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• Data of personal preferences (years)

• Well established model (enough data)

• Data (non-existent)

• Model ?

How do we predict preferences with limited data ?
Population of individuals
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Sensors
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Activity Recognition



• Update model after each observation

• Real-time feedback/analysis

• Population of individuals can be used

• Inter-population variability

Different individuals may have different gait patterns
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Activity Recognition
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Inter-Population Variability

. . . .
Model

M

Predict

Model based on similar 
individuals 

Inaccurate
Model learned from population 
does not capture the features of 

an individual
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Idea - Transfer Learning

. . . .
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• For each new observation the 
weights w are updated

• Predictions are made using these 
updated weights



Contributions
Online Bayesian Transfer Learning Algorithm

Step 1 : Source Domain
Online learning HMM models for source 
individuals

Step 2 : Target Domain
Online learning & prediction for target individual

Activity 
Recognition

Sleep Stage 
Classification

Network Flow 
Prediction

Learning Gaussian Mixture emission 
distribution using Bayesian Moment 

Matching

Updating model weights using 
Bayesian Moment Matching

&
Classification using MAP

Comparison to BMM, oEM and 
RNN  



How can we learn mixture models robustly from 
streaming data ?



Learning Algorithms

• Robust : Tensor Decomposition(Tao, Li et al, 2005),Spectral 
Learning(Kamvar et al, 2003); offline

• Online : 
• Assumed Density Filtering (Maybeck 1982; Lauritzen 1992; 

Opper & Winther 1999); not robust
• Expectation Propagation (Minka 2001); does not converge
• Stochastic Gradient Descent (Zhang 2004)
• online Expectation Maximization (Cappe 2012)
SGD and oEM : local optimum and cannot be distributed



Learning Algorithms

• Exact Bayesian Learning : Dirichlet Mixtures(Ghosal et al 
1999), Gaussian Mixtures(Lijoi et al, 2005), Non-parametric 
Problems (Barron et al, 1999), (Freedman, 1999)

Exact Bayesian Learning Distributed
Online

Consistent

In theory; practical problems!



Bayesian Learning – Mixture models

Data : x1:n where xi ~∑ 𝑤0	𝑁(𝑥-; µ0 , Σ0)7
08"

𝑃: Θ = Pr Θ 𝑥"::
∝ 𝑃:'" Θ Pr	(𝑥:|Θ)

					∝ 𝑃:'" Θ Pr 𝑥: Θ
∝ 𝑃:'" Θ ∑ 𝑤0	𝑁(𝑥-; µ0 , Σ0)7

08"

Intractable!!!

Solution : Bayesian Moment Matching Algorithm 



Bayesian Learning

• Uses Bayes’ Theorem

𝑃 Θ 𝑥 =	
𝑃(Θ)𝑃(𝑥|Θ)

𝑃(𝑥)

Thomas Bayes 
(c. 1700-1761)

Prior 
Belief

New 
Information

Bayes’ 
Theorem

Updated 
Belief

𝑃(Θ) 𝑥 𝑃 Θ 𝑥𝑃(Θ)𝑃(𝑥|Θ)
𝑃(𝑥)



Method of Moments

• Probability distributions defined by 
set of parameters
• Parameters can be estimated by a 

set of moments

𝑋~	𝑁(𝑋;µ, σ#)
𝐸 𝑋 = µ

𝐸 𝑋 − µ # = σ#Karl Pearson
(c. 1837-1936)



Gaussian Mixture Models

xi ~∑ 𝑤0	𝑁(𝑥-; µ0, Σ0)7
08"

Parameters : weights, 
means and precisions
(inverse covariance matrices)



Bayesian Moment Matching for Gaussian 
Mixture Models

Parameters : weights, means and precisions
(inverse covariance matrices)

Prior :  𝑃 𝒘, µ, 𝜦 ; product of Dirichlets and 
Normal-Wisharts

Likelihood : 
𝑃 𝒙	; 𝒘,µ, 𝜦 	=∑ 𝑤0	𝑁(𝒙; µ0, 𝜦0'")7

08"

𝑃 Θ 𝑥 = 	
𝑃(Θ)𝑃(𝑥|Θ)

𝑃(𝑥)

Parameters

Prior Likelihood



Bayesian Moment Matching Algorithm

Product of 
Dirichlets and 

Normal-Wisharts

Mixture of 
Product of 

Dirichlets and 
Normal-Wisharts

Exact Bayesian Update

Moment Matching

𝑥I

Projection



Sufficient Moments
Dirichlet : 𝐷𝑖𝑟 𝑤", 𝑤# …𝑤7; α", α# … , α7
𝐸 𝑤- = 	

OP
∑ OQ�
Q

; 					𝐸 𝑤-# = 	 OP(OPR")
(∑ OQ)�

Q ("R∑ OQ)�
Q

Normal-Wishart : 𝑁𝑊 µ, 𝛬	; µU, κ,𝑊, 𝑣
𝛬 ~ Wi(𝑊, 𝑣)   and   µ|𝛬 ~ 𝑁X µU, 𝜅𝛬 '"

𝐸 µ = µU
𝐸 (µ − µU)(µ − µU)Z = [R"

[(\'X'")
𝑊'"

𝐸 𝛬 = 𝑣𝑊
𝑉𝑎𝑟 𝛬-0 = 𝑣(𝑊-0

# +𝑊--𝑊00)



Overall Algorithm

• Bayesian Step 
- Compute posterior 𝑃I Θ based on observation 𝑥I

• Sufficient Moments 
- Compute set of sufficient moments S for 𝑃I Θ

• Moment Matching 
- System of linear equations
- Linear complexity in the number of components



Bayesian Moment Matching

• Discrete Data : Omar (2015, PhD Thesis) for Dirichlets; 
Rashwan, Zhao & Poupart (AISTATS’16) for SPNs; Hsu & 
Poupart (NIPS’16) for Topic Modelling

• Continuous Data : Jaini & Poupart, 2016 (arxiv); Jaini, Rashwan
et al, (PGM’16) for SPNs; Poupart, Chen, Jaini et al 
(NetworksML’16) 

• Sequence Data and Transfer Learning : Jaini, Poupart et al, 
(ICLR’17) 



Make Bayesian Learning Great Again

Bayesian Moment Matching Algorithm 
- Uses Bayes’ Theorem + Method of Moments
- Analytic solutions to Moment matching (unlike EP,  ADF)
- One pass over data

Bayesian Moment Matching Distributed
Online

Consistent ?
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Online Bayesian Transfer Learning 
for

Sequential Data Modeling
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Problem Formulation

. . . .
Source 
Domain

Observed Data

Target 
Domain

Predict based on 
observed data
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Source Domain - Parameter Learning

. . . .
𝑀" 𝑀# 𝑀$ 𝑀(&'") 𝑀&

• Learn an HMM model 𝑀` over each source individual 𝑘
• 𝑀` consists of 
• a transition matrix  = Pr 	𝑌I = 𝑢	 𝑌I'" = 𝑣) = 	ϕd\
• an emission distribution = Pr 𝑋I	 𝑌I, 𝜃)

• Estimate the transition matrix ϕ and emission parameters 𝜃
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𝑀`

𝐷𝑎𝑡𝑎 = (𝑋", 𝑋#, …𝑋I …𝑋g)

𝑌" 𝑌I 𝑌g Latent/ Unobserved Variables

Observed Variables

Pr 𝜃,ϕ, 𝑌I = 𝑗	 𝑋":I, 𝑌I'" = 𝑖)

∝ Pr 𝑋I 𝑌I = 𝑗 Pr	(𝑌I = 𝑗|𝑌I'" = 𝑖) 	Pr 𝜃,ϕ, 𝑌I'" = 𝑖	 𝑋":I'")

Emission 
Distribution

𝜃

Transition 
Distribution

ϕ

Prior



How to choose the Prior? 

ϕ =	
ϕ"" ⋯ ϕ"7
⋮ ⋱ ⋮

ϕ7" ⋯ ϕ77
ϕ-0 = probability to go from state i to j

• A Dirichlet over each row of ϕ

• Pr ϕ is a product of Dirichlets; one for each row

Pr ϕ =	l𝐷𝑖𝑟 ϕm	 𝜶m)
7

m8"



How to choose the Prior?

Pr 𝑋I 𝑌I = 𝑗 = 	,𝑤o,0	𝑁(𝑋I; µo,0, 𝜦o,0'")
p

o8"

• For each j we have a product of Dirichlet and Normal-Wishart

• The complete prior is

Pr 𝜃 =l𝐷𝑖𝑟(𝑤q	; 𝛽q)l𝑁𝑊 µo,q, 𝛬o,q	; 	𝑚o,q, κo,q,𝑊o,q, 𝑣o,q

p

o8"

t

q8"
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𝑀`

Pr 𝜃,ϕ, 𝑌I = 𝑗	 𝑋I, 𝑌I'" = 𝑖)

∝ Pr 𝑋I 𝑌I = 𝑗 Pr	(𝑌I = 𝑗|𝑌I'" = 𝑖) 	Pr 𝜃,ϕ, 𝑌I'" = 𝑖	 𝑋":I'")

, 𝑤o,0 	𝑁(𝑋I;µo,0, 𝜦o,0'")
p

o8"

ϕ-0

l𝐷𝑖𝑟(𝑤q	; 𝛽q)l𝑁𝑊 µo,q, 𝛬o,q 	;	𝑚o,q, κo,q,𝑊o,q, 𝑣o,q

p

o8"

t

q8"

l𝐷𝑖𝑟 ϕm	 𝜶m)
7

m8"

Mixture of terms in the posterior : use BMM for update



𝑃(I'")(Θ`,Φ`, 𝑌 I'" = 𝑖)

Product of Dirichlets
& Normal-Wisharts

𝑋I

Bayesian update

𝑃I Θ`,Φ`, 𝑌I = 𝑗	 𝑌(I'") = 𝑖, 𝑋I)

Mixture of Product of 
Dirichlets & Normal-Wisharts

Moment Matching

Projection

Θv` = 	 𝐸wxy[Θ
`]

Φv` = 	𝐸wxy[Φ
`]

Basis model for 
𝑘Io source

Output

Learning PhaseInput
Data : 𝐷`
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Target Domain – Learning and Prediction

. . . .

𝑀" 𝑀# 𝑀$ 𝑀(&'") 𝑀&

𝑤" 𝑤&𝑤(&'")𝑤$𝑤#

𝑀 =	,𝑤-𝑀-

�

�

𝑀
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Target Domain – Learning and Prediction

. . . .

𝑀" 𝑀# 𝑀$ 𝑀(&'") 𝑀&

𝑤" 𝑤&𝑤(&'")𝑤$𝑤#

𝑤- = (𝜆-, 𝜋-)

𝑀

Pr 𝑌I = 𝑗 𝑌I'" = 𝑖 = 	∑ 𝜆` Pr 𝑌I` = 𝑗 𝑌I'"` = 𝑖`
`8"

Pr 𝑋I 𝑌I = 𝑗 = 	, 𝜋` Pr 𝑋I` 𝑌I` = 𝑗
`

`8"



Learning Phase

Learning Phase

Learning Phase

𝐷"

𝐷#

𝐷&

Model 1

Model 2

Model K
λ &, π&

λ #,π#

λ ",π"

Update 𝝀,𝝅
given new 

observation 𝑋I
𝑌Iv = 𝑎𝑟𝑔max

0
𝑃(𝑌I = 𝑗|𝑋I,𝝀, 𝝅, )

Prediction

Source Domain
Target Domain

𝑋I

Bayesian update

Projection

Moment Matching

𝑃(𝝀, 𝝅, 𝑌(I'")) 𝑃(𝝀, 𝝅, 𝑌I|𝑌I'" , 𝑋I)

Product of Dirichlets Mixture of Product 
of Dirichlets
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Experiments

• Three real-world applications:
1. Activity Recognition
2. Sleep Stage Classification
3. Network Flow Prediction

• Online transfer learning algorithm for prediction

• Comparison to BMM, oEM and RNN

• We use leave-one-out cross validation method
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Activity Recognition 

Pascal Poupart James Tung Laura Middleton

Pabla Carbajal Kayla Regan

Network 
for Aging 
Research
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Activity Recognition 

• Study to promote physical activity
• Labeled data collected from 19 participants using 

smartphones
• Activities include walking, standing, sitting, running and in 

a moving vehicle
• Aim – robust recognition algorithms for older adults or 

individuals with perturbed gait

Network 
for Aging 
Research
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Activity Recognition 
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Activity Recognition
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Activity Recognition
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Activity Recognition

Online EM Online BMM RNN

Network 
for Aging 
Research
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Activity Recognition 

• All results are 
statistically significant

• Transfer Learning 
algorithm exhibited 
confusion b/w
standing – in a moving 
vehicle and sitting – in a 
moving vehicle labels

Network 
for Aging 
Research
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Sleep Stage Classification

Edith Law Mike Schäkermann
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• Study to analyze sleep patterns using EEG data 
• Analysis of sleep patterns relevant in diagnosis of 

neurological disorders e.g. Parkinson
• Labeled data collected from 142 patients – 91 healthy 

and 51 with Parkinson’s disease
• Sleep stages include wake, rapid eye movement, N1, N2 

N3 and unknown

Sleep Stage Classification
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Sleep Stage Classification

0 20 40 60 80 100
Baseline algorithm using EM (Max Likelihood)
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Scatter plot of accuracy for Sleep Stage Classification

0 20 40 60 80 100
Baseline algorithm using BMM
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Scatter Plot of accuracy for Sleep Stage Classification

0 20 40 60 80 100
Baseline algorithm using RNNs
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Scatter Plot of accuracy for Sleep Stage Classification 

Online EM Online BMM RNN
Transfer Learning performs better on 102 out of 142 patients 
compared to RNN
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Network Flow Prediction

Pascal Poupart Zhitang Chen George Trimponias
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• Prediction of future traffic      proactive network control
• Proactive network control helps in

• Better network routing
• priority scheduling
• maximize rate control, min. transmission delay etc

• Used real traffic data from academic buildings with TCP 
flows

• Predict direction of flow b/w Server & Client

Network Flow Prediction
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Network Flow Prediction



Conclusion and Future Work
Contributions
- Online algorithm to tackle inter-population variability
- Online Bayeisan algorithm for sequential data with GMM 

emissions
- Application to three real world domains
- Comparision to other methods like RNN, oEM and BMM 

Future Work 
- Efficient choice of basis models
- Extension of online transfer learning technique to RNNs 
- Theoretical properties of BMM – consistent?


