Online Bayesian Transfer Learning for Sequential Data Modeling

Priyank Jaini
Machine Learning, Algorithms
and Theory Lab

Network for Aging Research

Home

Trending

Subscriptions

kecommenaea

Trump On American Healthcare: When You Love...

The Late Show with Stephen Colbert 502,308 views • 10 hours ago

5 Brilliant Moments In Film

CineFix

2,786,832 views • 1 year ago

Anakin's Symphony | 1 Hour Heroic Imperial March

Lucas King

292,025 views • 1 month ago

SACHIN vs McGrath - This is Why We call SACHIN - GOD... CricketCloud

CricketCloud 3,049,736 views • 3 months ago

Trump and the GOP's Health Care Con Falls Apart: A Clos...

Late Night with Seth Meyers

1,095,213 views

16 hours ago

Jared Kushner, Chief White House Nepotism Beneficiary

The Late Show with Stephen Colbert 389,645 views • 10 hours ago

Jane Fonda and Lily Tomlin On Marching, Protesting An...

The Late Show with Stephen Colbert 85,091 views • 10 hours ago

Kevin Bridges on Scottish Independence

Ricky Kelly 1,233,332 views • 2 years ago

Kevin Bridges' father missed the Orient Express - The...

69,619 views • 1 year ago

Ludwig van Beethoven -Moonlight Sonata (3rd...

Tina S

7,617,052 views • 7 months ago

Show more

Recently Uploaded Recommended videos for you

Trump Makes Another Trip to the Golf Course, March...

Late Night with Seth Meyers

135,804 views • 9 hours ago

NZ V SA, 3RD TEST HAMILTON day 4 highlights

HD CRICKET highlights 22,353 views • 9 hours ago

India v Australia 4th Test 2017 Day 3 full Highlights

Top shots man 165,358 views • 23 hours ago

Last Week Tonight with John Oliver - Texas Republicans...

Last Week Tonight Season 4 1,032,663 views • 1 day ago

Watch Kohli's explosive press conference in full

cricket.com.au

17,973 views

6 hours ago

 \times

↑ Home

Trending

BEST OF YOUTUBE

J Music

Sports

Gaming

Movies

TV Shows

■ News

(•) Live

360° Video

Browse channels

Sign in now to see your channels and recommendations!

Sign in

Home

Trending

Trending

SPIDER-MAN: HOMECOMING -Official Trailer #2 (HD)

Sony Pictures Entertainment

1,687,878 views ⋅ 5 hours ago

Trump and the GOP's Health Care Con Falls Apart: A Closer Look

Late Night with Seth Meyers

1,095,213 views • 17 hours ago

Worth It S2 • E3 \$47 Taco Vs. \$1 Taco

BuzzFeedVideo

5,743,028 views • 2 days ago

Mess Effect

videogamedunkey

1,903,100 views • 23 hours ago

JUSTICE LEAGUE - Official Trailer

Warner Bros. Pictures

17,916,184 views • 3 days ago

Gordon Ramsay - Topic Recommended channel

Gordon Ramsay Is Stunned by Farmed Caviar; Makes Lobster (...

Gordon Ramsay ☑ 5,374,626 views • 2 months ago

The Best Savage Moments Of Chef Gordon Ramsay TRY NOT ...

Pass Some Time 1,790,001 views • 3 months ago

Buttermilk Fried Chicken with Sweet Pickled Celery | Gordon ...

Gordon Ramsay

3,725,759 views • 1 month ago

How To Master 5 Basic Cooking Skills - Gordon Ramsay

Gordon Ramsay

7,080,088 views • 1 year ago

Subscribe 19,292

Cooking in Disguise - Gordon Ramsay

Gordon Ramsay ☑ 12,009,565 views • 7 years ago

14

Basketball - Topic Recommended channel

Never celebrate too early (Compilation)

Michael Jordan last 3 minutes in Nerd P his FINAL BULLS GAME vs Jazz... HOOD!

NERD THE HOOD!

Nerd Plays Basketball In The HOOD!

Epic Trick Shot Battle 3 | Dude Perfect

▶ Subscribe 974,820

Kyrie Irving drops Stephen Curry! Must see!!

Data of personal preferences (years)

Data (non-existent)

- Well established model (enough data)
- Model ?

How do we predict preferences with limited data? Population of individuals

My List >

Netflix Originals

Kids

More like Narcos

Crime Action & Adventure

Top Picks for Priyank

Sensors

- Update model after each observation
- Real-time feedback/analysis
- Population of individuals can be used
- Inter-population variability

Different individuals may have different gait patterns

Inter-Population Variability

Model M

Model based on similar individuals

Inaccurate

Model learned from population does not capture the features of an individual

Idea - Transfer Learning

$$M = \sum_{i} \mathbf{w}_{i} M_{i}$$

- For each new observation the weights w are updated
- Predictions are made using these updated weights

Contributions

Online Bayesian Transfer Learning Algorithm

Step I : Source Domain
Online learning HMM models for source individuals

Learning Gaussian Mixture emission distribution using Bayesian Moment Matching

Step 2: Target Domain

Online learning & prediction for target individual

Updating model weights using Bayesian Moment Matching &

Classification using MAP

Activity Recognition

Sleep Stage Classification

Network Flow Prediction

Comparison to BMM, oEM and RNN

How can we learn mixture models robustly from streaming data?

Learning Algorithms

 Robust: Tensor Decomposition(Tao, Li et al, 2005), Spectral Learning(Kamvar et al, 2003); offline

Online:

- Assumed Density Filtering (Maybeck 1982; Lauritzen 1992;
 Opper & Winther 1999); not robust
- Expectation Propagation (Minka 2001); does not converge
- Stochastic Gradient Descent (Zhang 2004)
- online Expectation Maximization (Cappe 2012)

SGD and oEM: local optimum and cannot be distributed

Learning Algorithms

• Exact Bayesian Learning: Dirichlet Mixtures (Ghosal et al 1999), Gaussian Mixtures (Lijoi et al, 2005), Non-parametric Problems (Barron et al, 1999), (Freedman, 1999)

In theory; practical problems!

Bayesian Learning – Mixture models

Data:
$$\mathbf{x}_{1:n}$$
 where $\mathbf{x}_i \sim \sum_{j=1}^{M} w_j N(x_i; \mu_j, \Sigma_j)$

$$P_{n}(\Theta) = \Pr(\Theta|x^{1:n})$$

$$\propto P_{n-1}(\Theta)\Pr(x_{n}|\Theta)$$

$$\propto P_{n-1}(\Theta)\Pr(x_{n}|\Theta)$$

$$\propto P_{n-1}(\Theta) \sum_{j=1}^{M} w_{j} N(x_{i}; \mu_{j}, \Sigma_{j})$$

Intractable!!!

Solution: Bayesian Moment Matching Algorithm

Bayesian Learning

Thomas Bayes (c. 1700-1761)

Uses Bayes' Theorem

$$P(\Theta|x) = \frac{P(\Theta)P(x|\Theta)}{P(x)}$$

Method of Moments

Karl Pearson (c. 1837-1936)

- Probability distributions defined by set of parameters
- Parameters can be estimated by a set of moments

$$X \sim N(X; \mu, \sigma^2)$$

$$E[X] = \mu$$

$$E[(X - \mu)^2] = \sigma^2$$

Gaussian Mixture Models

$$\mathbf{x}_{i} \sim \sum_{j=1}^{M} w_{j} N(x_{i}; \mu_{j}, \Sigma_{j})$$

Parameters: weights, means and precisions (inverse covariance matrices)

Bayesian Moment Matching for Gaussian Mixture Models

Likelihood

Parameters

Parameters: weights, means and precisions (inverse covariance matrices)

 $P(\Theta|x) = \frac{P(\Theta)P(x|\Theta)}{P(x)}$ Prior: $P(w, \mu, \Lambda)$; product of Dirichlets and Normal-Wisharts

Likelihood:

$$P(\boldsymbol{x};\boldsymbol{w},\boldsymbol{\mu},\boldsymbol{\Lambda}) = \sum_{j=1}^{M} w_j N(\boldsymbol{x};\boldsymbol{\mu}_j,\boldsymbol{\Lambda}_j^{-1})$$

Bayesian Moment Matching Algorithm

Sufficient Moments

Dirichlet:
$$Dir(w_1, w_2 \dots w_M; \alpha_1, \alpha_2 \dots, \alpha_M)$$

$$E[w_i] = \frac{\alpha_i}{\sum_j \alpha_j}; \quad E[w_i^2] = \frac{\alpha_i(\alpha_i + 1)}{(\sum_j \alpha_j)(1 + \sum_j \alpha_j)}$$

Normal-Wishart:
$$NW(\mu, \Lambda; \mu_0, \kappa, W, v)$$

 $\Lambda \sim Wi(W, v)$ and $\mu | \Lambda \sim N_d(\mu_0, (\kappa \Lambda)^{-1})$

$$E[\mu] = \mu_0$$

$$E[(\mu - \mu_0)(\mu - \mu_0)^T] = \frac{\kappa + 1}{\kappa(\nu - d - 1)} W^{-1}$$

$$E[\Lambda] = \nu W$$

$$Var(\Lambda_{ij}) = \nu(W_{ij}^2 + W_{ii}W_{jj})$$

Overall Algorithm

- Bayesian Step
 - Compute posterior $P_t(\Theta)$ based on observation x_t
- Sufficient Moments
 - Compute set of sufficient moments S for $P_t(\Theta)$
- Moment Matching
 - System of linear equations
 - Linear complexity in the number of components

Bayesian Moment Matching

- Discrete Data: Omar (2015, PhD Thesis) for Dirichlets;
 Rashwan, Zhao & Poupart (AISTATS'16) for SPNs; Hsu & Poupart (NIPS'16) for Topic Modelling
- Continuous Data: Jaini & Poupart, 2016 (arxiv); Jaini, Rashwan et al, (PGM'16) for SPNs; Poupart, Chen, Jaini et al (NetworksML'16)
- Sequence Data and Transfer Learning: Jaini, Poupart et al, (ICLR'17)

Make Bayesian Learning Great Again

Bayesian Moment Matching Algorithm

- Uses Bayes' Theorem + Method of Moments
- Analytic solutions to Moment matching (unlike EP, ADF)
- One pass over data

Online Bayesian Transfer Learning for Sequential Data Modeling

Problem Formulation

Source Domain

Observed Data

Target Domain

Predict based on observed data

Source Domain - Parameter Learning

- Learn an HMM model M_k over each source individual k
- M_k consists of
 - a transition matrix = $Pr(Y_t = u | Y_{t-1} = v) = \varphi_{uv}$
 - an emission distribution = $Pr(X_t | Y_t, \theta)$
- Estimate the transition matrix ϕ and emission parameters θ

$$Data = (X_1, X_2, ... X_t ... X_N)$$
 Observed Variables
$$Y_1 \qquad Y_t \qquad Y_N$$
 Latent/ Unobserved Variables

 \dot{Y}_t \dot{Y}_N Latent/ Unobserved Variables

$$\Pr(\theta, \varphi, Y_t = j \mid X_{1:t}, Y_{t-1} = i)$$

How to choose the Prior?

$$\varphi = \begin{bmatrix} \varphi_{11} & \cdots & \varphi_{1M} \\ \vdots & \ddots & \vdots \\ \varphi_{M1} & \cdots & \varphi_{MM} \end{bmatrix} \quad \varphi_{ij} = \text{probability to go from state } i \text{ to } j$$

- A Dirichlet over each row of φ
- $Pr(\phi)$ is a product of Dirichlets; one for each row

$$Pr(\varphi) = \prod_{m=1}^{M} Dir(\varphi_m \mid \alpha_m)$$

How to choose the Prior?

$$\Pr(X_t|Y_t = j) = \sum_{h=1}^{H} w_{h,j} N(X_t; \mu_{h,j}, \Lambda_{h,j}^{-1})$$

- For each j we have a product of Dirichlet and Normal-Wishart
- The complete prior is

$$\Pr(\theta) = \prod_{l=1}^{L} Dir(w_l; \beta_l) \prod_{h=1}^{H} NW(\mu_{h,l}, \Lambda_{h,l}; m_{h,l}, \kappa_{h,l}, W_{h,l}, v_{h,l})$$

$$Pr(\theta, \varphi, Y_t = j \mid X_t, Y_{t-1} = i)$$

$$\propto \Pr(X_t|Y_t = j) \Pr(Y_t = j|Y_{t-1} = i) \Pr(\theta, \varphi, Y_{t-1} = i|X_{1:t-1})$$

$$\sum_{h=1}^{H} w_{h,j} N(X_t; \mu_{h,j}, \Lambda_{h,j}^{-1}) \quad \boldsymbol{\varphi}_{ij}$$

$$\prod_{m=1}^{M} Dir(\mathbf{\phi}_{m} \mid \boldsymbol{\alpha}_{m}) \prod_{l=1}^{L} Dir(\boldsymbol{w}_{l} ; \boldsymbol{\beta}_{l}) \prod_{h=1}^{H} NW(\boldsymbol{\mu}_{h,l}, \boldsymbol{\Lambda}_{h,l} ; m_{h,l}, \boldsymbol{\kappa}_{h,l}, \boldsymbol{W}_{h,l}, \boldsymbol{v}_{h,l})$$

Mixture of terms in the posterior: use BMM for update

Target Domain – Learning and Prediction

$$M = \sum_{i} w_{i} M_{i}$$

M

Target Domain – Learning and Prediction

$$w_i = (\lambda_i, \pi_i)$$

$$\Pr(Y_t = j | Y_{t-1} = i) = \sum_{k=1}^k \lambda_k \Pr(Y_t^k = j | Y_{t-1}^k = i)$$

$$\Pr(X_t|Y_t=j) = \sum_{k=1}^{K} \pi_k \Pr(X_t^k|Y_t^k=j)$$

Experiments

- Three real-world applications:
 - I. Activity Recognition
 - 2. Sleep Stage Classification
 - 3. Network Flow Prediction
- Online transfer learning algorithm for prediction
- Comparison to BMM, oEM and RNN
- We use leave-one-out cross validation method

Pascal Poupart

James Tung

Laura Middleton

Pabla Carbajal

Kayla Regan

- Study to promote physical activity
- Labeled data collected from 19 participants using smartphones
- Activities include walking, standing, sitting, running and in a moving vehicle
- Aim robust recognition algorithms for older adults or individuals with perturbed gait

Activity Recognition oTL accuracy (%) oBMM accuracy(%)

Online EM

Online BMM

RNN

TARGET DOMAIN	BASELINE	EM	RNN	TRANSFER LEARNING
Person 1	91.29	83.57	71.15	88.36↓
Person 2	81.37	79.87	79.58	87.65 ↑
Person 3	74.68	75.91	69.56	93.15↑
Person 4	73.39	68.29	74.25	84.70 ↑
Person 5	95.94	89.59	95.36	99.75↑
Person 6	73.98	69.77	61.71	96.43↑
Person 7	57.62	55.15	69.22	70.75 ↑
Person 8	91.72	86.05	74.49	97.80↑
Person 9	81.19	78.88	78.72	88.75 ↑
Person 10	99.12	93.60	92.00	97.35↓
Person 11	76.59	74.67	84.75	88.75 ↑
Person 12	55.36	59.71	53.63	95.05↑
Person 13	79.66	73.46	65.54	97.60↑
Person 14	92.06	89.11	63.59	93.12↑
Person 15	79.25	72.24	91.08	94.20↑
Person 16	84.08	79.23	74.74	83.51↓
Person 17	93.95	91.03	81.25	97.60↑
Person 18	82.84	74.88	79.45	87.20 ↑
Person 19	95.97	89.06	95.88	95.06↓

- All results are statistically significant
- Transfer Learning
 algorithm exhibited
 confusion b/w
 standing in a moving
 vehicle and sitting in a
 moving vehicle labels

Sleep Stage Classification

Edith Law

Mike Schäkermann

Sleep Stage Classification

- Study to analyze sleep patterns using EEG data
- Analysis of sleep patterns relevant in diagnosis of neurological disorders e.g. Parkinson
- Labeled data collected from 142 patients 91 healthy and 51 with Parkinson's disease
- Sleep stages include wake, rapid eye movement, N1, N2
 N3 and unknown

Sleep Stage Classification

Online EM

Online BMM

RNN

Transfer Learning performs better on 102 out of 142 patients compared to RNN

Network Flow Prediction

Pascal Poupart

Zhitang Chen

George Trimponias

Network Flow Prediction

- Prediction of future traffic —proactive network control
- Proactive network control helps in
 - Better network routing
 - priority scheduling
 - maximize rate control, min. transmission delay etc
- Used real traffic data from academic buildings with TCP flows
- Predict direction of flow b/w Server & Client

Network Flow Prediction

TARGET DOMAIN	BASELINE	EM	RNN	TRANSFER LEARNING
Source 1	72.00	54.90	80.00	71.02 ↓
Source 2	85.33	89.10	65.30	86.50↓
Source 3	80.33	81.90	86.50	83.33↑
Source 4	86.50	75.80	86.60	87.17 ↑
Source 5	87.33	82.80	81.70	86.00↓
Source 6	93.33	78.20	88.90	93.50↑
Source 7	95.17	90.70	93.50	95.33↑
Source 8	89.83	91.14	91.00	91.63↑
Source 9	76.67	75.68	81.98	78.83↑

Conclusion and Future Work

Contributions

- Online algorithm to tackle inter-population variability
- Online Bayeisan algorithm for sequential data with GMM emissions
- Application to three real world domains
- Comparision to other methods like RNN, oEM and BMM

Future Work

- Efficient choice of basis models
- Extension of online transfer learning technique to RNNs
- Theoretical properties of BMM consistent?