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Abstract

We consider a portfolio consisting of a risk-free bond and an equity index which follows
a jump diffusion process. Parameters for the inflation-adjusted return of the stock index and
the risk free bond are determined by examining 89 years of data. The optimal dynamic asset
allocation strategy for a long-term pre-commitment mean variance (MV) investor is determined
by numerically solving a Hamilton-Jacobi-Bellman partial integro differential equation. The
MV strategy is mathematically equivalent to minimizing the quadratic shortfall of the target
terminal wealth. We incorporate realistic constraints on the strategy: discrete rebalancing
(yearly), maximum leverage, and no trading if insolvent. Extensive synthetic market tests
and resampled backtests of historical data indicate that the multi-period MV strategy achieves
approximately the same expected terminal wealth as a constant weight strategy, but with much
smaller variance and probability of shortfall.

Keywords: mean-variance, dynamic asset allocation, resampled backtests

1 Introduction

Due to the disappearance of traditional defined benefit pension plans, individual investors must
now manage their own defined contribution (DC) retirement savings plans. Accumulation periods
of thirty or more years are not uncommon, followed by a decumulation period of another twenty
to thirty years. Retail investors are thus faced with a fifty year investment cycle, making them
truly long-term investors. It is therefore of interest to determine optimal dynamic asset allocation
strategies for such long-term investors.

A strategy which is implementable by individual investors should have the following character-
istics:

• The portfolio should consist of a small number of widely available components, such as a
low-risk bond portfolio and an equity index.

• The strategy should be based on a small number of parameters, which are relatively stable
over the long term.

• The strategy should incorporate realistic solvency and leverage constraints.
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• The strategy should require infrequent (e.g. yearly) calendar-based rebalancing.

Based on the embedding approach devised in Li and Ng (2000) and Zhou and Li (2000), it
is known that pre-commitment multi-period MV optimization is equivalent to a quadratic target-
based strategy (Vigna, 2014; Dang and Forsyth, 2016). Using the numerical methods in Dang and
Forsyth (2014), a recent study by Forsyth and Vetzal (2017a) showed that the pre-commitment
MV strategy was able to produce the same expected terminal wealth as a constant weight strategy,
but with greatly reduced variance and probability of shortfall. This paper made the assumption
that the risky asset followed geometric Brownian motion (GBM).

In (Graf, 2017) (GBM process) and (Forsyth and Vetzal, 2017b) (jump diffusion process), in
the case of a lump sum investment with continuous rebalancing, it is shown that any deterministic
glide path strategy is inferior to a constant weight strategy by the MV criterion. In this case, the
optimal constant weight is simply the average over time of the weight of the glide path strategy.

For the more realistic case of periodic contribution and discrete rebalancing, a constant weight
strategy is only slightly inferior to the optimal deterministic glide path, with the same expected
terminal wealth. For example, Forsyth and Vetzal (2017b) show that for realistic market parameters
and long term (greater than 20 years) investments, the ratio of the standard deviation of the optimal
deterministic strategy to the standard deviation of the constant proportion strategy (same expected
terminal wealth) is in the range 0.97 − 0.99. In practice, most glide path strategies are derived
based on heuristic reasoning and are unlikely to be optimal. This result is confirmed by empirical
studies such as Esch and Michaud (2014). Deterministic glide path strategies are commonplace in
target date funds. Consequently, in this study, we focus on comparing optimal MV strategies with
constant weight strategies.

The contributions of this study are as follows:

• To investigate the effects of alternative assumptions to GBM for the equity index, we model
the stock index as a jump diffusion, where the jump size follows a double exponential distri-
bution. We determine the parameters for the model by examining a long history (89 years)
of U.S. stock market data.1

• Our objective function is based on attempting to achieve a specified real (i.e. inflation-
adjusted) target wealth with a small probability of shortfall.

• For a given strategy, computed using the methods in Dang and Forsyth (2014), we carry out
extensive Monte Carlo tests in a synthetic market. To test robustness, we assume that the
synthetic market parameters used in the Monte Carlo tests are different from the parameters
used to generate the strategy.

• Based on strategies generated using parameters estimated (using various methods) from long
term data, we test these strategies on historical data. Representative historical paths are
examined. Bootstrap resampling (Annaert et al., 2009; Bertrand and Prigent, 2011; Cogneau
and Zakalmouline, 2013) tests of the historical data are also carried out.

• In addition to the lump sum investment case discussed in Forsyth and Vetzal (2017a), we also
consider the accumulation and decumulation phases, which would perhaps be more typical of
a DC investor.

1An alternative potential extension to GBM would be to incorporate stochastic volatility. However, the tests in
Ma and Forsyth (2016) indicate that stochastic volatility effects are unimportant for long-term (10 years or more)
investors.
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Our results confirm that the pre-commitment multi-period MV strategy is surprisingly robust.
It is quite insensitive to parameter estimates and it significantly outperforms a constant weight
strategy, in both synthetic markets and bootstrap resampled historical markets. We remind the
reader that constant weight strategies outperform deterministic glide path strategies (lump sum in-
vestment), or are similar in performance to an optimal glide path strategy (periodic contributions).
Consequently, our results should be of particular interest to those investors currently holding target
date funds using a glide path strategy2.

2 Formulation

For simplicity, we assume that there are only two assets available in the financial market, namely a
risky asset and a risk-free asset. The investment horizon is T . As described in more detail below,
we assume that the portfolio is rebalanced at discrete points in time in accordance with a control
strategy. We denote by St and Bt the amounts invested in the risky and risk-free assets respectively
at time t, t ∈ [0, T ]. In the absence of control (i.e. between rebalancing times), S follows the jump
diffusion process

dSt
St−

= (µ− λκ) dt+ σ dZ + d

(
πt∑
i=1

(ξi − 1)

)
(2.1)

where µ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener
process, πt is a Poisson process with intensity λ, and ξ denotes the random number representing
the jump multiplier. When a jump occurs, we have St = ξSt− , and κ = E[ξ − 1] where E[·] is the
expectation operator. As a specific example in this paper, we consider ξi as being i.i.d. positive
random variables characterized by a double exponential distribution (Kou and Wang, 2004). The
density function for y = log(ξ) is then

f(y) = pη1e
−η1y1y≥0 + (1− p)η2e

η2y1y<0. (2.2)

Given that a jump occurs, p is the probability of an upward jump and (1− p) is the probability of
a downward jump. Note that

E[y = log ξ] =
p

η1
− (1− p)

η2
; E[ξ] =

pη1

η1 − 1
+

(1− p)η2

η2 + 1
. (2.3)

It is assumed that the dynamics of the amount invested in the risk-free asset B (in the absence
of control) are

dBt = rBt dt,

where r is the (constant) risk-free rate. We make the standard assumption that the real world drift
rate of S (i.e. µ − λκ) is strictly greater than r. Since there is only one risky asset, it is never
optimal in an MV setting to short it, i.e. St ≥ 0, t ∈ [0, T ]. However, we do allow short positions
in the risk-free asset, i.e. it is possible that Bt < 0, t ∈ [0, T ].

2.1 Rebalancing Times: Scheduled Injections/Withdrawals

We consider a set of pre-determined rebalancing times, denoted by T ,

T ≡ {t0 < · · · < tM = T}. (2.4)

2According to Morningstar, at the end of 2015, there was over USD 750 billion invested in target date funds in
the U.S.

3



Let t0 = 0 be the inception time of the investment. For simplicity, we specify the set of rebalancing
times (2.4) to be equidistant with tm − tm−1 = ∆t = T/M , m = 1, . . . ,M . At each rebalancing
time tm, m = 0, . . . ,M , the investor (i) withdraws an amount of cash, denoted by am, from the
risk-free asset, and then (ii) rebalances the portfolio. Note that we have defined a withdrawal as
am > 0. A cash injection has am < 0. In the case of a lump-sum investment with no further cash
injections/withdrawals, we have am = 0. For a full lifecycle case, we would have both injections
and withdrawals.

2.2 Allowable Portfolios

Let Xt = (St, Bt), t ∈ [0, T ], be the multi-dimensional (controlled) underlying process, and let
x = (s, b) denote the state of the system. At each rebalancing date, the investor chooses a control
c(s,b) which is a function of the current portfolio state (s,b). The control generates a new allocation
of the stock and bond (this is defined more precisely in Appendix A).

Let the (controlled) wealth of the portfolio at time t ∈ [0, T ] be given by

Wt ≡W (St, Bt) = St +Bt.

We strictly enforce a solvency condition, i.e. the investor can continue trading only if

W (s, b) = s+ b > 0. (2.5)

In the event of insolvency, we require that the investor immediately liquidate all investments in the
risky asset and stop trading, i.e.

S = 0; B = W (s,b); if W (s, b) ≤ 0.

We also constrain the leverage ratio, i.e. the investor must select an allocation satisfying

S

S +B
≤ qmax, (2.6)

where qmax is a specified positive constant. Note that setting qmax = 1 implies that B ≥ 0, thus
ruling out the use of any leverage.

2.3 Informal Derivation of the Objective Function

In order to give some intuition for the embedded MV optimal objective function, we will consider a
simple case in this section. Suppose the risky asset follows pure GBM (i.e. λ = 0 in equation (2.1)),
and that the portfolio is continuously rebalanced. Let Etc(·)[WT ] and Vartc(·)[WT ] denote the mean
and variance of terminal wealth WT as observed at time t. Now, consider an objective function of
the form

min
c(·)

{
Et0c(·)

[
(W ∗ −WT )2

]}
. (2.7)

In other words, we want to find the rebalancing strategy c(·) that minimizes the quadratic loss
with respect to the quadratic wealth target W ∗. To avoid trivial cases, we assume that the initial
wealth Wt0 < W ∗e−r(T−t).

It is clear that equation (2.7) penalizes shortfall, i.e. the amount by which the terminal wealth
is less than W ∗. It also seems at first glance to penalize terminal wealth values larger than W ∗.
However, if there are no jumps and we use continuous rebalancing, then Vigna (2014) proves that
the optimal strategy c(·) which minimizes (2.7) is such that Wt ≤ W ∗ (assuming of course that
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Wt0 < W ∗e−r(T−t0)). In other words, the wealth target is always approached from below. Hence,
the optimal policy only penalizes losses with respect to the target.

The issue which then immediately arises is how to select W ∗. A natural choice might seem to
be W ∗ = Et0c(·)[WT ], so that we are minimizing the semi-variance. However, since WT ≤ W ∗, then

clearly Et0c(·)[WT ] < W ∗. An alternative method is to determine W ∗ such that Et0c(·)[WT ] = d, with
d specified by the investor. In other words, the investor is specifying a desired expected terminal
wealth, but minimizing the quadratic loss w.r.t. W ∗ > Et0c(·)[WT ]. In this case, our strategy aims

at W ∗, which has a built-in safety factor (W ∗ − Et0c(·)[WT ]) to ensure that we obtain the specified

expected terminal wealth on average. We can then formulate the optimization problem for c(·) as

min
c(·)

{
Et0c(·)

[
(W ∗ −WT )2

]}
(2.8)

where W ∗ is determined from the constraint Et0 [WT ] = d, with d specified by the investor.
It is now fascinating to observe from Li and Ng (2000) and Zhou and Li (2000) that the control

which solves problem (2.8) is also the control which solves

min
c(·)

{
ρVart0c(·)[WT ]− Et0c(·)[WT ]

}
where ρ =

1

2(W ∗ − Et0c(·)[WT ])
=

1

2(W ∗ − d)
. (2.9)

This means that the optimal control c∗(·) which minimizes the quadratic loss with respect to the
quadratic target wealth W ∗ is also the control c∗(·) which solves the dynamic MV problem (2.9).
For a discussion of the intuition underlying the identity of problems (2.8) and (2.9), see Forsyth and
Vetzal (2017a). In essence, the optimal control c∗(·) is simultaneously MV optimal and quadratic
loss optimal. This makes this choice of objective function potentially very desirable.

2.4 Efficient Frontiers and Embedding Methods

Having supplied some basic intuition in the prior section which assumed GBM, we return here
to the jump diffusion context and proceed somewhat more formally. We start by describing how
MV efficient frontiers can be determined. Let Ex,tc(·)[WT ] and Varx,tc(·)[WT ] respectively denote the

expectation and the variance of the terminal wealth WT conditional on the state (x,t) and on the
control c(·), t ∈ T . We denote the initial state by (x0, t0) = (X0,t = 0). Then the achievable MV
objective set Y is

Y =
{(

Varx0,t0c(·) [WT ], Ex0,t0c(·) [WT ]
)

: c ∈ Z
}
, (2.10)

where Z is the set of admissible controls, reflecting the constraints discussed above in Section 2.2.
For each point (V, E) ∈ Y, and for an arbitrary scalar ρ > 0, define the set of points YP (ρ) as

YP (ρ) =

{
(V∗, E∗) ∈ Ȳ : ρV∗ − E∗ = inf

(V,E)∈Y
ρV − E

}
. (2.11)

Here, Ȳ is the closure of Y and ρ can be interpreted as a risk-aversion parameter that reflects how
the investor trades off expected return (reward) and variance (risk). For a given ρ, YP (ρ) represents
Pareto efficient points: given the variance of any point in YP (ρ), the corresponding expectation is
the highest expectation obtainable with that variance. The set of points on the efficient frontier,
YP , is the collection of efficient points for all values of ρ > 0, i.e.

YP =
⋃
ρ>0

YP (ρ).
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Of course, a primary objective in MV optimal asset allocation is to determine the efficient
frontier YP . However, as noted in the literature (see, e.g. Zhou and Li, 2000; Li and Ng, 2000;
Basak and Chabakauri, 2010), the presence of the variance term in (2.11) causes difficulty if we try
to determine YP (ρ) by solving the associated value function problem using dynamic programming.
This problem can be circumvented by using the embedding result in Zhou and Li (2000) and Li
and Ng (2000). More specifically, define the value function as

V (x,t) = min
c(·) ∈ Z

{
Ex,tc(·)

[
(W ∗ −WT )2

]}
, (2.12)

where the parameter W ∗ ∈ (−∞,+∞). The embedding result implies that there exists a W ∗ ≡
W ∗(x, t, ρ), such that for a given positive ρ, a control c∗ which minimizes the objective function of
(2.11) also minimizes that of (2.12). Based on the intuitive description in the simpler context of
Section 2.3, we can identify W ∗ as the quadratic wealth target, and

Ex,tc(·)[WT ]

as the expected wealth target. Following Zhou and Li (2000) we can connect these two quantities
and the risk-aversion parameter ρ using

W ∗ =
1

2ρ
+ Ex,tc(·)[WT ],

which is just equation (2.9) expressed in an alternative form.
Up to this point, there may not seem to be much at all different between the discussion in

Section 2.3 and that provided here. There is, however, a key difference. In Section 2.3 it was
assumed that the risky asset evolved according to GBM and that the portfolio was continuously
rebalanced. Effectively, this was a complete market, and this drives the result that the target will
always be approached from below. If the market is incomplete, then it may be optimal to withdraw
additional cash from the portfolio, over and above beyond the scheduled withdrawals described
in Section 2.1 (Cui et al., 2012; Baeuerle and Grether, 2015; Dang and Forsyth, 2016). Suppose
that we are at a rebalancing date tk and that the quadratic wealth target W ∗ can be hit exactly
by investing an amount Ŵk in the risk-free asset.3 If the wealth of the portfolio at time tk, Wtk ,
exceeds Ŵk, then the optimal strategy will be to

(i) withdraw (Wtk − Ŵk) from the portfolio, and

(ii) invest the remaining Ŵk in the risk-free asset.

We refer to the amount withdrawn (and accumulated interest earned on it over the remainder of
the investment horizon) as the free cash flow. This cash withdrawal is clearly MV optimal because
the quadratic wealth target will be hit for certain, and the free cash flow is a bonus.

Appendix A describes the formulation of problem (2.12) as the solution of a Hamilton-Jacobi-
Bellman (HJB) equation. We solve the HJB equation numerically, following Dang and Forsyth
(2014). At each rebalancing time, we determine the optimal control for the value function (2.12)
using the strategy discussed in Dang and Forsyth (2016). This strategy explicitly takes into account
the possibility of the bonus free cash flow.

3A precise definition of Ŵk is given in equation (A.5) in Appendix A.
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3 Parameters

To estimate the parameters of equations (2.1)-(2.2), we use the following data:

• CPI data from the U.S. Bureau of Labor Statistics.4

• The total monthly returns (including dividends and any other distributions) of an index of
all domestic stocks traded on major U.S. exchanges for the 1926:1-2014:12 period. This is
the VWD index from the Center for Research in Security Prices (CRSP).5.

• Short-term (3-month) U.S. Treasury bill rates. For the period 1934-2014, this is from the U.S.
Federal Reserve.6 This series is not available prior to 1934. In order to include the effects
of the 1929 stock market crash in our sample period, we use data on short-term government
bond yields from the National Bureau of Economic Research for the 1926-1933 time frame.7

From the inputs listed above, real (inflation-adjusted) total equity and T-bill return indexes
were constructed on a monthly basis for 1926:1 - 2014:12. As our model assumes that the risk-free
rate is constant, we just calculate the sample average monthly return from our real T-bill index.
On an annualized basis, this turns out to be 0.6299%.

We next discuss the estimation of the parameters of the jump diffusion process (2.1)-(2.2).
Consider a discrete series of index prices S(ti) = Si, i = 1, . . . ,N + 1 that are observed at equally
spaced time intervals ∆t = ti+1 − ti,∀i, with T = N∆t.8 Let log returns be

∆Xi = log

(
Si+1

Si

)
, (3.1)

and define the detrended log returns ∆X̂i as

∆X̂i = ∆Xi − m̂∆t

m̂ =
log(SN+1)− log(S1)

T
. (3.2)

Figure 3.1 shows a histogram of the monthly log returns from the real total return equity index,
scaled to unit standard deviation and zero mean. We superimpose a standard normal density onto
this histogram. The plot shows that the empirical data has a higher peak and fatter tails than
a normal distribution, consistent with previous empirical findings for virtually all financial time
series. This figure strongly suggests that it is worth investigating jump diffusion models, rather
than relying solely on GBM.

Maximum likelihood (ML) estimation is easily applied to the case of GBM, i.e. if λ = 0 in (2.1).9

However, estimating the parameters for the full jump diffusion model is more challenging. Use of
ML estimation is well-known to be problematic, due to multiple local maxima and the ill-posedness
of trying to distinguish high frequency small jumps from diffusion (Honore, 1998). Various methods

4In particular, we use the annual average of the all urban consumers (CPI-U) index. See http://www.bls.gov/cpi.
5See http://www.crsp.com. More specifically, results presented here were calculated based on data from Historical

Indexes, c©2015 Center for Research in Security Prices (CRSP), The University of Chicago Booth School of Business.
Wharton Research Data Services was used in preparing this article. This service and the data available thereon
constitute valuable intellectual property and trade secrets of WRDS and/or its third-party suppliers.

6See http://research.stlouisfed.org/fred2/series/TB3MS.
7See http://www.nber.org/databases/macrohistory/contents/chapter13.html.
8We assume equal spacing for ease of exposition.
9Using the real stock index return over the full sample period from 1926-2014 gives ML estimates of µ̂ = 0.0816

and σ̂ = 0.1863 when we impose λ = 0.
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Figure 3.1: Probability density of log returns for real CRSP VWD index. Monthly data, 1926-2014,
scaled to unit standard deviation and zero mean. Standard normal density also shown.

have been suggested to alleviate these problems (see, e.g. Hanson and Zhu, 2004; Synowiec, 2008).
However, these methods typically involve fixing some of the parameters, which are estimated using
other techniques. Since we are interested in the robustness of our investment strategy, we include a
pure ML estimate of the jump diffusion parameters, knowing full well that it is unreliable. Further
details about ML estimation are given in Appendix B.1.

Econometric techniques have been developed for detecting the presence of jumps in high fre-
quency data, i.e. for a time scale of seconds (Aı̈t-Sahalia and Jacod, 2012). However, from the
perspective of a long-term investor, the most important feature of a jump diffusion model is that
it allows modelling of infrequent large jumps in asset prices. Small and frequent jumps look like
enhanced volatility when examined on a large scale, hence these effects are probably insignificant
when constructing a long-term investment strategy. Consequently, as an alternative to ML estima-
tion, we use the thresholding technique described in Mancini (2009) and Cont and Mancini (2011).
This procedure is considered to be more efficient for low frequency data.

Suppose we have an estimate for the diffusive volatility component σ̂. Then we detect a jump
in period i if ∣∣∣∆X̂i

∣∣∣ > A σ̂ √∆t

(∆t)β
(3.3)

where β,A > 0 are tuning parameters (Shimizu, 2013). The intuition behind equation (3.3) is
simple. If we choose A = 4, say, and β � 1, then equation (3.3) identifies an observation as a jump
if the observed log return exceeds a 4 standard deviation Brownian motion change, which would
be extremely improbable. If we choose a smaller time interval, i.e. reduce ∆t, keeping the total
time T fixed, then equation (3.3) indicates that we should raise the threshold which filters out the
Brownian motion increments. Intuitively, this is because we have increased the number of samples
and we expect to observe some large deviation events purely by chance. Typically, β in equation
(3.3) is quite small, β ' .01−.02. We provide a detailed discussion of how we calculate thresholding
estimates in Appendix B.2. As described there, we replace A/(∆t)β by the single parameter α.

Estimated parameters using various values of α and also ML are provided in Table 3.1. As
might be expected, some of these estimates vary considerably across α, but the ML estimates are
notably different in most cases. Note, however, that all of the values of p̂ < 0.5, indicating that
downward jumps are more likely than upward jumps.
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Method µ̂ σ̂ λ̂ p̂ η̂1 η̂2

ML 0.0823 0.1111 5.1162 0.0946 13.8325 21.9910
Threshold (α = 2) 0.0896 0.0970 2.3483 0.4258 11.2321 10.1256
Threshold (α = 3) 0.0874 0.1452 0.3483 0.2903 4.7941 5.4349
Threshold (α = 4) 0.0866 0.1584 0.1461 0.3846 3.7721 3.9943

Table 3.1: Estimated parameters for double exponential jump diffusion model. Monthly real log total
returns, CRSP VWD index. Sample period 1926-2014.

Investment horizon 30 years
Market parameters Threshold(α = 3, see Table 3.1)
Risk-free rate r 0.00623
Initial investment W0 100
Rebalancing interval 1 year
Maximum leverage ratio qmax 1.5
If insolvent Trading stops

Table 4.1: Base case data.

Figure 3.2 shows the normalized probability densities for the estimated parameters given in
Table 3.1. Panel (a) displays the results based on the ML and threshold (α = 2) estimates, while
panel (b) is derived from the threshold estimates when α = 3, 4. In each case, a standard normal
density is also shown, and the high peaks of the densities for the jump diffusion model relative to
the standard normal case are readily apparent. Of course, the jump diffusion model also has fat
tails relative to the normal distribution. These are not as visible in panels (a) and (b), but panel (c)
provides a zoomed-in view of panel (a) which displays the fat tails much more clearly.

4 Base Case: Lump Sum Investment in a Synthetic Market

As a first example, we consider the investment problem where we assume the market follows the
stochastic process (2.1), with the parameters given by the threshold (α = 3) case from Table 3.1.
Other base case investment parameters are given in Table 4.1.

We start by taking the parameters from Table 4.1 and simulating a constant proportion strat-
egy, whereby the fraction of wealth invested in the stock index p is reset to 0.5 every year. We then
determine the value of W ∗ for the MV optimal strategy which generates the same E[WT ] as the
constant proportion strategy. Some summary statistics for these strategies are shown in Table 4.2.
The MV optimal strategy standard deviation is about 2.6 times smaller than the constant propor-
tion strategy. Probabilities of shortfall for the MV strategy are also several times smaller than for
the constant proportion strategy. Note that the last row of Table 4.2 shows results when qmax = 1,
which implies that leverage is prohibited. Ruling out leverage results in slightly worse performance
compared to the qmax = 1.5 case, but still markedly better performance compared to the constant
proportion case. The magnitude of the expected free cash bonus is relatively small for the two MV
optimal cases (and obviously zero for the constant proportion strategy).

Figure 4.1 plots cumulative distribution functions for the internal rate of return (IRR) for the
MV optimal strategy compared to the constant proportion benchmark. Note that the free cash
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Expected Standard Expected
Strategy Value Deviation Pr(WT < 300) Pr(WT < 400) Free Cash

Constant proportion (p = 0.5) 417 299 0.41 0.60 0.0
MV optimal (qmax = 1.5) 417 117 0.13 0.22 10.5
MV optimal (qmax = 1.0) 417 128 0.18 0.26 9.4

Table 4.2: Investment results for a constant proportion strategy and two MV optimal strategies with
different leverage constraints. Based on input data from Table 4.1.
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Figure 3.2: Probability density plots for double exponential jump diffusion model. Parameters given
in Table 3.1. Empirical histogram plotted in Figure 3.1.
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Figure 4.1: Cumulative distribution functions of IRR. Input data given in Table 4.1.

is not included in the IRR for the MV optimal case. Panel (a) is for the base case parameters
(Table 4.1). We can see that the MV optimal strategy clusters the returns near the target level.
For example, there is only a 15% probability that the IRR for the MV strategy will be less than
.04, compared to a 40% probability that the constant proportion strategy will generate an IRR of
less than .04.

However, there is no free lunch here. From Figure 4.1(a), we can also see that there is zero
probability that the MV optimal control will give an IRR > .06, while the constant proportion
policy has about a 25% probability of achieving an IRR > .06. In other words, the lower risk
of underachieving the target return produced by the MV optimal control is obtained (in part) by
sacrificing gains larger than the target.

Note that Figure 4.1(a) indicates that the constant proportion strategy has a smaller probability
of very low IRR compared to the MV optimal policy. If we enforce a no-leverage constraint (qmax ≤
1.0), then this probability is reduced. This case is shown in Figure 4.1(b). However, it is still larger
than the constant proportion probability at low IRR. At low values of wealth, the MV strategy is
fully invested in the risky asset, and hence a downward jump has a large adverse impact on wealth.
However, as we shall see below, this effect seems to disappear when using resampled market data.

Figure 4.2 plots the mean and standard deviation of the fraction of wealth invested in the
risky asset p over the 30-year investment horizon. Clearly, the MV optimal strategy has a higher
proportion invested in the stock index at early times, and a lower fraction as we near the investment
horizon. However, this is only true on average. The MV strategy is truly stochastic, i.e. it responds
to the current attained wealth, in contrast to a deterministic glide path strategy (Forsyth and
Vetzal, 2017a). In general, the MV optimal policy is contrarian: if the equity index drops, then
more wealth is invested in the risky asset.10 Conversely, if the risky asset increases in value, wealth
is transferred to the risk-free asset (Dang and Forsyth, 2014, 2016; Forsyth and Vetzal, 2017a).

10This is not the case, however, if the attained level of wealth is sufficiently high that the quadratic wealth target
can be achieved by investing solely in the risk-free asset. Obviously, if the portfolio has already been de-risked, it has
no remaining exposure to the equity index.
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Figure 4.2: Mean and standard deviation of the fraction of real wealth invested in the risky asset
under the MV optimal policy. Input data given in Table 4.1.

Figure 4.3 shows a heat map of the optimal control (in terms of the fraction of real wealth
invested in the risky asset) as a function of time and real wealth. This figure shows that the
optimal policy will require that a high fraction be put at risk as the remaining horizon shortens if
past returns have been unfavorable. On the other hand, high early returns lead to lower optimal
risk exposure, even zero exposure if real wealth is sufficiently high.11

4.1 Robustness in Synthetic Markets

In order to test robustness to parameter estimation ambiguity, we compute and store the MV op-
timal strategy for all the cases in Table 3.1 (strategy generating parameters), with the constraint
that E[WT ] = 417. Then we carry out Monte Carlo (MC) simulations, assuming that the synthetic
market parameters are different from the parameters used to compute the MV optimal strategies.
To illustrate, consider the first set of results where it is indicated that the synthetic market parame-
ters correspond to the threshold estimates with α = 2. Three MV optimal strategies are computed,
two based on the threshold estimates with α = 3 and α = 4, and one based on the ML parameter
estimates. As noted above, in each case E[WT ] = 417. We then simulate the performance of these
three strategies, and the constant proportion strategy with p = 0.5, assuming that the synthetic
market evolves according to the threshold estimates with α = 2.

This type of procedure is repeated for other possible synthetic market parameters. In each case,
the basic idea is to examine what happens when the MV optimal strategy is determined using one
set of parameters but then the market is simulated with a different set of parameters. The results in
Table 4.3 show that the MV optimal strategy is very robust to parameter ambiguity. Even though
the strategy generating parameters are different from the true synthetic market parameters, the
results for the MV optimal control are very close in all cases.

11Note that the bright area along the bottom edge of Figure 4.3 is due to the insolvency constraint. This constraint
requires that all investment in the risky asset be immediately liquidated if real wealth is non-positive.

12



0 5 10 15 20 25 30

Time t (years)

0

100

200

300

400

500

R
ea
l
W
ea
lt
h
W

0

0.5

1

1.5

W0 = 100

E[WT ] = 417

W
∗ = 486

Figure 4.3: Heat map of the fraction of real wealth invested in the risky asset. Input data given in
Table 4.1.

5 Lump Sum Investment: Historical Backtests

5.1 Single Paths

It is interesting to see how the MV optimal strategy would have fared along historical asset price
paths. We calculate the optimal controls for the base case data (Table 4.1) with threshold (α = 3)
estimated parameters (Table 3.1). As above, the expected wealth target is E[WT ] = 417 and the
quadratic wealth target is W ∗ = 486. We then apply these optimal controls to two 30-year series
of historical monthly equity returns and T-bill rates: 1930:1 - 1959:12 and 1985:1 - 2014:12. The
results are plotted in Figure 5.1. The set of returns starting in 1930 are noteworthy, since this was
probably one of the worst times in the last 100 years to make equity investments. We can see that
the MV strategy was more (locally) volatile than the the constant proportion strategy in the early
times, due to the fact that the MV strategy would have had a higher weight in equities in those
years (see Figure 4.2).

For both historical periods, we can see that the MV optimal strategy would have produced
a final wealth near the quadratic wealth target of W ∗ = 486. Note that for the period 1985:1 -
2014:12, the MV strategy had a very small weight in the risky asset over the last 15 years. As a
result, this strategy exhibited very small drawdowns during the bursting of the dot-com bubble in
2000 and the financial crisis of 2008.

5.2 Resampled Historical Data

Although it is fascinating to examine how the MV strategy would have performed for a given
historical path, this is perhaps not so useful for risk management purposes. In order to develop a
more quantitative approach to historical backtesting, we will use a resampling approach. To that
end, we will use the moving block bootstrap resampling method to analyze the behaviour of the
M-V optimal strategy.12

12See sources such as Sanfilippo (2003), Annaert et al. (2009), Bertrand and Prigent (2011), and Cogneau and
Zakalmouline (2013) for discussions of bootstrap resampling applied to financial data.
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Strategy Generating Expected Standard Expected
Parameters Value Deviation Pr(WT < 300) Pr(WT < 400) Free Cash

Synthetic Market Parameters: Threshold (α = 2)
Constant proportion (p = .5) 432 311 .40 .58 0.0
MV optimal: threshold (α = 3) 419 123 .14 .21 5.1
MV optimal: threshold (α = 4) 418 123 .13 .20 5.8
MV optimal: ML 420 123 .13 .19 6.9

Synthetic Market Parameters: Threshold (α = 3)
Constant proportion (p = .5) 417 299 .41 .60 0.0
MV optimal: threshold (α = 2) 418 117 .13 .24 8.9
MV optimal: threshold (α = 4) 418 117 .13 .21 11.0
MV optimal: ML 420 119 .13 .20 12.5

Synthetic Market Parameters: Threshold (α = 4)
Constant proportion (p = .5) 413 308 .42 .62 0.0
MV optimal: threshold (α = 2) 418 114 .13 .24 12.0
MV optimal: threshold (α = 3) 418 114 .13 .22 13.0
MV optimal: ML 421 116 .12 .20 15.0

Synthetic Market Parameters: ML
Constant proportion (p = .5) 385 223 .42 .63 0.0
MV optimal: threshold (α = 2) 420 107 .12 .24 1.0
MV optimal: threshold (α = 3) 421 107 .12 .22 1.0
MV optimal: threshold (α = 4) 421 106 .12 .21 2.0

Table 4.3: Robustness check for synthetic market. Input data from Table 4.1. MV optimal strate-
gies are computed using estimated strategy generating parameters from Table 3.1, constrained so that
E[WT ] = 417. Investment performance is then assessed using MC simulations based on a different
set of synthetic market parameters (also from Table 3.1. All strategies have annual rebalancing. The
maximum leverage ratio for the MV optimal strategies is qmax = 1.5.

A single resampled path is constructed as follows. Suppose the investment horizon is T years.
We divide this total time into k blocks of size b years, so that T = kb. We then select k blocks
at random (with replacement) from the historical data. Each block starts at a random quarter.
We then form a single path by concatenating these blocks. Note that the since we sample with
replacement, the blocks may overlap. To avoid end effects, the historical data is wrapped around.13

We then repeat this procedure for many paths. The sampling is done in blocks in order to account
for (possible) serial dependence effects in the historical time series.

We compute and store the MV optimal parameters for the threshold (α = 3) estimated param-
eters in Table 3.1 and the input data in Table 4.1. The strategy is determined so that E[Wt] = 417
in this synthetic market. We then apply this strategy using the bootstrap resampling method,
based on the historical data for the period 1926:1 - 2014:12. A total of 10,000 bootstrap samples
are used, with results for various blocksizes given in Table 5.1.14

The main result from Table 5.1 is that for all choices of blocksize, the MV optimal strategy

13Since the great depression data of 1929-1931 appears near the start of our dataset, wrapping around will produce
more blocks of bad returns compared to truncating the blocks.

14As discussed in Cogneau and Zakalmouline (2013), the choice of the blocksize is crucial. If the blocksize selected
is too small, then serial dependence in the data is destroyed. If the blocksize is too large, then the variance estimates
are unreliable. Unfortunately, the correct blocksize depends on the unknown stochastic process properties of the
historical data. Consequently, we report results across a range of blocksizes.
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Figure 5.1: Control generated using threshold (α = 3) parameters from Table 3.1, applied to histor-
ical real returns. Input data given in Table 4.1. Quadratic wealth target W ∗ = 486.

outperforms the constant proportion strategy by a wide margin. The results for a blocksize of one
year seem to produce an extra level of randomness, perhaps due to the fact that serial correlation
effects are reduced, while the blocksize of 30 years is clearly too large, since the randomness (as
measured by standard deviation) seems artificially too small, as would be expected. In the following,
we will use a blocksize of ten years, as this is the midpoint of the reasonable values of blocksize
{5,10, 15} years.15

5.3 Robustness in Resampled Markets

In order to test robustness in the resampled historical data, we compute and store the MV optimal
strategy for all sets of parameter estimates in Table 3.1. Each time, we impose the constraint
that E[WT ] = 417. Then we carry out MC simulations, using the bootstrap resampling method
described in Section 5.2, using the observed market data from 1926:1 to 2014:12. Similar to the
results obtained above for the synthetic market (Table 4.3), the resampled results in Table 5.2
appear to be quite robust to parameter estimation ambiguity. A noteworthy aspect of this table is
that the expected free cash for the MV optimal policy is somewhat higher than that seen earlier in
the synthetic market experiments (Table 4.3).

Figure 5.2 presents some of the properties of the MV optimal strategy when applied to resampled
historical data. Panel (a) shows the cumulative distribution function for the IRR. Comparing this
plot with the corresponding plot for the synthetic market (Figure 4.1(a)), we can see that the low
IRR cases where the constant proportion strategy outperforms the MV optimal policy occur with
extremely low probability here. For example, Pr(IRR < 0 = .0016) for the MV case compared
with Pr(IRR < 0 = .0007) for the constant proportion case. Given that the MV optimal policy
produces higher expected free cash under resampling as compared to the synthetic market, we also
show the cumulative distribution function for the IRR of the MV optimal strategy if we include

15We have tested all our results in subsequent sections for all blocksizes {1,5,10,15,30} and in all cases, the MV
strategy outperforms the constant proportion policy.
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Expected Standard Expected
Strategy Value Deviation Pr(WT < 300) Pr(WT < 400) Free Cash

Blocksize = 1 year
Constant proportion (p = .5) 402 250 .41 .61 0
MV optimal 411 112 .13 .23 21

Blocksize = 5 years
Constant proportion (p = .5) 396 212 .40 .62 0
MV optimal 423 95 .09 .23 34

Blocksize = 10 years
Constant proportion (p = .5) 385 183 .38 .61 0
MV optimal 431 84 .07 .21 40

Blocksize = 15 years
Constant proportion (p = .5) 379 171 .37 .63 0
MV optimal 436 74 .06 .19 36

Blocksize = 30 years
Constant proportion (p = .5) 351 77 .31 .73 0
MV optimal 453 33 .00 .07 24

Table 5.1: Based on data in Tables 3.1 (threshold, α = 3) and 4.1, the MV optimal control is
computed for T = 30 years. Moving block bootstrap resampling results, based on historical data for
the period 1926:1 to 2014:12. There are a total of 10,000 bootstrap resamples. Annual rebalancing for
both strategies. Maximum leverage ratio of qmax = 1.5 for the MV strategy.

the free cash. This is clearly superior to the constant proportion strategy across a wide range
of IRRs, though it does slightly underperform for very high IRRs. Figure 5.2(b) plots the mean
and standard deviation of the fraction of wealth optimally put at risk over time in the resampling
experiment. It bears a strong resemblance to Figure 4.2, which was determined from a synthetic
market. The similarity of these two figures is further evidence of the robustness of the MV optimal
trading strategy: while the synthetic market does allow for diffusive randomness and large jumps,
it assumes that parameters such as volatility and the risk-free rate are constant when determining
the MV optimal strategy. However, when we apply such a strategy to real historical data which
includes periods of high and low volatility and interest rates, we obtain very similar results as we
do in an idealized synthetic market.

5.4 Alternative to Risk-Free Asset: 10 Year U.S. Treasury Bonds

The analysis discussed above assumed that the risk-free asset was a short-term (3-month) Treasury
bill. Arguably, it may be more realistic to consider investments in long-term Treasury instruments
instead. We investigate this possibility here by replacing the short-term risk-free asset with an
index constructed from 10-year U.S. Treasury notes.16 Figure 5.3(a) plots the evolution of this

16We obtain total returns for 10-year U.S. Treasury notes from CRSP back to May of 1941. To go back further to
the start of our equity index data in 1926, we use long-term government bond yields reported in Table 48 of Homer
(1977). These values are annual averages of monthly yields. We assume that yield was the prevailing yield halfway
through each year, and determine yields for remaining months by linear interpolation. Each month, we calculate
a total return index by assuming that the yield is applicable to a newly issued 10-year note selling at par paying
semi-annual coupons. We recalculate the price of this bond using the new yield for the next month and sell it,
reinvesting proceeds in another newly issued note. We merge this total return index with the CRSP data (which
starts in 1941:5), and deflate using the CPI to convert it to real terms.
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Expected Standard Expected
Strategy Value Deviation Pr(WT < 300) Pr(WT < 400) Free Cash

Constant proportion (p = .5) 385 183 .38 .61 0.0
MV optimal: threshold (α = 2) 431 85 .07 .23 34
MV optimal: threshold (α = 3) 431 84 .07 .21 40
MV optimal: threshold (α = 4) 430 83 .07 .21 42
MV optimal: ML 431 86 .07 .19 48

Table 5.2: From input data in Tables 3.1 and 4.1, the MV optimal control is determined such that
E[WT ] = 417. Reported values are moving block bootstrap results (10,000 resamples, blocksize of 10
years) based on historical data from 1926:1 to 2014:12. All strategies are rebalanced annually. MV
optimal strategies all have a maximum leverage ratio qmax = 1.5.

Expected Standard Expected
Strategy Value Deviation Pr(WT < 480) Pr(WT < 540) Free Cash

Synthetic Market
Constant proportion (p = .5) 536 381 .56 .63 0
MV optimal: threshold (α = 3) 536 185 .25 .32 12

Resampled Backtest
Constant proportion (p = .5) 500 270 .55 .63 0
MV optimal: threshold (α = 3) 534 146 .26 .39 59

Table 5.3: The MV optimal strategy is computed based on data in Tables 3.1 and 4.1, except that
r = 0.02362 because the real 10-year U.S. Treasury index is used as the proxy for the risk-free asset.
The moving block bootstrap resampling results are based on historical data for the period 1926:1 to
2014:12. There are 10,000 resamples, with a blocksize of 10 years.

index over time, clearly showing the spectacular 30-year bull market associated with the lengthy
period of declining yields that began in the early 1980s. On an annualized basis, the real mean
return for this index is 2.362%.

Assuming a synthetic market with parameters given in Table 4.1, with the exception that
r = 0.02362 (i.e. the mean annualized return of the real 10-year U.S. Treasury index), we compute
the expected return of an equal weight strategy. We then determine the parameter W ∗ for the MV
optimal strategy which gives this same expected value (in this synthetic market). The optimal MV
strategy is then computed which gives this same expected value. This strategy is then tested using
observed historical data with, as usual, 10,000 resamples and a blocksize of 10 years. Figure 5.3(b)
shows the cumulative distribution function for the IRR, and it is clearly quite similar to earlier
cases. As with Figure 5.2(a), the MV optimal strategy outperforms the constant proportion strategy
except for extremely low or high IRRs (especially when free cash is included). Such cases occur
with quite low probability, however. Table 5.3 shows the results for both the synthetic market
and the bootstrap resamples, using the observed market returns and the observed 10-year Treasury
returns. Once again, it is clear that the MV optimal strategy performs fairly similarly in the
synthetic market as in the resampled simulations, though it again generates much higher free cash
across the resamples.
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Figure 5.2: Properties of MV optimal strategy using input parameters from Tables 3.1 (threshold
with α = 3) and 4.1. Bootstrap resampled backtest (10,000 resamples, blocksize of 10 years) with
historical data from 1926:1 to 2014:12.
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Figure 5.3: MV optimal control calculated using data in Tables 3.1 and 4.1, except that r = .02362
since the real 10-year U.S. Treasury index is used to proxy for the risk-free asset. Moving block
bootstrap results based on historical data from 1926:1 to 2014:12, with 10,000 resamples and blocksize
of 10 years.
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Investment horizon 30 years
Market parameters Threshold (α = 3) (see Table 3.1)
Risk-free rate r 0.00623
Initial investment W0 0.0
Investment at each year 10
Rebalancing interval 1 year
Maximum leverage qmax 1.5
If insolvent Trading stops

Table 6.1: Accumulation case data. Cash is injected at t = 0,1, . . . ,29 years.

Expected Standard Expected
Strategy Value Deviation Pr(WT < 580) Pr(WT < 680) Free Cash

Synthetic Market
Constant proportion (p = .5) 682 324 .45 .61 0
MV optimal: threshold (α = 3) 682 124 .12 .24 16

Resampled Backtest
Constant proportion (p = .5) 648 211 .42 .60 0
MV optimal: threshold (α = 3) 683 92 .12 .32 61

Table 6.2: Based on data in Tables 3.1 and 6.1, the MV optimal control is computed for T = 30 years
with initial wealth of zero. Accumulation phase, cash injected at a rate of 10 per year. E[WT ] = 682
in the synthetic market. Moving block bootstrap resampling results are based on historical data for the
period 1926:1 to 2014:12, with 10,000 resamples and a blocksize of 10 years.

6 Wealth Accumulation

In this section, we consider a situation of wealth accumulation, rather than examining the strategy
based on an initial lump sum investment. We suppose that the investor has zero initial wealth,
and invests a fixed real amount over a 30-year period. The problem parameters are described in
Table 6.1, and some representative results are shown in Table 6.2. Again, we can see that for
both the synthetic market and the resampled historical market data, the MV optimal strategy
considerably outperforms the constant proportion strategy. For the synthetic market case, both
the MV optimal and constant proportion strategies have E[WT ] = 682. The MV optimal control
for the synthetic market is computed and stored, and used in the resampled historical backtest.
Other tests (not shown) indicate that the MV optimal strategy is robust to parameter estimation
ambiguity (in the synthetic market and the resampled historical market). The MV strategy is also
superior to the constant proportions strategy for all choices of blocksize in the resampled historical
market.

Figures 6.1 and 6.2 show the cumulative distribution function of the IRR and the mean controls
for the synthetic market and the resampled historical backtest respectively. Figure 6.1(a) illustrates
that in the synthetic market the constant proportion strategy produces a superior IRR compared
to the MV optimal policy for low probability (< .02) low return cases. The same effect can be seen
for the resampled data in Figure 6.2(a), but here the probability of this occurring is very small
(< .005). It is interesting to see that the historical resampled backtest appears to show less risk
than the the synthetic market. We can see from Figures 6.1(b) and 6.2(b) that the MV strategy
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Figure 6.1: Properties of MV optimal strategy for the accumulation case using input parameters
from Tables 3.1 and 6.1. Synthetic market.

uses much more leverage at early times compared to the lump sum case (Figure 4.2). Intuitively,
in the accumulation case, if insolvency occurs during the early stages of wealth accumulation, the
debt can be paid off with the future cash injections.

6.1 Wealth Accumulation: Single Historical Paths

Figure 6.3 shows the results for both the constant proportion strategy and the MV optimal strategy
(computed using the data in Table 6.1) for the historical returns from 1930:1 - 1959:12 (panel (a))
and 1985:1 - 2014:12 (panel (b)). Along these two historical paths, the MV optimal strategy clearly
outperformed the constant proportion strategy in the long-run. Considerable patience may have
been necessary during the earlier period, as very poor initial returns combined with high leverage
for the MV optimal strategy put it in a trailing position during the first few years.

7 Wealth Decumulation

In this section, we consider the problem of wealth decumulation. We suppose that the investor has
initial wealth 200, and withdraws at a real rate of 8 per year annually over 20 years (4% real of the
original amount invested in line with the rule of thumb suggested in Bengen (1994)). The problem
parameters are described in Table 7.1.

As a benchmark, we use a constant proportion strategy with 40% stocks and 60% bonds,
rebalanced yearly. This gives a real expected value of E[WT ] = 202 at T = 20 years (i.e. close
to the original wealth) in the synthetic market. We then determine the value of W ∗ which gives
this same expected value for the MV optimal control, and store this strategy, which is used in the
historical backtests.

Some representative results are shown in Table 7.2. Again, we can see that for both the syn-
thetic market and the resampled historical market data, the MV optimal strategy considerably
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Figure 6.2: Properties of MV optimal strategy for the accumulation case using input parameters from
Tables 3.1 and 6.1. Bootstrap resampled backtest, based on historical data from 1926:1 to 2014:12 with
10,000 resamples and blocksize of 10 years.

Investment horizon 20 years
Market parameters Threshold (α = 3) (see Table 3.1)
Risk-free rate r 0.00623
Initial investment W0 200
Withdrawal at each year 8
Rebalancing Interval 1 year
Maximum leverage qmax 1.5
If insolvent Trading stops

Table 7.1: Decumulation case data. Cash is withdrawn at t = 1, . . . , 29, 30 years.
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(b) 1985:1 - 2014:12.

Figure 6.3: Control generated using threshold (α = 3) parameters from Table 3.1, applied to histor-
ical real returns. Input data given in Table 6.1. This wealth accumulation case has a quadratic wealth
target W ∗ = 746.
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Expected Standard Pr(WT Pr(WT Pr(WT Expected
Strategy Value Deviation < 20) < 100) < 200) Free Cash

Synthetic Market
Constant proportion (p = .4) 202 144 .02 .22 .60 0
MV optimal: threshold (α = 3) 202 73 .05 .11 .27 6.4

Resampled Backtest
Constant proportion (p = .4) 194 109 .01 .22 .57 0
MV optimal: threshold (α = 3) 212 51 .02 .05 .25 61

Table 7.2: Based on input data in Tables 3.1 and 7.1, the MV optimal control is computed. Decu-
mulation phase, cash withdrawn at a real rate of 8 per year. E[WT ] = 202 in the synthetic market.
Moving block bootstrap resampling results are based on historical data for 1926:1 to 2014:12 using
10,000 resamples and blocksize of 10 years.

outperforms the constant proportion counterpart (except for extremely low values of WT which oc-
cur with very low probability). Other tests (not shown) demonstrate that the MV optimal strategy
is robust to parameter estimation ambiguity in both the synthetic market and the resampled his-
torical market). The MV strategy also turns out to be superior to the constant proportion strategy
for all choices of blocksize in the resampled historical market.

Figure 7.1 shows the cumulative distribution function of the IRR for both the constant pro-
portion strategy and the optimal M-V strategy, as well as the mean and standard deviation of the
optimal control, for the synthetic market. Panel (a) shows that the MV optimal strategy again
sacrifices upside potential in exchange for a large amount of downside protection, except for cases
with extremely low terminal wealth. Panel (b) shows that the optimal policy here is much more
cautious during the earlier years, as compared to the accumulation case depicted in Figure 6.1(b).
The fraction of wealth optimally invested in the risky asset here is a bit over 50% initially, and it
remains there for some time before gradually tapering off (on average). Similar results are shown
for the resampled backtest in Figure 7.2.

7.1 Wealth Decumulation: Single Historical Paths

Figure 7.3 shows the results for both the constant proportions strategy and the MV optimal strategy
(computed using the data in Table 7.1) for the historical returns from 1930:1 - 1949:12 and 1995:1 -
2014:12. In both cases, following the MV optimal strategy would have produced a terminal wealth
larger than that from the constant proportion strategy, with a bigger gap emerging over the earlier
time period shown in panel (a).

8 Conclusions

Based on long-term historical data, we determine the average parameters for an inflation-adjusted
stock market index, which is assumed to follow a jump diffusion process. Assuming a portfolio
consisting of a risk-free bond and an equity index, we determine the optimal asset allocation strategy
for an MV investor. We impose realistic constraints on the strategy (i.e. infrequent rebalancing, a
maximum leverage ratio, and no trading if insolvent).

We reiterate that for a lump sum investment, assuming a continuously rebalanced portfolio
containing a risk-free bond and an equity index following a jump diffusion process, any deterministic
glide path strategy is inferior to a constant proportion strategy (Forsyth and Vetzal, 2017b). More
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Figure 7.1: Properties of the MV optimal strategy for the decumulation case using input parameters
from Tables 3.1 and 7.1. Synthetic market.

specifically, when both strategies can have the same expected terminal wealth, the MV optimal
strategy has a standard deviation of terminal wealth that is less than or equal to that for the
constant weight strategy. The dominating constant weight strategy is simply the time average of
the deterministic strategy.

If we consider discrete rebalancing, with periodic addition (accumulation) or withdrawal (de-
cumulation), then the optimal deterministic glide path can produce a slightly smaller standard
deviation (for a fixed expected terminal wealth) compared to a constant proportion strategy. How-
ever, this improvement is very small. Historical backtests and Monte Carlo simulations indicate
that this result holds in more realistic cases as well (Graf, 2017; Esch and Michaud, 2014). Hence
we have focused on comparing the optimal MV strategy with a constant weight strategy. The differ-
ence in performance metrics between the optimal MV and the constant weight strategy overwhelms
the small differences between optimal glide path and constant weight, in all cases.

In a synthetic market with the parameters determined by the historical averages, we compare
the MV optimal strategy with a constant weight strategy under the condition that both strategies
have the same expected value. Extensive Monte Carlo tests show that:

• the MV optimal strategy has the same expected terminal wealth as the constant weight
strategy, with much reduced variance and probability of shortfall;

• the MV strategy is robust to model parameter ambiguity. In other words, we can determine
the MV strategy based on market parameters different from the synthetic market parameters
used in the Monte Carlo tests, and the MV strategy continues to outperform the constant
weight strategy.

Using the MV optimal strategy obtained using the historical average parameters, we have
also carried out an extensive set of bootstrap resampled backtests based on historical data over the
1926:1 -2014:12 period. Again, the MV optimal strategy outperformed the constant weight strategy.
Obviously, since we are using MV criteria to assess performance, the MV optimal strategy will
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Figure 7.2: Properties of the MV optimal strategy for the decumulation case using input parameters
from Tables 3.1 and 7.1. Bootstrap resampled backtest, based on historical data from 1926:1 to 2014:12
with 10,000 resamples and blocksize of 10 years.

outperform any other strategy, including the constant proportion strategy. However, we emphasize
that it is the magnitude of the outperformance that is significant. The same average terminal
wealth is attained by the MV optimal policy with much lower standard deviation and shortfall
probability.

These results all hold for the case of lump-sum investment, accumulation and decumulation
scenarios. This would suggest that investors should be using non-deterministic asset allocation
strategies (i.e. strategies which respond to the path-dependent accumulated wealth state variable),
in contrast to the omnipresent deterministic glide path strategies. Although the computations
underlying the determination of the MV optimal strategy are complex, the strategy can ultimately
be implemented simply by using a table such as that represented by the heat map in Figure 4.3.

The MV optimal strategy is highly contrarian: the risky asset fraction is increased when the
total real portfolio value decreases, and the risky asset fraction is decreased as the total portfolio
value nears the target. At all times, however, the strategy adapts to the difference between the
target at the horizon and the current level of attained wealth in order to determine how much (if
any) wealth to invest in the risky asset.

Although these results are very promising, the MV optimal strategy does have some drawbacks:

• the constant weight strategy outperforms the MV optimal strategy for very poor outcomes
which occur with very low probabilities (e.g. 2-4%);

• in the case of a downward-trending market early during the investment period, the MV
optimal policy buys increasing amounts of the risky asset, thereby causing the investor to
“catch a falling knife”; and

• the MV optimal policy de-risks as the target is approached, thereby sacrificing the possibility
of very large gains.
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Figure 7.3: Control generated using threshold (α = 3) parameters from Table 3.1, applied to histor-
ical real returns. Input data given in Table 7.1. This wealth decumulation case has a quadratic wealth
target W ∗ = 248.

It is instructive to examine the application of the MV optimal strategy in the context of historical
market returns in 1930-1950. In this case, the MV optimal investor caught the falling knife in the
1930s. By 1950, this investor was well ahead of a constant proportion investor, but at the cost of a
rather rough ride. Conversely, if the market continued to trend upward, the MV optimal investor
would de-risk and experience lower terminal wealth compared to the constant weight investor. Both
of these situations will be psychologically difficult. Although following the MV optimal strategy
puts the odds in our favour, this might be small comfort in some low-probability scenarios.

Finally, we observe an interesting phenomenon for all the resampled backtests. The amount
of the free cash accumulated was always much larger in the backtests compared to the synthetic
market tests. We conjecture that this is due to the high serial correlation of interest rates, which has
been ignored in the strategy generating model (i.e. we assumed constant interest rates). However,
it is clear that standard mean-reverting interest rate models will not be helpful here. Typical
calibration of interest rate models results in mean-reversion times that are relatively fast compared
to the long-term investment horizons considered here (see, e.g. Vetzal, 1997). The historical data
implies that over the long term, interest rates are perhaps more appropriately modelled by a regime-
switching process. Given such a process, it is straightforward to compute the MV optimal strategy.
However, we are faced with two challenges in practical implementation of a regime-switching aware
strategy. First, it will be difficult to estimate parameters. Second, in order to apply the strategy,
we must determine which regime we are in at any given time. This requires determination of a
hidden Markov chain state variable, which is a non-trivial task.
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Appendices

A Formulation as an HJB Equation

Our problem is posed on the domain 0 ≤ s ≤ ∞ and −∞ ≤ b ≤ +∞. We define the solvency
region N as

N = {(s,b) ∈ [0,∞)× (−∞,+∞) : W (s,b) > 0}. (A.1)

The insolvency (or bankruptcy) region B is defined as

B = {(s,b) ∈ [0,∞)× (−∞,+∞) : W (s,b) ≤ 0}. (A.2)

Let backwards time τ = T − t, and τj = T − tm, m = 0, . . . ,M , j = M −m, be the time left to the
investment horizon at the mth re-balancing time. Note that τ0 = T and τM = 0. In addition, for
later reference let τ+

j = τj + ε, where ε→ 0+. Also, denote by āj , j = 0, . . . ,M − 1, the withdrawal
amount in terms of backward time variable τ . Further, let the control variable at each re-balancing
time be denoted by cj , j = 0, . . . ,M , where

cj = (b̂j , f̂j). (A.3)

In (A.3), b̂j is the amount of the risk-free asset after re-balancing and f̂j is the free cash flow
generated. The optimal withdrawal of free cash is discussed in Dang and Forsyth (2016). We will
specify f̂j precisely below in equation (A.6).

Given a re-balancing time tk, k = 0, . . . ,M , the time-tk value of all cash withdrawals made on
or after time tk, denoted by wk, is computed by

wk =

M∑
m=k

ame−r (tm−tk) . (A.4)

Define

Ŵk = W ∗e−r (T−tk) + wk , (A.5)

where wk is defined in equation (A.4). At time tk, if Wtk > Ŵk, we (i) withdraw (Wtk − Ŵk) from
the portfolio, and (ii) invest the remaining wealth Ŵk in the risk-free asset for the balance of the
investment horizon Dang and Forsyth (2016). It is straightforward to see that WT = W ∗ under
this strategy. We refer to the amount of (i) as “free cash flow” to clearly distinguish it from the
cash withdrawal ak. As shown in Dang and Forsyth (2016), this strategy is M-V optimal.

Since the free cash flow falls outside the scope of the MV framework, unless otherwise noted we
do not include the expected value of the free cash flow and accumulated interest in the terminal
portfolio wealth. More precisely, the control variable f̂j in (A.9) is given by

f̂j = max

(
(s+ b)−W ∗e−r (T−tj) − wj , 0

)
(A.6)

Although we have assumed that we have periodic withdrawals (āj > 0), all the above expressions
are valid for the cash injection āj < 0 case as well.

In addition, define the following operators

LV ≡ σ2s2

2
Vss + (µ− λκ)sVs + rbVb − λV,

J V ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ. (A.7)
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For a given value of W ∗, we compute the corresponding point on the efficient frontier as follows.
We first solve the value function problem (2.12) as follows. At backwards time τ = τj , j = 0, . . . ,M ,
we enforce the following conditions:

1. If (s,b) ∈ B, we enforce the liquidation condition

V (s,b,τ+
j ) = V (0,s+ b− āj ,τj). (A.8)

2. If (s,b) ∈ N , we enforce the re-balancing optimality condition

V (s,b,τ+
j ) = min

cj∈Z
V (S+

j , B
+
j , τj)

cj = (b̂j ,f̂j)

S+
j = s+ b− āj − b̂j − f̂j ; B+

j = b̂j . (A.9)

As noted above, Z is the set of admissible controls. In our case, the choice of control is
subject to the leverage constraint

S+
j

S+
j +B+

j

< qmax. (A.10)

We also require that f̂j ≥ 0, i.e. we allow only free cash withdrawals. Note that for the special
case of τ0, we have V (s,b,τ0) = (W ∗ −W (s,b))2.

Within each time period (τ+
j , τj+1], j = 0, . . . ,M − 1, we have

1. If (s,b) ∈ B, we enforce the liquidation condition

V (s,b,τ) = V (0,s+ b,τ). (A.11)

2. If (s,b) ∈ N , V (s,b,τ) satisfies the partial integro-differential equation (PIDE)

Vτ = LV + J V, (A.12)

subject to the initial condition (A.9).

See Dang and Forsyth (2014) for relevant details regarding a derivation of the localized problem. We
numerically solve this localized problem using finite differences with a semi-Lagrangian timestepping
method as described in Dang and Forsyth (2014).

We denote by c∗W ∗(·) the optimal control of problem (2.12). Once we have determined c∗W ∗(·)
from the solution process described above, we use this control to determine

Ex,tc∗
W∗

[WT ], (A.13)

since this information is needed to determine the corresponding MV point on the efficient frontiers.
This essentially involves solving an associated linear partial differential equation (PDE) over each
re-balancing time period [τj , τj+1], j = 0, . . . ,M − 1.

We store the optimal controls generated from solution of the HJB equation, and then compute
other quantities of interest (e.g. cumulative probability distribution) using a Monte Carlo method.
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B Parameter Estimation

This appendix provides details about the maximum likelihood and thresholding methods used for
parameter estimation.

B.1 Maximum Likelihood

Let φ(x) be the standard normal density function with mean zero and unit variance, evaluated at
point x. Let Φ(x) be the standard normal cumulative distribution function. Assuming that only
one jump occurs in ∆t, the density function for the log return ∆X is

P(∆X) =
(1− λ∆t)

σ
√

∆t
φ

(
∆X − µ′∆t
σ
√

∆t

)
+ λ∆t

[
pη1 exp

(
η2

1σ
2∆t/2

)
exp

(
−(∆X − µ′∆t)η1

)
Φ

(
∆X − µ′∆t− η1σ

2∆t

σ
√

∆t

)]
+ λ∆t

[
(1− p)η2 exp

(
η2

2σ
2∆t/2

)
exp

(
(∆X − µ′∆t)η2

)
Φ

(
−∆X − µ′∆t+ η2σ

2∆t

σ
√

∆t

)]
,

(B.1)

where µ′ = µ− λκ− σ2/2. The ML estimate for Θ = {µ, σ, λ, p, η1, η2} is determined from

max
Θ

(∑
i

logP(∆Xi)

)
. (B.2)

B.2 Thresholding Estimates

Based on the monthly log returns in Figure 3.1, we set the jump detection indicator 1i as follows

1upi =

{
1 if ∆X̂i > α σ̂

√
∆t

0 otherwise
,

1dwni =

{
1 if ∆X̂i < −α σ̂

√
∆t

0 otherwise
. (B.3)

Note that we have replaced the parameters A/(∆t)β from equation (3.3) by the single parameter
α in equation (B.3). Criteria (B.3) allows us to separate downward from upward jumps.

Define

N∑
i=1

1upi = Nup ;

N∑
i=1

1dwni = Ndwn ; N jmps = Nup +Ndwn ;

N∑
i=1

(
1− 1upi − 1dwni

)
= N gbm ,

where N jmps is the total number of jumps detected and N gbm is the number of GBM increments.
Our estimate of the diffusive volatility is then

σ̂2 =
1

∆t
var

({
∆X̂i

∣∣ (1dwni + 1upi = 0
)})

. (B.4)

Equations (B.3)-(B.4) constitute an implicit equation for σ̂, which must be solved by an iterative
method (Clewlow and Strickland, 2000). Having estimated the Brownian motion volatility σ̂, we can
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estimate the other jump parameters under the assumption that only one jump occurs in [ti, ti+1]:

λ =
N jmps

T
; p =

Nup

N jmps
;

η1 =
1

mean
({

∆X̂i

∣∣ (1upi = 1)
}) ; η2 =

−1

mean
({

∆X̂i

∣∣ (1dwni = 1
)}) . (B.5)

Once we fix the estimates for σ, λ, p, η1, η2, we can estimate the drift term µ. The simplest method
is as follows. From equation (2.1), we have (X = logS)

dX =

(
µ− λκ− σ2

2

)
dt+ σ dZ + d

(
πt∑
i=1

log ξi

)
. (B.6)

Taking expectations of both sides of equation (B.6) (and continuing to assume that only one jump
takes place in [t, t+ dt]) gives

E[dX] =

(
µ− λκ− σ2

2

)
dt+ λE[log ξ] dt. (B.7)

Recall that κ = E[ξ]− 1. Writing equation (B.7) in discrete time gives

mean ({∆Xi})
∆t

=

(
µ− λκ− σ2

2

)
+ λ

(
p

η1
− (1− p)

η2

)
. (B.8)

Equation (B.8) can be solved for the drift parameter µ.
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