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Abstract

Money-back guarantees (MBGs) are features of pooled retirement income products that address

bequest concerns by ensuring the initial premium is returned through lifetime payments or, upon

early death, as a death benefit to the estate. This paper studies optimal retirement decumulation

in an individual tontine account with an MBG overlay under international diversification and sys-

tematic longevity risk. The retiree chooses withdrawals and asset allocation dynamically to trade off

expected total withdrawals (EW) against the Conditional Value-at-Risk (CVaR) of terminal wealth,

subject to realistic investment constraints. The optimization is solved under a plan-to-live convention,

while stochastic mortality affects outcomes through its impact on mortality credits at the pool level.

We develop a neural-network based computational approach for the resulting high-dimensional, con-

strained control problem. The MBG is priced ex post under the induced EW–CVaR optimal policy

via a simulation-based actuarial rule that combines expected guarantee costs with a prudential tail

buffer. Using long-horizon historical return data expressed in real domestic-currency terms, we find

that international diversification and longevity pooling jointly deliver the largest improvements in the

EW–CVaR trade-off, while stochastic mortality shifts the frontier modestly in the expected direction.

The optimal controls use foreign equity primarily as a state-dependent catch-up instrument, and im-

plied MBG loads are driven mainly by tail outcomes (and the chosen prudential buffer) rather than

by mean payouts.

Keywords: defined contribution, tontine, money-back guarantee, stochastic mortality, portfolio op-

timization, Conditional Value-at-Risk, neural network
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1 Introduction

The worldwide shift from Defined Benefit (DB) pensions to Defined Contribution (DC) arrangements

is well documented [40, 58]. While DC plans offer flexibility and portability, they also transfer much

of the responsibility for managing key retirement risks to individuals. In particular, upon retirement,

a DC member faces the decumulation problem: how to invest and draw down accumulated savings to

support sustainable real (inflation-adjusted) spending under longevity risk (the possibility of outliving

savings) and uncertain market returns [3, 5, 33]. Rapid global population ageing further intensifies these

challenges [60].
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To manage longevity risk in practice, many retirees rely on simple spending and asset allocation

heuristics, most notably the “4% rule” [4] (often paired with a fixed stock–bond mix) and performance-

based adjustments to withdrawals and/or portfolio weights (e.g. [23]). These rules are transparent and

easy to implement, and this reliance on rule-based decumulation is consistent with the evidence in

[1], which reports a revealed preference for spending rules among retirees and wealth advisors in DC

drawdown settings. However, because these rules are not derived from a risk–reward optimization, they

can be far from efficient under realistic market and wealth conditions (see, e.g. [17, 19]).

As an alternative to rules-based drawdown strategies, retirees can transfer longevity risk to an insurer

by purchasing a life annuity. In practice, voluntary annuitization remains limited (e.g. [42]), and low

demand for life annuities can be rational once bequest motives, illiquidity costs, and product design are

taken into account [33].

In parallel, there has been renewed interest in pooled retirement income products that share longevity

risk among members while offering greater transparency and flexibility than traditional annuities. Mod-

ern tontines and related survivor pools achieve longevity pooling by redistributing the accounts of

deceased members to survivors, generating mortality credits that can support higher sustainable real

(inflation-adjusted) withdrawals for members who remain alive [15, 16, 22, 37]. The appeal comes with

a clear trade–off: mortality credits raise payouts conditional on survival, but wealth is typically forfeited

upon death.

In [21], a stochastic optimal control framework is developed for an individual tontine retirement

account. It operationalizes the idea of modern tontines in an individual setting by adding a tontine

overlay that redistributes the balances of deceased members to survivors. In this framework, the retiree

has full control over both the withdrawal amount (subject to minimum and maximum constraints) and

the asset allocation in the account. The optimization objective is defined using a risk–reward criterion:

reward is measured by total expected accumulated real (inflation-adjusted) withdrawals (EW) over a

fixed retirement horizon (30 years), while risk is measured by Conditional Value-at-Risk (CVaR), also

known as expected shortfall, of end-of-horizon real wealth (assuming the retiree survives to the horizon,

i.e. “plan-to-live, not to die”; see, e.g. [43]).

In that setting, the results in [21] show that longevity pooling can materially improve the withdrawal–

risk trade–off relative to non–pooled drawdown strategies and simple constant withdrawal/allocation

benchmarks. In particular, for a reasonable level of tail-risk tolerance (CVaR), the tontine overlay

delivers substantially higher expected cumulative real withdrawals, even after allowing for “fees of the

order of 50–100 basis points (bps) per year”[21][Section 1].

This efficiency gain, however, comes at the cost of forfeiting account wealth upon death, which can

limit the appeal of “pure” tontine overlays for retirees with bequest or estate considerations [21]. Reflect-

ing this practical constraint, recent industry innovation—particularly in the Australian superannuation

market—has introduced money-back guarantees (MBGs), sometimes described in product disclosures as

“money-back protection”, for pooled retirement income products (e.g. QSuper and MyNorth [38, 49]).

An MBG overlay can be added to an otherwise pure tontine, as in [21], and ensures that the member

receives at least the initial purchase price (a nominal dollar amount fixed at inception) through lifetime

withdrawals and/or a death benefit paid to the estate. Because the MBG is settled only upon death and

is paid to the estate, it does not affect the account dynamics while the retiree is alive. Importantly, in

practice the funding mechanism for MBGs need not appear as a stand-alone member-level charge and

can change over time (e.g. insured funding versus pool-funded self-insurance) [48, 49]. This practical

reality motivates cost measures that are economically comparable across operational implementations,

rather than tied to any particular fee design.

From the perspective of the entity that ultimately bears the guarantee, whether an insurer or the
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retirement-income pool, the MBG is a low–frequency, high–severity death–benefit liability: it is triggered

only upon death, but conditional on occurrence the payout can be large. Accordingly, the economic cost

of an MBG depends not only on expected payouts, but also on tail outcomes and on any prudential

buffer/reserving rule used to fund adverse scenarios. Crucially, the distribution of guarantee payouts

is endogenous to retiree behavior, since withdrawal and asset allocation choices determine the account

balance at death. Hence, MBG valuation cannot be carried out independently of the retiree’s decumu-

lation policy, even though the MBG itself does not feed back into the retiree’s optimal controls under

the plan-to-live convention.

From a modelling perspective, two aspects are central in tontine decumulation: the specification of

the asset market and the treatment of mortality risk. While most individual account decumulation mod-

els assume a domestic stock–bond portfolio, in practice, for retirees, the investable universe is inherently

richer and often includes international assets [11, 56]. International diversification is particularly impor-

tant for investors in countries where the local equity market capitalization is small relative to the global

market. Extending the individual account decumulation setting to allow international diversification is

economically important, since it can affect the risk–return trade-offs and, in turn, optimal withdrawal

and asset allocation decisions. Allowing multiple risky asset classes, however, makes the control problem

high-dimensional and renders grid-based dynamic programming computationally prohibitive. Recent

work in portfolio optimization and related control problems has shown that neural network (NN) pa-

rameterizations of policies can compute high-dimensional, state-dependent controls without suffering

from the curse of dimensionality inherent in grid methods [8, 31, 39].

A second modelling aspect is mortality at the pool level: deaths determine the redistribution to sur-

viving members and hence the mortality credits. Following the discussion in [21], an important caveat is

systematic mortality risk (e.g. unexpected improvements in life expectancy), which is typically ignored

when mortality credits are computed from a fixed life table. To capture this source of uncertainty,

stochastic mortality specifications such as Lee–Carter (LC) [30] and Cairns–Blake–Dowd (CBD) [7] can

be used to generate time-varying one-year death probabilities and hence stochastic mortality credits. If

mortality improves unexpectedly, realized mortality credits can be lower than anticipated because lighter

realized mortality implies fewer deaths and hence less redistribution to survivors. This separates idiosyn-

cratic longevity risk (diversifiable within the pool) from systematic longevity risk (non-diversifiable).

Motivated by the above observations, this paper sets out to achieve three primary objectives. First,

we formulate a multi-period EW–CVaR optimal decumulation framework for an individual retirement

account with a tontine overlay in an internationally diversified setting with realistic long-horizon DC

constraints. The individual optimization problem is solved conditional on survival over a fixed retirement

horizon, while stochastic mortality enters through pathwise mortality-credit inputs. Conditioning on

survival to the end of a 30-year horizon (e.g. from age 65 to 95) is a prudent stress test for sustaining

real (inflation-adjusted) retirement spending and aligns with the common “plan-to-live, not to die”

convention used in practice.1

Second, we develop a computational approach capable of solving the resulting high-dimensional,

constrained control problem using NN parameterizations of state-dependent policies, and integrate this

with a simulation-based MBG pricing framework under endogenous retiree behavior and alternative

prudential-buffer (tail-risk) funding rules for MBGs.

Third, using nearly a century of realized market data, we quantify the impact of international diver-

sification (at the individual account level) and stochastic mortality (at the pool level) on optimal tontine

decumulation outcomes, EW–CVaR frontiers, and MBG loads, and assess the relative importance of

1Survival to age 95 from age 65 is far from certain under standard life tables; under recent Australian population life

tables, it is about 0.11 for a 65-year-old male.
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these modelling dimensions.

Concretely, the numerical illustration is conducted from the perspective of a representative domestic

retiree with access to domestic and foreign equity and government bond indices. Foreign returns are con-

verted into domestic-currency real (inflation-adjusted) returns so that outcomes are measured in units of

real (inflation-adjusted) retirement spending. The empirical implementation reported in Section 9 uses

an Australian-investor calibration with long-horizon data, but the modelling and computational frame-

work is not country-specific and can be applied elsewhere given the corresponding asset and mortality

inputs.

Our main conclusion is that international diversification is economically material even before tontines.

The gains are most pronounced when diversification is combined with a tontine overlay, which is the

primary driver of improvements in the EW–CVaR withdrawal–risk trade–off. Allowing for stochastic

mortality at the pool level shifts outcomes in the expected direction—longevity improvement reduces

mortality credits—but does not alter the qualitative picture. Finally, when MBGs are summarized in

equivalent-load terms, the expected-cost (actuarially fair) component is modest in our analysis, while

larger implied loads are driven primarily by how strongly the funding rule places weight on tail outcomes

(prudential buffers) rather than by mean payouts.

The remainder of the paper is organized as follows. Section 2 introduces the tontine modelling frame-

work and the mortality specifications (deterministic and stochastic). Section 3 describes the money-back

guarantee (MBG) overlay mechanism. Section 4 presents the stochastic control framework for individual-

account decumulation, and Section 5 formulates the associated EW–CVaR optimization problem. Sec-

tion 6 develops the NN-based computational approach, and Section 7 integrates it with a Monte Carlo

pricing method for the MBG. Validation results are reported in Section 8. Section 9 presents data

construction and preprocessing details, the internationally diversified tontine results, MBG pricing im-

plications, and sensitivity analyses. Section 10 concludes and outlines directions for future research.

2 Tontine modeling

We let T denote the set of pre-determined, equally spaced decision times in [0, T ], at which mortality

credit distributions, withdrawals, and portfolio rebalancing occur:2

T = {tm | tm = m∆t, m = 0, . . . ,M}, ∆t = T/M, (2.1)

where t0 = 0 is the inception time and T > 0 is the finite investment horizon. Throughout we take

annual decision times, so ∆t = 1 year and T =M .

For later use, we define t− = t− ε and t+ = t+ ε to represent the instants just before and after any

time t ∈ [0, T ], with ε→ 0+. For a generic time-dependent function f(t) and any tm ∈ T , we write

fm− = lim
ε→0+

f(tm − ε), fm+ = lim
ε→0+

f(tm + ε),

as shorthand for f(t−m) and f(t+m), respectively.

2.1 Modeling of individual tontine accounts

We follow the framework of [21] for individual tontine accounts. The tontine pool consists of J members,

indexed by j = 1, . . . , J . At each time point tm ∈ T , we identify the actions that occur at the three

successive instants: t−m −→ tm −→ t+m. These actions apply only in the event of solvency, that is,

when the investor’s wealth is strictly positive at time t−m.

2The assumption of equal spacing is made for simplicity. In practice, rebalancing schedules are typically fixed (e.g.,

semi-annually or annually), rather than irregular.
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� t−m (for m = 1, . . . ,M): end-of-period portfolio balances are observed. Accounts of members who died

in [t+m−1, t
−
m] are forfeited, and the corresponding mortality credits are immediately distributed to the

surviving members, prior to any investor actions (i.e. withdrawals and rebalancing).

� tm and t+m (for m = 0, . . . ,M − 1): each surviving investor withdraws an amount qm at tm, and then

rebalances their portfolio at t+m.

Between t+m−1 and t−m, m = 1, . . . ,M , the underlying asset processes and mortality evolve continuously

under their respective (stochastic) dynamics. At tM = T , the portfolio is liquidated with no withdrawal

or rebalancing.

To proceed with mortality credits, we introduce the notation for individual account balances and

formalize the survival and forfeiture events over [t+m−1, t
−
m]. A detailed discussion of withdrawals, rebal-

ancing, and the incorporation of mortality credits is provided in Section 5.

We denote by W j
m− the real (inflation-adjusted) portfolio balance (or wealth) of member j at time

t−m, m = 0, . . . ,M . At the beginning of each period [t+m−1, t
−
m], m = 1, 2 . . .M , all pool members are

assumed to be alive and each holds an account balance of W j
(m−1)+

≥ 0. If a member dies during the

period, their entire account is forfeited and distributed to the surviving members of the pool as mortality

credits. Mathematically, we define the survival indicator and its conditional expectation

1jm =

1, member j survives to t−m,

0, member j dies during [t+m−1, t
−
m],

Em−1

[
1jm

]
= 1− δjm−1. (2.2)

Here, δjm−1 is the probability that member j dies in [t+m−1, t
−
m], namely

δjm−1 = Prob
(
member j dies during [t+m−1, t

−
m]

∣∣ alive at t+m−1

)
. (2.3)

In addition, Em−1[·] = E[· | Fm−1] denotes expectation conditional on the σ-algebra Fm−1, which con-

tains all information available at t+m−1 (the start of [t+m−1, t
−
m]). If 1jm = 0, the portfolio balance W j

m− is

forfeited. If 1jm = 1, member j receives a mortality credit cjm at time tm.

We now describe how cjm is determined in two stages: (i) an individual-level fairness condition, and

(ii) a pool-level budget constraint.

2.1.1 Individual fairness condition

Assuming no fees—that is, we ignore administration, investment-management, and transaction costs for

simplicity—the tontine is structured so that, in every period, participation yields zero expected net gain

in advance. In other words, a member’s expected forfeited wealth in case of death during a period is

exactly balanced by the expected mortality credit they receive at the end of that period if they survive.

Specifically, conditioning on information available at time t+m−1, the fairness condition for the period

[t+m−1, t
−
m] is

W j
m− Em−1

[
1− 1jm

]
= (1− δjm−1)Em−1

[
cjm| Ωj

m

]
, where Ωj

m =
{
1jm = 1,

{
W k

m−
}J

k=1

}
. (2.4)

That is, Em−1[ · |Ωj
m] denotes the expectation conditional on all information available at t+m−1, together

with (i) the event that member j survives the period (1jm = 1), and (ii) the realized end-of-period wealth

balances of all members {W k
m−}Jk=1, before mortality credits are calculated and distributed.

Solving (2.4) yields the actuarially fair mortality credit distribution formula

Em−1

[
cjm

∣∣ Ωj
m

]
=

δjm−1

1− δjm−1

W j
m− . (2.5)

According to this rule, each surviving member’s expected mortality credit is proportional to their own

account balance, scaled by the ratio of their death probability to their survival probability. While the
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right-hand side of (2.5) depends only on (W j
m− , δ

j
m−1), this independence is not exact for a finite and

heterogeneous pool: it is possible to construct scenarios in which the available forfeitures are insufficient

to support (2.5) simultaneously for all surviving members, leading to a bias that favours some members

over others (see the discussion in [21]). Following [54], we therefore interpret (2.5) as a large-pool

approximation whose accuracy hinges on a small-bias condition, stated explicitly in Subsection 2.1.3.

2.1.2 Pool-level budget constraint

While equation (2.5) guarantees fairness for each member, the tontine must also balance cash flows at

the pool level: the total mortality credits paid to surviving members at tm must equal the total wealth

forfeited by deceased ones during the period [t+m−1, t
−
m]. This requirement gives the budget rule3

J∑
j=1

1jm c
j
m =

J∑
j=1

(1− 1jm)W j
m− , (2.6)

which must hold ex post in every period. Because (2.6) must hold with the actual forfeitures and

credits—determined by the random, realized number of deaths in the period, which could be different

from the expected count—enforcing this budget rule exactly can be cumbersome in a finite pool. We

therefore introduce a practical adjustment in the next subsection.

2.1.3 Large-pool approximation

To obtain a simple, tractable rule, [54] introduce a pool-wide adjustment factor referred to as the group

gain Γm defined as

Γm =

∑J
k=1(1− 1km)W k

m−∑J
k=1 1

k
m

δkm−1

1− δkm−1

W k
m−

. (2.7)

Here, the numerator is the realized forfeiture during [t+m−1, t
−
m], while the denominator is the total

expected mortality credit for the members who actually survive that period, obtained by summing the

fair-credit expression (2.5)
δkm−1

1−δkm−1
W k

m− over all k with 1km = 1.

Multiplying the fair-credit expectation (2.5) by Γm gives the simplified mortality credit distribution

formula

cjm =
δjm−1

1− δjm−1

W j
m− Γm, j = 1, . . . , J, (2.8)

which satisfies the budget rule (2.6) exactly, even for finite pools. However, for finite and heterogeneous

pools, the sharing rule (2.8) need not satisfy the individual fairness condition (2.5) exactly; instead, it

can introduce a (typically small) bias in expected gains across members. It is shown in [54] that this

bias is negligible under the following small-bias condition: (a) the pool is sufficiently large, and (b) the

expected aggregate forfeiture in the period is large compared to any member’s nominal gain, i.e.

δjm−1

1− δjm−1

W j
m− ≪

J∑
k=1

δkm−1W
k
m− , j = 1, . . . , J. (2.9)

Condition (2.9) is essentially a diversification requirement: no member has an abnormally large share of

the pool capital. When (2.9) holds (and the pool is large enough that realized deaths are close to their

expectation), the random group-gain factor satisfies E[Γm] ≃ 1 with small variance [54]. Accordingly,

we adopt the approximation Γm ≡ 1 for the remainder of the paper.

3More generally, the mortality credit can be written as cjm =
δ
j
m−1

1−δ
j
m−1

W j

m− H
j
m, where Hj

m ≥ 0 is a sharing factor.

Fairness is preserved by imposing Em−1[H
j
m|Ωj

m] = 1; see [21] for details.
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With the large-pool approximation Γm ≡ 1, the member–level mortality credit distribution rule (2.8)

becomes

cjm =
δjm−1

1− δjm−1

W j
m− , j = 1, . . . , J. (2.10)

The rule (2.10) continues to satisfy, with high accuracy under the large-pool/small-bias assumptions

(Condition (2.9)): (i) Fairness: Em−1[c
j
m|Ωj

m] =
δjm−1

1− δjm−1

W j
m− , (ii) Budget constraint: Equation (2.6)

(exactly when Γm is retained as in (2.8), and approximately under the large-pool approximation Γm ≡ 1),

and (iii) Non-negativity: cjm ≥ 0 for all j.

In our optimal control formulation, we suppress the superscript j and consider a representative

surviving member. The mortality credit distribution rule (2.10) then reduces to a per-member expression

that depends only on the member’s own total wealth at time t−m and their mortality rate. Based on this,

we define the mortality credit cm in terms of the tontine gain rate, denoted by gm, as follows:

cm = gmWm− , where gm =
δm−1

1− δm−1
. (2.11)

The tontine gain rate can be interpreted as gm = fraction of the cohort expected to die
fraction expected to survive , so it represents the

proportional uplift each surviving member receives from mortality pooling during [t+m−1, t
−
m]. Equa-

tion (2.11) is the key mechanism used to compute mortality credits in the optimal control formulation

developed subsequently in the paper.

2.2 Mortality models

Recall from (2.2)–(2.3) that longevity risk enters the tontine through the one–year conditional death

probabilities δjm−1 for each member j over the interval [t+m−1, t
−
m]. In a homogeneous pool, we write

δjm−1 ≡ δm−1, so that the tontine gain rate gm in (2.11) is fully determined by the annual sequence

{δm−1}Mm=1. We now describe how this sequence is obtained under deterministic and stochastic mortality.

2.2.1 Deterministic mortality

In the deterministic case, we work with a standard period life table, such as the Canadian Pensioner

Mortality Tables or Australian mortality from the Human Mortality Database (HMD) [25], which provide

one–year death probabilities qx,y for an individual aged x in calendar year y. Let the retiree be aged

x0 at retirement, which occurs in calendar year y0. In our tontine framework the decision times are

measured in years since retirement, so tm = m for m = 0, . . . ,M with t0 = 0. At decision time tm, the

retiree is age x0 +m in calendar year y0 +m.

We extract from the life table the corresponding one–year conditional death probabilities

δm−1 := qx0+(m−1), y0+(m−1), m = 1, . . . ,M. (2.12)

In a homogeneous pool, these probabilities are common to all members, so that δjm−1 = δm−1 for every j,

and both {δm−1} and the corresponding tontine gain rates {gm} = {δm−1/(1− δm−1)} are deterministic.

2.2.2 Stochastic mortality

To incorporate systematic longevity risk, we allow the mortality surface to be generated by a stochastic

model in the generalized age–period–cohort (GAPC) family; see [62]. Let Dx,y denote the number of

deaths at age x in calendar year y and Ex,y the corresponding central exposure. We assume

Dx,y ∼ Poisson
(
mx,y Ex,y

)
, (2.13)

with central death rate mx,y. Its systematic component is captured by a linear predictor

ηx,y = αx +

N∑
i=1

β(i)x κ(i)y + β(0)x γy−x, (2.14)
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where αx describes the age profile, κ
(i)
y are period factors and γy−x is a cohort effect. A link function g

relates ηx,y to the mortality quantity of interest, e.g.

logmx,y = ηx,y or logit qx,y = ηx,y,

with logit(u) = log
(
u/(1 − u)

)
for u ∈ (0, 1). In this general GAPC formulation the cohort term is

optional; the specific Lee–Carter [30] and Cairns–Blake–Dowd [7] models used below are special cases

that omit the cohort component.

Lee–Carter (LC) model

In the Lee–Carter specification, the predictor has a single age–period term,

ηx,y = αx + βx κy, (2.15)

and we typically set logmx,y = ηx,y. The period index κy captures the overall mortality level and is

commonly modelled as a random walk with drift,

κy = δ + κy−1 + ξy, ξy ∼ N(0, σ2κ) i.i.d. (2.16)

together with the usual identifiability constraints on (αx, βx, κy) as implemented in StMoMo [62].

Cairns–Blake–Dowd (CBD) model

The Cairns–Blake–Dowd model [7] describes mortality as approximately linear in age around a reference

age x̄:
ηx,y = κ(1)y + (x− x̄)κ(2)y . (2.17)

Here it is natural to work directly with one–year death probabilities and set

logit qx,y = ηx,y.

The bivariate period factor κy = (κ
(1)
y , κ

(2)
y )⊤ is usually specified as a random walk with drift,

κy = δ + κy−1 + ξy, ξy ∼ N(0,Σκ) i.i.d., (2.18)

In contrast to the LC model, no additional identifiability constraints are required for this basic two–factor

CBD specification [62].

From stochastic mortality models to tontine gain rate. Once an LC or CBD model has been

calibrated to historical deaths and exposures, its fitted and projected period factors determine a surface

of one–year death probabilities {qx,y}. For a representative retiree aged x0 in calendar year y0, with

annual decision times tm = m and corresponding calendar years ym = y0 +m, we define

δm−1 := qx0+(m−1), y0+(m−1), m = 1, . . . ,M, (2.19)

and in a homogeneous pool we set δjm−1 ≡ δm−1 for all members j, exactly as in the deterministic

life–table case. These probabilities feed directly into the tontine gain rate gm = δm−1/(1 − δm−1) in

(2.11). Thus the tontine mechanics developed above apply unchanged; only the sequence {δm−1} differs
between deterministic life–table mortality and stochastic GAPC-based mortality.

Remark 2.1 (Mortality inputs in simulation). The same one–year conditional death probabilities also

underpin our simulation framework. In the deterministic case, the sequence {δm−1}Mm=1 is obtained from

a period life table as in Subsection 2.2.1, and we take δ
(k)
m−1 ≡ δm−1 on every simulation path, indexed

by k. Under stochastic LC or CBD mortality, each simulated mortality surface {q(k)x,y} yields a pathwise

sequence {δ(k)m−1}Mm=1 via

δ
(k)
m−1 := q

(k)
x0+(m−1), y0+(m−1), m = 1, . . . ,M. (2.20)

On path k, these probabilities are used to construct tontine gain rates g
(k)
m = δ

(k)
m−1/(1 − δ

(k)
m−1), m =

1, . . . ,M , which enter the wealth recursion in the NN training (Section 6) and are also used to generate

death times and payouts in the money-back guarantee valuation (Section 7).
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3 Money-back guarantee overlay
“Your purchase price is always paid back as either income to you or a death benefit

paid to your beneficiaries. If you die, the death benefit is equal to the amount you

paid for your Lifetime Pension, less the payments that have gone to you. . . ”

QSuper’s Lifetime Pension Product Disclosure Statement [49]

This promise reflects the essence of the MBG, a recent industry innovation introduced by leading Aus-

tralian superannuation providers, including QSuper and MyNorth [38, 49]. The MBG can be added to

an otherwise “pure” tontine and ensures that every dollar a member invests at inception (i.e. their initial

contribution or purchase price) is returned—either through lifetime withdrawals or, if the member dies

early, as a death benefit paid to their estate.

3.1 Description

Specifically, at inception, suppose a member invests an amount L0 (ie. the purchase price) to the

retirement product with MBG. At each decision time tm ∈ T , as in the regular tontine described in

Section 2, if the member survives to t−m, they first receive the mortality credit cm defined in (2.11), then

withdraw an amount qm, and rebalance their portfolio. Once cumulative withdrawals reach or exceed

the purchase price L0, the MBG becomes inactive.

If the member dies at time τ ∈ (t+m−1, t
−
m], no further withdrawal occurs, including the scheduled

withdrawal at tm. If their cumulative withdrawals up to tm−1 fall short of the purchase price L0 (a

nominal dollar amount fixed at inception), the MBG activates. The member’s estate receives the shortfall:

MBG-payout = max

(
L0 −

mτ−1∑
ℓ=0

qℓ
CPIℓ
CPI0

, 0

)
, (3.1)

where mτ is the time index such that death occurs in the interval [t+mτ−1, t
−
mτ

], and the right-hand side

is expressed in nominal dollars (unadjusted for inflation). Here, CPIℓ is the consumer-price index at

decision time tℓ (and CPI0 is the index level at inception). Because the guarantee compares nominal

cash flows, each real dollar withdrawal qℓ is first expressed in nominal terms by multiplying by CPIℓ/CPI0

before being summed in (3.1). For valuation and reporting, this nominal shortfall is converted to a real

(inflation-adjusted) amount at inception by multiplying by CPI0/CPImτ ; see Section 7 (Eqn. (7.1)).

While it is straightforward to incorporate time-value discounting, we follow [19] in setting the real

discount rate to zero. This conservative assumption, common in retirement-income studies, typically

implies a constant discount factor of 1 throughout.

For instance, suppose a retiree makes an initial contribution of $200,000 at t0, and withdrawals are

scheduled annually (∆t = 1 year). By the end of year 4 (t4), the member has withdrawn a total of $65,000

in nominal terms. If the member then dies during the subsequent interval [t+4 , t
−
5 ]—that is, sometime

between the end of year 4 and the scheduled decision time at year 5—no withdrawal is executed at t5.

The MBG is triggered and the member’s estate receives: MBG-payout = max
(
200,000 − 65,000, 0

)
=

$135,000.

Remark 3.1 (Timing convention). In our discrete-time model, we follow the convention that the estate of

a member who dies during the interval [t+m−1, t
−
m] receives the MBG payout at the end of that interval. As

described in Section 2, the member’s account balance at t−m contributes to the mortality credits distributed

to members surviving the period. However, the account is then removed prior to the distribution, and no

further withdrawals are made, including the scheduled withdrawal at tm. In the above example, the MBG

amount of $135,000 will be paid at year 5.

This end-of-interval convention is widely adopted in actuarial asset–liability models (see, for example,

[14, Section 4] and [36, Section 2]), as it simplifies implementation and introduces only a first-order bias

9



O(∆t) arising solely from using the end-of-year CPI level when converting between real and nominal

amounts. With ∆t = 1 year, this bias is negligible compared with market and longevity risk.

Importantly, the MBG operates as an overlay implemented at the product/pool level, for example,

through pool-funded self-insurance or an external insurance arrangement. Therefore, it does not alter the

tontine’s internal mechanics: the pooling of longevity risk, mortality credit distributions, withdrawals,

and rebalancing all remain as specified in Section 2.

In practice, the MBG may be subject to regulatory constraints, such as Australia’s Capital Access

Schedule (CAS), which limits the refundable portion of a pension’s purchase price. While it is straight-

forward to incorporate the CAS into the model, we do not do so here in order to maintain focus on the

core mechanics of the tontine and the MBG overlay pricing. As a result, the recoverable amount under

the MBG may be overstated relative to a regulated product.

3.2 MBG pricing load

Product disclosures for pooled retirement income products typically emphasize the presence of MBGs

(sometimes described as money-back protection), but the mechanisms used to fund these guarantees

need not appear as stand-alone member-level charges and can evolve over time.

For QSuper’s Lifetime Pension, used as our industry example, the Product Disclosure Statement

(PDS) introduces “money-back protection” and does not present it as a stand-alone recurring member-

level insurance fee [49]. A recent product update further notes that money-back protection was previously

offered through an external insurance policy (ART Life Insurance Limited), and that from 1 July 2025 the

Trustee ceased this insurance arrangement; instead, “the money-back protection benefit can be funded

from the Lifetime Pension pool directly” [48][p. 2].

Consistent with this pool-level funding approach, the current PDS explains that “The Lifetime Pen-

sion pool’s annual financial results will affect the annual income adjustment in the following year. The

results include: . . . the mortality experience of the pool . . . all fees and costs,” and that “The money-back

protection benefit (if applicable) is paid from the pool” [49, p. 34, p. 113].

Accordingly, in this paper we treat the MBG funding mechanism as a modelling choice and summa-

rize its economic cost using an equivalent up-front load factor fg ∈ (0, 1). The quantity fgL0 can be

interpreted as a transparent one-time cost measure—equivalently, a proportional reduction in a notional

starting income rate or benefit base—that would finance the MBG under the pricing rule adopted in

this paper. This translation device allows the MBG cost to be reported in a comparable way across

alternative practical implementations (e.g. pool-funded self-insurance versus insured funding versus im-

plicit benefit adjustments). Full details of the pricing methodology and its numerical implementation

are provided in Section 7.

4 Stochastic control framework

We now turn to the stochastic control framework, where we model the evolution of an individual member’s

portfolio and formulate the associated dynamic optimization problem. We consider a portfolio held by

a domestic investor with access to four real (inflation-adjusted) asset classes: (i) a domestic stock index

fund, (ii) a domestic bond index fund, (iii) a foreign stock index fund (converted to domestic currency),

and (iv) a foreign bond index fund (converted to domestic currency). This setup allows us to examine

both an internationally diversified portfolio, which includes all four asset classes, and a non-diversified

alternative that is restricted to domestic assets only. The construction of these indices, the inflation

adjustment, and the data sources used for calibration are detailed in Sections 8 and 9.
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4.1 Index dynamics

For simplicity and clarity, we establish the following notational conventions. A subscript ι ∈ {d, f} is

used to distinguish quantities related to the domestic stock or bond (ι = d) from those corresponding

to the foreign counterparts (ι = f). Additionally, a superscript “s” denotes quantities associated with

stock indices, while a superscript “b” identifies those related to their bond index counterparts.

Let Sd(t), Bd(t), Sf (t), and Bf (t) denote the real (inflation-adjusted) amounts invested in the stock

and bond indices of the domestic and foreign markets, respectively, at time t ∈ [0, T ]. To avoid notational

clutter, we occasionally use the shorthand notation: Sdt ≡ Sd(t), Bd
t ≡ Bd(t), Sft ≡ Sf (t), and Bf

t ≡
Bf (t). We denote by {Xt}0≤t≤T (resp. by x) the controlled underlying index process (resp. a generic

state of the system), where

Xt (resp. x) =


(
Sdt , B

d
t

) (
resp. (sd, bd)

)
, domestic-only,(

Sdt , B
d
t , S

f
t , B

f
t

) (
resp. (sd, bd, sf , bf )

)
, internationally diversified.

(4.1)

Between decision times tm ∈ T , the process evolves passively, driven solely by index-return dynamics.

For any t ∈ [t+m, t
−
m+1], we write

Xt = Mtm,t

(
Xt+m

, εm+1

)
, t ∈ [t+m, t

−
m+1], (4.2)

where Mtm,t is a transition operator and εm+1 collects all exogenous drivers acting over the interval

[t+m, t
−
m+1]. These drivers may include Brownian or jump shocks (in parametric models) or resampled

blocks of historical returns (in bootstrapped settings). The operatorMtm,t maps the post-decision state

Xt+m
and the exogenous drivers on [t+m, t] to the state Xt.

In this paper, we consider two specifications for the driver set εm+1 as follows.

� Parametric (jump–diffusion) model: For benchmarking against PDE-based methods, we implement

a two-asset domestic-only case in which the domestic stock and bond indices {Sd
t } and {Bd

t } follow

Kou-type jump–diffusion dynamics with asymmetric double-exponential jumps, capturing empirically

observed heavy tails [28]. The full SDE specification appears in Subsection 8.1

� Historical block bootstrap: In our main experiments, both domestic-only and internationally diver-

sified, we simulate asset paths nonparametrically via the stationary block bootstrap [13, 41, 45, 46].

Implementation details of the bootstrapping techniques are provided in Subsection 9.1.

In both cases, mortality-credit realizations (when applicable) are simulated independently and applied

only at t−m. The resulting dynamics {Xt}0≤t≤T from (4.2) capture the passive evolution of the index

values between decision times. Active decisions—mortality updates, withdrawals, and rebalancing—are

applied only at {tm}M−1
m=0 , as detailed in the next subsection.

4.2 Mortality updates and control framework

We define the investor’s total portfolio wealth, hereafter referred to as “total wealth,” at time t as

Wt =

S
d
t +Bd

t , domestic-only,

Sdt +Bd
t + Sft +Bf

t , internationally diversified.
(4.3)

The term “total wealth” refers to the sum of the values of the investor’s (tontine) account plus any

accumulated debt arising from insolvency due to the minimum required withdrawals. In the event

of solvency, we impose the investment constraints that (i) shorting stock and (ii) using leverage (i.e.

borrowing) are not permitted. In case of insolvency, the portfolio is liquidated and trading stops. Debt

accumulates at the borrowing rate, and no further mortality credits are applied. Importantly, minimum

withdrawals continue in the event of insolvency, so once the account is exhausted, they are funded by

borrowing and contribute to the accumulated debt.
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Recall the set of decision times T defined in (2.1). At each tm ∈ T , the sequence of actions at

t−m→ tm→ t+m described in Subsection 2.1 applies. To simplify bookkeeping, we adopt a uniform event

structure across all tm ∈ T , including time t0 for mortality credit and tM for withdrawal as follows: in

the event of solvency at tm− , namely the total wealth Wm− > 0 as defined in (4.3) the following actions

occur:

� At each time t−m, m = 0, 1, . . . ,M , the mortality credit cm defined in (2.11) is applied, with the

convention that c0 = 0, since no forfeitures have occurred at t0.

� At each time tm (for m = 0, . . . ,M − 1), the investor withdraws an amount qm, followed by portfolio

rebalancing at t+m. At tM , the portfolio is liquidated (i.e. no rebalancing or withdrawal occurs), and

terminal wealth WT is realized. For notational completeness, this is enforced by setting qM = 0.

To enforce no mortality credit at t = 0 and for the case of insolvency, we modify the definition of tontine

gain rate gm in (2.11) as follows

gm =


(

δm−1

1−δm−1

)
m = 1, . . . ,M,

0 m = 0 or Wm− ≤ 0.
(4.4)

Let

W̃m− =


(1 + gm)

(
Sdm− +Bd

m−

)
, domestic only,

(1 + gm)
(
Sdm− +Bd

m− + Sf
m− +Bf

m−

)
, internationally diversified.

(4.5)

That is, W̃m− is the value of the portfolio immediately after the mortality credit distribution at t−m but

before any fee, withdrawal, or rebalancing.

Next, we introduce a baseline tontine (management) fee that is deducted once per year, at each

decision time tm, m = 1, . . . ,M . In line with Australian superannuation practice, and in particular the

administration fee structure in QSuper’s Lifetime Pension PDS [49], we model this as a proportional

charge on the account balance. Let ϱ ∈ (0, 1) denote the yearly fee rate (e.g. ϱ = 0.11% for an 11 bp

charge).

To ensure the tontine fee is applied only when the investor is solvent and is omitted at t0, we define

ϱm = ϱ1{m≥1, W̃m−>0 }, m = 0, . . . ,M, W̃m− given by (4.5). (4.6)

With the conventions established in (4.4)–(4.6), the total wealth at t−m ∈ T after applying the mortality

credit and deducting the tontine fee, and before any investor actions, is given by

Wm− =
(
1− ϱm

)
W̃m− , W̃m− given by (4.5) (4.7)

Unless otherwise stated, we use Wm− to denote the investor’s wealth immediately before withdrawal

(and rebalancing), but after mortality credits have been distributed and tontine fees deducted, as defined

in (4.7).

Following this, the total wealth after processing the withdrawal amount qm is

Wm+ =Wm− − qm, tm ∈ T , Wm− given by (4.7). (4.8)

We model the withdrawal amount qm as a withdrawal control, for m = 0, . . . ,M , representing a strategy

that depends on the total wealth Wm− and time tm. Recalling the convention that qM = 0, we define

the withdrawal control function as qm(·) : (Wm− , tm) 7→ qm = q(Wm− , tm), where Wm− is given by (4.7).

At each rebalancing time tm, for m = 0, . . . ,M−1, we denote the rebalancing control by pm(·),
the vector of proportions of total wealth allocated to the asset indices. This control depends on the
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current time tm and on the total wealth Wm+ after the cash withdrawal qm in (4.8). Formally, pm(·) :
(Wm+ , tm) 7→ pm = p(Wm+ , tm), where

pm =


(
pds,m

)
, domestic-only case,(

pds,m, p
d
b,m, p

f
s,m

)
, internationally diversified case.

(4.9)

We denote by Xm+ the state of the system immediately after applying the rebalancing control pm, where

Xm+ =



(
Sdm+ , B

d
m+

)
, domestic-only,

where Sdm+ = pds,mWm+ , Bd
m+ = pdb,mWm+ ,(

Sdm+ , B
d
m+ , S

f
m+ , B

f
m+

)
, internationally diversified.

where

S
d
m+ = pds,mWm+ , Bd

m+ = pdb,mWm+

Sf
m+ = pfs,mWm+ , Bf

m+ = pfb,mWm+ ,

(4.10)

Here, in the domestic-only case, we define pdb,m = 1− pds,m, while in the internationally diversified case,

pfb,m := 1− pds,m − pdb,m − p
f
s,m.

We denote by Zq and Zp the sets of all admissible withdrawal controls and rebalancing controls,

respectively. For every tm ∈ T we require qm ∈ Zq and pm ∈ Zp. A control at time tm is therefore the

pair
(
qm(·), pm(·)

)
, and we write Z for the set of all such admissible pairs. The sets are determined by

withdrawal constraints (for Zq) and investment constraints (for Zp).

Contrary to the common perception that retiree spending is largely inflexible from year to year,

survey evidence suggests that retirees adjust their lifestyle in response to cash-flow changes, including

in categories often perceived as “fixed” expenses [2]. This supports modelling withdrawals as a flexible

control within bounds, rather than as a rigid rule.

To reflect this evidence, and consistent with industry practice, we impose lower and upper bounds,

qmin and qmax, on withdrawals. Formally, for tm ∈ T , with Wm− given by (4.7), we define the admissible

withdrawal control set as

Zq

(
Wm− , tm

)
=


[
qmin, qmax

]
, tm ̸= tM , Wm− ≥ qmax,[

qmin, max{qmin, Wm−}
]
, tm ̸= tM , Wm− < qmax,

{0}, tm = tM .

(4.11)

While somewhat complicated, the piecewise structure in (4.11) captures the intuition that the retiree

aims to avoid insolvency as much as possible by tightening the upper withdrawal limit when wealth

declines. If wealth falls below qmin, the retiree can still withdraw the minimum amount, accepting that

this may lead to insolvency (i.e. Wm+ < 0). At the terminal time tM , no withdrawal occurs, as the

portfolio is liquidated.

This constraint also admits a natural economic interpretation: qmax represents the retiree’s desired

annual level of real (inflation-adjusted) spending, while qmin is a contingency floor the retiree is willing to

adopt, potentially temporarily, to reduce the risk of depletion. The optimal control, therefore, uses the

flexibility in (4.11) to preserve higher withdrawals when the account is well funded, but cuts withdrawals

toward qmin in adverse market/wealth states to mitigate the long-run consequences of drawing at the

maximum rate during a downturn.

This state-contingent spending cut mechanism is closely related to practitioner rules such as the

Canasta strategy, which advocates reducing withdrawals following poor market performance.4 Time-

varying bounds (e.g. imposing qmin = qmax over an initial period to force high early spending) can also be

4https://www.theglobeandmail.com/report-on-business/math-prof-tests-investing-formulas-strategies/

article22397218/; https://cs.uwaterloo.ca/~paforsyt/Canasta.html.
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accommodated, but would mechanically increase the likelihood of early depletion when adverse returns

occur early.

Remark 4.1 (Minimum withdrawals under insolvency). At first sight it might seem natural to cease

withdrawals once the account is depleted. However, the lower bound qmin is intended to represent a

required minimum level of (real) spending. Accordingly, when Wm− < qmin we still enforce the minimum

withdrawal by allowing Wm+ = Wm− − qm < 0, which is equivalent to borrowing the shortfall; the

resulting debt then accrues at the borrowing rate. This convention ensures that tail-risk measures of

terminal wealth penalize insolvency and, in particular, penalize early depletion more than late depletion

(since debt has more time to accumulate).

This convention also admits a practical interpretation in which minimum spending can be funded

from assets outside the managed account (e.g. housing equity monetized via a reverse mortgage) once

financial wealth is exhausted [44]. This “hedge of last resort” interpretation is also consistent with mental

accounting views in which housing wealth is treated as a separate bucket that is tapped only in extreme

circumstances, and otherwise can form part of the retiree’s bequest [55].

We enforce no leverage and no shortselling when the portfolio is solvent, and once the account

becomes insolvent, we halt trading entirely and direct all wealth to the domestic bond. To define the

set of admissible rebalancing controls, we first introduce

∆(k) :=
{
(p1, . . . , pk) ∈ [0, 1]k

∣∣∣ k∑
i=1

pi ≤ 1
}
, 0(1) := (0), b(3) := (0, 1, 0),

where ∆(k) denotes the k-dimensional simplex of explicitly parameterized asset proportions. We set

k = 1 for the domestic-only portfolio and k = 3 for the internationally diversified case. Under these

conventions, the admissible rebalancing control set at time tm ∈ T is given by

Zp

(
Wm+ , tm

)
=



∆(k), tm ̸= tM , Wm+ > 0,{0
(1)}, tm ̸= tM , Wm+ ≤ 0,

{0(1)}, tm = tM ,

 domestic-only,

or{b
(3)}, tm ̸= tM , Wm+ ≤ 0,

{b(3)}, tm = tM ,

 internationally diversified.

(4.12)

Here, Wm+ is the post-withdrawal wealth defined in (4.8). In the domestic-only case, 0(1) corresponds

to zero allocation to the explicitly parameterized (domestic stock) asset, implying full allocation to the

domestic bond. In the internationally diversified case, b(3) = (0, 1, 0) sets the explicitly parameterized

proportions on domestic stock (0), domestic bond (1), and foreign stock (0), thereby assigning zero

allocation to the foreign bond. If withdrawals render the account insolvent (Wm+ ≤ 0), trading stops

and the negative balance accrues at the borrowing rate (a spread above the bond rate). The portfolio is

liquidated at the terminal time tM .

The admissible control set for the pair
(
qm(·), pm(·)

)
, tm ∈ T , can then be written as follows

( qm,pm ) ∈ Z
(
Wm− ,Wm+ , tm

)
= Zq

(
Wm− , tm

)
×Zp

(
Wm+ , tm

)
, (4.13)

where Zq

(
Wm− , tm

)
and Zp

(
Wm+ , tm

)
are defined in (4.11) and (4.12), respectively. Let A be the set of

admissible controls, defined as follows

A =
{
U = (qm,pm)0≤m≤M

∣∣ (qm,pm) ∈ Z (Wm− ,Wm+ , tm)
}

(4.14)

For any tm, we define the subset of controls applicable from tm onwards as

Um =
{
(qℓ,pℓ)m≤ℓ≤M

∣∣ (qℓ,pℓ) ∈ Z (Wℓ− ,Wℓ+ , tℓ)
}
. (4.15)
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5 EW–CVaR portfolio formulation

We use CVaR to quantify downside risk in terminal wealth. Let ψ(w) denote the probability density

function of terminal wealth WT . For a given confidence level α ∈ (0, 1) (typically 0.01 or 0.05), the

CVaR of WT at level α is defined by

CVaRα (WT ) =
1
α

∫ VaRα(WT )

−∞
w ψ(w) dw. (5.1)

Here, VaRα(WT ) is the Value-at-Risk (VaR) of WT at confidence level α, given by5

VaRα (WT ) = {w | P [ WT ≤ w ] = α} . (5.2)

Intuitively, VaRα(WT ) is the wealth threshold that is not exceeded with probability α, while CVaRα(WT )

represents the expected value of wealth in the worst α-quantile of the distribution [52].

For subsequent use, we denote by EX0+ ,t+0
U0

[WT ] the expectation of terminal wealth WT under the

real-world measure, conditional on the system being in state X0+ at time t+0 , and using the control U0
over [t0, T ]. Let x0 = X0− be the initial state.

Following [53], the CVaR expression in (5.1) can be reformulated as a more computationally tractable

optimization problem involving a candidate threshold W that partitions the distribution of WT into its

lower tail and the remainder. This leads to

CVaRx0,t0
α,U0

= sup
W

EX0+ ,t+0
U0

[
W + 1

α min
(
WT −W, 0

) ∣∣X0− = x0

]
. (5.3)

The feasible range of W in (5.3) coincides with the set of all possible values for WT .

As a measure of reward, we consider the expected total withdrawals. For any admissible control

U0 ∈ A, we define expected withdrawals (EW)

EWx0,t0
U0

= EX0+ ,t+0
U0

[
M∑

m=0

qm

]
(5.4)

where qm = q(Wm− , tm) and Wm− is defined in (4.7) (i.e. after mortality credit distribution). Here, we

assume the investor survives the full decumulation period, consistent with [4].

Remark 5.1 (Discounting and mortality weighting). We remark that (5.4) applies no time discounting.

With all quantities expressed in real (inflation-adjusted) dollars, this is equivalent to assuming a zero real

discount rate. Over long horizons, short-term real rates have often been modest on average in advanced

economies, so adopting a zero real discount rate provides a reasonable and conservative baseline. Although

it is straightforward to introduce discounting, we adopt this assumption; see [19] for further discussion.

In addition, we do not mortality-weight withdrawals by survival probabilities. Such weighting is

natural when valuing cash flows averaged across a population (e.g. in annuity pricing), but our objective

represents the strategy of an individual retiree: conditional on being alive, the retiree requires the full

spending amount, not its survival-probability-weighted value. For example, if the probability of surviving

to a later age were 50%, mortality-weighting would mechanically halve the corresponding cash flows

(ignoring discounting), even though the retiree would still require the full amount if alive. Hence, a

conservative approach is to condition on survival to a fixed horizon (age 95 in our numerical illustration),

which is consistent with the Bengen spending-rule scenario that has proved popular with retirees [4].

Accordingly, we condition on survival to the horizon, consistent with the practitioner “plan-to-live, not

to die” convention; see [43].

5That is,
∫ VaRα(WT )

−∞ ψ(w) dw = α.
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The goal is to simultaneously maximize expected withdrawals (EW) and the CVaR of terminal

wealth—two objectives that are inherently in conflict. Solving this trade-off requires solving a bi-objective

optimization problem. To obtain Pareto-optimal solutions, we apply a scalarization approach, which

converts the bi-objective problem into a single-objective one by combining CVaR and EW using a

scalarization parameter γ > 0. Formally, for a given γ > 0, we seek a control U0 that solves

sup
U0∈A

{
EWx0,t0

U0
+γ CVaRx0,t0

α,U0

}
. (5.5)

Remark 5.2 (Pre-commitment and induced time-consistent interpretation). The scalarized objective

in (5.5) is evaluated at t0 and thus defines a pre-commitment control: the retiree selects the policy

at inception and then follows it over the horizon. Because CVaRα is generally not time-consistent in

multi-period settings, the EW–CVaR optimization is formally time-inconsistent and is often viewed as

non-implementable, since at time t > 0 the retiree would typically have an incentive to deviate from the

t0 pre-commitment strategy. Nonetheless, we use the pre-commitment formulation to determine the joint

optimizer W ∗ in (5.3). Fixing W ∗ thereafter yields the equivalent expected-value control problem

sup
U0∈A

EX0+ ,t+0
U0

[ M∑
m=0

qm +
γ

1− α
min(WT −W ∗, 0)

]
,

which satisfies the Bellman principle and is therefore time-consistent. Accordingly, we interpret the

computed control U∗
0 (γ) as the associated induced time-consistent strategy determined by (α, γ,W ∗) (see,

e.g. [10, 18, 57]).

Using (5.3)–(5.4), we recast (5.5) as a control problem involving both system dynamics, mortality

credit distributions, withdrawals, and rebalancing actions. For a fixed scalarization parameter γ > 0, the

pre-commitment EW–CVaR problem, denoted PCECt0(α, γ), is defined via the value function V (x0, t
−
0 ) as

(PCECt0(α, γ)) : V
(
x0, t

−
0

)
= sup

U0∈A
sup
W

{
EX0+ ,t+0
U0

[ M∑
m=0

qm + γ

(
W +

1

α
min (WT −W, 0)

)
+ ϵWT

∣∣∣∣X0− = x0

]} (5.6)

subject to:



(dynamics) {Xt} evolves via (4.2) t /∈ T ,

(tontine) Wℓ− given by (4.7),

(withdrawal) Wℓ+ =Wℓ− − qℓ as in (4.8),

(rebalancing) Xℓ+ as defined in (4.10), using pℓ(·),
(qℓ(·), pℓ(·)) ∈ Z(Wℓ− ,Wℓ+ , tℓ), ℓ = 0, . . . ,M,


tm ∈ T .

(5.7)

We denote by U∗
0 = U∗

0 (γ) the control that attains the supremum in (5.6)-(5.7), i.e. the optimal policy

for a given scalarization parameter γ.

Note that we have added the extra term EX0+ ,t0+
U0

[ϵWT ] to (5.6). If we have a maximum withdrawal

constraint, and if Wt ≫ W as t → T , the controls become ill-posed. In this fortunate state for the

investor, we can break investment policy ties either by setting ϵ < 0, which will force investments in

bonds, or by setting ϵ > 0, which will force investments into stocks. Choosing |ϵ| ≪ 1 ensures that this

term only has an effect if Wt ≫W and t→ T . See [19] for more discussion of this.

We interchange the supremum operators in (5.6) to express the value function in a more computa-

tionally tractable form:

V (x0, t
−
0 ) = sup

W
sup
U0∈A

{
EX0+ ,t+0
U0

[ M∑
m=0

qm + γ
(
W +

1

α
min (WT −W, 0)

)
+ ϵWT

∣∣∣∣X0− = x0

]}
. (5.8)
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The inner optimization yields a continuous function ofW , and the optimal thresholdW ∗(x0) is defined as

W ∗(x0) = argmax
W

sup
U0∈A

{
EX0+ ,t+0
U0

[ M∑
m=0

qm + γ
(
W +

1

α
min (WT −W, 0)

)
+ ϵWT

∣∣∣∣X0− = x0

]}
. (5.9)

Finally, the scalarization parameter γ reflects the investor’s level of risk aversion. For a given α ∈ [0, 1],

the EW–CVaR efficient frontier is defined as the following set of points in R2:

S(α) :
{(

CVaRx0,t0
α,U∗

0
[WT ] , EW

x0,t0
U∗
0

)
: γ > 0

}
, (5.10)

traced out by solving (5.6) for each γ > 0. In other words, for any fixed level of risk aversion γ,

the corresponding point in (5.10) cannot be improved in the EW–CVaR sense by any other admissible

strategy in A.

6 Neural network formulation

Our numerical approach to solving the EW-CVaR stochastic control problem builds on the growing

literature that uses NNs to approximate the optimal control directly, avoiding dynamic programming

methods [6, 31, 50, 51, 61]. These methods have been termed “global-in-time” machine-learning ap-

proaches to stochastic control [26]. This contrasts with the stacked NN approach, in which a separate

NN is used to approximate the control at each rebalancing step [24, 59]. More generally, these techniques

are special cases of “policy function approximation” for optimal stochastic control [47].

We begin by formulating the NN optimization problem based on the stochastic control structure of

the EW–CVaR formulation PCECt0(α, γ) given in (5.6)–(5.7). To this end, for an arbitrary admissible

control U0 ∈ A and an arbitrary threshold W , we define the objective

V (x0, t
−
0 ; U0,W ) = EX0+ ,t+0

U0

[ M∑
m=0

qm + γ

(
W +

1

α
min (WT −W, 0)

)
+ ϵWT

∣∣∣∣X0− = x0

]
,

subject to the dynamics and constraints specified in (5.7).

(6.1)

Then, the (exact) value function V (x0, t
−
0 ) of the PCECt0(α, γ) problem is given by

V (x0, t
−
0 ) = sup

W
sup
U0∈A

V (x0, t
−
0 ; U0,W ). (6.2)

6.1 Approximation of admissible control

The essence of our NN approach is to directly approximate an admissible control U0 in (6.2)—that is, a

sequence of withdrawal and rebalancing decisions
(
qm(·), pm(·)

)
for m = 0, . . . ,M—using feedforward,

fully connected neural networks. More specifically, given NN parameters (weights and biases) θq and

θp, we denote by q̂(Wm− , tm,θq) and p̂(Wm+ , tm,θp) the NN-based approximations of the withdrawal

control qm(·) and the rebalancing control pm(·), respectively. Formally, we write

q̂m(·) := q̂ (Wm− , tm,θq) ≃ qm(Wm− , tm), m = 0, 1, . . . ,M,

p̂m(·) := p̂ (Wm+ , tm,θp) ≃ pm(Wm+ , tm), m = 0, 1, . . . ,M, (6.3)

Û0 :=
{
(q̂m(·), p̂m(·))

∣∣m = 0, . . . ,M
}
≃ U0.

Here, Û0 denotes the NN-based approximation of the admissible control U0 ∈ A.
We now approximate U0 in the objective V (x0, t

−
0 ; U0,W ), as defined in (6.1), by a NN-based coun-

terpart Û0. This yields the NN-approximated objective VNN (x0, t
−
0 ; Û0,W ), defined as

VNN (x0, t
−
0 ; Û0,W ) = EX0+ ,t+0

Û0

[ M∑
m=0

q̂m + γ

(
W +

1

α
min (WT −W, 0)

)
+ ϵWT

∣∣∣∣X0− = x0

]
, (6.4)
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subject to NN-induced system evolution:

subject to



(dynamics) {Xt} evolves via (4.2), t /∈ T ,

(tontine) Wm− computed via (4.7),

(withdrawal) Wm+ =Wm− − q̂m(·) as in (4.8),

(rebalancing) Xm+ computed via (4.10) using p̂m(·),
(q̂m(·), p̂m(·)) ∈ Z (Wm− ,Wm+ , tm) ,

m = 0, . . . ,M,


tm ∈ T .

(6.5)

Then, using (6.2), V (x0, t
−
0 ) is approximated by a value function induced by the NN-based control,

denoted VNN (x0, t
−
0 ):

V (x0, t
−
0 ) ≃ VNN

(
x0, t

−
0

)
:= sup

W
sup
Û0∈A

VNN (x0, t
−
0 ; Û0,W ). (6.6)

6.2 Network architecture for controls

To approximate the withdrawal and rebalancing controls (qm, pm) at each decision time tm, we use

two fully connected feedforward neural networks: one for withdrawals q̂(·), and one for rebalancing

p̂(·), parameterized by θq ∈ Rνq and θp ∈ Rνp , respectively. These networks take inputs of the form

(Wm± , tm), but at different stages of investor actions: (i) q̂(·) uses pre-withdrawal wealth after mortality

credits have been applied, i.e. (Wm− , tm); and (ii) p̂(·) uses post-withdrawal wealth, i.e. (Wm+ , tm).

To enforce the control constraints in (4.11) and (4.12) directly within the networks, we apply suitable

output activation functions:

� Withdrawal control: Let z ∈ R denote the pre-activation output of the withdrawal network’s final

layer. We apply a sigmoid transformation scaled by a wealth-dependent range:

q̂(Wm− , tm,θq) = qmin +max (min(qmax,Wm−)− qmin, 0) ·
1

1 + e−z
. (6.7)

Since the sigmoid function 1
1+e−z maps into (0, 1), this ensures that q̂ ∈ Zq(Wm− , tm) without intro-

ducing additional optimization constraints.

� Rebalancing control: Let p̂m = (p̂
(1)
m , . . . , p̂

(k+1)
m ) denote the vector of rebalancing proportions at time

tm, where k = 1 for the domestic-only portfolio and k = 3 for the internationally diversified portfolio.

These proportions are obtained by applying a (k+ 1)-way softmax to the logits (z1, . . . , zk+1) ∈ Rk+1

output by the network’s final layer:

p̂ (i)
m =

ezi∑k+1
ℓ=1 e

zℓ
, i = 1, . . . , k + 1. (6.8)

This guarantees p̂
(i)
m ∈ [0, 1] and

∑k+1
i=1 p̂

(i)
m = 1. The first k components p̂

(1)
m , . . . , p̂

(k)
m correspond to

explicitly parameterized proportions, while p̂
(k+1)
m (e.g. p̂

(2)
m when k = 1 and p̂

(4)
m when k = 3) repre-

sents the remaining proportion. This transformation enforces the admissibility condition Zp(Wm+ , tm)

automatically, without the need for post-processing or constraints.

Using these activation functions, we reparameterize the NN-based control Û0 in terms of its underlying

network weights and biases (θq,θp). That is, we write VNN (x0, t
−
0 ; Û0,W ) as VNN (x0, t

−
0 ; θq,θp,W ) to

emphasize that the control policies are fully determined by these parameters.

Then, the control optimization problem (6.6) becomes an unconstrained optimization over the net-

work parameters θq, θp, and the CVaR threshold W :

VNN

(
x0, t

−
0

)
= sup

W
sup

θq ∈Rνq

sup
θp ∈Rνp

VNN

(
x0, t

−
0 ;θq, θp, W

)
= sup

(W,θq ,θp)∈Rνq+νp+1

VNN

(
x0, t

−
0 ;θq, θp, W

)
. (6.9)
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We denote by θ∗
q , θ

∗
p, and W

∗ the optimal network parameters and threshold.

We emphasize that, while the original control problem is constrained via the admissible set A (see

(4.14)), the reformulated NN objective (6.9) is unconstrained in terms of the training variables. This

allows the use of standard gradient-based methods for optimization. In our numerical implementation

(Sections 9 and 8), we use Adam stochastic gradient descent to train the networks and determine the

optimal parameters.

6.3 Approximation of the NN-induced objective

To evaluate the NN-induced objective in (6.9), we approximate its expectation using a finite set of N

independent sample paths, each representing a full set of exogenous drivers for the asset indices (generated

by (4.2)). Mortality enters only through the pathwise tontine gain rates (see Remark 2.1). These sample

paths are indexed by n = 1, . . . , N , and all path-dependent quantities carry the superscript “(n)”. For

example, X
(n)
t t∈[0,T ] is the simulated state trajectory for the n-th path, and W

(n)
T is the corresponding

terminal wealth.

Specifically, given any set of NN parameters (θq,θp) and threshold W , the NN-induced objective

VNN

(
x0, t

−
0 ;θq, θp, W

)
is approximated by

VNN

(
x0, t

−
0 ;θq, θp, W

)
≈ V̂NN

(
x0, t

−
0 , θq,θp,W

)
(6.10)

where V̂NN

(
x0, t

−
0 , θq,θp,W

)
:= . . .

. . . :=
1

N

N∑
n=1

[ M∑
m=0

q̂m
(
W

(n)
m− , tm; θq

)
+ γ

(
W + 1

α min(W
(n)
T −W, 0)

)
+ ϵW

(n)
T

]
, (6.11)

s.t.



(dynamics) {X(n)
t } drawn from the n-th sample path of index returns,

(generated by (4.2)) t /∈ T ,

(tontine) W
(n)
m− computed via (4.7),

using the pathwise g
(n)
m given by (4.4)(see Remark 2.1),

(withdrawal) W
(n)
m+ =W

(n)
m− − q̂

(
W

(n)
m− , tm,θq

)
,

(rebalancing) X
(n)
m+ computed from (4.10), using p̂

(
W

(n)
m+ , tm,θp

)
,(

q̂m(·), p̂m(·)
)
∈ Z

(
W

(n)
m− ,W

(n)
m+ , tm

)
, m = 0, . . . ,M,


tm ∈ T .

(6.12)

For subsequent benchmark comparisons, we generate sample paths using the generic transition dynam-

ics defined in (4.2), which encapsulate both parametric SDE models and nonparametric bootstrapped

trajectories. In our two-asset benchmarks, the dynamics follow a Kou-type jump–diffusion model (see

Subsection 8.4). For higher-dimensional or empirically calibrated settings, we adopt the block bootstrap

methodology described in Section 9.

As in Remark 2.1, each simulation path n carries a sequence of one–year conditional death probabil-

ities {δ(n)m−1}Mm=1. In the deterministic life–table case these are path–independent, δ
(n)
m−1 ≡ δm−1, whereas

under stochastic LC/CBD mortality they are read off from the simulated surface {q(n)x,t }. In both cases

we convert δ
(n)
m−1 to tontine gain rates g

(n)
m = δ

(n)
m−1/(1 − δ

(n)
m−1) which enter the pathwise versions of

(4.4)–(4.7) when computing W
(n)
m− in (6.12). Throughout the EW–CVaR optimization we adopt the

”plan to live” convention: during NN training the member is assumed to survive the full horizon, so

these mortality inputs affect only the size of the mortality credits, not the termination time of the path.

Given the sample–based objective V̂NN

(
x0, t

−
0 ; θq,θp,W

)
in (6.11)–(6.12), we train the networks by
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solving the empirical maximization problem6

(θ∗
q,θ

∗
p,W

∗) := argmax
θq ,θp,W

V̂NN

(
x0, t

−
0 ;θq,θp,W

)
(6.13)

with a gradient-based optimizer, such as Adam stochastic gradient descent. The resulting parameters

define the learned control policies

q̂∗(·) := q̂(·; θ∗
q), p̂∗(·) := p̂(·; θ∗

p),

which yields the NN-based optimal control

Û∗
0 :=

{
(q̂∗m(·), p̂∗

m(·))
∣∣ m = 0, . . . ,M

}
.

We evaluate the performance of these trained control policies on out-of-sample or out-of-distribution test

paths. Detailed numerical results are presented in Sections 9 and 8.

7 Pricing of the MBG

The optimal withdrawal and rebalancing controls q∗(·) and p∗(·) of the pre-commitment EW–CVaR

problem PCECt0(α, γ) maximize expected withdrawals conditional on survival—that is, the “plan to

live, not to die” objective defined in (5.4), which assumes the retiree remains alive throughout the

decumulation horizon.

By contrast, the MBG overlay is triggered by early death and guarantees that the member’s cumula-

tive withdrawals, expressed in nominal dollars, are never less than the initial investment L0, as reflected

in the payout formula (3.1). Because the MBG pays any shortfall to the estate only upon death—and

never credits the retiree’s account—the payout does not affect the account balance or the decision pro-

cess. Hence, the control pair (q∗(·),p∗(·)) remains optimal for the EW-CVaR objective even when the

overlay is present.

Since the MBG-payout (3.1) is defined in nominal dollars at the payment time tmτ , the nominal

amount must be converted to real units before valuation. Specifically, at time tmτ , the nominal shortfall

is multiplied by the CPI ratio CPI0/CPImτ to obtain its real value at t0. This adjustment reflects the

end-of-interval convention in Remark 3.1, under which the MBG-payout is implemented at time tmτ .

With this in mind, we define the random real dollar MBG payout

Zg :=
CPI0
CPImτ

max
(
L0 −

mτ−1∑
ℓ=0

q∗ℓ (·)
CPIℓ
CPI0

, 0
)
. (7.1)

We note that, equivalently, in (7.1), the combination of the two CPI ratios—CPIℓ/CPI0 inside the sum

and CPI0/CPImτ outside—acts to express all terms in real dollars at time t0.

7.1 Actuarial pricing formula

As discussed in Section 3.2, money-back protection can be funded through different mechanisms (e.g. in-

ternal pool funding versus external insurance). To report the economic cost of the MBG in a transparent

and implementation-agnostic way, we summarize it using an equivalent up-front load factor fg ∈ (0, 1)

applied to the initial contribution L0.

All quantities in the pricing rule below are expressed in real (inflation-adjusted) dollars at t0. We

choose fg so that the real value of the load equals the real-world expected MBG payout plus an explicit

prudential buffer based on a tail risk measure (a standard risk-measure/premium-principle approach in

actuarial pricing; see, e.g. [12, 63]).

Formally,
fg L0 = Ex0,t0

U∗
0

[
Zg

]
+ λCVaRx0,t0

αg

[
Zg

]
, λ ≥ 0, αg ∈ (0, 1). (7.2)

6Equivalently, we minimize the empirical loss function L
(
θq,θp,W

)
:= −V̂NN

(
x0, t

−
0 ;θq,θp,W

)
.
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� Ex0,t0
U∗
0

[
Zg

]
is the real-world expectation of the MBG payout Zg (in real t0 dollars), evaluated under

the wealth process induced by the optimal control U∗
0 = (q∗(·),p∗(·)) of the problem PCECt0(α, γ).

� CVaRx0,t0
αg

[
Zg

]
is the CVaR of the same real dollar payout at tail level αg, computed under the same

induced wealth process. The tail level αg is a prudential-buffer choice and need not coincide with the

confidence level α used in the retiree’s EW–CVaR objective.7

� λ is the prudential-buffer coefficient: λ = 0 corresponds to an actuarially fair (expected-cost) equivalent

load, while λ > 0 adds an explicit buffer for adverse outcomes (e.g. to reflect internal risk limits or

capital-adequacy considerations).

Given (λ, αg) and the induced payout distribution of Zg under the optimal policy U∗
0 , (7.2) defines

the equivalent load fg. In practice, the same economic cost could be implemented through different

mechanisms, such as an implicit reduction in the starting income rate, pool-level self-insurance, or

external insurance premia; our use of fg provides a common metric for comparing such designs.

We now give explicit expressions for the two valuation functionals in (7.2), both expressed in real

dollars at time t0:

Ex0,t0
U∗
0

[
Zg

]
= EX0+ ,t+0

U∗
0

[
Zg

∣∣ X0− = x0
]
,

CVaRx0,t0
αg

[
Zg

]
=

1

αg
EX0+ ,t+0
U∗
0

[
Zg 1{Zg≥VaRαg (Zg)}

∣∣ X0− = x0

]
,

(7.3)

subject to system evolution induced by U∗
0 = (q∗(·),p∗(·)):

subject to



(dynamics) {Xt} evolves via (4.2), t /∈ T , 0 ≤ t < tmτ

(tontine) Wℓ− computed via (4.7),

(withdrawal) Wℓ+ =Wℓ− − q∗ℓ (·) as in (4.8),

(rebalancing) Xℓ+ computed via (4.10) using p∗
ℓ (·),

 ℓ = 0, . . . ,mτ − 1.
(7.4)

Remark 7.1 (Interpreting fg in starting–rate terms). Equation (7.2) produces an equivalent up-front

load fg on the initial contribution L0 (i.e. a one-time cost measure expressed as a proportion of L0).

For ease of interpretation in the numerical results, we also translate fg into an implied reduction in

a notional starting payment rate. Fix a notional starting payment rate β0 (per dollar of contribution)

for the same tontine design without the MBG. Under the reporting convention that the MBG cost is

expressed as an equivalent up-front adjustment to the initial contribution (or benefit base), the implied

post–load starting rate is βg = (1 − fg)β0, i.e. a reduction of fgβ0 (or 104fgβ0 basis points) from the

reference rate. We emphasize that β0 is used only as a translation device for reporting and need not

correspond to any specific operational funding mechanism.

7.2 Simulation-based numerical methods

The MBG price is estimated from K independent sample paths, each representing a full set of exogenous

drivers for index returns as given by (4.2), and, when relevant, mortality realizations. These sample

paths are indexed by k = 1, . . . ,K, and all path-dependent quantities carry the superscript (k).

The pricing procedure uses the trained control networks q̂∗(·) and p̂∗(·) obtained from Section 6,

which approximate the optimal withdrawal and rebalancing strategies for the EW–CVaR problem. These

controls are held fixed during the MBG valuation and applied across all sample paths.

For each path k = 1, . . . ,K, the wealth evolution follows the dynamics induced by the control pair

Û∗
0 =

(
q̂∗(·), p̂∗(·)

)
obtained in Section 6. We write {X(k)

t }t∈[0,T ] for the resulting state trajectory on path

7The MBG payout is a low-frequency, high-severity liability with a heavy-tailed profile, so tail measures such as CVaR

provide a natural basis for a prudential buffer.
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k; all withdrawals and allocations at the rebalancing times tm ∈ T are the network outputs q̂∗(W
(k)
m− , tm)

and p̂∗(W
(k)
m+ , tm) evaluated with the path-specific inputs.

As summarized in Remark 2.1, each simulation path k is equipped with a sequence of one–year

conditional death probabilities {δ(k)m−1}Mm=1. These probabilities are converted to tontine gain rates

g
(k)
m = δ

(k)
m−1/

(
1 − δ(k)m−1

)
when computing mortality credits via (4.4)–(4.7). In addition, they also drive

the simulation of death times and MBG payouts along each path as outlined in Algorithm 7.1 below.

Together with the domestic CPI series {CPIm}Mm=0 (one value per decision time), these mortality inputs

determine the timing and real dollar size of the pathwise MBG payouts.

The simulation-based pricing details are described in Algorithm 7.1. This algorithm computes

Monte Carlo estimates Ê[Zg] and ĈVaRαg(Zg) of the theoretical valuation functionals Ex0,t0
U∗
0

[Zg] and

CVaRx0,t0
αg

[Zg] in (7.3). For each path k = 1, . . . ,K, we denote by Z
(k)
g the simulated real dollar MBG

payout, obtained by applying (7.1) with the path-specific withdrawal history and death time.

Algorithm 7.1 Simulation–based MBG pricing under trained NN controls

1: initialize the index list K ← {1, . . . ,K};
2: initialise the list Z ← [0, . . . , 0] of length K;

3: initialize MBG-payouts Z
(k)
g ← 0, k = 1, . . . ,K;

4: initialize cumulative nominal withdrawals W(k)← 0, k = 1, . . . ,K;

5: initialize X
(k)
0− = x0 and compute W

(k)
0− for all k ∈ K;

6: for m = 0 to M − 1 do

7: for each k ∈ K do

8: compute pathwise g
(k)
m via (4.4) (see Remark 2.1) and W

(k)
m− via (4.7); {mortality credit}

9: q
(k)
m ← q̂∗

(
W

(k)
m− , tm

)
; {real dollars}

10: W(k) ←W(k) + q
(k)
m

CPI
(k)
m

CPI0
; {nominal withdrawal accumulation}

11: W
(k)
m+ ←W

(k)
m− − q

(k)
m ;

12: obtain X
(k)
m+ via (4.10) using p̂∗(W (k)

m+ , tm
)
; {rebalancing}

13: compute X
(k)
(m+1)− , k = 1, . . .K, via (4.2); {simulation over [t+m, t

−
m+1]};

14: if the member dies in (t+m, t
−
m+1] then

15: Z(k)
g ← CPI0

CPI
(k)
m+1

max
(
L0 −W(k), 0

)
;

16: set Z(k) ← Z
(k)
g ;

17: remove path k from list K;
18: end if

19: end for

20: if K = ∅ then
21: break; {all deaths processed}
22: end if

23: end for

24: compute sample mean: Ê =
1

K

K∑
k=1

Z(k)
g ;

25: sort list Z in descending order to obtain Z(1) ≥ Z(2) ≥ · · · ≥ Z(K);

26: compute empirical ĈV aRαg : ĈV aRαg =
1

⌈αgK⌉

⌈αgK⌉∑
j=1

Z(j);

27: return
(
Ê, ĈV aRαg

)
;
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With Ê[Zg] and ĈVaRαg(Zg) computed by Algorithm 7.1, the actuarial load factor fg defined by

(7.2) is approximated by

f̂g :=
Ê[Zg] + λ ĈVaRαg(Zg)

L0
. (7.5)

In the numerical results, we report f̂g (and the associated up-front deduction f̂gL0).

Remark 7.2. In Algorithm 7.1 the test “member dies during (t+m, t
−
m+1]” (Line 14) is implemented as

a Bernoulli experiment based on the pathwise probabilities δ
(k)
m introduced in Remark 2.1. Concretely,

for every path k and every year m in which the member is still alive we draw U ∼ Uniform(0, 1) and

declare death in (t+m, t
−
m+1] when U < δ

(k)
m . The corresponding index is then mτ = m+ 1, so that, under

the timing convention of Remark 3.1, the MBG payment is effected at tmτ . If no death is recorded up to

m =M − 1, the member is deemed to have survived the entire horizon and Z
(k)
g = 0 on that path.

Remark 7.3 (Inflation treatment in MBG pricing). In the numerical experiments, wealth is simulated

in real (inflation-adjusted) units using bootstrapped real asset returns, so CPI does not enter the wealth

recursion. CPI is used only in Algorithm 7.1 to implement the money-back test in nominal dollars at

the death time and to express the resulting MBG payout back in real t0 dollars.

To obtain a stochastic (pathwise) inflation adjustment consistent with the bootstrap, the CPI index is

treated as an additional series in the resampling procedure: monthly CPI changes are bootstrapped jointly

with the asset-return blocks (preserving the dependence structure), a CPI index path is reconstructed along

each simulated path, and the corresponding pathwise CPI ratios are used in the nominal–real conversion

step of Algorithm 7.1. See CPI
(k)
m on Line 10 and CPI

(k)
m+1 on Line 15 of Algorithm 7.1.

8 Benchmark validation

In this section we validate our numerical implementation by replicating, as closely as possible, the

synthetic–market results of [21]. Their study solves an EW–CVaR optimal stochastic control problem

for a decumulation portfolio with and without a tontine overlay, using dynamic programming and a

PIDE solver, and reports the corresponding efficient frontiers and optimal controls.

We follow the modelling assumptions, data calibration, and base–case investment scenario in [21],

which are described below, and assume mortality given by the 2014 Canadian Pensioner Mortality

Table (CPM2014), treated as a deterministic period life table. In our notation this corresponds to

a sequence of one–year conditional death probabilities {δm−1}Mm=1 taken directly from CPM2014, with

δ
(n)
m−1 ≡ δm−1 on every simulation path n, exactly as in the deterministic case discussed in Subsection 2.2.1

and Remark 2.1. Within this common framework, we compare the EW–CVaR efficient frontiers produced

by our NN method with the reference frontiers reported in Figure 1 of [21].

In the remainder of the paper, we also consider a more general setting with an internationally diver-

sified four–asset opportunity set and stochastic mortality, as developed in Subsection 2.2. However, the

benchmark validation in this section is based solely on the original two domestic assets and deterministic

mortality, in order to allow a direct comparison with [21].

8.1 Asset dynamics

For the benchmark we restrict attention to the two domestic assets considered in [21]: a broad domestic

equity index and a constant–maturity domestic short–term government bond index. We follow the usual

practitioner approach and directly model the returns of the constant–maturity bond index as a stochastic

process (see, e.g. [32, 34]). Consistent with the stock index, we assume that the constant–maturity bond

index also follows a jump–diffusion specification. Empirical justification for this modelling choice can be

found in [19][Appendix A].

We denote by {St}0≤t≤T the real value invested in the domestic stock index at time t, and {Bt}0≤t≤T
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the real value invested in the domestic bond index. In the absence of investor actions (withdrawals or re-

balancing), both assets follow correlated double–exponential jump–diffusion processes as in [21][Section 4].

Let ξs be a random variable representing the jump multiplier, such that a jump occurring at time t

results in St = ξs St− . We assume ln(ξs) follows an asymmetric double-exponential distribution with

probability density function (see [28, 29])

φs(y) = ζs ηs,1 e
−ηs,1y 1y≥0 + (1− ζs) ηs,2 eηs,2y 1y<0, ζs ∈ [0, 1], ηs,1 > 1, ηs,2 > 0. (8.1)

Between rebalancing times, and in the absence of active control, the stock index process {St} evolves

according to the jump-diffusion dynamics

dSt
St−

= (µs − λs κs) dt+ σs dZs(t) + d

πs(t)∑
i=1

(ξs,i − 1)

 , t ∈ [t+m−1, t
−
m], tm−1 ∈ T . (8.2)

Here, µs and σs are the (inflation-adjusted) drift and instantaneous volatility, respectively, and {Zs(t)}t∈[0,T ]

is a standard Brownian motion. The process {πs(t)}0≤t≤T is a Poisson process with a constant finite

intensity rate λs > 0. In (8.2), the jump amplitudes {ξs,i}∞i=1 are independent and identically distributed

(i.i.d.) random variables having the same distribution as ξs; κs is the compensated drift adjustment

given by

κs = E[ξs − 1] =
ζs ηs,1
ηs,1 − 1

+
(1− ζs) ηs,2
ηs,2 + 1

− 1. (8.3)

The Brownian motion {Zs(t)}t∈[0,T ], the Poisson process {πs(t)}t∈[0,T ], and the jump multipliers {ξs,i}
are assumed to all be mutually independent.

Similarly, between rebalancing times, the bond index process {Bt} evolves according to

dBt

Bt−
=

(
µb − λbκb + µcb1{Bt−<0}

)
dt+ σb dZb(t) + d

( πb(t)∑
i=1

(ξb,i − 1)

)
, t ∈ [t+m−1, t

−
m], tm−1 ∈ T , (8.4)

where the parameters in (8.4) are defined similarly to those in (8.2). In particular, {πb(t)}0≤t≤T is a

Poisson process with a positive, finite, constant jump intensity λb. The jump amplitudes {ξb,i}∞i=1 are

i.i.d. random variables, each distributed as ξb, where ln(ξb) follows an asymmetric double-exponential

distribution with probability density function given by

φb(y) = ζb ηb,1 e
−ηb,1y 1y≥0 + (1− ζb) ηb,2 eηb,2y 1y<0, ζb ∈ [0, 1], ηb,1 > 1, ηb,2 > 0. (8.5)

In (8.4), the term µcb1{Bt−<0}, the parameter µcb ≥ 0 represents the borrowing spread applied when the

bond amount becomes negative. The processes {Zb(t)}t∈[0,T ], {πb(t)}0≤t≤T , and the jump mutipliers

{ξb,i} are assumed to all be mutually independent.

The diffusion components are correlated, dZs(t) dZb(t) = ρsb dt, while all jump processes and jump

sizes are mutually independent; namely, the Poisson processes {πs(t)}, {πb(t)} and the corresponding

jump multipliers {ξs,i}, {ξb,i} are mutually independent, and independent of {Zs} and {Zb}.

8.2 Synthetic–market calibration

Following [21], the synthetic market is calibrated to monthly real total–return series for the CRSP

value–weighted equity index and the CRSP US 30–day T–bill index over the period 1926:1–2020:12,

with both series deflated by the US CPI. In [21], the double–exponential jump–diffusion parameters

(µs, σs, λs, ζs, ηs,1, ηs,2) for the stock index and (µb, σb, λb, ζb, ηb,1, ηb,2) for the bond index, together with

the diffusion correlation ρsb, are estimated using the threshold–based jump filter described therein. In

our validation we do not re–estimate these parameters. Instead, we adopt the annualized real parameter

values reported in Table 1 of [21], which we reproduce in Table 8.1.
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Table 8.1: Annualized real parameter values for the double–exponential jump–diffusion model, taken

from [21]. The stock asset is the CRSP value–weighted total return index; the bond asset is the 30–day

US T–bill index, both deflated by CPI.

Stock (CRSP) µs σs λs ζs ηs,1 ηs,2 ρsb
0.08912 0.1460 0.3263 0.2258 4.3625 5.5335 0.08420

30–day T–bill µb σb λb ζb ηb,1 ηb,2 ρsb
0.00460 0.0130 0.5053 0.3958 65.801 57.793 0.08420

8.3 Retirement scenario

The base–case retirement scenario, which underlies the synthetic–market efficient frontiers used for

validation, mirrors the specification in Section 11 and Table 3 of [21]. All monetary quantities are

expressed in thousands of real dollars. A concise summary is given in Table 8.2.

Table 8.2: Base–case retirement scenario used for validation, matching the specification in [21]. Mon-

etary units are thousands of real dollars.

Item Value

Retiree 65–year–old Canadian male

Mortality table CPM2014 (deterministic life table)

Investment horizon T 30 years

Equity index Real CRSP capitalization–weighted total return index

Bond index Real US 30–day T–bill index

Initial wealth W0 1000

Rebalancing / withdrawal times t = 0, 1, . . . , 29 (annual)

Minimum annual withdrawal qmin 40

Maximum annual withdrawal qmax 80

Equity fraction range pm ∈ [0, 1]

Borrowing spread µcb 0.02

Tontine gain rate gm as in Equation (2.11)

Group gain Γm 1.0 (as discussed in Subsection 2.1.3)

Tontine fee ϱ 1− e−0.005 ≈ 0.00499 (49.9 bps/year)8

Risk tail level α 0.05

Stabilization parameter ε −10−4

Market parameters as in Table 8.1

In this setting, the investor controls annual withdrawals qt ∈ [qmin, qmax] and the equity fraction

pt ∈ [0, 1]. Wealth can become negative if required withdrawals exceed available funds, in which case the

portfolio is liquidated and subsequent withdrawals are financed as debt growing at the bond rate plus

the borrowing spread µcb. Mortality enters only through the deterministic life-table probabilities {δm−1}
from CPM2014, so that all synthetic–market paths share the same mortality profile (Remark 2.1).

The risk–reward trade–off is quantified using expected total withdrawals (EW) and the expected

shortfall (ES) at the 5% level of terminal wealth WT , as in [21].

8Forsyth et al. [21] model the tontine fee as a continuously charged rate Tf = 0.5% per annum, which enters the wealth

recursion through a factor exp(−Tf∆t) each year; see, for example, Equations (5.3)–(5.6) in [21]. In this paper, to align

with industry practice, we instead deduct a single proportional yearly fee ϱ at each decision time. We choose ϱ such that

(1− ϱ) = e−Tf (with ∆t = 1), i.e. ϱ = 1− e−0.005, so that the effective annual charge matches Tf .
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8.4 Validation results

We validate our NN implementation by reproducing the synthetic–market EW–CVaR efficient frontiers

reported in [21], both with and without a tontine overlay. Figure 8.1 compares the reference fron-

tiers (computed using the PDE-based control method in [21]) with the NN frontiers obtained from our

training procedure, together with the constant-withdrawal/constant-allocation benchmark. Overall, the

NN approach yields EW–CVaR efficient frontiers in close agreement with the PDE-based reference and

preserves its qualitative 1structure.

As shown in Figure 8.1, the NN frontiers closely track the PDE-based reference curves across the

range of scalarization parameters γ used to trace the trade-off. Consistent with the figure, unreported

summary errors confirm close agreement in both the annualized expected withdrawal E[
∑

m qm]/T and

the corresponding CVaR0.05 values along the frontier. The quality of the approximation is similar in the

no-tontine case.

Beyond pointwise agreement, the NN frontiers preserve the expected qualitative behavior in γ: as risk

aversion increases, the annualized expected withdrawal decreases and CVaR0.05 moves in the correspond-

ing direction. In particular, the region of the frontier most relevant in practice is nearly indistinguishable

from the PDE-based reference in Figure 8.1.

Figure 8.1: Validation of the EW–CVaR

efficient frontiers in the synthetic mar-

ket. Reference frontiers with and without

a tontine overlay, labelled respectively as

“No Tontine (PDE Control)” and “Ton-

tine (PDE Control)”, are compared with

the corresponding NN frontiers, together

with the constant withdrawal/constant al-

location benchmark. Units: thousands of

dollars.

9 Internationally diversified portfolios

9.1 Asset return data and preprocessing

For the internationally diversified experiments, we take the perspective of a domestic (Australian) in-

vestor and work with four indices: Australian equities and government bonds (domestic), and U.S.

equities and government bonds (foreign) converted into AUD. All returns are expressed in real (infla-

tion–adjusted) AUD at a monthly frequency.

Our empirical sample runs from 1935:1 to 2022:12. Where necessary, individual series are backcast

and truncated so that all four indices and the Australian CPI are jointly available over a common horizon.

This long historical panel is used both to describe the “historical market” and as input to the bootstrap

simulations described below and in Section 6.

Domestic equity. As a proxy for the Australian equity market, we construct a capitalization–weighted

total return series for the All Ordinaries index. Monthly price levels are taken from the Bloomberg

All Ordinaries Price Index (AS30) and combined with trailing dividend yield data from [35] and the

Reserve Bank of Australia (RBA) to impute reinvested dividends prior to the start of the Bloomberg All

Ordinaries Accumulation Index (XAOA) in 1999. From 1999 onward, the constructed series is aligned

to XAOA, so that the resulting index is a consistent long–horizon Australian equity total return series.
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Domestic bonds. The domestic bond asset is represented by a 10–year Commonwealth Government

bond total return index constructed from two sources. From December 1935 to December 2011 we use the

annual Australian government bond total return series of [27], which is based on micro–level Common-

wealth bond data targeting a 10–year maturity [9]. We convert this annual total return index to monthly

frequency by interpolating the level of the total return index and then computing month–on–month re-

turns. From May 2011 onward we splice in the S&P/ASX Australian Government Bond 7–10 Year Total

Return Index (Bloomberg), available at a monthly frequency, to obtain a single long–horizon nominal

total return bond index for the Australian market.

U.S. equity and bonds. For the U.S. market, we start from the same CRSP nominal total return

series as in Subsection 8.2, namely the value–weighted equity index and the 30–day Treasury bill (T–bill)

index, both in USD. These nominal USD returns are first converted into AUD using the end–of–month

AUD/USD exchange rate, constructed from Federal Reserve Banking and Monetary Statistics archives

(January 1935–December 1968) and the RBA historical exchange rate series thereafter, spliced to form a

continuous monthly AUD/USD series, and are then placed on the same real AUD basis as the domestic

assets via CPI deflation (see below).

Inflation and real returns. Inflation is measured by the Australian Consumer Price Index published

by the RBA. The CPI series is obtained entirely from the RBA: from September 2017 onward it is

available monthly, while before that date it is published quarterly. We treat the quarterly CPI as the

benchmark series and linearly interpolate it to monthly frequency to match the financial data. For each

asset we form a nominal total return index, convert U.S. series to AUD where appropriate, and then

obtain real returns by deflating with the interpolated Australian CPI. In this way all four assets are

expressed in real AUD terms, consistent with the objective of funding real retirement spending for an

Australian investor.

Historical market and bootstrap sampling. Future index paths in the internationally diversified

experiments are generated nonparametrically using the stationary block bootstrap [13, 41, 45, 46]. We

apply geometrically distributed block lengths and sample blocks of four–asset returns jointly to preserve

both cross–sectional correlations and serial dependence. The expected block length is chosen following

the data–driven procedure of [41] applied to each series, and then harmonised across assets to obtain a

common effective block size of the order of a few years. All bootstrap sampling is carried out on the

preprocessed monthly real AUD return series described above.

Return characteristics and dependence structure. Tables 9.1 and 9.2 summarize the prepro-

cessed monthly real AUD returns across all four assets. As indicated in Tables 9.1–9.2, U.S. equity has

Table 9.1: Summary statistics of monthly real returns (1935:1–2022:12): annualized mean, annualized

geometric mean, and annualized volatility. VaR0.05 (m) and CVaR0.05 (m) report the 5% Value-at-Risk

and CVaR of monthly returns.

Asset Mean (ann.) Geo. mean (ann.) Vol (ann.) VaR0.05 (m) CVaR0.05 (m)

U.S. 30–day T–bill 0.003 -0.001 0.095 -0.041 -0.056

U.S. equity index 0.082 0.071 0.165 -0.064 -0.096

AU 10–year bond 0.012 0.012 0.036 -0.015 -0.025

AU equity index 0.069 0.059 0.151 -0.065 -0.100

the highest historical average real return in this sample and is only weakly correlated with Australian
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Table 9.2: Correlation matrix of monthly real returns (1935:1–2022:12).

U.S. 30-day
T–bill

U.S.
equity

AU 10-year
bond

AU
equity

U.S. 30-day T–bill 1.00 0.34 0.17 -0.22

U.S. equity 0.34 1.00 0.10 0.33

AU 10-year bond 0.17 0.10 1.00 0.11

AU equity -0.22 0.33 0.11 1.00

equity (correlation ≈ 0.33, well below 1)9. This comparatively low cross-country equity correlation sug-

gests meaningful scope for international diversification, even among developed equity markets, a point

we revisit later. By contrast, once expressed in real AUD, the U.S. 30–day T–bill has a near–zero average

real return and substantial volatility inherited from exchange–rate fluctuations, making short–maturity

foreign fixed income a less attractive defensive asset than domestic government bonds. These empirical

patterns are revisited when interpreting the optimal controls below.

9.2 Mortality assumptions

In the internationally diversified experiments, we model the lifetime of a 65–year–old Australian male

and consider both deterministic and stochastic mortality, consistent with the general framework in

Subsection 2.2 and Remark 2.1.

For the deterministic specification, we use the most recent available single–year Australian male

period life table (mltper 1x1.txt) from the Human Mortality Database (HMD, [25]), specifically the

1x1 Australian male life table covering calendar years 1921–2021.10 This table provides annual one–year

death probabilities qx,t over age and calendar year. Fixing the retirement age x0 and retirement date

t0, and taking annual decision times tm = t0 + m, the corresponding conditional death probabilities

{δm−1}Mm=1 are defined exactly as in equation (2.12). In a homogeneous pool we set δjm−1 ≡ δm−1

for all members j, and the associated tontine gain rates gm entering the wealth recursion follow from

equation (2.11).

For stochastic mortality, we work with the same HMD source but use the raw deaths and exposures

required for model calibration. Specifically, we extract annual Australian male deaths Dx,t and central

exposures-to-risk Ec
x,t for ages 55–95 and calendar years 1987–2021 from the HMD tables Deaths 1x1.txt

and Exposures 1x1.txt.11 When modelling one–year death probabilities qx,t (rather than central death

rates), we follow [62] and approximate initial exposures by E0
x,t ≈ Ec

x,t + 0.5Dx,t, and then construct

the corresponding empirical one–year death probabilities as qx,t := Dx,t/E
0
x,t. These historical mortality

series are used to calibrate a single–population model from the generalized age–period–cohort (GAPC)

family (such as LC or CBD models), following Subsection 2.2. Calibration and forecasting are imple-

mented in R using the StMoMo package [62], which casts these specifications in the GAPC framework.

Model–specific identifiability constraints are those standard in StMoMo; for brevity we do not reproduce

them here, and instead refer the reader to [62] for details.

On each simulated path k, the associated sequence of one–year conditional death probabilities

{δ(k)m−1}Mm=1 is defined as in (2.20), and the corresponding pathwise tontine gain rates g
(k)
m are obtained

via (2.11). As summarized in Remark 2.1, these sequences {δ(k)m−1} (and hence {g(k)m }) are used through-

9Over 1990:1–2022:12, the correlation is 0.48 (vs 0.33 in the full sample), indicating higher dependence in the recent

period.
10Available at https://www.mortality.org/File/GetDocument/hmd.v6/AUS/STATS/mltper_1x1.txt.
11Available at https://www.mortality.org/File/GetDocument/hmd.v6/AUS/STATS/Deaths_1x1.txt and https://www.

mortality.org/File/GetDocument/hmd.v6/AUS/STATS/Exposures_1x1.txt .
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out our numerical experiments: they drive mortality credits in the NN training and efficient–frontier

computation, and determine death times and MBG payouts in the pricing overlay (also see Remark 7.2).

9.3 Experimental setup and scenarios

For the internationally diversified experiments, we retain the same decumulation framework used in

the benchmark validation (Table 8.2), but now from the perspective of a 65–year–old Australian male

retiree investing in the four indices described in Subsection 9.1. All monetary quantities are interpreted

as thousands of real Australian dollars, and the mortality assumptions follow Subsection 9.2.

More specifically, the retiree starts at time t0 = 0 with initial wealth W0 = 1000, corresponding to an

initial purchase price L0 = 1000 for the tontine product with the embedded MBG overlay described in

Section 3. The planning horizon is T = 30 years with annual decision times tm = m,m = 0, . . . ,M , where

M = 30. The minimum and maximum annual withdrawals are fixed at qmin = 40 and qmax = 80. In ad-

dition, we also enforce the no–shorting and no–leverage constraints as in Section 4. In these experiments,

following QSuper’s Lifetime Pension PDS [49], we use an annual tontine fee of ϱ = 0.11% (11 bps).

Risk and reward are measured by the same EW–CVaR criterion as in Section 5: expected total real

withdrawals over [0, T ] and CVaRα of terminal wealth WT at level α = 0.05. For a given scalarization

parameter γ > 0, we first train neural networks to approximate the optimal control U∗
0 (γ) and compute

the corresponding point on the EW–CVaR efficient frontier under either deterministic table mortality or

stochastic GAPC–based mortality. The MBG overlay is then priced ex post, holding U∗
0 (γ) fixed, using

the actuarial pricing rule (7.2) and the simulation procedure in Section 7.

9.4 EW–CVaR efficient frontiers (deterministic mortality)

We now discuss the EW–CVaR efficient frontiers for both cases: two–asset (domestic–only) and four–

asset (internationally diversified).

As in [21], we include a constant–withdrawal, constant–allocation benchmark as a reference point on

the EW–CVaR frontiers. In line with the 4% rule of [4], the benchmark always withdraws 40 (thousand

real dollars) per year and maintains fixed portfolio weights over time. For each case, we select the

benchmark by grid search over asset weights in 10% increments, choosing the allocation that minimizes

the ES (equivalently, maximizes CVaR0.05) of terminal wealth.

In the two–asset case, the search is over equity fractions pds ∈ {0, 0.1, . . . , 1} with pdb = 1 − pds;

the best constant–weight benchmark has a 50% domestic equity allocation and ES ≈ −617.1. In the

four–asset case, we search over all weight vectors on the 10% grid whose components sum to one;

the best benchmark has allocation (pds, p
d
b, p

f
s , p

f
b ) = (0.1, 0.3, 0.2, 0.4) with ES ≈ −446.1. These two

constant–strategy benchmarks appear as single points in the efficient–frontier figures for the two–asset

and four–asset experiments, respectively.

Figure 9.1 shows the EW–CVaR efficient frontiers obtained by NNs with and without a tontine overlay

in the two–asset (domestic–only) and four–asset (internationally diversified) cases, together with the

corresponding constant–weight benchmarks.

We make the following key observations about Figure 9.1:

� The internationally diversified (four–asset) constant–weight benchmark point lies essentially on the

two–asset no–tontine frontier. Thus, at the 4%–rule withdrawal level, a simple buy–and–hold interna-

tionally diversified allocation can achieve an EW–CVaR trade–off comparable to that delivered by the

domestic–only EW–CVaR optimal strategy without a tontine overlay. This highlights the strength of

international diversification even before adding longevity pooling.

� In both the domestic–only and internationally diversified settings, the efficient frontiers obtained from

our optimization lie well above and to the right of their corresponding constant–weight benchmark

points. This confirms that “4%-rule–style” strategies with fixed withdrawals and static allocations are
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Figure 9.1: EW–CVaR efficient fron-

tiers for domestic–only (two–asset) and inter-

nationally diversified (four–asset) portfolios,

with and without a tontine overlay. Constant–

weight benchmarks are shown as single points.

Units: thousands of real AUD.

substantially less efficient than the optimal dynamic policies obtained from our EW–CVaR optimiza-

tion. For example, even at CVaR0.05(WT ) ≈ 500 (thousand real AUD) at age 95, a very conservative

level of terminal-wealth downside protection, the four–asset tontine frontier supports expected annual

withdrawals of about 70 (thousand real AUD), i.e. roughly 7% of initial wealth, compared with the

fixed 40 (thousand, 4%) withdrawal implied by the 4% rule benchmark.

� Comparing the two “no tontine” curves, the four–asset frontier is generally shifted upwards and to the

right relative to the two–asset frontier over the practically relevant range of CVaR0.05. Allowing the

retiree to invest in both Australian and U.S. assets therefore supports higher annualized withdrawals

for a similar, or even improved, level of downside risk compared with a purely domestic portfolio.

This is consistent with Tables 9.1–9.2: in this sample, U.S. equity has a higher average real return

than Australian equity, and the cross–country equity correlation is well below one, so adding foreign

equity provides potential to improve the EW–CVaR trade–off even when used selectively rather than

through uniformly higher equity exposure.

� For both asset settings, the tontine frontier dominates the corresponding no–tontine frontier, with

especially pronounced gains in the four–asset case: over a wide range of scalarization parameters γ, the

four–asset tontine strategies deliver both higher expected annual withdrawals and a much less adverse

5% tail of WT than the corresponding four–asset no–tontine strategies, illustrating the substantial

combined benefit of international diversification and longevity pooling under optimal dynamic controls.

In the next subsection, we examine how these frontiers shift when mortality is modelled stochastically.

9.5 Effect of stochastic mortality on EW–CVaR frontiers

We now examine how introducing stochastic mortality affects the EW–CVaR efficient frontier in the four–

asset tontine setting. Throughout this subsection we keep the assets, fee structure, control constraints,

and scalarization setup identical to Subsection 9.4; only the mortality specification changes. Figure 9.2

compares the EW–CVaR efficient frontiers for the four–asset tontine portfolio under three mortality

specifications: (i) deterministic table mortality as in Subsection 9.2, (ii) stochastic LC mortality, and

(iii) stochastic CBD mortality. In all cases we retain the “plan to live” convention: the retiree is assumed

to survive to the end of the horizon, so mortality only affects the size of mortality credits through the

one–year death probabilities (cf. Remark 2.1), not the termination time of a path.

A key point for interpretation is that the horizon corresponds to very advanced age (age 95 in

the baseline calibration with a 30–year horizon). Consequently, extremely large tail targets for termi-

nal wealth—for example, CVaR0.05(WT ) ≈ 1000 (thousand real AUD)—are arguably overly conserva-

tive, since they imply substantial residual wealth at age 95. In many practical settings, values around

CVaR0.05(WT ) ≈ 500 already represent a sizeable buffer that could fund minimum spending well beyond
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Figure 9.2: EW–CVaR efficient frontiers

for the four–asset tontine portfolio under

deterministic table mortality and stochastic

mortality (LC and CBD models). Units:

thousands of real AUD.

the model horizon. Therefore, the most decision-relevant part of Figure 9.2 is the region to the left of (or

up to) roughly CVaR0.05(WT ) = 500, where the controls correspond to higher withdrawals rather than

preserving large terminal balances.

Over this economically relevant region, the impact of stochastic mortality is visible but modest: the

stochastic frontiers track the deterministic table frontier closely, with only a relatively small leftward shift.

This shift is consistent with systematic longevity improvement in the stochastic models: when death

probabilities fall relative to the baseline table, survivors receive smaller mortality credits, which lowers

terminal wealth in the adverse outcomes that drive CVaR0.05(WT ). While systematic longevity risk does

erode the benefits of the tontine overlay to some extent, the four–asset tontine portfolio under stochastic

mortality still offers an attractive combination of high expected withdrawals and improved CVaR0.05(WT )

relative to the domestic–only and constant–weight strategies discussed in Subsection 9.4 (Figure 9.1).

A further observaton is that the LC and CBD frontiers are close to each other, with the CBD curve

typically lying slightly further to the left. Conditional on modelling systematic longevity risk, the specific

choice between LC and CBD therefore has only a relatively minor effect on the EW–CVaR trade–off.

9.6 Optimal control heatmaps

To illustrate the structure of the learned policies, Figure 9.3 plots the optimal rebalancing controls for

the four–asset tontine with stochastic mortality (LC model) and a representative scalarization parameter

γ = 1.5. Each panel shows, as a function of time and real wealth, the fraction of wealth invested in one

of the four indices described in Subsection 9.1, together with the 5th, 50th, and 95th percentiles of the

wealth distribution under the optimal policy. Control heatmaps under deterministic table mortality and

the CBD mortality model are qualitatively very similar and are therefore omitted for brevity.

9.6.1 General comments about Figure 9.3

We make several qualitative observations from Figure 9.3:

� Along the median and upper wealth trajectories, the strategy exhibits a clear tilt towards domestic

assets: a substantial fraction of wealth is invested in Australian securities, with the Australian 10–year

government bond (Figure 9.3 (c)) acting as the main stabilising asset. Specifically, for moderate to high

wealth levels, the allocation to the domestic bond is large (typically well above 50%), while the U.S.

30–day T–bill (Figure 9.3 (d)) is used only marginally. This aligns with Table 9.1: the domestic bond

index has substantially lower volatility and markedly milder 5% monthly tail losses (VaR/CVaR) than

the U.S. T–bill once returns are expressed in real AUD, supporting its role as the primary defensive

allocation in the optimal policy.

Along the 95th–percentile path the equity allocations (Figures 9.3 (a) and (b)) are gradually reduced,
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γ = 1.5

(a) Australian equity index (domestic)

γ = 1.5

(b) U.S. equity index

γ =1.5

(c) Australian 10–year government bond in-

dex (domestic)

γ = 1.5

(d) U.S. 30–day T–bill index

Figure 9.3: Optimal rebalancing controls under the four–asset tontine with stochastic mortality (LC

model) for a representative scalarization parameter γ = 1.5. Colours show the fraction of wealth invested

in each asset as a function of time and real wealth. Units: thousands of real AUD.

so that the portfolio becomes dominated by the Australian bond index, effectively locking in favourable

outcomes; any remaining equity risk is taken primarily via the domestic market.

� The U.S. equity allocation (Figure 9.3 (b)) is highly state dependent. When wealth falls into the

lower region of the state space, particularly along and below the 5th–percentile path, the policy tilts

aggressively toward U.S. equities, with weights close to 100% in that asset and very low exposure to do-

mestic bonds. This behaviour is concentrated in the extreme low-wealth tail and can be interpreted as

a low-probability, last-resort catch-up position, rather than a typical allocation across the state space.

When wealth is low, the optimal EW–CVaR policy favours taking additional growth risk in order to

improve the expected withdrawal profile, using foreign equity as the primary “catch–up” instrument.

Tables 9.1–9.2 provide a simple empirical rationale: U.S. equity combines the highest historical average

real return in the sample with only moderate correlation to Australian equity, so it offers both growth

upside and diversification potential when deployed as a state–dependent catch–up instrument in low–

wealth regions. This is consistent with related optimal–decumulation evidence that moderate caps on

the equity share have little effect on the efficient frontier, with the main control differences concentrated
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in extreme low–wealth tail states [20].

� Comparing Figures 9.3 (a) and (b) shows that Australian and U.S. equities play different roles. At

moderate wealth, the strategy holds a sizeable but balanced allocation to Australian equities, while

U.S. equity exposure is more concentrated in low–wealth regions of the state space. This suggests

that the optimal policy uses domestic equity as the core growth asset and foreign equity as a more

opportunistic, high–return lever when the retiree is underfunded.

9.6.2 Role of equities in international diversification

To highlight how international diversification is used in the optimal policy, we compare the four–asset

heatmaps in Figure 9.3 with the two–asset (domestic–only) counterpart in Figure 9.4.

In the domestic–only case (Figure 9.4), the equity fraction is primarily wealth–dependent rather than

strongly time–dependent. Along the median trajectory the policy remains in a moderate equity region

for most of the horizon (roughly in the 25%–45% range, corresponding to the teal/green colours), rather

than shifting toward near–zero equity late in the horizon. By contrast, when wealth moves into the low–

wealth region near and below the 5th–percentile path, the heatmap turns red and the policy allocates

close to 100% to equities, using the only available growth asset to improve the expected withdrawal

profile when wealth is small.

γ = 1.5

Figure 9.4: Optimal fraction

in domestic equities in the two–

asset (domestic–only) tontine with

stochastic mortality (LC model) for

a representative point on the effi-

cient frontier (γ = 1.5). Colours

show the fraction of wealth invested

in domestic equities as a function of

time and real wealth. Units: thou-

sands of real AUD.

In the four–asset case (Figures 9.3 (a) and (b)), this role is split between Australian and U.S. equities.

Domestic equity behaves much like the two–asset equity in relatively well–funded states, forming part of

a growth core together with the Australian bond index. However, in low–wealth regions the allocation

to U.S. equity becomes predominant, while domestic equity and bond exposures are reduced.

This comparison makes clear that the four–asset improvement in Figure 9.1 is driven by how equity

risk is used, rather than by a uniformly higher equity allocation across all wealth levels. With only

domestic assets, Australian equities must serve both as the core growth exposure and as the only available

“catch–up” lever when wealth is low. Once U.S. equity is available, the optimal policy can separate

these roles: in better–funded regions it maintains a more balanced, largely domestic mix, whereas in

underfunded regions it shifts predominantly into U.S. equity to seek additional growth and support the

expected withdrawal objective. In this sense, international diversification adds a second equity “catch–

up” instrument that is activated mainly when the retiree is underfunded, instead of increasing equity

exposure uniformly.

This interpretation is consistent with the return evidence in Tables 9.1–9.2, which shows that U.S.

equity offers slightly higher average real returns than domestic equity and only moderate correlation
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with Australian equity over the sample period.

9.7 MBG pricing results

We now report simulation–based MBG pricing results using the actuarial pricing formula (7.2) and the

Monte Carlo procedure in Algorithm 7.1. In all cases, the MBG is priced ex post under the fixed EW–

CVaR optimal control as discussed in the previous subsections. We report Monte Carlo estimates of

Ê[Zg] and ĈVaRαg(Zg), and the implied equivalent up–front load factor f̂g computed as in (7.5).

For interpretability, f̂g can be read as an equivalent one–time deduction f̂gL0 from the initial purchase

price (equivalently, as a reduction in a notional starting payment rate); see Remark 7.1.

9.7.1 Base–case MBG load

Table 9.3 reports MBG pricing results under a base–case parameter set: scalarization parameter γ = 1.5

(as used in the heatmap illustrations), L0 = 1000 (thousand real AUD), pricing confidence level αg = 5%,

and prudential–buffer coefficient λ = 0.5. We apply this same parameter set to four settings—two–asset

(domestic–only) versus four–asset (internationally diversified), each under deterministic table mortality

and stochastic LC mortality. We also report the implied post–load notional starting payment rate

(1− f̂g)β0 for the reference value β0 = 0.05.

Setting Ê[Zg] ĈVaR0.05(Zg) f̂g (1− f̂g)β0
2 assets, table mortality 65.63 736.61 0.43 2.85%

2 assets, LC mortality 66.67 755.47 0.44 2.80%

4 assets, table mortality 69.32 736.82 0.44 2.80%

4 assets, LC mortality 70.69 758.28 0.45 2.75%

Table 9.3: Base–case parameter set for MBG pricing under EW–CVaR optimal controls: γ = 1.5,

L0 = 1000 (thousand real AUD), αg = 5%, λ = 0.5. The load f̂g is computed from the Monte Carlo

estimates via (7.5). The last column reports the illustrative post–load notional starting payment rate

(1− f̂g)β0 for the reference value β0 = 0.05 (see Remark 7.1).

Two features stand out. First, the actuarially fair expected–cost component Ê[Zg] is modest (about

6%–7% of L0). Thus, under actuarially fair pricing (λ = 0), the implied equivalent load would be only

f̂g ≈ Ê[Zg]/L0 ≈ 5%–7%, which translates, for β0 = 5%, into an illustrative starting-rate reduction of

roughly 25–35 bps. Second, the tail measure ĈVaR0.05(Zg) is large (about 0.74–0.76 of L0, roughly an

order of magnitude larger than Ê[Zg]), so adding a prudential buffer via λ = 0.5 yields a substantially

larger equivalent load, f̂g ≈ 0.43–0.45, corresponding to a post–load notional starting payment rate of

about 2.75%–2.85%.

To visualize the distributional features behind this result, Figure 9.5 plots the empirical distribution

of the MBG payout Zg for the four–asset (internationally diversified) tontine with stochastic mortality

(LC) and γ = 1.5; the pricing tail level is αg = 5%. Figure 9.5 (a) shows the unconditional density

of Zg, which exhibits a pronounced spike near zero (many scenarios in which the guarantee is out of

the money) and a long right tail. Figure 9.5 (b) shows the density conditional on Zg > 0, highlighting

that when the MBG is triggered the payout can still be large and widely spread. In Figure 9.5 (a),

the pricing threshold is VaR0.05(Zg) ≈ 575 (thousand real AUD) and the corresponding tail mean is

CVaR0.05(Zg) ≈ 758, consistent with Table 9.3.

For this representative policy and buffer choice, the differences between (i) domestic–only versus

internationally diversified assets and (ii) deterministic table versus stochastic LC mortality are small in

magnitude relative to the overall load: the resulting f̂g values are all close to 0.43–0.45. In other words,

the dominant driver of the equivalent load is the tail term in (7.5), with only minor variation across the
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(a) Unconditional density of Zg (b) Density conditional on Zg > 0

Figure 9.5: Empirical densities of the MBG payout Zg (in real dollars at t0) under a representative

base–case EW–CVaR optimal control: the four–asset (internationally diversified) tontine with stochastic

mortality (LC), γ = 1.5, and αg = 5%. Units: thousands of real AUD.

asset and mortality specifications considered here.

9.7.2 Sensitivity to risk loading and tail confidence level

We next study the sensitivity of the MBG load to (i) the prudential–buffer parameters (λ, αg) and (ii) the

retiree’s risk–reward preference in the EW–CVaR optimization, indexed by the scalarization parameter

γ. Table 9.4 presents the results for the four–asset (internationally diversified) tontine with stochastic

mortality (LC model) across γ ∈ {1.5, 0.5, 0.2}, with L0 = 1000 fixed. For each γ, we report the Monte

Carlo estimates Ê[Zg] and ĈVaRαg(Zg) together with the implied load estimates f̂g computed from (7.5)

for λ ∈ {0, 0.5, 1}. For fixed (γ, αg), f̂g depends linearly on λ, with slope ĈVaRαg(Zg)/L0.

Table 9.4: Sensitivity of the Monte Carlo MBG load estimate f̂g in the four–asset tontine under stochas-

tic mortality (LC), for different retiree risk–reward preferences indexed by γ. Parameters: L0 = 1000

(thousand real AUD), β0 = 0.05 (translation device; see Remark 7.1). Part (a): αg = 5%. Part (b):

αg = 1%. f̂g is computed via (7.5).

(a) αg = 5%

γ Ê[Zg] ĈVaR0.05(Zg) f̂g (λ = 0) f̂g (λ = 0.5) f̂g (λ = 1)

1.5 70.69 758.28 0.07 0.45 0.83

0.5 58.12 729.37 0.06 0.42 0.79

0.2 47.50 664.38 0.05 0.38 0.71

(b) αg = 1%

γ Ê[Zg] ĈVaR0.01(Zg) f̂g (λ = 0) f̂g (λ = 0.5) f̂g (λ = 1)

1.5 70.69 917.55 0.07 0.53 0.99

0.5 58.12 915.19 0.06 0.52 0.97

0.2 47.50 871.95 0.05 0.48 0.92

Table 9.4 shows that the dominant drivers of the equivalent load are the prudential–buffer parameters

(λ, αg). In particular, λ = 0 corresponds to actuarially fair (expected–cost) pricing and yields a modest

load f̂g ≈ 5%–7% across the reported γ values (about 25–35 bps off a notional β0 = 5% starting rate).

Introducing a buffer via λ > 0 increases the load sharply because ĈVaRαg(Zg) is large relative to Ê[Zg]:

for example, at αg = 5% and λ = 0.5 the load rises to f̂g ≈ 0.38–0.45. Tightening the tail confidence

level from αg = 5% to αg = 1% further increases ĈVaRαg(Zg) and therefore raises f̂g (e.g., to about

0.48–0.53 when λ = 0.5).
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Varying γ affects the load in a secondary, policy–induced way: changing γ moves the EW–CVaR

optimal policy along the efficient frontier and thereby shifts the distribution of Zg (through withdrawal

timing and the resulting account balance at death). Over the ranges considered here, this effect is modest

compared with the direct impact of (λ, αg) in (7.5).

Remark 9.1. The parameters (λ, αg) in (7.2)–(7.5) summarize an additional prudential buffer applied

to the MBG tail (e.g. reflecting capital requirements, governance, or other conservatism beyond expected

cost). These parameters are typically not directly observable from public disclosures, especially when the

guarantee is embedded in the quoted payment schedule rather than shown as an explicit fee component.

Consequently, the sensitivity results in Table 9.4 should be interpreted as a pricing stress test: they

quantify how the implied load f̂g changes across plausible buffer choices, holding the underlying EW–

CVaR policy and the simulated payout distribution fixed.

10 Conclusion and future work

This paper studies optimal retirement decumulation in an individual tontine account with a MBG overlay

in a setting that allows both international diversification and systematic longevity risk at the pool level

through stochastic mortality-credit inputs. The retiree’s withdrawal and asset-allocation decisions are

determined by an EW–CVaR optimal control problem solved under a plan-to-live convention, and the

MBG is priced ex post under the induced optimal policy using a simulation-based actuarial load that

incorporates an explicit tail-risk prudential buffer. To compute state-dependent controls in this multi-

asset, constrained setting, we develop a NN approach that scales beyond classical grid-based dynamic

programming.

Numerically, international diversification improves the achievable EW–CVaR trade-off even before

longevity pooling, and the largest gains arise when diversification is combined with a tontine over-

lay. Incorporating stochastic mortality shifts the efficient frontiers in the expected direction (system-

atic longevity improvement reduces mortality credits) but does not alter the qualitative structure of

the optimal controls. The MBG results highlight a distinct economic mechanism: when expressed in

equivalent-load terms, implied MBG loads are driven primarily by prudential buffers that place weight

on adverse tail outcomes, rather than by actuarially fair expected payouts.

Several extensions are natural. First, the plan-to-live convention can be relaxed by modelling death as

a stopping time and embedding bequest or estate preferences directly in the retiree’s objective. Second,

MBG design and valuation could be made more fully endogenous by jointly choosing the guarantee

terms and the associated funding/buffer rule, and by incorporating regulatory constraints. Third, the

economic environment can be enriched by incorporating additional asset classes and hedging instruments,

including alternative equity benchmarks (e.g. equal-weighted indices) and currency-hedged exposures.

Finally, stress-testing performance under return and mortality misspecification would help assess the

practical robustness of the learned controls.
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