factors ρi where ρ =

∑
i ρi ∀i ∈ {recipient tasks}:

f(δ) =
∑
i

(
ρi
δαδ,i−1(1− δ, i)βδ,i−1

B(αδ,i, βδ,i)

)
+ (1− ρ) (13)

This development of power priors for a two-state MDP generalises straightforwardly to MDPs with
more that two states modelled using a multinomial distribution. The Dirichlet distribution is the
conjugate prior of the parameters of the multinomial distribution and can be seen as a multivariate
generalisation of the Beta distribution.

4 Numerical Example

An important challenge a decision maker (DM) often face is deciding when to intervene so as to alter
or prevent the progression of a condition. Instances of this challenge abound. In health service, for
example, physicians are often faced with decisions about medical interventions when precipitating
events threaten patients life or when patients wellbeing is severely affected[1, 12, 17]. The challenge
typically requires the DM to choose between two actions i) ‘watchful waiting’ i.e. postpone the
decision up to a critical point, and ii) ‘intervene’. While seemingly straightforward, such tasks
(referred to as intervention timing tasks) involve uncertainty, complexity and dynamic change. We
apply the power priors approach to learning a simplified abstraction of the intervention timing task I
that we formulate as an MDP with unknown transition probabilities. The states of I comprise of an
intervention state 0 and health states 1, 2, . . . ,H + 1 in order of decreasing health (see figure (1)).
The action space consists of {watchful waiting labelled w, intervene labelled i }.

Figure 1: A simplified MDP model of the intervention timing task. Transitions under watchful waiting actions
are shown as solid lines while those for intervene actions are shown in broken lines. Not all possible transitions
are shown in the figure.

The transition probabilities for I under the watchful waiting action is of increasing failure rate
(IFR). After Barlow and Proschan[2], the transition probability matrix Pw is said to be IFR if the
rows of Pw are increasing stochastic order, that is,

∑H+1
s′=i p

w
ss′ is monotonically increasing in s for

i = 1, . . . ,H + 1. The transition probabilities pws0 from the health states 1 ≤ s ≤ H + 1 to the
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intervention state is zero under the watchful waiting action. The transition probabilities pis0 from the
health states 1 ≤ s ≤ H + 1 to the intervention state is 1 under the intervene action. States 0 and
H + 1 are terminating states. The reward function riss′ is non-negative and monotone decreasing
in s. The reward function rwss′ is monotone decreasing in s. The objective is to find a policy that
optimises the expected discounted total reward.

In the experiments, we set H to 48 and assume that the non-zero transition probabilities pwss′ 1 ≤
s, s′ ≤ H + 1 are given by pwss′ = (H + 1 − s)−1, s ≤ s′ ≤ H + 1. This means that when the
process is in state s then the next state is uniformly distributed in the set {s, s + 1, . . . ,H + 1}.
These probabilities satisfy the IFR condition since, the IFR quantity

∑H+1
s′=i p

w
ss′ = H+1−max(i,s)

H+1−s′ is
monotonically increasing in s for i = 1, . . . ,H + 1. The IFR quantity for the experimental settings
is shown in Figure 2.

Figure 2: IFR setting for the numerical example Figure 3: Plot of discounted total rewards over time
for scenarios 1 (non informative prior) and 2 (non-
informative prior + historical data) of the intervention
timing task compared to optimal policy.

We use an optimistic model selection (OMS) algorithm [23] to obtain value estimates. Performance
of the learning agent can be measured in several ways. To account for exploration and exploitation
trade-off we measured the discounted total reward to-go at each point at each time step. More
precisely, suppose the agent receives the following rewards r1, r2, . . . , rt in a run of time length t.
The reward to go at time t′ is defined to be

∑
t′≥t rt

′γ(t′−t).

We experiment with two learning scenarios. In scenario 1, we assume that there is no historical data
and prior distribution is non-informative with every entry of M set to 0 except for transitions to an
imaginary state whose observation counts were set to 1. In scenario 2 we assume that historical data
is available alongside the non-informative prior distribution of scenario 1. We draw 500 samples
from the actual transition probability of I to form the historical data. For scenario 2, we used a Beta
distribution (ρ = 1 in equation (13) ) to model δ with a fixed set of parameters αδ = 5 and βδ = 1.
We set γ to 0.99. The results of the experiments are illustrated in Figure 3 showing the first 300 time
steps. The results (average of 20 runs, 5000 trials) show that, with the δ settings used in scenario 2,
the power prior approach resulted in an improvement over the performance obtained in scenario 1.

5 Conclusions

We studied in this paper the use of power priors in reinforcement learning as an approach for in-
corporating external evidence in the form of historical data. The main driver for the power prior
approach is its relative precision parameter that weighs the external evidence relative to the likeli-
hood of the current task. Numerical example shown in this paper indicates that the power priors
approach does improve learning performance. Further work is required to quantify the gains from
using power priors in Bayesian reinforcement learning. How to effectively establish an optimal set-
ting for the precision parameter is an outstanding issue that is subject of future work. In addition,
important areas of future work concerns how structural properties of a new task impacts on the pre-
cision parameter. Finally, when there are multiple historical data sets, it is possible to incorporate
the whole of the historical data sets in power priors by generalising the approach we described above
for single historical data.
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