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Retirement Risk Zone

Consider an investor with a retirement account, which is invested
in the stock market. The investor retires, and makes withdrawals
from the retirement account.

The outcomes will be very different in the cases:

in the first few years after retirement, the market has losses,
and the account is further depleted by withdrawals, followed
by some years of good market returns; compared to

a few years of good market returns, after retirement (including
withdrawals), followed by some years of losses

Losses in the early years of retirement can be devastating in the
long run! Early bad returns can cause complete depletion of the
account.
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A Typical GMWB Example

Investor pays $100 to an insurance company, which is invested in a
risky asset.

Denote amount in risky asset sub-account by W = 100.

The investor also has a virtual guarantee account A = 100.

Suppose that the contract runs for 10 years, and the guaranteed
withdrawal rate is $10 per year.
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A Typical GMWB Example II

At the end of each year, the investor can choose to withdraw up to
$10 from the account. If $γ̂ ∈ [0, 10] is withdrawn, then

Wnew = max(Wold − γ̂, 0) ; Actual investment

Anew = Aold − γ̂ ; Virtual account

This continues for 10 years. At the end of 10 years, the investor
can withdraw anything left, i.e. max(Wnew ,Anew ).

Note: the investor can continue to withdraw cash as long as
A > 0, even if W = 0 (recall that W is invested in a risky asset).
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Why is this useful?

The investor can participate in market gains, but still has a
guaranteed cash flow, in the case of market losses.

This insulates pensioners from losses in the early years of
retirement.

This protection is paid for by deducting a yearly fee η from the
amount in the risky account W each year.

The simple form of GMWB described has many variants in
practice: Guaranteed Lifetime Withdrawal Benefit (GLWB),
ratchet increase of virtual account A if no withdrawals, etc.

We will keep things simple here, and look at the basic GMWB.

Most variable annuities sold in North America have some type of
market guarantee.
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Some More Details

The investor can choose to withdraw up to the specified contract
rate Gr without penalty.

Usually, a penalty (κ > 0) is charged for withdrawals above Gr .

Let γ be the rate of withdrawal selected by the holder.

Then, the rate of actual cash received by the holder of the GMWB
is

f (γ) =

{
γ if 0 ≤ γ ≤ Gr ,
(1− κ)γ + κGr if γ > Gr .
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Stochastic Process

Let S denote the value of the risky asset, we assume that the risk
neutral process followed by S is

dS = rSdt + σSdZ

r = risk free rate; σ = volatility

dZ = φ
√

dt ; φ ∼ N (0, 1)

The risk neutral process followed by W is then (including
withdrawals dA).

dW = (r − η)Wdt + σWdZ + dA, if W > 0

dW = 0, if W = 0

η = fee paid for guarantee ; A = guarantee account
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No-arbitrage Value

Let V (W ,A, τ) (τ = T − t, T is contract expiry) be the
no-arbitrage value of the GMWB contract (i.e. the cost of
hedging).

At contract expiry (τ = 0) we have (payoff = withdrawal)

V (W ,A, τ = 0) = max(W ,A(1− κ))

It turns out that it is optimal to withdraw at a rate γ

γ ∈ [0,Gr ], or

γ =∞ (instantaneously withdraw a finite amount)
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Singular Control

Let

LV =
1

2
σ2W 2VWW + (r − η)WVW − rV

FV = 1− VW − VA

Then, as shown in (Dai et al (2008)), the no arbitrage value of this
guarantee is given from the solution to the HJB VI

min

[
Vτ − LV − Gr max(FV , 0), κ−FV

]
= 0 (1)
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An Informal Derivation

One way to derive this HJB VI is to consider the optimal control
problem with a large, but finite, maximum withdrawal rate 1/ε.
Let

h(γ) =

{
γ − γ(VW + VA) if 0 ≤ γ ≤ Gr ,

(1− κ)γ + κGr − γ(VW + VA) if γ > Gr .
(2)

Then the control problem (for bounded rate 1/ε) is

Vτ = LV + max
γ∈[0,1/ε]

h(γ), (3)

Noting that the maximum in (3) occurs at γ = {0,Gr , 1/ε}, a bit
of algebra shows that this equation becomes

−Vτ + LV + max

[
Gr max(0,FV ),

(FV − κ)

ε
+ κGr

]
= 0 . (4)
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HJB Variational Inequality

A more compact form of this equation is

min

[
Vτ − LV − Gr max(0,FV ),Vτ − LV − κGr +

(κ−FV )

ε

]
= 0 .

Or, since ε > 0,

min

[
Vτ − LV − Gr max(0,FV ), κ−FV + ε (Vτ − LV − κGr )

]
= 0 .

Let ε→ 0

min

[
Vτ − LV − Gr max(FV , 0), κ−FV

]
= 0 . (5)

which is the final form of the HJB equation.
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Basic Idea: Penalty Method

Keeping ε finite, we can rewrite (4) in control form, in terms of the
controls {ϕ,ψ}

Vτ = LV + max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ϕGrFV + ψ

(
(FV − κ)

ε
+ κGr

)]
.

(6)

Basic Idea:

Discretize equation (6)

Let ε→ 0 as the mesh and timesteps tend to zero

We will show that a discrete version of (6) is consistent in the
viscosity sense with the singular control problem (1)
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Previous Work

Milevsky, Salisbury, (2006, Insurance: Mathematics and
Economics), pose GMWB pricing problem as a singular
control.

Dai, Kwok, Zong, (Mathematical Finance, 2008), propose the
penalty method to solve the singular control formulation of
the GMWB

Chen, Forsyth (Numerische Mathematik, 2008), solve impulse
control formulation of the GMWB
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Localization
The original GMWB problem is posed on the domain

(W ,A, τ) ∈ [0,∞]× [0, ω0]× [0,T ] . (7)

where ω0 is the initial contract premium.
For computational purposes, we localize this domain to

Ω = [0,Wmax]× [0, ω0]× [0,T ] . (8)

Apply boundary conditions (see Dai et al (2008)).

Assumption
The localized GMWB singular control problem satisfies a strong
comparison result, hence a unique continuous viscosity solution exists.

Remark
In (Seydel (2008)), it is shown that an impulse control formulation of the
GMWB pricing problem satisfies a strong comparison principle. However,
there does not seem to be a proof of this result for the singular control
formulation of this problem.
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Discretization

Define a set of nodes

{W0, . . . ,Wi , . . . ,Wimax} ; {A0, . . . ,Aj , . . . ,Ajmax} (9)

Let V n
i ,j be the approximation of V (Wi ,Aj , τ

n).

Define vector of nodal values along lines of constant Aj

~V n
j =

[
V n

0,j ,V
n
1,j , . . . ,Vimax,j

]′
(10)

Fully implicit timestepping

Use forward, backward central differencing

Use central differencing as much as possible yet still retain a
positive coefficient scheme (Wang and Forsyth (2008)).
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Discretization

We can write this in matrix form[
I + ∆τMn+1

j

]
~V n+1

j = ~V n
j + ∆τPn+1

j
~V n+1

j−1 + ∆τ ~Dn+1
j . (11)

Note that Mn+1
j ,Pn+1

j , ~Dn+1
j are functions of the optimal controls

{ϕn+1
i ,j , ψn+1

i ,j }.

Let FhV n
i ,j be the discrete form of FV = 1− VW − VA.

The optimal controls at each node are given by

{ϕn+1
i,j , ψn+1

i,j } ∈ arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ϕGrFhV n+1

i,j + ψ

(
(FhV n+1

i,j − κ)

ε
+ κGr

)]
.

→ This makes equation (11) highly nonlinear.
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Positive Coefficient Scheme
Recall our discretization in matrix form[

I + ∆τMn+1
j

]
~V n+1

j = ~V n
j + ∆τPn+1

j
~V n+1

j−1 + ∆τ ~Dn+1
j .

If a positive coefficient method is used, then
[
I + ∆τMn+1

j

]
is an

M matrix

Recall that this means that
[
I + ∆τMn+1

j

]−1
≥ 0.

We use a type of Policy iteration to solve the discretized nonlinear
equations

Theorem (Convergence of the Policy Iteration)

If the positive coefficient condition is satisfied, then the policy
iteration converges to the unique solution of (11) for any initial
estimate (~V n+1

j )0.

Proof.
Same steps as in (Forsyth and Labahn (2008))
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Stability, Monotonicity

Lemma (Stability)

If the discretized scheme satisfies the positive coefficient condition,
the method is l∞ stable.

Proof.
Use maximum analysis and induction.

Lemma (Monotonicity)

If the discretized scheme satisfies the positive coefficient condition,
the method is unconditionally monotone.

Proof.
Similar steps as in (Forsyth and Labahn (2008)).

Remark (Monotonicity)
Monotonicity can be viewed as a discrete arbitrage inequality, i.e.
inequality of payoffs implies inequalities of value at all earlier times.
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Consistency
Assume

h =
∆Wmax

C1
=

∆Amax

C2
=

∆τ

C3
=

ε

C4
, (12)

Lemma (Consistency)

In the limit as h→ 0, the numerical scheme is consistent, in the
viscosity sense (Barles, Souganidis (1991)), with the singular
control problem

min

[
Vτ − LV − Gr max(FV , 0), κ−FV

]
= 0

Proof.
Mimic steps used in the informal derivation of the singular control
problem, only this time, with finite difference approximations of the
operators and smooth test functions.
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Convergence

Theorem
Provided that (a) the GMWB singular control problem satisfies a
strong comparison result (b) fully implicit timestepping is used
with a positive coefficient discretization, then the penalty scheme
converges to the unique, continuous viscosity solution of the
GMWB singular control problem.

Proof.
The scheme is monotone, consistent and stable, hence this follows
from the results in (Barles, Souganidis (1991)).

Remark
Note that convergence is guaranteed for any penalty term ε of the
form ε = Ch, where h is the discretization parameter.
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Examples

Recall that the investor pays no extra up-front fee for the
guarantee (only the initial premium w0).

The insurance company deducts an annual fee η from the balance
in the sub-account W .

Problem: let V (η,W ,A, τ) be the value of the GMWB contract,
for given yearly guarantee fee η.

Assume that the investor pays an initial premium w0 at t = 0
(τ = T ).

Find the no-arbitrage fee η such that V (η,w0,w0,T ) = w0 (we do
this by a Newton iteration).
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Penalty Parameter
We obtain convergence if

ε = C ∆τ

for any C > 0.

Recall that the maximum withdrawal rate is λ = 1/ε

If λ = ω0/(∆τ) → entire guarantee amount can be withdrawn
in one timestep
↪→ Effectively an infinite rate

This suggests that a reasonable value for ε = 1/λ would be

ε = ∆τC ∗/ω0

C ∗ = dimensionless constant < 1

But we also want to make ε (Vτ − LV − κGr ) small on coarse
grids.

We choose C ∗ = 10−2. More later.
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Example: Data

Parameter Value

Expiry time T 10.0 years
Interest rate r .05
Maximum withdrawal rate Gr 10/year
Withdrawal penalty κ .10
Volatility σ .30
Initial Lump-sum premium w0 100
Initial guarantee account balance 100
Initial sub-account value 100
Penalty parameter ε 10−2∆τ/ω0
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Grid/Timesteps

Level W Nodes A Nodes Time steps

1 117 111 120
2 233 221 240
3 465 441 480
4 929 881 960
5 1857 1761 1920

Table: Grid and timestep data for convergence experiments
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Results: No-arbitrage Fee Charged

Refine Central Differencing First Backward Differencing Only
Level Value Itns/step Ratio Value Itns/step Ratio

Fully Implicit Method
σ = 0.2, η = 0.013886
1 101.3329 3.51 N/A 101.7167 3.48 N/A
2 100.4556 3.62 N/A 100.7628 3.52 N/A
3 100.1283 3.70 2.68 100.3210 3.63 2.15
4 100.0271 3.77 3.23 100.1284 3.71 2.29
5 100.0000 3.89 3.71 100.0439 3.87 2.28
σ = 0.3, η = 0.031286
1 100.5987 4.19 N/A 100.9427 4.09 N/A
2 100.1495 4.31 N/A 100.3602 4.26 N/A
3 100.0358 4.33 3.95 100.1280 4.31 2.51
4 100.0081 4.39 4.11 100.0472 4.38 2.88
5 100.0000 4.38 3.40 100.0183 4.37 2.80

• Value at S = A = 100, t = 0.
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Why do we get almost second order convergence?

Several lucky breaks

Fully implicit timestepping should only be first order

Vττ ' 0 as τ → T .

Fully implicit timestepping is exact

In infinite rate withdrawal regions:

Backward differencing used

But solution in these regions V ' linear in (W ,A) →
backward differencing is exact
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Penalty Parameter
Recall the penalty parameter ε

Vτ = LV + max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ϕGrFV + ψ

(
(FV − κ)

ε
+ κGr

)]
.

The penalty method will converge for any penalty parameter ε of
the form

ε = C ∆τ

Based on financial reasoning, a good choice for ε is

ε =
C ∗∆τ

ω0
; C ∗ ≤ 1

where C ∗ is dimensionless.
We would like to choose C ∗ small, so that convergence is rapid,
but if C ∗ is too small → machine precision problems

How do we choose C ∗?
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Penalty Parameter: tests

σ = 0.2 σ = 0.3
ε Value Itns/step Value Itns/step
∆τ/ω0 107.7315 3.3 115.8828 3.2
10−1∆τ/ω0 107.7336 3.2 115.8856 3.3
10−2∆τ/ω0 107.7338 3.2 115.8859 3.3
10−3∆τ/ω0 107.7339 3.2 115.8860 3.3
10−4∆τ/ω0 107.7339 3.3 115.8860 3.3
10−5∆τ/ω0 107.7339 3.2 115.8860 3.3
10−6∆τ/ω0 107.7339 3.2 115.8860 3.3
10−7∆τ/ω0 107.7338 3.3 115.8860 3.3
10−8∆τ/ω0 107.7336 3.4 115.8854 3.5
10−9∆τ/ω0 107.7244 4.9 115.8615 5.4

Table: The effect of the penalty parameter at refinement level 5.
W = A = 100 and t = 0. No insurance fee (i.e. η = 0) is imposed.

• Any C∗ ∈ [10−1, 10−7] works fine.
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Optimal Withdrawal Strategy

W

A

0 50 100 150 2000
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Withdrawal of a
finite amount

Withdrawal of a finite amount

Withdrawal at rate G

Withdrawal at rate G or no withdrawal

Withdrawal of a
finite amount

Figure: The contour plot of optimal withdrawal strategy of the GMWB
guarantee at t = 0 in the (W ,A)-plane. σ = 0.3. Fair fee η = .031286 is
imposed.
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No-arbitrage Fee

σ = .15→ α = .007 (70 bps)

σ = .20→ α = .014 (140 bps)

σ = .30→ α = .031 (310 bps)

Current volatility of S&P =?

Typical fees charged: α = .005 (50 bps) too low for current
market conditions.

Insurance companies seem to be charging fees based on
marketing considerations, not hedging costs.

Fee should be even higher if other (typical) contract options
considered (sales fees), and other processes (jumps, see Chen,
Forsyth, Ins. Math. Econ. (2008)).
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Comparison with Impulse Control Formulation
Chen and Forsyth (2008) solve an impulse control formulation

min

{
Vτ − LV − max

γ∈[0,Gr ]

(
γ − γVW − γVA

)
,

V − sup
γ̂∈(0,A]

[
V (max(W − γ̂, 0),A− γ̂, τ) + (1− κ)γ̂ − c

]}
= 0

where c is a small (infinitesimal) fixed cost.
If h is the mesh size parameter, then

Complexity of the Impulse Control solution is O(h−4)

This is due to the linear search required for solving the local
optimization problems at each node

Compare with complexity of O(h−3) for the penalized singular
control formulation

But the Impulse Control formulation is more general, i.e.
some contract features cannot be modelled with the Singular
Control formulation
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Summary

The Penalty method can be proven to converge to the
viscosity solution of the Singular Control formulation of the
GMWB problem (assuming a strong comparison property
holds).

The Penalty method is very simple to implement, results not
sensitive to choice of dimensionless constant in the penalty
term.

Easy to apply same idea to other singular control problems.

Lower complexity than the Impulse Control Formulation
↪→ But Impulse Control is more general

If penalty parameter too small → roundoff problems
↪→ But not a problem of practical concern, i.e. eight digit

accuracy obtained without difficulty

Insurance companies seem to be charging fees which are too
low to cover hedging costs. Mark-to-market writedowns
already occurring in Canada and US.
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