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Process overview. The steps involved in creating the taxonomy.
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Learning Tasks

Self-supervised learning methods leverage the inherent
relationships between tasks to learn a desired expensive one
(e.g. object detection) via a cheap surrogate (e.g. coloriza-
tion) [0, 72, 17, 103, 100, 69]. Specifically, they use a
manually-entered local part of the structure in the task space
(as the surrogate task is manually defined). In contrast, our
approach models this large space of tasks in a computational
manner and can discover obscure relationships.

Unsupervised learning is concerned with the redundan-
cies in the input domain and leveraging them for forming
compact representations, which are usually agnostic to the
downstream task [, 49, 20, 9, 32, 77]. Our approach is not
unsupervised by definition as it is not agnostic to the tasks.
Instead, it models the space tasks belong to and in a way
utilizes the functional redundancies among tasks.

Meta-learning generally seeks performing the learning
at a level higher than where conventional learning occurs,
e.g. as employed in reinforcement learning [21, 31, 28],
optimization [2, 2, 48], or certain architectural mecha-
nisms [27, 30, £7, 65]. The motivation behind meta learn-
ing has similarities to ours and our outcome can be seen as
a computational meta-structure of the space of tasks.

Multi-task learning targets developing systems that can
provide multiple outputs for an input in one run [50, [5].
Multi-task learning has experienced recent progress and the
reported advantages are another support for existence of a
useful structure among tasks [93, 100, 50, 76,73, 50, 18,97,
61, 11, 66]. Unlike multi-task learning, we explicitly model
the relations among tasks and extract a meta-structure. The
large number of tasks we consider also makes developing

one multi-task network for all infeasible.

Domain adaption seeks to render a function that is de-
veloped on a certain domain applicable to another [+, 99,
5, 80, 52, 26, 36]. It often addresses a shift in the input do-
main, e.g. webcam images to D-SLR [+ 7], while the task
is kept the same. In contrast, our framework is concerned
with output (task) space, hence can be viewed as task/output
adaptation. We also perform the adaptation in a larger space
among many elements, rather than two or a few.
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Transfer Function. We use one or multiple source tasks to predict a target
task's output.
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Computed Taxonomy
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Figure 5: Transfer results to normals (upper) and 2.5D Segmentation
(lower) from 5 different source tasks. The spread in transferability among
different sources is apparent, with reshading among top-performing ones in
this case. Task-specific networks were trained on 60x more data. “Scratch”
was trained from scratch without transfer learning.
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Task Similarity Tree Based on Transfering-Out

2
)
j|
]
T
8

|

D e b e s DE T TUVUDODW CCDOWV OV QYD
cEmS:’ﬂcoéO%Ewc“Eoc@E*—""“UCUC
= OQ_— c— —— = = L - — .= > < Q™=
SN Zocdege=-wWaonNgsn>acQgud

4 - o

CU.‘;’UGC"E'_E%’OD-O Yocgnsae=znsagNgp cw
DJ(:’_G_)‘Q)O_Q o -0 ONg;\ANBéG}LﬂUM .9&)

(,T—:’Omgru o © - 5 0 © r =

Q

N S N O

Figure 13: Task Similarity Tree. Agglomerative clustering of tasks
based on their transferring-out patterns (i.e. using columns of normalized
affinity matrix as task features). 3D, 2D, low dimensional geometric, and
semantic tasks clustered together using a fully computational approach.
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Taxonomy Significance Test
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Figure 11: Structure Significance. Our taxonomy compared with ran-
dom transfer policies (random feasible taxonomies that use the maximum
allowable supervision budget). Y-axis shows Quality or Gain, and X-axis
is the supervision budget. Green and gray represent our taxonomy and ran-
dom connectivities, respectively. Error bars denote 5""—-95"" percentiles.
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