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The Basic Problem

Broker buys/sells large block of shares on behalf of client

Large orders will incur costs, due to price impact (liquidity)
effects

→ e.g. rapidly selling a large block of shares will depress the price

Slow trading minimizes price impact, but leaves exposure to
stochastic price changes

Fast trading will minimize risk due to random stock price
movements, but price impact will be large

What is the optimal strategy?
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Industry Standard Approach

We will consider so-called arrival price algorithms

Optimality defined in terms of pre-trade price (the arrival price)
compared to average execution price.

Standard algorithm is the Almgren and Chriss (2001)
technique

Objective of this talk

The Almgren, Chriss strategy is based on an approximate
solution to an optimal stochastic control problem

We solve this problem using a fully numerical approach

⇒ Industry standard method is significantly sub-optimal in many
practical cases
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Formulation

P = Trading portfolio

= B + AS

B = Bank account: keeps track of gains/losses

S = Price of stock

A = Number of units of the stock

T = Trading horizon (e.g. one day)
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For Simplicity: Sell Case Only

Sell

t = 0→ B = 0,S = S0,A = A0

t = T → B = BT , S = ST ,A = 0

BT is the cash generated by trading in [0,T ]

Success is measured by BT (proceeds from sale, relative to
pre-trade market value (A0S0) ).

Maximize E [BT ], minimize Var [BT ]

E [·] = Expectation

Var [·] = Variance (a measure of risk)

Typically T = one day
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Basic Problem

Trading rate v1 (A = number of shares)

dA

dt
= v .

Suppose that S follows geometric Brownian Motion (GBM) under
the objective measure

dS = µS dt + σS dZ

µ is the drift rate of S

σ is the volatility

dZ = φ
√

dt

φ draw from a standard normal distribution

• Reasonable model for stock prices over periods < one day

1This gives us the trading schedule over the day. For actually placing
discrete trades, we need an order book model.
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Temporary Price Impact: Sexec = f (v)S

The bank account B is assumed to follow

dB

dt
= (−vSexec)

Sexec is the execution price

= Sf (v)

f (v) is the temporary price impact

f (v) = exp[κtv ]

< 1 if selling: execution price < pre-trade price

Pre-trade price is S (i.e. midpoint of bid-ask)

We actually get Sexec = f (v)S < S if selling2

2Trading rate v < 0 if selling.
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Optimal Strategy
Define:

X = (S(t),A(t),B(t)) = State

BT = Proceeds from selling

v(X , t) = trading rate

E [·] = expectation

Let

E
v(·)
t,x [·]︸ ︷︷ ︸

Reward

= E [·|X (t) = x ] with v(X (u), u), u ≥ t

being the strategy along path X (u), u ≥ t

Var
v(·)
t,x [·]︸ ︷︷ ︸
Risk

= Var[·|X (t) = x ] Variance under strategy v(·)
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Mean Variance: Standard Formulation
Our objective is to compute the strategies which generate the
efficient frontier.
We construct the efficient frontier by finding the optimal control
v(·) which solves (for fixed λ)

sup
v

{
E v [BT ]︸ ︷︷ ︸
Reward

−λVar v [BT ]︸ ︷︷ ︸
Risk

}
(1)

• Varying λ ∈ [0,∞) traces out the efficient frontier
• λ = 0;→ we seek only maximize cash received, we don’t care
about risk.
• λ =∞→ we seek only to minimize risk, we don’t care about the
expected reward.
An efficient frontier is a curve in the (Var v [BT ],E v [BT ])plane.

Each point on the efficient frontier is Pareto optimal

For a given value of variance, no other strategy produces a
higher expected gain.
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LQ Embedding (Zhou and Li (2000), Li and Ng (2000))

Equivalent formulation: for fixed λ, if v∗(·) maximizes

sup
v(·)∈Z

{
E v
t,x [BT ]︸ ︷︷ ︸
Reward

−λVar vt,x [BT ]︸ ︷︷ ︸
Risk

}
,

Z is the set of admissible controls (2)

then there exists a γ = γ(t, x ,E [BT ]) such that v∗(·) minimizes 3

inf
v(·)∈Z

E
v(·)
t,x

[(
BT −

γ

2

)2]
. (3)

↪→ Equation (3) can be solved using dynamic programming.

3Strictly speaking, since some values of γ may not represent points on the
original frontier, we need to use the algorithm in Tse, Forsyth, Li (2012) to
remove these points.
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Hamilton Jacobi Bellman (HJB) Equation

Let

V (s, α, b, τ) = Value Function

= inf
v(·)∈Z

{
E
v(·)
t,x

[
(BT −

γ

2
)2
∣∣ S(t) = s,A(t) = α,B(t) = b

}
x = (s, α, b)

s = stock price

α = number of units of stock

b = cash obtained so far

T = Trading horizon

τ = T − t = time running backwards

Z = [vmin, 0] (Only selling permitted)
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HJB Equation for Optimal Control v ∗(·)

We can use dynamic programming to solve for

V (s, α, b, τ) = inf
v(·)∈Z

E
v(·)
t,x

[(
BT −

γ

2

)2]
. (4)

Then, using some stochastic calculus, V (s, α, b, τ) is determined
by

∂V

∂τ
=

(σ2s2

2

)∂2V

∂s2
+ µs

∂V

∂s
+ inf

v∈Z

[
−vsf (v)

∂V

∂b
+ v

∂V

∂α

]
Z = [vmin, 0]

with initial condition V (s, α, b, τ = 0) = (b − γ/2)2 .
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Numerical Method: Mean Variance Efficient Frontier

Recall that

V (s, α, b, τ = 0) = (b − γ/2)2

Numerical Algorithm

Pick a value for γ ∈ [0,∞)

Solve HJB equation numerically4 (i.e. on a grid) for optimal
control v = v(s, α, b, τ)
Store control at all grid points
Simulate trading strategy using a Monte Carlo method (use
stored optimal controls)
Compute mean, standard deviation
This gives a single point on the efficient frontier

Repeat

4We need to be sure that our numerical algorithm converges to the correct
solution, the viscosity solution (Forsyth (2011) Applied Numerical
Mathematics)

13 / 20



But solving the HJB equation requires some work

But this is considered too complex in industry

So, the original (Almgren and Chriss) paper made several
approximations (e.g. v(·) independent of S(t)).

In fact, a careful read of this paper, shows that the objective
function (after the approximations) is not actually Mean
Variance, but is Mean Quadratic variation

→ Risk measure is Quadratic Variation not Variance

Formally, the quadratic variation risk measure is defined as

Riskt = E

[∫ T

t

(
dP(t ′)

)2]
P = Trading Portfolio = AS + B

This is the quadratic variation of the portfolio value process.
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Mean Quadratic Variation

This measures risk in terms of the average variability of the
portfolio along the entire trading path.
Find optimal strategy v(·) which maximizes (for fixed λ)

sup
v(·)∈Z

{
E
v(·)
x ,t

[
BT

]︸ ︷︷ ︸
Reward

−λE
v(·)
x ,t

[∫ T

t

(
dP(t ′)

)2]
︸ ︷︷ ︸

Risk

}

(5)

One can easily derive the HJB equation for the optimal control
v∗(·) for Mean Quadratic variation optimal strategies

Varying λ will trace out a curve in the expected value, standard
deviation plane

This problem is much simpler to solve than the Mean Variance
problem (see: Almgren and Chriss (2001))
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Numerical Examples: Mean Variance vs. Mean Quadratic
Variation

Simple case: GBM, zero drift 5

dS = σS dZ

Recall temporary Price Impact (Sexec = f (v)S) :

f (v) = exp(κtv)

T sinit αinit Action
1/250 100 1.0 Sell

(One Day)

Case σ κt Percentage of Daily Volume

1 0.2 2.4× 10−6 20.0%

2 1.0 2× 10−6 16.7%

5Over one day, drift is negligible
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σ = .2, 20% daily volume, Sinit = 100

Standard Deviation
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Mean Share Position (α) vs. Time

σ = 1.0, 16.7%
daily volume

Mean: 99.29.

Std(Mean Variance)
= 0.68

Std(Mean Quadratic
Variation) = 0.93
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Standard Deviation of Share Position (α) vs. Time

σ = 1.0, 16.7%
daily volume

Mean: 99.29.

Std(Mean Variance)
= 0.68

Std(Mean Quadratic
Variation) = 0.93
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Conclusions: Optimal for Who?

From a client point of view
Client is only concerned with the mean and variance of final
cash position

→ Mean Variance is the optimal strategy

From the bank point of view

Banks care about risk during the trading day
Mean Quadratic variation controls this risk

→ Easier to compute than Mean Variance optimal strategies
→ Easy to manage trading (share position has small standard

deviation)

But

→ This is sub-optimal for the client

So, banks are doing what is best for them, not for their clients

⇒ Are you surprised?
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