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Abstract

We develop a numerical scheme for determining the optimal asset allocation strategy for
time-consistent, continuous time, mean variance optimization. Any type of constraint can be
applied to the investment policy. The optimal policies for time-consistent and pre-commitment
strategies are compared. When realistic constraints are applied, the efficient frontiers for the pre-
commitment and time-consistent strategies are similar, but the optimal investment strategies
are quite different.
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1 Introduction

Recently, there has been considerable interest in continuous time mean variance asset allocation
[21, 14, 18, 13, 3, 6, 20, 9, 10, 19]. The optimal strategy in these papers was based on the pre-
commitment strategy [2]. The pre-commitment strategy, for time t + ∆t, computed at time t will
not necessarily agree with the strategy for time t+ ∆t, computed at time t+ ∆t.

On the other hand, it can be argued that there are many economic reasons for requiring that
the investment strategy be time-consistent. The time-consistent strategy chooses, at each instant
in time, the best possible mean variance strategy, assuming optimal mean variance strategies are
selected at each later instant in time [4, 2].

In [2], the time-consistent and pre-commitment mean variance policies were compared based
on an analytic solution. However, this analytic solution assumes that the investment policy is
unconstrained. This allows for infinite borrowing and shorting, and permits trading to continue
even if the investor is insolvent. From [19], we learn that the the optimal policies for the pre-
commitment strategy behave quite differently when realistic constraints (e.g. no bankruptcy, finite
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borrowing, no shorting) are applied to the investment policy. It is therefore of interest to compare
the pre-commitment and time-consistent strategies under practical policy constraints.

Since we can view the time-consistent mean variance strategy as the pre-commitment strategy
with a constraint forcing time consistency, it is immediately obvious that the efficient frontier for
the time-consistent strategy can never be above the efficient frontier for the pre-commitment strat-
egy. In addition, the time-consistent formulation must have a dynamic programming principle.
This contrasts with the pre-commitment strategy, where there is no natural dynamic programming
principle. However, the pre-commitment problem can be recast into an equivalent convex opti-
mization problem [16, 3, 8]. In [19], a general numerical scheme was developed for determining the
optimal mean variance strategy with realistic constraints.

The main results of this paper are

• We develop a fully numerical scheme for determining the optimal time-consistent mean vari-
ance strategy. Any type of constraint can be applied to the optimal policy.

• The method is based on the piecewise constant policy technique in [12]. In our case, since the
time-consistent problem can be formulated as a system of Hamilton-Jacobi-Bellman differen-
tial algebraic equations, this falls outside the viscosity solution theory in [12]. Hence we have
no formal proof of convergence of our method. Nevertheless, our technique does converge to
analytic solutions where available.

• The efficient frontier for the time-consistent strategy is never above the efficient frontier for
the pre-commitment strategy. If realistic constraints are applied to both strategies (e.g.
no bankruptcy, no shorting), the efficient frontiers for both strategies become very close.
However, the optimal investment polices are quite different for each strategy.

Consequently, if realistic constraints are applied, the time-consistent and pre-commitment
strategies are not easily distinguished in terms of their efficient frontiers. Rather, is necessary
to examine the optimal policies in each case, which are qualitatively different.

2 Pre-commitment Policy vs Time-consistent Policy

In this paper, we consider the problem of determining the mean variance efficient strategy for a
pension plan. It is common to write the efficient frontier in terms of the investor’s final wealth. We
will refer to this problem in the following as the wealth case.

Suppose there are two assets in the market: one is risk free (e.g. a government bond) and the
other is risky (e.g. a stock index). The risky asset S follows the stochastic process

dS = (r + ξ1σ1)S dt+ σ1S dZ1 , (2.1)

where dZ1 is the increment of a Wiener process, σ1 is volatility, r is the interest rate, ξ1 is the
market price of risk (or Sharpe ratio) and the stock drift rate can then be defined as µS = r+ ξ1σ1.
Suppose that the plan member continuously pays into the pension plan at a constant contribution
rate π in the unit time. Let W (t) denote the wealth accumulated in the pension plan at time t,
let p denote the proportion of this wealth invested in the risky asset S, and let (1− p) denote the
fraction of wealth invested in the risk free asset. Then,

dW = [(r + pξ1σ1)W + π]dt+ pσ1WdZ1 , (2.2)
W (t = 0) = ŵ0 ≥ 0 .
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Define,

E[·] : expectation operator,
V ar[·] : variance operator,
Std[·] : standard deviation operator,

Et,w[·], V art,w[·] or Stdt,w[·] : E[·|W (t) = w], V ar[·|W (t) = w] or Std[·|W (t) = w] when sitting
at time t,

Eqt,w[·], V arqt,w[·] or Stdqt,w[·] : Et,w[·], V art,w[·] or Stdt,w[·], with q(s,W (s)), s ≥ t, being the
policy along path W (t) from stochastic process (2.2), where q can
be p (the proportion of the total wealth invested in the risky asset),
or pw (the monetary amount invested in the risky asset) . (2.3)

2.1 Pre-commitment Policy

We seek the optimal policy which solves the following optimization problem,

J(w, t) = sup
q(s≥t,W (s))

{Eqt,w[WT ]− λV arqt,w[WT ]} , (2.4)

subject to stochastic process (2.2), and where λ > 0 is a given Lagrange multiplier and q(t,W (t)) is
the investment strategy. In this paper, the strategy q can be p (the proportion of the total wealth
invested in the risky asset), or pw (the monetary amount invested in the risky asset). We will
discuss this in detail in later Sections. The multiplier λ can be interpreted as a coefficient of risk
aversion. The optimal policy for (2.4) is called a pre-commitment policy [2].

Let q∗t (s, w), s ≥ t, be the optimal policy for problem (2.4). Then, q∗t+∆t(s, w), s ≥ t + ∆t, is
the optimal policy for

J(W (t+ ∆t), t+ ∆t) = sup
q(s≥t+∆t,W (s))

{Eqt+∆t,W (t+∆t)[WT ]− λV arqt+∆t,W (t+∆t)[WT ]} . (2.5)

However, in general
q∗t (s,W (s)) 6= q∗t+∆t(s,W (s)) ; s ≥ t+ ∆t , (2.6)

i.e. the solution of problem (2.4) is time inconsistent [2, 4]. Therefore, the dynamic programming
principle cannot be directly applied to solve this problem. However, problem (2.4) can be embedded
into a class of auxiliary stochastic Linear-Quadratic (LQ) problems using the method in [21, 14].
The optimal strategy q∗t (s, w) can be determined by solving those LQ problems with dynamic
programming principle. We have discussed the pre-commitment policy in detail in [19].

2.2 Time-consistent Policy

In this paper, we will focus on the so called time-consistent policy. We can determine the time-
consistent policy by solving problem (2.4) with an additional constraint,

q∗t (s, w) = q∗t′(s, w) ; s ≥ t′, t′ ∈ [t, T ] . (2.7)

In other words, we optimize problem (2.4) at time t, given that we follow the optimal policy at time
t′ in the future, which is determined by solving (2.4) at each future instant. Obviously, dynamic
programming can be applied to the time-consistent problem.
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3 Time-consistent Mean Variance Policy: Wealth Case

Let,

D := the set of all admissible wealth W (t), for 0 ≤ t ≤ T ;
Q := the set of all admissible controls q(t, w), for 0 ≤ t ≤ T and w ∈ D. (3.1)

As discussed in the previous section, we want to find the optimal policy for the problem

J(w, t) = sup
q(s≥t,W (s))

q∈Q

{
Eqt,w[WT ]− λV arqt,w[WT ]

}
,

s.t. q∗t (s, w) = q∗t′(s, w) ; s ≥ t′, t′ ∈ [t, T ] , (3.2)

subject to stochastic process (2.2), and where q∗ denotes the optimal control. Varying λ ∈ (0,∞)
allows us to draw an efficient frontier.

We can now drop the subscript “t” from q∗t (s, w), since we will impose constraint (2.7) and the
optimal policy at time t+ ∆t does not depend on the policy at time t. Note we are following here
time consistency as defined in [2].

Define,

U(w, t) = E
q∗(s≥t,W (s))
t,w [WT ] , (3.3)

V (w, t) = E
q∗(s≥t,W (s))
t,w [W 2

T ] , (3.4)

with terminal condition

U(w, t = T ) = w,

V (w, t = T ) = w2 . (3.5)

Note that

U(w, t) = E
q∗(t≤s≤t+∆t,W (s))
t,w [U(W (t+ ∆t), t+ ∆t)] , (3.6)

V (w, t) = E
q∗(t≤s≤t+∆t,W (s))
t,w [V (W (t+ ∆t), t+ ∆t)] . (3.7)

Then, J(w, t) can be rewritten as

J(w, t) = sup
q(s≥t,W (s))

q∈Q

{
E
q(s≥t,W (s))
t,w [WT ]− λ{Eq(s≥t,W (s))

t,w [W 2
T ]− (Eq(s≥t,W (s))

t,w [WT ])2}
}

= sup
q(t≤s≤t+∆t),W (s))

q∈Q

{
E
q(t≤s≤t+∆t,W (s))
t,w [Eq

∗(s≥t+∆t,W (s))
t+∆t,W (t+∆t) (WT )]

−λEq(t≤s≤t+∆t,W (s))
t,w [Eq

∗(s≥t+∆t,W (s))
t+∆t,W (t+∆t) (W 2

T )]

+λ(Eq(t≤s≤t+∆t,W (s))
t,w [Eq

∗(s≥t+∆t,W (s))
t+∆t,W (t+∆t) (WT )])2

}
= sup

q(t≤s≤t+∆t,W (s))
q∈Q

{
Eqt,w[U(W (t+ ∆t), t+ ∆t)]

−λ(Eqt,w[V (W (t+ ∆t), t+ ∆t)]− {Eqt,w[U(W (t+ ∆t), t+ ∆t)]}2)
}
. (3.8)
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Assume that the set of all controls Q is compact, and that Eqt,w[·] is a bounded, upper semi-
continuous function of the control q. Given q∗(s ≥ t + ∆t,W (s)), suppose we can determine
(U(W (t+ ∆t), t+ ∆t), V (W (t+ ∆t), t+ ∆t)). Then,

q∗(t ≤ s ≤ t+ ∆t,W (s)) ∈ arg max
q(t≤s≤t+∆t,W (s))

q∈Q

{
Eqt,w[U(W (t+ ∆t), t+ ∆t)] (3.9)

−λ(Eqt,w[V (W (t+ ∆t), t+ ∆t)]− {Eqt,w[U(W (t+ ∆t), t+ ∆t)]}2)
}
.

Equations (3.6-3.9) can be used as the basis for a recursive algorithm to determine V (w, t), U(w, t)
for any t (see later in Algorithm (5.10)). Assuming V (w, t = 0), U(w, t = 0) are known, then for
a given λ, we can compute the pair (V arq

∗

t=0,w[WT ], Eq
∗

t=0,w[WT ]) from V arq
∗

t=0,w[WT ] = V (w, t =
0)− [U(w, t = 0)]2.

Remark 3.1 The classic multi-period portfolio selection problem can be stated as the following:
given some investment choices (assets) in the market, an investor seeks an optimal asset allocation
strategy over a period T with an initial wealth ŵ0. This problem has been widely studied in terms
of a pre-commitment strategy [17, 21, 14, 16, 3, 15]. If we use the mean variance approach with
a time-consistent strategy to solve this problem, then the best strategy q∗(w, t) can be defined as a
solution of problem (3.2). We still assume there is one risk free bond and one risky asset in the
market. In this case,

dW = (r + pξ1σ1)Wdt+ pσ1WdZ1 , (3.10)
W (t = 0) = ŵ0 > 0 .

Clearly, the pension plan problem we introduced previously can be reduced to the classic multi-period
portfolio selection problem by simply setting the contribution rate π = 0. All equations and terminal
conditions stay the same.

4 Wealth-to-income Ratio Case

In the previous section, we considered the expected value and variance of the terminal wealth in
order to construct an efficient frontier. Many studies have shown that a desirable feature of a
pension plan is that the holder’s wealth W is large compared to her annual salary Y the year
before she retires. In this section, instead of the terminal wealth, we determine the mean variance
efficient strategy in terms of the terminal wealth-to-income ratio X = W

Y . In the following, we give
a brief overview of the model developed in [5]. We still assume there are two underlying assets in
the pension plan: one is risk free and the other is risky. Recall from equation (2.1) that the risky
asset S follows the Geometric Brownian Motion,

dS = (r + ξ1σ1)S dt+ σ1S dZ1 . (4.1)

Suppose that the plan member continuously pays into the pension plan at a fraction π of her yearly
salary Y , which follows the process

dY = (r + µY )Y dt+ σY0Y dZ0 + σY1Y dZ1 , (4.2)
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where µY , σY0 and σY1 are constants, and dZ0 is another increment of a Wiener process, which is
independent of dZ1. Let p denote the proportion of this wealth invested in the risky asset S, and
let 1− p denote the fraction of wealth invested in the risk-free asset. Then

dW = (r + pξ1σ1)W dt+ pσ1WdZ1 + πY dt , (4.3)
W (t = 0) = ŵ0 ≥ 0 .

Define a new state variable X(t) = W (t)/Y (t), then by Ito’s Lemma, we obtain

dX = [π +X(−µY + pσ1(ξ1 − σY1) + σ2
Y0

+ σ2
Y1

)]dt (4.4)
−σY0XdZ0 +X(pσ1 − σY1)dZ1 ,

X(t = 0) = x̂0 ≥ 0 .

We can write this problem in the form of problem (3.2), if we let the control q = p or q = pw. The
time-consistent control problem is then to determine the strategy q(t,X(t) = x) such that q(t, x)
maximizes

J(x, t) = sup
q(s≥t,X(s))

q∈Q

{
Eqt,x[XT ]− λV arqt,x[XT ]

}
,

s.t. q∗t (s, x) = q∗t′(s, x) ; s ≥ t′, t′ ∈ [t, T ] . (4.5)

subject to stochastic process (4.4). Similar to the wealth case, let

U(x, t) = E
q∗(s≥t,X(s))
t,x [XT ] ,

V (x, t) = E
q∗(s≥t,X(s))
t,x [X2

T ] , (4.6)

with,

q∗(t ≤ s ≤ t+ ∆t,X(s)) ∈ arg max
q(t≤s≤t+∆t,X(s))

q∈Q

{
Eqt,x[U(X(t+ ∆t), t+ ∆t)] (4.7)

−λ(Eqt,x[V (X(t+ ∆t), t+ ∆t)]− {Eqt,x[U(X(t+ ∆t), t+ ∆t)]}2)
}
.

Then, J(x, t) can be rewritten as

J(x, t) = sup
q(t≤s≤t+∆t,X(s))

q∈Q

{
Eqt,x[U(X(t+ ∆t), t+ ∆t)] (4.8)

−λ(Eqt,x[V (X(t+ ∆t), t+ ∆t)]− {Eqt,x[U(X(t+ ∆t), t+ ∆t)]}2)
}
.

Remark 4.1 The problem described in Section 3 can be seen as a special case of the problem
described in this section. We can simply set the salary Y to be a constant (let σY0 = σY1 = 0 and
µy = −r), then X(t) is reduced to W (t) and problem (4.5) is reduced to problem (3.2).

6



5 Discretization

In this section, we develop a discretization scheme to solve the mean variance time-consistent
problem numerically. Let z = w for the wealth case, and z = x for the wealth-to-income ratio case.
The optimal control problem in both cases is then

U(z, t) = E
q∗(t≤s≤t+∆t,Z(s))
t,z [U(Z(t+ ∆t), t+ ∆t)] , (5.1)

V (z, t) = E
q∗(t≤s≤t+∆t,Z(s))
t,z [V (Z(t+ ∆t), t+ ∆t)] , (5.2)

q∗(t ≤ s ≤ t+ ∆t, Z(s)) ∈ arg max
q(t≤s≤t+∆t,Z(s))

q∈Q

{
Eqt,z[U(Z(t+ ∆t), t+ ∆t)] (5.3)

−λ(Eqt,z[V (Z(t+ ∆t), t+ ∆t)]− {Eqt,z[U(Z(t+ ∆t), t+ ∆t)]}2)
}
,

with terminal condition

U(z, t = T ) = z,

V (z, t = T ) = z2 . (5.4)

The form of constraints applied to the control will dictate a choice of q = p or q = pz. This will be
discussed in later Sections.

5.1 Piecewise Constant Timestepping

For general constraints, we cannot find an analytic solution for the time-consistent strategy. There-
fore, the control has to be to determined numerically. One possible approach for solution of problem
(5.1-5.3) is to use piecewise constant policy timestepping [12].

We can replace the set of admissible controls Q by an approximation Q̂. Define

Q̂ = [q0, q1, ..., qm] , with q0 = qmin ; qm = qmax ,

max
0≤j≤m−1

(qj+1 − qj) = C1h , (5.5)

where C1 is a positive constant. Let ∆t = T
N . Define a set of discrete times,

{tn | tn = n∆t , 0 ≤ n ≤ N} ,
∆t = C2h , (5.6)

where C2 is a positive constant. We assume the control is a constant over the period [tn, tn+1]. Set

qn(w) = q(tn, w) ; Un(w) = U(tn, w) ; V n(w) = V (tn, w) (5.7)
Unj (w) = E

qj
tn,w[Un+1(W (tn+1))] , (5.8)

V n
j (w) = E

qj
tn,w[V n+1(W (tn+1))] , (5.9)

We compute the solutions of equations (5.8) and (5.9) for each control qj , 0 ≤ j ≤ m, then find
the optimal control qj∗ according to the objective function, and update the values for Un and V n.
This gives us the following algorithm.
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Piecewise Constant Timestepping Algorithm

UNj (w) = w , V N
j (w) = w2 , for all 0 ≤ j ≤ m

For timestep n = N − 1, . . . , 0
For j = 0, . . . ,m

Unj (w) = E
qj
tn,w[Un+1(W (t+ ∆t))]

V n
j (w) = E

qj
tn,w[V n+1(W (t+ ∆t))]

EndFor

j∗ ∈ arg max
0≤j≤m

{Unj (w)− λ(V n
j (w)− (Unj (w))2)}

(qn(w))∗ = qj∗ ; Unj (w) = Unj∗(w) ; V n
j (w) = V n

j∗(w) , for all 0 ≤ j ≤ m
EndFor

(5.10)

Remark 5.1 In [12], the authors applied the piecewise constant timestepping to a scalar Hamilton-
Jacobi-Bellman (HJB) equation, and proved that the solution given by the piecewise constant
timestepping method converges to the viscosity solution. However, the problem we study in this
paper is more complex, since we solve a system set of expectations and a nonlinear algebraic equa-
tion. We have no proof that Algorithm (5.10) converges to the solutions of equations (3.6-3.9),
although we will see in Section 7 that our numerical solutions converge to the analytic solutions
where available.

5.2 Computing the Expectations

Algorithm (5.10) gives a piecewise constant timestepping method for solution of the optimal stochas-
tic control problem. However, it is not clear how we can compute Unj (w) and V n

j (w). Recall that

Unj (w) = E
qj
tn,w[Un+1(W (tn+1))] ,

V n
j (w) = E

qj
tn,w[V n+1(W (tn+1))] .

According to [12], given a constant control qj , we can determine Unj (w) and V n
j (w) by solving

−Ut = µqzUz +
1
2

(σqz)
2Uzz ; z ∈ D , (5.11)

−Vt = µqzVz +
1
2

(σqz)
2Vzz ; w ∈ D, (5.12)

over the interval [tn+1, tn] (we solve backward in time) with U(z, t = tn+1), V (z, t = tn+1) computed
from the previous step of Algorithm (5.10), and at t = tN (t = T ),

U(z, t = T ) = z,

V (z, t = T ) = z2 , (5.13)
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and where

µqz = µqw = π + w(r + pσ1ξ1)
(σqz)

2 = (σqw)2 = (pσ1w)2 . (5.14)

for the wealth case introduced in Section 3; and

µqz = µqx = π + x(−µY + pσ1(ξ1 − σY1) + σ2
Y0

+ σ2
Y1

)
(σqz)

2 = (σqx)2 = x2(σ2
Y0

+ (pσ1 − σY1)2) . (5.15)

for the wealth-to-income ratio case introduced in Section 4. Note that in equations (5.14) and
(5.15), we set q = p (use p as the control). If we want to use pw (the monetary amount invested in
the risky asset) as the control, we can set q = pw (px) and replace pw (px) by q in equation (5.14)
((5.15)).

Since we solve PDEs (5.11) and (5.12) backward in time, in order to derive the discretization
of the PDEs using conventional notations, let τ = T − t. Then, τn = T − tN−n for 0 ≤ n ≤ N . We
define

Û(τ, z) = U(T − t, z) , (5.16)
V̂ (τ, z) = U(T − t, z) . (5.17)

Then equations (5.11) and (5.12) become to

Ûτ = µqzÛz +
1
2

(σqz)
2Ûzz ; z ∈ D , (5.18)

V̂τ = µqzV̂z +
1
2

(σqz)
2V̂zz ; w ∈ D, (5.19)

with terminal condition

Û(z, τ = 0) = z ,

V̂ (z, τ = 0) = z2 . (5.20)

We then can find the values for Ûnj (w) and V̂ n
j (w) by solving PDEs (5.18) and (5.19), over the

interval [τn, τn+1] in Algorithm (5.10).

5.3 Localization

Let,

D̂ := a finite computational domain which approximates the set D.
Q̂ := a finite computational set which approximates the set Q. (5.21)

In order to solve PDEs (5.18) and (5.19) we need to use a finite computational domain, D̂ =
[zmin, zmax]. When z → ±∞, we assume that

Û(z → ±∞, τ) ' A1(τ)z ,
V̂ (z → ±∞, τ) ' B1(τ)z2 . (5.22)
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Then, taking into account the initial conditions (3.5),

Û(z → ±∞, τ) ' ek1τz ,

V̂ (z → ±∞, τ) ' e(2k1+k2)τz2 , (5.23)

If q = p (use p as the control), then k1 = r + qσ1ξ1 and k2 = (qσ1)2 for the wealth case; k1 =
−µY + qσ1(ξ1 − σY1) + σ2

Y0
+ σ2

Y1
and k2 = σ2

Y0
+ (qσ1 − σY1)2 for the wealth-to-income ratio case.

If q = pz (use pw or px as the control), then k1 = r + q
wσ1ξ1 and k2 = (qσ1)2

w2 for the wealth case;
k1 = −µY + q

xσ1(ξ1 − σY1) + σ2
Y0

+ σ2
Y1

and k2 = σ2
Y0

+ ( qxσ1 − σY1)2 for the wealth-to-income ratio
case.

Since in Algorithm (5.10), we update the values for U and V at the end of each timestep
according to the optimal strategy, it is more appropriate to compute Û and V̂ at z → ±∞ by using
the updated values. Rewriting equation (5.23) gives

Û(z → ±∞, τ + ∆τ) ' ek1∆τ Û(z → ±∞, τ) ,
V̂ (z → ±∞, τ + ∆τ) ' e(2k1+k2)∆τ V̂ (z → ±∞, τ) . (5.24)

More discussion of these boundary condition is given in Section 6.

5.4 Discretization of PDEs

In this section, we give a brief overview of method used to solve PDEs (5.18) and (5.19). See [19]
for more detail. Given a control q, define operator Lq as

LqV̂ ≡ a(z, q)V̂zz + b(z, q)V̂z , (5.25)

where

a(z, q) =
1
2

(σqz)
2 ,

b(z, q) = µqz . (5.26)

Then,

Ûτ = LqÛ , (5.27)
V̂τ = LqV̂ . (5.28)

Define a grid {z0, z1, . . . , zl} with z0 = zmin, zl = zmax. Given a control qj , let V̂ n
i,j be a discrete

approximation to V̂ (zi, τn) with control qj . Let V̂ n
j = [V̂ n

0,j , . . . , V̂
n
l,j ]
′, and let (Lqjh V̂

n
j )i denote the

discrete form of the differential operator (5.25) at node (zi, τn) with a control qj . The operator
(5.25) can be discretized using forward, backward or central differencing in the z direction to give

(Lqjh V̂
n+1
j )i = αn+1

i,j V̂ n+1
i−1,j + βn+1

i,j V̂ n+1
i+1,j − (αn+1

i,j + βn+1
i,j )V̂ n+1

i,j . (5.29)

Here αi,j , βi,j are defined in Appendix A.
Equations (5.28) can now be approximated by

V̂ n+1
i,j − V̂ n

i,j

∆τ
= (Lqjh V̂

n+1
j )i , (5.30)

Similarly equation (5.27) can be discretized as

Ûn+1
i,j − Ûni,j

∆τ
= (Lqjh Û

n+1
j )i . (5.31)
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5.5 Algorithm for Construction of the Efficient Frontier

Given a positive value for λ, by solving PDEs (5.18) and (5.19) over each period [τn, τn+1], we can
compute the numerical solutions of equations (5.1), (5.2) and (5.3). For the convenience of the
reader, we rewrite Algorithm (5.10) in terms of τ = T − t, where the expectations are given by
solving equations (5.30) and (5.31). The algorithm is given below.

Algorithm for the Time-consistent Policy

Û0
i,j = zi , V̂

0
i,j = z2

i , for all 0 ≤ i ≤ l and 0 ≤ j ≤ m
For timestep n = 0, . . . , N − 1

For j = 0, . . . ,m
Solve equations (5.31) and (5.30)

EndFor
For i = 0, . . . , l

j∗ ∈ arg max
0≤j≤m

{Ûn+1
i,j − λ(V̂ n+1

i,j − (Ûn+1
i,j )2)}

(qn+1
i )∗ = qj∗ ; Ûn+1

i,k = Ûn+1
i,j∗ ; V̂ n+1

i,k = V̂ n+1
i,j∗ , for all 0 ≤ k ≤ m,

EndFor
EndFor

(5.32)

Given an initial value ẑ0, Algorithm (5.33) is used to obtain the efficient frontier. Since the Z
grid is discretized over the interval [zmin, zmax], we can use Algorithm (5.33) to obtain the efficient
frontier for any initial wealth ẑ0 ∈ [zmin, zmax] by interpolation. Of course, if we choose ẑ0 to be a
node in the discretized Z grid, then there is no interpolation error.

Algorithm for Constructing the Efficient Frontier

For λ = λmin, λ1, . . . , λmax

Compute solutions of equations (5.1), (5.2) and (5.3) by Algorithm (5.32)
Given the initial ẑ0, use interpolation to get the numerical values of

(Û(ẑ0, t = 0), V̂ (ẑ0, t = 0))λ at Z(t = 0) = ẑ0

Then Eq
∗

t=0,ẑ0
[ZT ] = Û(ẑ0, t = 0)

and Stdq
∗

t=0,ẑ0
[ZT ] =

√
V̂ (ẑ0, t = 0)− [Û(ẑ0, t = 0)]2

EndFor
Construct the efficient frontiers from the points

(Stdq
∗

t=0,ẑ0
[ZT ], Eq

∗

t=0,ẑ0
[ZT ])λ, λ ∈ [λmin, λmax]

(5.33)
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6 Various Constraints

In this section, we apply various constraints to the control policy q. We consider three cases:
allowing bankruptcy, no bankruptcy (no shorting stocks) and bounded control. We will see later
that these constraints have different effects on boundary conditions and dramatically change the
properties of the efficient frontiers.

We summarize the various cases in Table 1 below.

Case Control q Original Domain: Localized Domain:
D, Q D̂, Q̂

Bankruptcy pz (−∞,+∞), (−∞,+∞) [zmin, zmax], [qmin, qmax]
No Bankruptcy p or pz [0,+∞), [0,+∞) [0, zmax], [0, qmax]

Bounded Control p [0,+∞), [0, qmax] [0, zmax], [0, qmax]

Table 1: Summary of cases.

6.1 Allowing Bankruptcy, Unbounded Controls

In this case, we assume there are no constraints on Z(t) or on the control q, i.e., D = (−∞,+∞)
and Q = (−∞,+∞). Since Z(t) = z can be negative, bankruptcy is allowed. We call this case the
allowing bankruptcy case. We solve this problem by using the monetary amount invested in the
risky asset as the control (q = pz). Note that the amount invested in the risky asset was also used
as the control in [3] to determine analytic solution for the pre-commitment policy.

Our numerical problem uses

D̂ = [zmin, zmax] , Q̂ = [qmin, qmax] , (6.1)

where D̂ = [zmin, zmax] and Q̂ = [qmin, qmax] are approximations to the original set D = (−∞,+∞)
and Q = (−∞,+∞). At z = zmin, zmax we apply the Dirichlet conditions (5.24).

These artificial boundary conditions will cause some error. However, we can make these er-
rors small by choosing large values for (|zmin|, zmax) and (|qmin|, qmax). The error will be small if
(|zmin|, zmax) and (|qmin|, qmax) are sufficiently large [1]. We will verify this in some subsequent
numerical tests.

An analytic solution exists for the wealth case [2]. The efficient frontier solution is{
V art=0,ŵ0 [WT ] = ξ21

4λ2T

Et=0,ŵ0 [WT ] = ŵ0e
rT + π e

rT−1
r + ξ

√
TStd(WT ) ,

(6.2)

and the optimal control (q = pw) at any time t ∈ [0, T ] is

q∗(t, w) =
ξ1

2λσ1
e−r(T−t) . (6.3)

We can then see directly from the SDE (2.2), that W (t) can be negative in this case. Hence,
D = (−∞,+∞). From equation (6.3), given a time t, the optimal monetary amount q∗ = p∗w
invested in the risky asset is a positive constant. Hence the investor is always long stock.

The efficient frontier (Stdt=0
q∗ [WT ], Et=0

q∗ [WT ]) in this case is a straight line. We will use this
analytic result to check our numerical solution.

12



Remark 6.1 For the wealth case, from equation (6.3), we can see that if we use p as the control,
then

p∗(t, w) =
ξ1

2λσ1w
e−r(T−t) . (6.4)

Clearly, this will cause some difficulties near w = 0, as discussed in [19]. We can avoid these
problem in this case by using the control q = pw, which is always finite from equation (6.3).

6.2 No Bankruptcy, No Short Sales

In this case, we assume that bankruptcy is prohibited and the investor cannot short the stock index,
i.e., D = [0,+∞) and Q = [0,+∞). We call this case the no bankruptcy (or bankruptcy prohibition)
case. We can solve this problem by either using the proportion p as the control (q = p) or using
the monetary amount pw as the control (q = pw).

Our numerical problem uses,

D̂ = [0, zmax] , Q̂ = [0, qmax] . (6.5)

We prohibit the possibility of bankruptcy (Z(t) < 0) by requiring that (see Remark 6.2 below) the
optimal monetary amount limz→0(p∗z) = 0, so that PDEs (5.18) and (5.19) reduce to (at z = 0)

Ûτ (0, τ) = πÛz ,

V̂τ (0, τ) = πV̂z . (6.6)

Remark 6.2 It is important to know the behavior of the optimal monetary amount p∗z as z →
0, since it helps us determine whether negative wealth is admissible or not. Negative wealth is
admissible for the case of allowing bankruptcy. In the case of no bankruptcy, although p ∈ P =
[0,+∞), we must have limz→0(p∗z) = 0 so that Z(t) ≥ 0 for all 0 ≤ t ≤ T . In particular, we
need to make sure that the optimal strategy never generates negative wealth, i.e., Probability(Z(t) <
0|p∗) = 0 for all 0 ≤ t ≤ T . We will see from the numerical solutions that boundary condition
(6.6) does in fact result in limz→0(p∗z) = 0. Hence, negative wealth is not admissible under the
optimal strategy. More discussion of this issue is given in Section 7. For the bounded control case,
the control is finite, thus limz→0(p∗z) = 0 and negative wealth is not admissible.

6.3 No Bankruptcy, Bounded Control

This is a realistic case, in which we assume that bankruptcy is prohibited and infinite borrowing
is not allowed. As a result, D = [0,+∞) and Q = [0, qmax]. We call this case the bounded control
case. Since the borrowing upper bound qmax is usually based on the investor’s total wealth (e.g,
the investor can borrow at most 50% of her total wealth), we use the proportion of the total wealth
invested in the risky asset as the control (q = p) for this case.

Our numerical problem uses,

D̂ = [0, zmax] , Q̂ = Q = [0, qmax] . (6.7)

where zmax is an approximation to the infinity boundary. In this case we also specify that q ≥ 0
(no shorting the risky asset). Other assumptions and the boundary conditions for V and U are the
same as those of no bankruptcy case introduced in Section 6.2.
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7 Numerical Results

In this section, we carry out numerical tests for the defined contribution pension plan problem.
We examine both the wealth case (addressed in Section 3) and the wealth-to-income ratio case
(addressed in Section 4).

7.1 Wealth Case

r 0.03 ξ1 0.33
σ1 0.15 π 0.1
T 20 years W (t = 0) 1

Table 2: Parameters used in the pension plan examples.

We first consider the wealth case introduced in Section 3. When bankruptcy is allowed, analytic
solutions exist. We use the monetary amount pw as the control. Table 3 and 4 show the numerical
results. Table 3 reports the value of Eq

∗

t=0,w[W 2
T ], which is the solution of equation (5.9). Table

4 reports the value of Eq
∗

t=0,w[WT ], which is the solution of equation (5.8). Given Eq
∗

t=0,w[W 2
T ] and

Eq
∗

t=0,w[WT ], the standard deviation is can be easily computed, which is also reported in Table
4. The results show that the numerical solutions of Eq

∗

t=0,w[W 2
T ] and Eq

∗

t=0,w[WT ] converge to the
analytic values at a first order rate as mesh and timestep size tends to zero.

Nodes Timesteps Normalized Eq
∗

t=0,w[W 2
T ] Ratio

(W ×Q) CPU Time
180 × 105 40 1 43.0211
360 × 209 80 7.24 40.3870
720 × 417 160 56.16 41.4764 -2.418
1440 × 833 320 437.04 42.0794 1.807
2880 × 1665 640 3445.49 42.3825 1.989
5760 × 3329 1280 31277.09 42.5347 1.991

Table 3: Convergence study of the wealth case, allowing bankruptcy. The monetary amount
invested in the risky asset is used as the control (q = pw). Fully implicit timestepping is applied,
using constant timesteps. Parameters are given in Table 2, with λ = 0.6. Values of Eq∗

t=0,w[W 2
T ]

are reported at (W = 1, t = 0). Ratio is the ratio of successive changes in the computed values
for decreasing values of the discretization parameter h. Analytic solution is Eq∗

t=0,w[W 2
T ] = 42.6873.

CPU time is normalized. We take the CPU time used for the first test in this table as one unit of
CPU time, which uses 180× 105 nodes for W ×Q grid and 40 timesteps.

We also solve the problem for the no bankruptcy case and the bounded control case. Analytic
solutions do not exist for these cases. The efficient frontiers are shown in Figure 1, with parameters
given in Table 2. The straight line is the efficient frontier for the allowing bankruptcy case. This
result agrees with the analytic solution (equations (6.2)). The curve for the case of no bankruptcy is
actually two overlapping curves. One is from the solutions obtained by using the monetary amount
invested in the risky asset as the control, and the other is from the solutions using proportion as
the control. The lower curve is for the bounded control case. Clearly, the strategy given by the
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Nodes Timesteps Stdq
∗

t=0,w[WT ] Eq
∗

t=0,w[WT ] Ratio for Ratio
(W ×Q) Stdq

∗

t=0,w[WT ] for E[WT ]
180 × 105 40 1.74390 6.32297
360 × 209 80 1.32762 6.21486
720 × 417 160 1.28790 6.31013 10.480 -1.135
1440 × 833 320 1.26536 6.36226 1.762 1.828
2880 × 1665 640 1.25392 6.38828 1.970 2.003
5760 × 3329 1280 1.24812 6.40132 1.972 1.995

Table 4: Convergence study of the wealth case, allowing bankruptcy. The monetary amount in-
vested in the risky asset is used as the control (q = pw). Fully implicit timestepping is applied,
using constant timesteps. Parameters are given in Table 2, with λ = 0.6. Values of Stdq∗

t=0,w[WT ]
and Eq∗

t=0,w[WT ] are reported at (W = 1, t = 0). Ratio is the ratio of successive changes in
the computed values for decreasing values of the discretization parameter h. Analytic solution is
(Stdq∗

t=0,w[WT ], Eq∗

t=0,w[WT ]) = (1.24226, 6.41437).

allowing bankruptcy case is the most efficient, and the strategy given by the bounded control case
is the least efficient.

std[WT]

E
[W

T
]

0 2 4 6 8 10

5

10

15

20

Allow bankruptcy

Bounded control

No bankruptcy

Figure 1: Time-consistent efficient frontiers (wealth case) for allowing bankruptcy (D =
(−∞,+∞) and Q = (−∞,+∞)), no bankruptcy (D = [0,+∞) and Q = [0,+∞)) and bounded
control (D = [0,+∞) and Q = [0, 1.5]) cases. Parameters are given in Table 2. Values are reported
at (W = 1, t = 0).

As mentioned in Section 6.1, some error is introduced using the artificial boundaries. However,
we can make these errors small by choosing large values for (|wmin|, wmax) and (|qmin|, qmax). Table
5 shows the values of Eq

∗

t=0,w[W 2
T ] and Eq

∗

t=0,w[WT ] for different large boundaries. We can see that
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once (|wmin|, wmax) and (|umin|, umax) are large enough, the values of Eq
∗

t=0,w[W 2
T ] and Eq

∗

t=0,w[WT ]
are insensitive to the location of these large boundaries.

(wmin, wmax) (qmin, qmax) Eq
∗

t=0,w[W 2
T ] Eq

∗

t=0,w[WT ]
(-1000, 1000) (-1000, 1000) 42.5347 6.40132
(-2000, 2000) (-2000, 2000) 42.5347 6.40132
(-5000, 5000) (-5000, 5000) 42.5347 6.40132

(-10000, 10000) (-10000, 10000) 42.5347 6.40132

Table 5: Effect of finite boundary, wealth case, allowing bankruptcy. The monetary amount
invested in the risky asset is used as the control (q = pw). Parameters are given in Table 2, with
λ = 0.6. There are 1280 timesteps for each test. Recall that q = pw, which is the monetary amount
invested in the risky asset.

As discussed in Remark 3.1, the wealth case can be reduced to the classic multi-period portfolio
selection problem. The efficient frontier solutions of a particular multi-period portfolio selection
problem are shown in Figure 2. As for the wealth case, the efficient frontier for the bankruptcy
case is a straight line. The curve for the case of no bankruptcy is actually two overlapping curves.
One is from the solution obtained using the monetary amount invested in the risky asset as the
control, and the other is from the solution computed using the proportion as the control. Again,
the strategy given by the allowing bankruptcy case is the most efficient, and the strategy given by
the bounded control case is the least efficient.

std[WT]

E
[W

T
]

0 2 4 6 8 10
0

5

10

15

Allow bankruptcy

Bounded control

No bankruptcy

Figure 2: Time-consistent efficient frontiers (multi-period portfolio selection problems) for for
allowing bankruptcy (D = (−∞,+∞) and Q = (−∞,+∞)), no bankruptcy (D = [0,+∞) and
Q = [0,+∞)) and bounded control (D = [0,+∞) and Q = [0, 1.5]) cases. Parameters are given in
Table 2 except that the contribution rate π = 0. Values are reported at (W = 1, t = 0).
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7.2 Wealth-to-income Ratio Case

µy 0. ξ1 0.2
σ1 0.2 σY 1 0.05
σY 0 0.05 π 0.1
T 20 years λ 0.25
Q [0, 1.5] D [0,+∞)

Table 6: Parameters used in the wealth to income ratio pension plan examples.

In this section, we examine the wealth-to-income ratio case (discussed in Section (4)). Table
6 gives the data used for this example. Table 7 and 8 show a convergence study for the bounded
control case. We set xmax, |xmin| = 1000 in this case. Increasing xmax had no effect on the solution
to six digits. Table 7 reports the value of Eq

∗

t=0,x[X2
T ], and Table 8 reports the values of Eq

∗

t=0,x[XT ]
and Stdq

∗

t=0,x[XT ]. The results show that the numerical solutions of Eq
∗

t=0,x[X2
T ] and Eq

∗

t=0,x[XT ]
converge at a first order rate as mesh and timestep size tends to zero. No analytic solutions are
available in this case.

Nodes Timesteps Normalized Eq
∗

t=0,x[X2
T ] Ratio

(X ×Q) CPU Time
90 × 16 40 1. 15.1154
179 × 31 80 17. 15.2894
357 × 61 160 104. 15.3453 3.113
713 × 121 320 794.50 15.3696 2.300
1425 × 241 640 6430.01 15.3814 2.059
2849 × 481 1280 52513.05 15.3871 2.070

Table 7: Convergence study of the wealth-to-income ratio case, bounded control. The proportion
of the total wealth invested in the risky asset is used as the control (q = p). We set q = p ∈ [0, 1.5].
Fully implicit timestepping is applied, using constant timesteps. Parameters are given in Table 6,
with λ = 0.25. Values of Eq∗

t=0,x[X2
T ] are reported at (X = 0.5, t = 0). Ratio is the ratio of successive

changes in the computed values for decreasing values of the discretization parameter h. CPU time
is normalized. We take the CPU time used for the first test in this table as one unit of CPU time,
which uses 90× 16 nodes for W ×Q grid and 40 timesteps.

Efficient frontiers for the wealth case are shown in Figure 3, with parameters given in Table
6. The curve for bankruptcy case is determined by using monetary amount invested in the risky
asset as the control. As for the wealth case, the curve for the case of no bankruptcy is also two
overlapping curves. One is from the solutions using the monetary amount invested in the risky
asset as the control, and the other is from the solutions using the proportion as the control. Again,
the strategy given by the allowing bankruptcy case is the most efficient, and the strategy given by
the bounded control case is the least efficient.

Remark 7.1 As we discussed in Remark 6.2, in the case of bankruptcy prohibition, we have to
have limz→0(p∗z) = 0 so that negative wealth is not admissible, where z = w or x. Our numerical
tests show that as z goes to zero, p∗z = O(zβ). For a reasonable range of parameters, we have
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Nodes Timesteps Stdq
∗

t=0,x[XT ] Eq
∗

t=0,x[XT ] Ratio for Ratio
(W ×Q) Stdq

∗

t=0,x[XT ] for E[XT ]
90 × 16 40 1.37474 3.63669
179 × 31 80 1.35197 3.66900
357 × 62 160 1.33799 3.68172 1.629 2.540
713 × 121 320 1.33060 3.68770 1.892 2.127
1425 × 241 640 1.32688 3.69063 1.987 2.041
2849 × 481 1280 1.32500 3.69208 1.979 2.021

Table 8: Convergence study of the wealth-to-income ratio case, bounded control. The proportion
of the total wealth invested in the risky asset is used as the control (q = p). We set q ∈ [0, 1.5].
Fully implicit timestepping is applied, using constant timesteps. Parameters are given in Table 6,
with λ = 0.25. Values of Stdq∗

t=0,x[XT ] and Eq∗

t=0,x[XT ] are reported at (X = 0.5, t = 0). Ratio is
the ratio of successive changes in the computed values for decreasing values of the discretization
parameter h.

std[XT] at t = 0

E[
X T]

at
t=

0

0 1 2 3 42.5

3

3.5

4

4.5

5

5.5

6

Allow bankruptcy

Bounded Control

No bankruptcy

Figure 3: Time-consistent efficient frontiers (wealth-to-income ratio case) for allowing bankruptcy
(D = (−∞,+∞) and Q = (−∞,+∞)), no bankruptcy (D = [0,+∞) and Q = [0,+∞)) and bounded
control (D = [0,+∞) and Q = [0, 1.5]) cases. Parameters are given in Table 6. Values are reported
at (X = 0.5, t = 0).

0.9 < β < 1. As discussed in [11], zero is an unattainable boundary for the stochastic process (2.2)
if β > 0.5. Hence, this verifies that the boundary conditions (6.6) ensure that negative wealth is
not admissible under the optimal strategy.

Figure 4 shows the values of the optimal control (the investment strategies) at different times t
for a fixed T = 20 and λ = 0.25 for the bounded control case. Under these inputs, if X(t = 0) = 0.5,
(Stdq

∗

t=0,x[XT ], Eq
∗

t=0,x[XT ]) = (1.32500, 3.69208) from the finite difference solution. From this figure,
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we can see that the control q is a increasing function of time t for a fixed X. This behavior of the
optimal strategy is also seen in the analytic solution for the wealth case with bankruptcy allowed
(Equation 6.3). This result is also the same as for the pre-commitment case [19]. In other words, if
time goes on, and wealth remains constant, then the investor’s optimal strategy is to invest more
in the risky asset. Note that curves for the control is not very smooth in Figure 4 (a). This is due
to the fact that we have discretized the control in each interval [τn, τn+1]. Recall equation (5.5),

Q̂ = [p0, p1, ..., qm] , with p0 = qmin ; qm = qmax ,

max
0≤j≤m−1

(qj+1 − qj) = C1h . (7.1)

The curves for the control in Figure 4 converge to smooth curves as h → ∞. Figure 4 (b) is
computed by using a finer grid and more timesteps.
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Figure 4: Optimal control as a function of (X, t). Parameters are given in Table 6 with λ = 0.25.
Under these inputs, if X(t = 0) = 0.5, (Stdt=0

q∗ [XT ], Et=0
q∗ [XT ]) = (1.32500, 3.69208) from the finite

difference solution. Figure (a) uses 4560 nodes for X grid, 433 nodes for the control grid, and
640 timesteps. Figure (b) uses 9120 nodes for X grid, 865 nodes for the control grid, and 1280
timesteps.

7.3 Monte-Carlo Simulation

In this section, we carry out Monte-Carlo simulation. We use the wealth-to-income ratio case with
a bounded control as an example. Using the parameters in Table 6, we solve the stochastic optimal
control problem (equation (4.5)) and store the optimal strategies for each (X = x, t). We then
carry out Monte-Carlo simulations based on the stored strategies for X(t = 0) = 0.5 initially.
The value for (Stdq

∗

t=0,x[XT ], Eq
∗

t=0,x[XT ]) is (1.32500, 3.69208) (from the finite difference solution).
Table 9 shows a convergence study of Monte-Carlo simulations, and Figure 5 shows a plot of the
convergence study. As the number of simulations increases and the timestep size decreases, the
results given by Monte-Carlo simulation converge to the values given by solving the finite difference
solution.
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# of Simulations MC Timestep Eq
∗

t=0,x[XT ] Stdq
∗

t=0,x[XT ]
1000 0.25 3.7234 1.2753
4000 0.125 3.6705 1.2892
16000 0.0625 3.6815 1.3053
64000 0.03125 3.6883 1.3161
256000 0.015625 3.6913 1.3202

Table 9: Convergence study for the Monte-Carlo Simulations (bounded control). Parameters are
given in Table 6. Values for Eq∗

t=0,x[XT ] and Stdq∗

t=0,x[XT ] are reported at (X = 0.5, t = 0). The
finite difference values are: Eq∗

t=0,x[XT ] = 3.69208 and Stdq∗

t=0,x[XT ] = 1.32500.

Number of Simulations
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X T]
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Figure 5: Convergence study for Monte-Carlo Simulation (bounded control). Parameters are
given in Table 6. Figure (a) shows the plot of Eq∗

t=0,x[XT ]. Figure (b) shows the plot for
Stdq∗

t=0,x[XT ]. Eq∗

t=0,x[XT ] and Stdq∗

t=0,x[XT ] are written as E[XT ] and Std[XT ] in the figure. Val-
ues for Eq∗

t=0,x[XT ] and Stdq∗

t=0,x[XT ] are reported in Table 9. The finite difference values are
(Stdq∗

t=0,x[XT ], Eq∗

t=0,x[XT ]) = (1.32500, 3.69208).

Figure 6 shows the probability density function of Monte-Carlo simulations (500000 simula-
tions). Figure 6 (a) uses λ = 0.15 ((Stdq

∗

t=0,x[XT ], Eq
∗

t=0,x[XT ]) = (1.91306, 4.01011)), while Figure 6
(b) uses λ = 0.25 ((Stdq

∗

t=0,x[XT ], Eq
∗

t=0,x[XT ]) = (1.32500, 3.69208)). The shape of the probability
density function depends on input parameters (λ in this example). The double peak in Figure 6
(a) is due to the same effect as described in [19].

Figure 7 shows the mean and standard deviation for the strategy q(t, x) = p(t, x) as time
changes. Figure 7 (a) uses λ = 0.15 ((Stdp

∗

t=0,x[XT ], Ep
∗

t=0,x[XT ]) = (1.91306, 4.01011)), while Figure
7 (b) uses λ = 0.25 ((Stdp

∗

t=0,x[XT ], Ep
∗

t=0,x[XT ]) = (1.32500, 3.69208)). Both of these Figures show
that the mean of p(t, x) is a decreasing function of time t, i.e., as time goes on, the investor switches
into the less risky strategy (on average). Since the value of Ep

∗

t=0,x[XT ] in Figure 7 (b) is higher
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Figure 6: Probability density function for Monte-Carlo Simulation, bounded control, 500, 000
simulations and 1280 simulation timesteps. Parameters are given in Table 6. Values for
(Eq∗

t=0,x[XT ],Stdq∗

t=0,x[XT ]) are reported at (X = 0.5, t = 0). Figure (a) uses λ = 0.15, while
Figure (b) uses λ = 0.25. For Figure (a), (Stdq∗

t=0,x[XT ], Eq∗

t=0,x[XT ]) = (1.91306, 4.01011) from the
finite difference solution; For Figure (b), (Stdq∗

t=0,x[XT ], Eq∗

t=0,x[XT ]) = (1.32500, 3.69208) from the
finite difference solution.

than the one in Figure 7 (a), the mean strategy in Figure 7 (b) is more risky compared to Figure
7 (a).

7.4 Comparison with the Pre-commitment Strategy

In this section, we briefly compare the time-consistent strategy with the pre-commitment strategy.
We first study the wealth case. Figure 8 shows the efficient frontiers for the case of allowing

bankruptcy for the two strategies. The analytic solution for the pre-commitment strategy is given
in [10], {

V art=0[WT ] = eξ
2
1T−1
4λ2

Et=0[WT ] = ŵ0e
rT + π e

rT−1
r +

√
eξ

2
1T − 1Std(WT ) ,

(7.2)

and the optimal control (q = p) at any time t ∈ [0, T ] is

q∗(t, w) = − ξ1

σ1w
[w − (ŵ0e

rt +
π

r
(ert − 1))− e−r(T−t)+ξ

2
1T

2λ
] . (7.3)

The figure clearly shows that the pre-commitment strategy is more efficient than the time-consistent
strategy, since the pre-commitment strategy is a globally optimal strategy in terms of an efficient
frontier. The two efficient frontiers are both straight lines, and pass through the same point at
(Std(WT ), E(WT )) = (0, ŵ0e

rT + π e
rT−1
r ). At that point, the plan holder simply invests all her
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Figure 7: Mean and standard deviation for the control q(t, x) = p(t, x). There are 64000 simula-
tions and 1280 simulation timesteps. Parameters are given in Table 6. Figure (a) uses λ = 0.15,
while Figure (b) uses λ = 0.25. For Figure (a), (Stdp∗

t=0,x[XT ], Ep∗

t=0,x[XT ]) = (1.91306, 4.01011)
from the finite difference solution; For Figure (b), (Stdp∗

t=0,x[XT ], Ep∗

t=0,x[XT ]) = (1.32500, 3.69208)
from the finite difference solution.

wealth in the risk free bond all the time, so the standard deviation is zero. The slope (=
√
eξ

2
1T − 1)

of the pre-commitment strategy is larger than the slope (= ξ1

√
T ) of the time-consistent strategy.

But note that
√
eξ

2
1T − 1→ ξ1

√
T as T → 0, so the two strategies are the same as T → 0. This is

easy to understand, since as T → 0, finding the global optimal strategy (pre-commitment case) is
the same as finding the local optimal strategy (time-consistent case).

Figure 9 (a) shows a comparison for the two strategies of the no bankruptcy case, and Figure 9
(b) is for the bounded control case. Similar to the allowing bankruptcy case, the pre-commitment
strategy is more efficient. For the bounded control case, the two efficient frontiers have the same
end points. The lower end corresponds to the most conservative strategy, i.e. the total wealth
is invested in the risk free bond at any time. The higher end corresponds to the most aggressive
strategy, i.e. choose the control p to be the upper bound pmax(= 1.5) at any time. Figure 8
and 9 show that the difference between the efficient frontier solutions of the pre-commitment and
time-consistent strategies become smaller after adding constraints.

It is not surprising that the pre-commitment strategy is more efficient than the time-consistent
strategy, since the pre-commitment policy is the strategy which optimizes the objective function
at the initial time (t = 0). However, in practice, investors may be more likely to choose the time-
consistent strategy. This is because investors often prefer to choose the “optimal” strategy based on
the current state, without regard to investment targets specified at the initial time. This strategy is
also more natural to follow if the parameters of the problem (volatility, Sharpe ratio) change with
time. However, if we can repeat a similar trading strategy many times (e.g. optimal execution in
[7]), we should choose the pre-commitment strategy, since the average outcome will then end up
on the globally optimal pre-commitment efficient frontier.
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Figure 8: Time-consistent vs Pre-commitment: Wealth case, allowing Bankruptcy. Parameters
are given in Table 2.
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Figure 9: Time-consistent vs Pre-commitment: Wealth case. (a): no bankruptcy case; (b):
bounded control case. Parameters are given in Table 2.

In Figure 10, we compare the control policies of the time-consistent and pre-commitment
strategies. Parameters are given in Table 2, and we use the wealth case with bounded control
(q = p ∈ [0, 1.5]). We fix Stdp

∗

t=0,w[WT ] ' 1.24 for this test. Figure 10 shows that the control
policies given by the two strategies are significantly different. This is true even for the bounded
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control case, where the expected value for pre-commitment and time-consistent policies is similar
for a fixed standard deviation. Figure 10 (a) shows the control policies at t = 0. We can see that
once the wealth W is large enough, the control policy for the pre-commitment strategy is to invest
all wealth in the risk free asset. The reason for this is that for the pre-commitment strategy, there
is an effective investment target given at t = 0, which depends on the value of λ. Once the target is
reached, the investor will not take anymore risk and switch all wealth into bonds. However, there
is no investment target for the time-consistent case, so the control never reaches zero. Figure 10
(b) shows the mean of the control policies versus time t ∈ [0, T ]. The mean of both policies is a
decreasing function of time, i.e. both strategies are less risky as we near maturity.

Similar to Figure 10, Figure 11 shows a comparison of the control policies of the time-consistent
and pre-commitment strategies. Parameters are given in Table 6, and we use wealth case with
bounded control (q = p ∈ [0, 1.5]). Figure 11 uses a more risky strategy. We fix Stdp

∗

t=0,w[WT ] ' 8.17
for this test. The comparison results are similar to the results from Figure 10. Although the pre-
commitment and the time-consistent strategies have a similar pair of expected value and standard
deviation, the control policies are significantly different.
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Figure 10: Comparison of the control policies: wealth case with bounded control (q = p ∈ [0, 1.5]).
Parameters are given in Table 2. We fix stdp∗

t=0,w[WT ] ' 1.24 for this test. More precisely, from our
finite difference solutions, (Stdp∗

t=0,w[WT ], Ep∗

t=0,w[WT ]) = (1.23975, 6.39296) for the time-consistent
strategy; and (Stdp∗

t=0,w[WT ], Ep∗

t=0,w[WT ]) = (1.23805, 7.03097) for the pre-commitment strategy.
Figure (a) shows the control policies at t = 0; Figure (b) shows the mean of the control policies
versus time t ∈ [0, T ].

For the wealth-to-income ratio case, the comparison is similar to the wealth case.

8 Conclusions

In this article, we have developed a numerical technique for determining the optimal time-consistent
mean variance investment strategy. We discuss two cases for the pension plan problem: the wealth

24



W

C
on

tro
lp

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pre-commitment

Time-consistent

Time (years)

M
ea

n
of

p

0 5 10 15 20
1.2

1.3

1.4

1.5

Time-consistent

Pre-commitment

(a) (b)

Figure 11: Comparison of the control policies: wealth case with bounded control (q = p ∈ [0, 1.5]).
Parameters are given in Table 2. We fix stdp∗

t=0,w[WT ] ' 8.17 for this test. More precisely, from our
finite difference solutions, (Stdp∗

t=0,w[WT ], Ep∗

t=0,w[WT ]) = (8.17494, 12.6612) for the time-consistent
strategy; and (Stdp∗

t=0,w[WT ], Ep∗

t=0,w[WT ]) = (8.17453, 12.8326) for the pre-commitment strategy.
Figure (a) shows the control policies at t = 0; Figure (b) shows the mean of the control policies
versus time t ∈ [0, T ].

case and the wealth-to-income ratio case. Our method can handle various constraints on the
control policy. We study three types of control: allowing bankruptcy case, no bankruptcy case,
and bounded control case.

We use the piecewise constant policy technique [12] to solve the optimization problem for the
efficient frontier solutions. In [12], the authors applied the piecewise constant timestepping to a
scalar HJB equation, and proved that the solution converges to the viscosity solution. However,
in our case, since the time-consistent problem can be formulated as a system of HJB differential
algebraic equations, this falls outside the viscosity solution theory. Hence we have no formal proof
of convergence of our method. Nevertheless, our technique does converge to analytic solutions
where available.

We compare the solutions for time-consistent policy with the solutions for the pre-commitment
policy. Since we can view the time-consistent mean variance strategy as the pre-commitment strat-
egy with a constraint forcing time consistency, the efficient frontier for the time-consistent strategy
can never be above the efficient frontier for the pre-commitment strategy. When realistic con-
straints are applied to the investment policy, the efficient frontiers for the time-consistent strategy
and the pre-commitment strategy are quite similar, and they have the same end points. However,
the investment policies (not at the end points of the efficient frontier) are substantially different.
This suggests that the choice between a pre-commitment or time-consistent strategy cannot be
made by examining the efficient frontier, but rather should be based on the qualitative behavior of
the optimal policies.
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A Discrete Equation Coefficients

Let qni denote the optimal control q∗ at node i, time level n and set

an+1
i = a(zi, qni ), bn+1

i = b(zi, qni ) , (A.1)

where a(z, q) and b(z, q) are defined in equation (5.26). Then, we can use central, forward or
backward differencing at any node.

Central Differencing:

αni,central =
[

2ani
(zi − zi−1)(zi+1 − zi−1)

− bni
zi+1 − zi−1

]
βni,central =

[
2ani

(zi+1 − zi)(zi+1 − zi−1)
+

bni
zi+1 − zi−1

]
. (A.2)

Forward/backward Differencing: (bni > 0/ bni < 0)

αni,forward/backward =
[

2ani
(zi − zi−1)(zi+1 − zi−1)

+ max(0,
−bni

zi − zi−1
)
]

βni,forward/backward =
[

2ani
(zi+1 − zi)(zi+1 − zi−1)

+ max(0,
bni

zi+1 − zi
)
]
. (A.3)
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