
Uncertainty Handling in Evolutionary Direct Policy
Search

Verena Heidrich-Meisner
Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany

verena.heidrich-meisner
@neuroinformatik.rub.de

Christian Igel
Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany
christian.igel

@neuroinformatik.rub.de

Abstract

Uncertainty arises in reinforcement learning from varioussources. Therefore it is
necessary to consider statistics based on several roll-outs for evaluating behavioral
policies. An adaptive uncertainty handling is added to the CMA-ES, a variable
metric evolution strategy proposed for direct policy search. The uncertainty han-
dling dynamically adjusts the number of episodes considered in each evaluation
of a policy. It controls the signal to noise ratio such that itis just high enough
for a sufficiently good ranking of candidate policies, whichis in turn sufficient
for the CMA-ES to find better solutions. This significantly increases the learning
speed without impairing the quality of the final solutions. The CMA-ES resembles
natural policy gradient methods, which serve as a baseline for comparison.

1 Introduction

Dealing with uncertainty is one of the major issues in reinforcement learning (RL). When solving
(partially observable) Markov decision processes solely based on observations and interactions with
the environment, uncertainty and randomness arise from several sources. The initial state usually
varies, state-transitions and reward signals can be stochastic, and the state observations may be noisy.

We consider RL methods that search in a parametrized policy space. The search direction is de-
termined using estimates of the performance of behavioral policies or estimates of performance
gradients. Uncertainty and randomness require that these estimates are based on a sample of several
episodes (roll-outs). The sample size is a crucial parameter. If too few episodes are considered, the
estimates are not reliable enough to allow for learning. If too many episodes are considered, the
learning process gets too slow. Unfortunately, it is usually not possible to determine an appropriate
sample size for a given problem a priori (in practice we just make it “large enough”) and the optimal
number may vary in the course of learning.

We promote the covariance matrix evolution strategy (CMA-ES, [6]) for direct policy search, which
gives striking results on RL benchmark problems [11, 5, 9, 10, 8]. The CMA-ES adapts the policy as
well as parameters of its own search strategy (such as a variable metric) based on ranking policies.
This is already much less susceptible to noise than estimating absolute performances or performance
gradients [10]. Still, the ranking must be sufficiently accurate to evolve better policies, and this
depends on the degree of uncertainty as well as the number of roll-outs considered per performance
estimation of each candidate solution. We propose to augment the CMA-ES for RL with a new
adaptive uncertainty handling scheme [7], which dynamically adapts the number of episodes for
evaluating a policy such that the ranking of new candidate solutions is just reliable enough to drive
the learning process. The uncertainty handling scheme is independent of the CMA-ES and could
be combined with other RL approaches and strategies for distributing evaluations among candidate
solutions (e.g., for evolutionary online RL [19]).

1

Algorithm 1: rank-µ CMA-ES

initialize m(1) = θinit , σ(1), evolution pathsp(1)
σ = p

(1)
c = 0 and covariance matrixC(1) = I1

(unity matrix),n(1)
eval = 1

// k counts number of generations / policy updates:
for k = 1, . . . do2

for l = 1, . . . , λ do x
(k+1)
l ∼ N(m(k), σ(k)2C(k)) // create new offspring3

for l = 1, . . . , λ do fl ← performance(x(k+1)
l , n

(k)
eval) // evaluate offspring4

n
(k+1)
eval ←uncertaintyHandling ({x(k+1)

l | l ∈ {1, . . . , λ}}) // see section 35

m(k+1) ←
∑µ

i=1 wix
(k)
i:λ // selection and recombination6

// step size control:

p
(k+1)
σ ← (1− cσ)p

(k)
σ +

√

cσ(2− cσ)µeffC
(k)−

1
2 m(k+1)−m(k)

σ(k)7

σ(k+1) ← σ(k) exp cσ

dσ

(

‖p(k+1)
σ

‖
E‖N(0,I)‖ − 1

)

8

// covariance matrix update:

p
(k+1)
c ← (1− cc)p

(k)
c +

√

cc(2− cc)µeff
m(k+1)−m(k)

σ(k)9

C(k+1) ← (1 − ccov)C
(k) + ccov

µcov
p

(k+1)
c p(k+1)

c
T + ccov

(

1− 1
µcov

)

∑µ
i=1 wiz

(k)
i:λz

(k)
i:λ

T

10

In the next section, we introduce the CMA-ES for direct policy search . In section 3, we describe
the uncertainty handling. The empirical evaluation follows in section 4 before the conclusions.

2 Variable Metric Direct Policy Search

Evolution strategies are random search methods, which iteratively sample a set of candidate solu-
tions from a probability distribution over the search space(i.e., the space of policies), evaluate these
potential solutions, and construct a new probability distribution over the search space based on the
gathered information [2]. In ESs, this search distributionis parametrized by a set of candidate solu-
tions, theparent populationwith sizeµ, and by parameters of the variation operators that are used
to create new candidate solutions (theoffspring populationwith sizeλ) from the parent population.

In each iterationk of the CMA-ES, which is shown in Algorithm 1, thelth offspringxl ∈ R
n,

l ∈ {1, . . . , λ}, is generated by multi-variateGaussian mutationandweighted global intermediate
recombination, i.e.,

x
(k+1)
l ←m(k) + σ(k)z

(k)
l , wherez

(k)
l ∼ N(0, C(k)) andm(k) ←

µ
∑

l=1

wlx
(k)
l:λ

with x
(k)
l:λ denoting thelth best individual amongx(k)

1 , . . . , x
(k)
λ . This corresponds to rank-based

selection, in which the bestµ of theλ offspring form the next parent population. A common choice
for the recombination weights iswl ∝ ln(µ + 1)− ln(l), ‖w‖1 = 1.

The CMA-ES is a variable metric algorithm adapting both then-dimensional covariance matrix
C(k) of the normal mutation distribution as well as theglobal step sizeσ(k) ∈ R

+. The covariance
matrix update has two parts, the rank-1 update considering the change of the population mean over
time and the rank-µ update considering the successful variations in the last generation. The rank-1
update is based on a low-pass filteredevolution pathp(k) of successful (i.e., selected) steps

p(k+1)
c ← (1 − cc)p(k)

c +
√

(cc(2− cc)µeff)
m(k+1) −m(k)

σ(k)

and aims at changingC(k) to make steps in the promising directionp(k+1) more likely by morphing

the covariance towards
[

p
(k+1)
c

] [

p
(k+1)
c

]T

. The backward time horizon of the cumulation process

is approximatelyc−1
c , wherecc = 4/(n + 4) is roughly inversely linear in the dimension of the path

2

vector. Thevariance effective selection massµeff =
(
∑µ

l=1 w2
l

)−1
is a normalization constant. The

rank-µ update aims at making the single steps that were selected in the last iteration more likely by

morphingC(k) towards
[

z
(k)
i:λ

] [

z
(k)
i:λ

]T

. Putting both updates together, we have

C(k+1) ← (1− ccov)C
(k) +

ccov

µcov
p(k+1)

c p(k+1)
c

T
+ ccov

(

1−
1

µcov

) µ
∑

i=1

wiz
(k)
i:λz

(k)
i:λ

T
.

The constantsccov and µcov are fixed learning rates. The learning rate of the covariancematrix
updateccov = 2

(n+
√

2)2
is roughly inversely proportional to the degrees of freedomof the covariance

matrix. The parameterµcov mediates between the rank-µ update (µcov → ∞) and the rank-one
update (µcov = 1). The default value isµcov = µeff.

The global step sizeσ(k) is adapted on a faster timescale. It is increased if the selected steps are
larger and/or more correlated than expected and decreased if they are smaller and/or more anticor-
related than expected:

σ(k+1) ← σ(k) exp

(

cσ

dσ

(

‖p
(k+1)
σ ‖

E{‖N(0, I)‖}
− 1

))

,

where E{‖N(0, I)‖} is the expectation of theχn distribution, and the (conjugate) evolutions path is

p(k+1)
s ← (1− cσ)p(k)

s +
√

cσ(2 − cσ)µeff C
(k)−

1
2 m(k+1) −m(k)

σ(k)
.

Again, cσ = µeff+2
n+µeff+3 is a fixed learning rate anddσ = 1 + 2 max

(

0,
√

µeff−1
n+1

)

+ cσ is a damp-

ing factor. The matrixC− 1
2 is defined asBD−1BT , whereBD2BT is an eigendecomposition

of C (B is an orthogonal matrix with the eigenvectors ofC andD a diagonal matrix with the
corresponding eigenvalues) and sampling N(0, C) is done by samplingBDN(0, I).

The functionperformance(x, n
(k)
eval) in Algorithm 1 corresponds to the evaluation of the policy

with parametersθ = x. The parametern(k)
eval determines over how many episodes a performance

(here the return, i.e., accumulated reward) average is computed. The uncertainty handling adapting
the parametern(k)

eval will be described in section 3.

The values of the learning rates and the damping factor are well considered and have been validated
by experiments on many basic test functions [6].They need not be adjusted dependent on the
problem and are thereforeno hyperparameters of the algorithm.Also the population sizes can
be set to default values, which areλ = max(4 + ⌊3 lnn⌋, 5) and µ = ⌊λ

2 ⌋ for offspring and

parent population, respectively [6]. If we fixC(0) = I and ignore the sample sizen(k)
eval, the only

hyperparameter to be chosen problem dependent is the initial global step sizeσ(0).

The highly efficient use of information and the fast adaptation ofσ andC make the CMA-ES one of
the best direct search algorithms for real-valued optimization [2]. For a detailed description of the
CMA-ES we refer to the articles by Hansen et al. [6]. The CMA-ES was proposed for RL in [11]. In
a more recent study, the CMA-ES (without rank-µ update) was compared to 8–12 (depending on the
task) other RL algorithms including value-function and policy gradient approaches [4]. On the four
test problems where the CMA-ES was considered, it ranked first, second (twice), and third. Further
examples of successful applications of the CMA-ES for RL canbe found in [13, 17] and additional
comparisons on RL benchmarks in [9].

It is interesting to compare CMA-ES for RL and policy gradient methods (PGMs). Both search
directly in policy space, but ES for RL are actor-only methods while PGMs often have actor-critic
architectures. In contrast to the CMA-ES, PGMs require a differentiable structure on the search
space and stochastic policies for learning. Exploration ofthe search space is realized by random
perturbations in both ESs and PGMs. Evolutionary methods usually perturb a deterministic policy
by mutation and recombination, while in PGMs the random variations are an inherent property of
the stochastic policies. In ESs the search is driven solely by ranking policies and not by the absolute
values of performance estimates or even their gradients. The reduced number of random events and

3

Procedure uncertaintyHandling({xl | l ∈ {1, . . . , λ}})

// reevaluate λreev solutions (w.l.o.g. the first λreev):
for l = 1, . . . , λreev do f reeval

l ← performance(xl, neval)1

for l = λreev+ 1, . . . , λ do f reeval
l ← fl2

// construct joint performance sample:
L ← ((x1, f1, f1), . . . , (xλ, fλ, fλ), (x1, f1, f

reeval
1), . . . , (xλ, fλ, f reeval

λ))3

for l = 1, . . . , λreev do4

// compute rank change:
∆l ← | rankreeval

L (l)− rankL(l)| − 15

// determine uncertainty level:

s← 1
λreev

λreev
∑

l=1

(

2∆l −∆lim
θ (rankreeval

L (l)− I{f reeval
l > fl})−∆lim

θ (rankL(l)− I{fl > f reeval
l })

)

6

// adjust number of evaluations:
if s > 0 then neval← αneval else neval←

1
α
neval7

// update fitness values:

for l = 1, . . . , λreev do fl ←
fl+f reeval

l

28

return neval9

the rank-based evaluation are decisive differences and we hypothesise that they allow ESs to be more
robust.

By memorizing successful steps in the evolution path, the CMA-ES infers a search direction from
scalar reward signals. The adaptation of the covariance matrix in the CMA-ES is similar to learning
the (Fisher) metric in natural PGMs [12, 16, 14]. Arguably one of the most elegant state-of-the-
art natural PGMs is the episodic natural actor-critic algorithm (NAC, [16, 14]), which serves as a
baseline for comparison in our experiments.

3 Uncertainty Handling for Ranking Policies

Evolutionary algorithms are well suited for optimization in noisy environments [1]. The population-
based approach, the averaging in the recombination process, and the rank-based, non-elitist selection
are inherent features that make the CMA-ES less vulnerable to noise. However, if the signal to noise
ratio is too small, special uncertainty handling is required. Here we use a slightly simplified version
of the uncertainty handling heuristics proposed in [7]. It is calledUH-CMA-ESand relies on adaptive
reevaluation of solutions. The method is implemented in Procedure 2. Because the selection process
is rank-based, we only care about noise if it changes the ranking of offspring. In our scenario,
individuals can be reevaluated and computing the mean or median of several evaluations reduces the
level of uncertainty. However, the signal to noise ratio changes in the course of learning. Because
every fitness evaluation is time consuming, we implement a strategy that adapts the number of
evaluations per individual such that individuals are not evaluated too often, but still often enough
that the fitness values can guide the optimization.

We use an algorithm to detect the effective noise by monitoring the stability of the offspring ranking.
Following [7], we construct a multi-setL containing2λ triples of individuals with two corresponding
sampled performance values. Letfi, i ∈ {1, . . . , λ}, be the sampled performance of candidate
solutionxi. We reevaluateλreev candidate solutions and definef reeval

i to be the newly obtained
performance estimate if individuali was reevaluated andf reeval

i = fi otherwise. We define

L ← ((x1, f1, f1), . . . , (xλ, fλ, fλ), (x1, f1, f
reeval
1), . . . , (xλ, fλ, f reeval

λ)) .

That is, each policy parameter vector occurs twice inL. In one of the corresponding triples the third
component is the new performance estimate (which is always the same as the original estimate for
all butλreev individuals). In the other triple the third component is thesame as the second one (i.e.,
the original performance estimate).

4

Then we sortL twice using the first and second performance estimate (the second and the third
component of the triples), respectively, and determine thecorresponding ranksrankL(i) and
rankreeval

L (i), respectively, of each reevaluated individualxi. Now we compute therank change

∆i ← | rankreeval
L (i)− rankL(i)| − 1 .

Considering the duplicated populationL for ranking at first appears to be cumbersome and overly
complex. However, by doing so it is ensured that the rank change is symmetric in the sense that
it does not depend on the order in which the different performance estimates are obtained (e.g.,
sampled performance estimates such asf1 = 16, f2 = 20, f reeval

1 = 12, f reeval
2 = 14 lead to the

same results asf1 = 16, f2 = 14, f reeval
1 = 12, f reeval

2 = 20).

Theuncertainty levels is now defined by

s←
1

λreev

∑

i,xireevaluated

(

2∆i −∆lim
θ (rankreeval

L (i)− I{f reeval
i > fi})

−∆lim
θ (rankL(i)− I{fi > f reeval

i })
)

.

The indicator functionI is one if its argument is true and zero otherwise. The parameter θ ∈ [0, 1]
(in our experiments set to0.5 for the swimmer tasks and to0.2 in all other cases) controls the level
of noise we tolerate and∆lim

θ (r) denotes theθ × 50 percentile of the possible rank changes (given
by the2λ− 1 values|1− r|, |2− r|, . . . , |2λ− 1− r|) when having the original rankr.

If s > 0 we increase the number of evaluations in the computation of afitness value by a factor of
α. Otherwise we decrease the number of evaluations by1/α. We setα = 1.5 in our experiments.

The reevaluation is done before the environmental selection in the standard CMA-ES, which then
uses the median of the fitness values of the reevaluated individuals for ranking. The additional
fitness evaluations increase the computational costs per generation. However, we reevaluate on
average onlyλreev = max(λ/10, 2) individuals in each generation.

4 Experiments

Benchmark problems. We consider four RL benchmarks taken from the literature. Inthe moun-
tain car task an underpowered car is to be driven out a valley to the goal state at the hilltop [18].
The states of the system is given by the positionx ∈ [−1.2, 0.6] of the car and by its current
velocity ẋ ∈ [−0.07, 0.07]. Actions are discrete forces applied to the cara ∈ {−amax, 0, amax}.
In every time step a reward of−1 is given to the agent. The initial state is uniformly drawn from
{(−0.5, ẋ)|ẋ ∈ [−0.07, 0.07]}. A trial is successfulif the final policy allows the car to reach the
hilltop in less than100 time steps on average. We examine two variants of pole balancing, single-
pole balancing as in [16, 9] and double-pole balancing as in [11, 4]. One or two poles are mounted
on a 1-dimensional cart and the objective is to balance the poles as long as possible. The state
is given by the current positionx and velocityẋ of the cart and the current angleζ (or anglesζ1,
ζ2) and angular velocitẏζ (or velocitiesζ̇1, ζ̇2). In the single-pole balancing scenario the agents
receives a reward of0 for every time step the cart is close to the center (|x| < 0.05) and the pole is
almost perpendicular (|ζ| < 0.05), a reward of−2(N − t) (with N = 500 as the maximal episode
length) if the pole crashes (|ζ| > 0.7) or leaves the allowedx-range (|x| > 2.4) at time stept, and
a reward of−1 in every other time step. A trial is regarded as successful ifthe accumulated reward
of the final policy is larger than−200 (implying that the pole is balanced at least most of the time).
The starting point for an episode is drawn from the set{(x, 0, ζ, 0)|x ∈ [−2, 2], ζ ∈ [−0.6, 0.6]}.
In the double-pole balancing task the reward is1 for every time step and we regard a trial as
successful if the final policy avoids crashing for1000 time steps. The system state is initialized
with (x, ẋ, ζ1, ζ̇1, ζ2, ζ̇2) = (0, 0, N(1◦, 1), 0, 0, 0). The highest dimensional task we consider is the
swimmer problem [3]. The swimmer consists ofnc compartments floating on a liquid surface. The
swimmer is supposed to move its center of gravity as fast as possible in a predefined direction. The
state descriptions = [A0, ζ1, . . . , ζn, Ȧ0, ζ̇1, . . . , ζ̇n]T includes the position of the end point of the
first compartmentA0 (marking the “head” of the swimmer), the angle of theith part (i = 1, . . . , n)
with respect to thex-axis, the corresponding velocity of the “head”Ȧ0, and the angular velocities
for each parṫζ1, . . . , ζ̇n. Actionsa = [a1, . . . , an−1]

T are torques applied between body parts. The

5

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 r

et
ur

n

number of episodes

UH-CMA-ES σ(0)=10

CMA-ES σ(0)=50, neval=10

NAC αNAC=0.01, σNAC=50, neval=12

a)

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000

m
ed

ia
n

of
 r

et
ur

n

number of episodes

UH-CMA-ES σ(0)=10

CMA-ES σ(0)=1, neval=10

NAC αNAC=0.01, σNAC=10, neval=24

b)

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0 500 1000 1500 2000 2500

m
ed

ia
n

of
 r

et
ur

n

number of episodes

UH-CMA-ES σ(0)=10

CMA-ES σ(0)=10, neval=20

NAC αNAC=0.01, σNAC=10, neval=12

c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 r

et
ur

n
number of episodes

UH-CMA-ES σ(0)=10, nc=4

CMA-ES σ(0)=1, neval=10, nc=4

UH-CMA-ES σ(0)=10, nc=3
CMA-ES σ(0)=1, neval=50, nc=3

NAC αNAC=0.01, σNAC=10, neval=34, nc=4

NAC αNAC=0.01, σNAC=10, neval=19, nc=3

d)

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 r

et
ur

n

number of episodes

CMA-ES σ(0)=10, neval=1

CMA-ES σ(0)=10, neval=10

CMA-ES σ(0)=10, neval=20

CMA-ES σ(0)=10, neval=30

e)

 1

 10

 100

 50 100 150 200 250 300

n e
va

l

number of policy updates

f)

Figure 1: Median of performance over 500 trials for NAC, CMA-ES and UN-CMA-ES for the a)
single-pole balancing, b) double-pole balancing and c) mountain car task. d) For the swimmers with
3 and4 segments the performance median over 20 trials is plotted. e) Performance of the CMA-ES
for different sample sizesneval∈ {1, 10, 20, 30} in the single-pole balancing experiment. f) Sample
sizes computed by the UH-CMA-ES for three typical trials on the single-pole balancing task are
plotted on a logarithmic scale.

reward given to the swimmer is the velocity component of the swimmers center of gravity parallel
to thex-axis. We considered two swimmers withnc ∈ {3, 4}. The swimmers initial position is
set to0 and the initial angular velocities are each drawn uniformlyfrom [0, π]. A swimmer trial is
called successful if the average velocity of the swimmers center of gravity is larger than3nc

40
m
s , i.e.,

the swimmer covers a distance of at least one and a half of its length in the desired direction in the
simulated time span of20 s.

Experimental setup. In all four tasks uncertainty arises from random start states. We always
consider the same type of linear policies in order to allow for a fair comparison. The linear
policies considered here are typically used with the NAC [16, 15, 14, 9]). More sophisticated

6

choices of policy classes certainly improve the performance of the CMA-ES, which for example
works fine with non-linear neural networks [11, 13, 5]. Thus all methods operate on the same
policy classπdeter

θ (s) = θT s with s, θ ∈ R
n. For learning, the NAC uses the stochastic policy

πstoch
θ (s, a) = N(πdeter

θ (s), σNAC), where the varianceσNAC is considered as an additional adaptive
parameter of the PGM. The NAC is evaluated on the corresponding deterministic policy. The policy
parameters (except the exploration parameterσNAC for the NAC) are always initialized with zero. For
the swimmer task the action consists ofn− 1 continuous values and we apply an independent linear
policy for each action component, thus the search space is2(n+1)(n−1)-dimensional. For evaluat-
ing the algorithms we use50 roll-outs, except for the swimmer task where only20 roll-outs are used.
For the mountain car problem and the balancing tasks we test for the CMA-ES all combinations of
initial global step sizeσ(0) ∈ {0.1, 1, 5, 10, 15, 25, 50, 100} and sample sizeneval∈ {1, 10, 20, 30},
and for the NAC all combinations of initial explorationσNAC ∈ {0.1, 1, 5, 10, 15, 25, 50, 100}, learn-
ing rateαNAC ∈ {0.1, 0.01, 0.001, 0.0001}, and sample sizeneval ∈ {n + 2, 2(n + 2), 3(n + 2)
(the NAC needs a minimum ofn + 2 roll outs per policy update). For the UH-CMA-ES we vary
σ(0) ∈ {0.1, 1, 5, 10, 15, 25, 50, 100} and setn(0)

eval = 1. Since the swimmer problem is the most
computational demanding we restrictedσ(0) andσNAC to {1, 10, 50} for this task.

Results. In Fig.1 the performances of CMA-ES, NAC, and UH-CMA-ES are shown for the four
test scenarios. For all three methods the performance for the best respective parameter configuration
is plotted. Both the NAC and the CMA-ES benefit from larger sample sizesneval. As can be seen
in Fig.1e) for single-pole balancing, too small sample sizes result in fast learning in the beginning
but lead to early stagnation (i.e., the uncertainty is too high to make progress). On the other hand
too large sample sizes allow the CMA-ES to find much better solutions but lead to unnecessarily
slow learning. In Fig.1f) the sample sizes chosen by the UH-CMA-ES are shown for typical sin-
gle trials. At the beginning small sample sizes are used and only when the accuracy is no longer
sufficient the sample size is increased. Finally for fine tuning the maximal allowed sample size of
neval = 100 is used most of the time. Altogether the uncertainty handling clearly improves the learn-
ing speed, while the CMA-ES and NAC without uncertainty handling perform roughly equally well
when looking at the best respective parameter configurations. Only in the mountain car problem the
UH-CMA-ES is not faster than both the NAC and the CMA-ES. Herethe NAC clearly outperforms
both CMA-ES versions, since the NAC benefits from the policy parameter initialization close to a
global optimum. The uncertainty handling improves the CMA-ES’s results but suffers from discon-
tinuities of the accumulated reward originating in the large initial state interval that includes initial
velocities almost sufficient to drive the car directly uphill.

But the uncertainty handling does not only improve the learning speed. For the mountain car task
the UH-CMA-ES is successful in more than80% of the500 trials for 6 out of 8 tested parameter
configurations, while the standard CMA is successful in morethan80% of the trials in only18 of 32
cases and the NAC in60 of 96 cases. The same effect can be seen in the two pole balancing tasks.
In the single-pole balancing task the UH-CMA-ES is in more than50% of the trials successful for4
of 8 parameter configurations, while the CMA-ES and the NAC achieve the same success level with
21 of 32 and with7 of 96 parameter configurations, respectively. For the double-pole balancing task
(which is even without noise a difficult problem when considering only linear policies) the results
are most striking. Here the UH-CMA-ES is successful in100% of the trials for all8 tested parameter
configurations (which is even better than the CMA-ES for a fixed start state) while the CMA-ES and
the NAC only achieve a success level of5% with 5 of 32 and27 of 96 parameter configurations,
respectively. For swimmers both with3 and4 compartments the UH-CMA-ES is also robust. The
UH-CMA-ES is successful in more than50% of all trials for 4 of 6 parameter configurations. The
CMA-ES achieves the same success level in16 of 24 cases while the NAC reaches this success level
in 0 of 72 cases. Thus the rank based uncertainty handling remarkablyincreases the learning speed
while at the same time improving the robustness compared to the CMA-ES without uncertainty
handing, which is already much more robust than the PGM.

5 Discussion and Conclusion

Evolution strategies (ES) are powerful direct policy search methods. One of their main advantages is
their ability to cope with noise. Still, random elements in the environment require gathering statistics
over several episodes for the evaluation of candidate policies. We added an adaptive uncertainty

7

handling to evolutionary reinforcement learning. It adjusts the number of roll-outs per evaluation
of a policy such that the signal to noise ratio is just high enough for a sufficiently good ranking of
candidate policies, which in turn suffices for the ES to find better solutions. The uncertainty handling
exploits the advantage of small sample sizes in the beginning and only increases the sample size
when a higher accuracy is necessary thus mediating the trade-off between fast learning and sufficient
accuracy. This significantly increases both learning speedand robustness and allows to find highly
accurate final solutions. Here this has been shown for a variable metric ES, but the uncertainty
handling can also be combined with other rank-based reinforcement learning algorithms.

Acknowledgments The authors acknowledge support from the German Federal Ministry of Edu-
cation and Research within the Bernstein group “The grounding of higher brain function in dynamic
neural fields”.

References

[1] D. V. Arnold. Noisy Optimization With Evolution Strategies. Kluwer Academic Publishers, 2002.

[2] H.-G. Beyer. Evolution strategies.Scholarpedia, 2(8):1965, 2007.

[3] R. Coulom. Apprentissage par renforcement utilisant des reseaux de neurones, avec des applications au
controle moteur.These de doctorat, Institut National Polytechnique de Grenoble, 2002.

[4] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficientnon-linear control through neuroevolution. In
Proc. European Conference on Machine Learning (ECML 2006), volume 4212 ofLNCS, pages 654–662.
Springer-Verlag, 2006.

[5] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution through cooperatively
coevolved synapses.Journal of Machine Learning Research, 9:937–965, 2008.

[6] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (CMA-ES).Evolutionary Computation, 11(1):1–18,
2003.

[7] N. Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos. Evolutionary optimization of
feedback controllers for thermoacoustic instabilities. In J. F. Morrison, D. M. Birch, and P. Lavoie,
editors,IUTAM Symposium on Flow Control and MEMS. Springer-Verlag, 2008.

[8] V. Heidrich-Meisner and C. Igel. Evolution strategies for direct policy search. In G. Rudolph, editor,
Parallel Problem Solving from Nature (PPSN X), number 5199 in LNCS, pages 428–437. Springer-Verlag,
2008.

[9] V. Heidrich-Meisner and C. Igel. Similarities and differences between policy gradient methods and
evolution strategies. In M. Verleysen, editor,16th European Symposium on Artificial Neural Networks
(ESANN), pages 149–154. Evere, Belgium: d-side publications, 2008.

[10] V. Heidrich-Meisner and C. Igel. Variable metric reinforcement learning methods applied to the noisy
mountain car problem. In S. Girgin et al., editors,European Workshop on Reinforcement Learning (EWRL
2008), number 5323 in LNAI, pages 136–150. Springer-Verlag, 2008.

[11] C. Igel. Neuroevolution for reinforcement learning using evolution strategies. InCongress on Evolution-
ary Computation (CEC 2003), volume 4, pages 2588–2595. IEEE Press, 2003.

[12] S. Kakade. A natural policy gradient. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,Advances
in Neural Information Processing Systems (NIPS14). MIT Press, 2002.

[13] A. Pellecchia, C. Igel, J. Edelbrunner, and G. Schöner. Making driver modeling attractive.IEEE Intelli-
gent Systems, 20(2):8–12, 2005.

[14] J. Peters and S. Schaal. Natural actor-critic.Neurocomputing, 71(7-9):1180–1190, 2008.

[15] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid robotics. InProc. 3rd
IEEE-RAS Int’l Conf. on Humanoid Robots, pages 29–30, 2003.

[16] M. Riedmiller, J. Peters, and S. Schaal. Evaluation of policy gradient methods and variants on the cart-pole
benchmark. InProc. IEEE Int’l Symposium on Approximate Dynamic Programming and Reinforcement
Learning (ADPRL 2007), pages 254–261, 2007.

[17] N. T. Siebel and G. Sommer. Evolutionary reinforcementlearning of artificial neural networks.Interna-
tional Journal of Hybrid Intelligent Systems, 4(3):171–183, 2007.

[18] R. Sutton and A. Barto.Reinforcement Learning: An Introduction. MIT Press, 1998.

[19] S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning.Journal of
Machine Learning Research, 7:877–917, 2006.

8

