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Abstract

Uncertainty arises in reinforcement learning from varisosrces. Therefore it is
necessary to consider statistics based on several raffauevaluating behavioral
policies. An adaptive uncertainty handling is added to thACES, a variable
metric evolution strategy proposed for direct policy skarthe uncertainty han-
dling dynamically adjusts the number of episodes consilereeach evaluation
of a policy. It controls the signal to noise ratio such thasijust high enough
for a sufficiently good ranking of candidate policies, whishin turn sufficient
for the CMA-ES to find better solutions. This significantlgirases the learning
speed without impairing the quality of the final solution®€TCMA-ES resembles
natural policy gradient methods, which serve as a basadinedimparison.

1 Introduction

Dealing with uncertainty is one of the major issues in reioément learning (RL). When solving
(partially observable) Markov decision processes solakel on observations and interactions with
the environment, uncertainty and randomness arise froeraesources. The initial state usually
varies, state-transitions and reward signals can be sttichand the state observations may be noisy.

We consider RL methods that search in a parametrized pgliages The search direction is de-
termined using estimates of the performance of behaviatitips or estimates of performance
gradients. Uncertainty and randomness require that tietiseates are based on a sample of several
episodes (roll-outs). The sample size is a crucial paramiéteo few episodes are considered, the
estimates are not reliable enough to allow for learning.otf many episodes are considered, the
learning process gets too slow. Unfortunately, it is usuadit possible to determine an appropriate
sample size for a given problem a priori (in practice we juakenit “large enough”) and the optimal
number may vary in the course of learning.

We promote the covariance matrix evolution strategy (CM&-[B]) for direct policy search, which
gives striking results on RL benchmark problems[11, 5, 981.0The CMA-ES adapts the policy as
well as parameters of its own search strategy (such as alareetric) based on ranking policies.
This is already much less susceptible to noise than estimabsolute performances or performance
gradients [10]. Still, the ranking must be sufficiently acde to evolve better policies, and this
depends on the degree of uncertainty as well as the numbelt-ofuts considered per performance
estimation of each candidate solution. We propose to augthenCMA-ES for RL with a new
adaptive uncertainty handling scheme [7], which dynarnyicadiapts the number of episodes for
evaluating a policy such that the ranking of new candidalisms is just reliable enough to drive
the learning process. The uncertainty handling schemealespendent of the CMA-ES and could
be combined with other RL approaches and strategies faililitihg evaluations among candidate
solutions (e.g., for evolutionary online RL [19]).
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In the next section, we introduce the CMA-ES for direct ppkearch . In section 3, we describe
the uncertainty handling. The empirical evaluation folkow section 4 before the conclusions.

2 Variable Metric Direct Policy Search

Evolution strategies are random search methods, whictitety sample a set of candidate solu-
tions from a probability distribution over the search sp@ee, the space of policies), evaluate these
potential solutions, and construct a new probability distiion over the search space based on the
gathered information [2]. In ESs, this search distributeoparametrized by a set of candidate solu-
tions, theparent populatiorwith size .., and by parameters of the variation operators that are used
to create new candidate solutions (tfespring populatiorwith size \) from the parent population.

In each iteratiork of the CMA-ES, which is shown in Algorithm 1, thigh offspringx; € R”,
1 €{1,...,)\}, is generated by multi-variatBaussian mutatioandweighted global intermediate
recombinationi.e.,

"
:cl(kﬂ) —m®) U(k)zl(k) ; Wherezl(k) ~ N(0,C®) andm®) Zwlwl(k/\)
=1
with ml('}) denoting theth best individual among:gk), . .,:c(f). This corresponds to rank-based
selection, in which the begtof the A offspring form the next parent population. A common choice
for the recombination weights i8; o< In(p + 1) — In(1), ||w||; = 1.

The CMA-ES is a variable metric algorithm adapting both thdimensional covariance matrix
C %) of the normal mutation distribution as well as tijebal step sizes(*) € R*. The covariance
matrix update has two parts, the rank-1 update considenmghange of the population mean over
time and the ranks update considering the successful variations in the lastmg¢ion. The rank-1
update is based on a low-pass filtemmlution pathp*) of successful (i.e., selected) steps

m(k:+1) _ m(k:)

U — (1= o) pP + /(ce(2 — cc) prerr) —

and aims at changing %) to make steps in the promising directipft+) more likely by morphing

. . T
the covariance toward{ Ek“)} [pﬁ“l)} . The backward time horizon of the cumulation process

is approximately:;; !, wherec, = 4/(n + 4) is roughly inversely linear in the dimension of the path



vector. Thevariance effective selection mass: = (31, w?)f1 is a normalization constant. The
rank-, update aims at making the single steps that were selectée lagt iteration more likely by

T
morphingC*) towards{zgfﬂ [zfﬂ . Putting both updates together, we have
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The constants.,, and ucoy are fixed learning rates. The learning rate of the covarianagix
updateccoy = m is roughly inversely proportional to the degrees of freeddthe covariance

matrix. The parameteti.o, mediates between the rapkupdate [icov — oo) and the rank-one
update ficov = 1). The default value igicoy = ftefi-

The global step size(*) is adapted on a faster timescale. It is increased if the tselesteps are
larger and/or more correlated than expected and decrefatbexy iare smaller and/or more anticor-
related than expected:

(41) g0 o 2 (2SI
o — 0o X — |\ = — )
do \ E{IN(0. I)[[}

where E||N(0, I)||} is the expectation of thg,, distribution, and thedonjugat@ evolutions path is

% m(k+1) — m(k)

pEY (1) P+ Ver (2 = coJnen O 2 =g

Again, ¢, = nﬁijj;ig is a fixed learning rate ang, = 1 + 2max (O, ";1’11) + ¢, is a damp-

ing factor. The matrixC~ 2 is defined asBD~' BT, whereBD?B7 is an eigendecomposition
of C (B is an orthogonal matrix with the eigenvectors@fand D a diagonal matrix with the
corresponding eigenvalues) and samplif®N') is done by samplind3 DN(0, I).

The functiorper f or mance( «, ng’;;p in Algorithm 1 corresponds to the evaluation of the policy
with parameter® = x. The parameten(k) determines over how many episodes a performance

eval
(here the return, i.e., accumulated reward) average is at@dp The uncertainty handling adapting

the parametemé@ll will be described in section 3.

The values of the learning rates and the damping factor alteamsidered and have been validated
by experiments on many basic test functions [@]hey need not be adjusted dependent on the
problem and are thereforao hyperparameters of the algorithmAlso the population sizes can
be set to default values, which ale = max(4 + [3Inn],5) andp = |3 for offspring and

parent population, respectively [6]. If we fi®(®) = I and ignore the sample sizéef,’;l, the only
hyperparameter to be chosen problem dependent is the gidtsal step sizer(?).

The highly efficient use of information and the fast adaptatif c andC make the CMA-ES one of
the best direct search algorithms for real-valued optitiong2]. For a detailed description of the
CMA-ES we refer to the articles by Hansen et al. [6]. The CM8akas proposed for RL in [11]. In

a more recent study, the CMA-ES (without raplupdate) was compared to 8-12 (depending on the
task) other RL algorithms including value-function andippgradient approaches [4]. On the four
test problems where the CMA-ES was considered, it ranked$esond (twice), and third. Further
examples of successful applications of the CMA-ES for RLIsarfiound in [13, 17] and additional
comparisons on RL benchmarks in [9].

It is interesting to compare CMA-ES for RL and policy gradiemethods (PGMs). Both search
directly in policy space, but ES for RL are actor-only metheodile PGMs often have actor-critic
architectures. In contrast to the CMA-ES, PGMs require tedhtiable structure on the search
space and stochastic policies for learning. Exploratiothefsearch space is realized by random
perturbations in both ESs and PGMs. Evolutionary methodallysperturb a deterministic policy
by mutation and recombination, while in PGMs the randomatarns are an inherent property of
the stochastic policies. In ESs the search is driven soletaibking policies and not by the absolute
values of performance estimates or even their gradienesrdduced number of random events and
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I reevaluate Areey SoOlUtions (wW.l.0.g. the first Areey):
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9 return Neval

the rank-based evaluation are decisive differences angpe@tihesise that they allow ESs to be more
robust.

By memorizing successful steps in the evolution path, theAcEBS infers a search direction from
scalar reward signals. The adaptation of the covariancexoiathe CMA-ES is similar to learning
the (Fisher) metric in natural PGMs [12, 16, 14]. Arguableaf the most elegant state-of-the-
art natural PGMs is the episodic natural actor-critic alpon (NAC, [16, 14]), which serves as a
baseline for comparison in our experiments.

3 Uncertainty Handling for Ranking Policies

Evolutionary algorithms are well suited for optimizationrioisy environments [1]. The population-
based approach, the averaging in the recombination prame$she rank-based, non-elitist selection
are inherent features that make the CMA-ES less vulneralmieise. However, if the signal to noise
ratio is too small, special uncertainty handling is reqadindere we use a slightly simplified version
of the uncertainty handling heuristics proposed in [7]s talledUH-CMA-ESand relies on adaptive
reevaluation of solutions. The method is implemented irc@dare 2. Because the selection process
is rank-based, we only care about noise if it changes theimngrdf offspring. In our scenario,
individuals can be reevaluated and computing the mean olameflseveral evaluations reduces the
level of uncertainty. However, the signal to noise ratiorgies in the course of learning. Because
every fitness evaluation is time consuming, we implementatesyy that adapts the number of
evaluations per individual such that individuals are naleated too often, but still often enough
that the fitness values can guide the optimization.

We use an algorithm to detect the effective noise by momitpitie stability of the offspring ranking.
Following [7], we construct a multi-seét containing2\ triples of individuals with two corresponding
sampled performance values. L&t i € {1,...,\}, be the sampled performance of candidate
solutionz;. We reevaluate\.cey candidate solutions and defirfé®®? to be the newly obtained
performance estimate if individualvas reevaluated angj*®'® = f, otherwise. We define

Lo (@1, f1, f1)s (@, P Fa)s (@1, fr, F299 (o, fr, FE29)

That is, each policy parameter vector occurs twic£.ihn one of the corresponding triples the third
component is the new performance estimate (which is alwaysame as the original estimate for
all but \eey individuals). In the other triple the third component is #ane as the second one (i.e.,
the original performance estimate).



Then we sortC twice using the first and second performance estimate (tbensleand the third
component of the triples), respectively, and determine dbeesponding ranksank, (i) and
rank®®¥(7), respectively, of each reevaluated individeal Now we compute theank change

A; — |rank®Va5) — rankg (i) — 1 .

Considering the duplicated populatidnfor ranking at first appears to be cumbersome and overly
complex. However, by doing so it is ensured that the rank gbas symmetric in the sense that
it does not depend on the order in which the different perforoe estimates are obtained (e.g.,
sampled performance estimates suchfas= 16, fo = 20, fle®Va = 12, fleeval — 14 |ead to the
same results af = 16, fo = 14, fieeal= 12, freeval = 90),

Theuncertainty levek is now defined by
1 i .
o (24 — A (rank£ i) — L{ 1> fi})

i,x;reevaluated

S

— A" (vankg (i) — I{f; > fleevah)) .

The indicator functiord is one if its argument is true and zero otherwise. The pamniet [0, 1]

(in our experiments set @5 for the swimmer tasks and 2 in all other cases) controls the level
of noise we tolerate and!™ () denotes thé x 50 percentile of the possible rank changes (given
by the2\ — 1 values|1 — 7|, |2 — r|,...,|2XA — 1 — r|) when having the original rank

If s > 0 we increase the number of evaluations in the computatiorfitfiess value by a factor of
«. Otherwise we decrease the number of evaluationis/by We setoe = 1.5 in our experiments.

The reevaluation is done before the environmental seledtidthe standard CMA-ES, which then
uses the median of the fitness values of the reevaluatedidndig for ranking. The additional

fithess evaluations increase the computational costs perggon. However, we reevaluate on
average only\eey = max(\/10, 2) individuals in each generation.

4 Experiments

Benchmark problems. We consider four RL benchmarks taken from the literatureghémoun-
tain car task an underpowered car is to be driven out a vaildlgd goal state at the hilltop [18].
The states of the system is given by the positian € [—1.2,0.6] of the car and by its current
velocity & € [—0.07,0.07]. Actions are discrete forces applied to the ea€ {—amax, 0, Gmax/}-

In every time step a reward of1 is given to the agent. The initial state is uniformly drawanfr
{(=0.5,%)|z € [-0.07,0.07]}. A trial is successfuif the final policy allows the car to reach the
hilltop in less thanl 00 time steps on average. We examine two variants of pole bialgnsingle-
pole balancing as in [16, 9] and double-pole balancing a&in4]. One or two poles are mounted
on a 1-dimensional cart and the objective is to balance thespas long as possible. The state
is given by the current position and velocityz of the cart and the current angfe(or angles(y,

(») and angular velocity (or velocities(i, (3). In the single-pole balancing scenario the agents
receives a reward df for every time step the cart is close to the centef & 0.05) and the pole is
almost perpendiculat(] < 0.05), a reward of-2(N — ¢) (with N = 500 as the maximal episode
length) if the pole crashe$({ > 0.7) or leaves the allowed-range (x| > 2.4) at time step, and
areward of-1 in every other time step. A trial is regarded as successthkifaccumulated reward
of the final policy is larger than-200 (implying that the pole is balanced at least most of the time)
The starting point for an episode is drawn from the{det, 0, (,0)|z € [-2,2],¢ € [-0.6,0.6]}.

In the double-pole balancing task the rewardlifor every time step and we regard a trial as
successful if the final policy avoids crashing fty00 time steps. The system state is initialized
with (x, 2, (1, (1, (2, (2) = (0,0,N(1°,1),0,0,0). The highest dimensional task we consider is the
swimmer problem [3]. The swimmer consistsigfcompartments floating on a liquid surface. The
swimmer is supposed to move its center of gravity as fast asilple in a predefined direction. The
state descriptios = [Ag, (1, - - - Cns Ay, Q, e én]T includes the position of the end point of the
first compartmen#, (marking the “head” of the swimmer), the angle of tllepart ¢ = 1,...,n)
with respect to the:-axis, the corresponding velocity of the “headg, and the angular velocities
for each part;, ..., (,. Actionsa = [a1,...,a,_1]T are torques applied between body parts. The
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Figure 1: Median of performance over 500 trials for NAC, CNES and UN-CMA-ES for the a)
single-pole balancing, b) double-pole balancing and c)mtein car task. d) For the swimmers with
3 and4 segments the performance median over 20 trials is plot)g@egormance of the CMA-ES
for different sample sizeseva € {1, 10, 20, 30} in the single-pole balancing experiment. f) Sample
sizes computed by the UH-CMA-ES for three typical trials ba single-pole balancing task are
plotted on a logarithmic scale.

reward given to the swimmer is the velocity component of tlversners center of gravity parallel
to thez-axis. We considered two swimmers with € {3,4}. The swimmers initial position is
set to0 and the initial angular velocities are each drawn uniforfriyn [0, 7]. A swimmer trial is
called successful if the average velocity of the swimmendereof gravity is larger tha@%g, ie.,
the swimmer covers a distance of at least one and a half a@ritgth in the desired direction in the
simulated time span &f0 s.

Experimental setup. In all four tasks uncertainty arises from random start staté/e always
consider the same type of linear policies in order to allow dofair comparison. The linear
policies considered here are typically used with the NAC, [15, 14, 9]). More sophisticated



choices of policy classes certainly improve the perforneasfcthe CMA-ES, which for example
works fine with non-linear neural networks [11, 13, 5]. Thuisnaethods operate on the same
policy class3®®(s) = 6Ts with s,60 € R™. For learning, the NAC uses the stochastic policy
wg“’Ch(s, a) = N(wgewr(s), onac), Where the variancenac is considered as an additional adaptive
parameter of the PGM. The NAC is evaluated on the correspgraéterministic policy. The policy
parameters (except the exploration parameige for the NAC) are always initialized with zero. For
the swimmer task the action consistgwof 1 continuous values and we apply an independent linear
policy for each action component, thus the search spaieis 1)(n— 1)-dimensional. For evaluat-
ing the algorithms we us#) roll-outs, except for the swimmer task where o2lyroll-outs are used.
For the mountain car problem and the balancing tasks wede#té CMA-ES all combinations of
initial global step sizer®) € {0.1,1, 5,10, 15,25, 50, 100} and sample siz@evq € {1, 10, 20, 30},
and for the NAC all combinations of initial exploratienac € {0.1,1, 5,10, 15, 25, 50, 100}, learn-
ing rateanac € {0.1,0.01,0.001,0.0001}, and sample Siz@eval € {n + 2,2(n + 2),3(n + 2)
(the NAC needs a minimum of + 2 roll outs per policy update). For the UH-CMA-ES we vary

o© € {0.1,1,5,10,15,25,50,100} and setr") = 1. Since the swimmer problem is the most

eval —
computational demanding we restricte® andoyac to {1, 10, 50} for this task.

Results. In Fig.1 the performances of CMA-ES, NAC, and UH-CMA-ES ahnewn for the four
test scenarios. For all three methods the performanceddyeht respective parameter configuration
is plotted. Both the NAC and the CMA-ES benefit from larger pnsizesneya. AS can be seen
in Fig.1e) for single-pole balancing, too small sample simsult in fast learning in the beginning
but lead to early stagnation (i.e., the uncertainty is taghhd make progress). On the other hand
too large sample sizes allow the CMA-ES to find much betteutgwis but lead to unnecessarily
slow learning. In Fig.1f) the sample sizes chosen by the WHACES are shown for typical sin-
gle trials. At the beginning small sample sizes are used ahdwhen the accuracy is no longer
sufficient the sample size is increased. Finally for finerigrthe maximal allowed sample size of
neval = 100 is used most of the time. Altogether the uncertainty hamdtiearly improves the learn-
ing speed, while the CMA-ES and NAC without uncertainty Hargdperform roughly equally well
when looking at the best respective parameter configurstionly in the mountain car problem the
UH-CMA-ES is not faster than both the NAC and the CMA-ES. HeeeNAC clearly outperforms
both CMA-ES versions, since the NAC benefits from the poliaygmeter initialization close to a
global optimum. The uncertainty handling improves the CHE8's results but suffers from discon-
tinuities of the accumulated reward originating in the &ngjtial state interval that includes initial
velocities almost sufficient to drive the car directly ujphil

But the uncertainty handling does not only improve the legyispeed. For the mountain car task
the UH-CMA-ES is successful in more thaa% of the 500 trials for 6 out of 8 tested parameter
configurations, while the standard CMA is successful in ntloa@80% of the trials in onlyl8 of 32
cases and the NAC i60 of 96 cases. The same effect can be seen in the two pole balansky ta
In the single-pole balancing task the UH-CMA-ES is in morath0% of the trials successful for

of 8 parameter configurations, while the CMA-ES and the NAC ahike same success level with
21 of 32 and with7 of 96 parameter configurations, respectively. For the doubledpalancing task
(which is even without noise a difficult problem when considg only linear policies) the results
are most striking. Here the UH-CMA-ES is successfulin% of the trials for alls tested parameter
configurations (which is even better than the CMA-ES for adigtart state) while the CMA-ES and
the NAC only achieve a success levelt with 5 of 32 and27 of 96 parameter configurations,
respectively. For swimmers both withand4 compartments the UH-CMA-ES is also robust. The
UH-CMA-ES is successful in more th&0% of all trials for4 of 6 parameter configurations. The
CMA-ES achieves the same success levébiof 24 cases while the NAC reaches this success level
in 0 of 72 cases. Thus the rank based uncertainty handling remarkailtBases the learning speed
while at the same time improving the robustness comparededCMA-ES without uncertainty
handing, which is already much more robust than the PGM.

5 Discussion and Conclusion

Evolution strategies (ES) are powerful direct policy seanethods. One of their main advantages is
their ability to cope with noise. Still, random elementstie Environment require gathering statistics
over several episodes for the evaluation of candidate ipslicWe added an adaptive uncertainty



handling to evolutionary reinforcement learning. It adguthe number of roll-outs per evaluation
of a policy such that the signal to noise ratio is just highwggtofor a sufficiently good ranking of
candidate policies, which in turn suffices for the ES to fintldresolutions. The uncertainty handling
exploits the advantage of small sample sizes in the begjnand only increases the sample size
when a higher accuracy is necessary thus mediating the tfidetween fast learning and sufficient
accuracy. This significantly increases both learning speedrobustness and allows to find highly
accurate final solutions. Here this has been shown for ahlariaetric ES, but the uncertainty
handling can also be combined with other rank-based raiafoent learning algorithms.
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