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Abstract

In this paper, we propose a one-factor regime-switching model for the risk adjusted natural
gas spot price and study the implications of the model on the valuation and optimal operation
of natural gas storage facilities. We calibrate the model parameters to both market futures and
options on futures. Calibration results indicate that the regime-switching model is a better fit
to market data compared to a one-factor mean-reverting model similar to those used by other
authors to value gas storage. We extend a semi-Lagrangian timestepping scheme from Chen
and Forsyth (2007) to solve the gas storage pricing problem, essentially a stochastic control
problem, and conduct a convergence analysis of the scheme. Numerical results also indicate
that the regime-switching model can generate operational strategies for gas storage facilities
that reflect the existence of multiple regimes in the market as well as the regime shifts due to
various exogenous events.
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1 Introduction

As noted in Pilopović (1998), natural gas prices exhibit seasonality dynamics due to fluctuations
in demand. As such, natural gas storage facilities are constructed to provide a cushion for such
fluctuations by releasing natural gas in storage in seasons with high demand.

The valuation of gas storage facilities is characterized as a stochastic control problem resulting
in Hamilton-Jacobi-Bellman (HJB) equations. Recently, several authors Chen and Forsyth (2007);
Ahn et al. (2002); Thompson et al. (2003); Ware (2005); Ware and Li (2006); Li (2006); Carmona
and Ludkovski (2005); Barrera-Esteve et al. (2006) have discussed the no-arbitrage value of natural
gas storage facilities (or, equivalently, the value of gas storage contracts for leasing the storage
facilities). Their work has almost exclusively assumed that natural gas spot prices follow one-
factor mean-reverting processes. However, as demonstrated in Schwartz (1997); Jaillet et al. (2004)
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and again this paper, one-factor mean-reverting models do not seem to be able to capture the
dynamics of typical gas forward curves. Consequently, we need to resort to other more complex
stochastic models for natural gas prices in order to more accurately price gas storage contracts.

A number of multi-factor models for the natural gas spot price are suggested in (Xu, 2004;
Manoliu and Tompaidis, 2002; Jaillet et al., 2004; Cartea and Williams, 2006). More general
multi-factor models for commodity spot prices are developed in (Schwartz, 1997; Cortazar and
Schwartz, 2003). Nevertheless, it is computationally expensive to apply the two-factor and three-
factor commodity spot price models in (Schwartz, 1997; Cortazar and Schwartz, 2003) to price
complex commodity derivatives such as the gas storage contracts, although they seem able to fit
the market futures prices.

Consequently, we will focus on one-factor regime-switching models for natural gas spot prices.
Initially proposed in Hamilton (1990), a regime-switching model consists of several regimes; within
each regime the gas price follows a distinct stochastic process. The price process can randomly shift
between these regimes due to various reasons, such as changes of weather conditions, alterations
of demand and supply, and surprise events such as political instability. Regime-switching models
have been used in several areas. For example, Hardy (2001) develops a regime-switching model
for equities. Gray (1996) and Bansal and Zhou (2002) use regime-switching processes to model
term structures of interest rates. Various regime-switching models are calibrated to electricity spot
prices in (Deng, 2000; Huisman and Mahieu, 2003; de Jong and Huisman, 2002; de Jong, 2005;
Schindlmayr, 2005).

Our goal in this paper is twofold. First, we develop a simple one-factor regime-switching model
that outperforms a typical one-factor mean-reverting model in terms of capturing the dynamics of
the gas forward curves. Second, we show that we can price gas storage contracts under the proposed
regime-switching model and furthermore, we demonstrate that the regime-switching model can
produce operational strategies for the storage facility that reflect the existence of multiple regimes
in the market (if we believe this is true) as well as the regime shifts due to various exogenous events.
This results in a richer set of operational strategies compared to one-factor mean-reverting models.

Our one-factor regime-switching model consists of two regimes. By adjusting parameter values,
the deseasoned process in each regime is either a mean-reverting process or a geometric Brownian
motion (GBM) like process with a positive/negative drift. Hence this produces several variations
of the model. We are interested in three variations: an MRMR variation where the processes in
both regimes are mean-reverting; an MRGBM variation where the process in one regime is mean-
reverting while that in the other regime follows a GBM with a positive drift; a GBMGBM variation
where the process in one regime follows a GBM with a positive drift while that in the other regime
follows a GBM with a negative drift. The MRMR variation is able to generate a behavior similar
to the two-factor mean-reverting model given in Xu (2004), while the GBMGBM variation can
mimic the behavior of the two-factor model in Schwartz (1997). As a comparison, we also consider
a one-factor mean-reverting model, denoted by MR, which is similar to the models proposed in
(Pilopović, 1998; Xu, 2004).

We emphasize here that our purpose is not to develop the ultimate model for gas prices. Our
objective is to propose a model which can (at least qualitatively) fit forward curves, yet is not too
computationally expensive to use in gas storage valuation.

The main results of this paper are summarized as follows:

• Among the three gas price models that we examine, the calibration results show that the
MRMR and MRGBM variations of the regime-switching model are capable of fitting the
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market gas forward curves more accurately than the MR model. The GBMGBM variation
does not appear to be consistent with market data.

• We calibrate model parameters to both market futures and options. We use a two phase
calibration process. Under these models, a subset of the parameters can be obtained by
calibration to the forward curves. The remaining parameters can be determined by calibration
to options. As a result, the computational requirements of the calibration process are reduced
compared to more general models. Note that since we are interested in valuation and operation
of gas storage, we calibrate to futures and options prices, which gives us the Q measure
parameters directly. This is, of course, distinct from the econometric approach of examining
spot price time series, which would generate P measure parameters.

• We use the calibrated regime-switching model to price the value of a natural gas storage
facility, resulting in coupled HJB equations. We extend the fully implicit, semi-Lagrangian
timestepping scheme from Chen and Forsyth (2007) to solve the nonlinear pricing equations.
Provided a strong comparison result holds, we prove the convergence of the scheme to the
viscosity solution of the equations using the results in (Barles and Souganidis, 1991; Barles,
1997). The numerical results demonstrate that the scheme converges to the solution at a first
order rate.

• We study the implications of the proposed models on the optimal operational strategies for
gas storage facilities. Our observations indicate that the regime-switching model, in contrast
to one-factor mean-reverting models, is able to produce distinct controls for each regime
that are consistent with the dynamics of gas spot prices in that regime. This effect is, of
course, absent in the standard MR model. However, whether to pick the MRMR or MRGBM
variation depends on one’s perspectives about gas price dynamics. It is difficult to distinguish
between these two models if we simply calibrate to market data.

2 Natural Gas Spot Price Models

In this section, we specify two one-factor models that we use to examine the dynamics of the natural
gas spot price. Since we are interested in pricing derivatives on natural gas, we will consider directly
the risk adjusted (or risk neutral) price processes with parameters given under the Q measure.

2.1 One-factor mean-reverting model (MR model)

Let P denote the natural gas spot price. In the MR model, the gas spot price follows a mean-
reverting stochastic process with the seasonality effect represented in the drift term. The risk
adjusted gas spot price is modeled by a stochastic differential equation (SDE) given by

dP = α(K0 − P )dt + σPdZ + S(t)Pdt , (2.1)
S(t) = βA sin(2π(t− t0 + CA(t0))) + βSA sin(4π(t− t0 + CSA(t0))) , (2.2)

where

α α > 0 is the mean-reversion rate,

K0 K0 > 0 is the long-term equilibrium price,
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σ σ > 0 is the volatility,

dZ is an increment of the standard Gauss-Wiener process,

S(t) is a time-dependent term so that S(t)Pdt is the price change at time t contributed by the
seasonality effect. Note that multiplying S(t) with P guarantees the price of natural gas
always stays positive,

βA is the annual seasonality parameter,

t0 is a reference time satisfying t0 < t.

CA(t0) is the annual seasonality centering parameter for t0. We define

CA(t0) = A0 + D(t0), (2.3)

where A0 is a constant time adjustment parameter obtained through calibration; D(t0) is
the distance between the reference time t0 and the first date in January in the year of t0.
Thus, by calibrating the value of A0, we are able to determine the evolution of the annual
seasonality effect over time.

βSA is the semiannual seasonality parameter,

CSA(t0) is the semiannual seasonality centering parameter for t0. Similar to the definition of CA(t0),
we define

CSA(t0) = SA0 + D(t0), (2.4)

where the constant time adjustment parameter SA0 is obtained from a calibration process.

This simple model is considered by several authors (Pilopović, 1998; Xu, 2004), although the
seasonality feature is handled in a slightly different manner.

Remark 2.1 (Effect of the seasonality term on gas price dynamics). We can rewrite equation (2.1)
as

dP = αK0dt + (S(t)− α)Pdt + σPdZ. (2.5)

Since −(|βA|+ |βSA|) ≤ S(t) ≤ |βA|+ |βSA| according to equation (2.2), if

|βA|+ |βSA| > α, (2.6)

then there exists certain periods of time within which S(t) − α > 0. In this case, if P is large
and (S(t)−α)Pdt � αK0dt in equation (2.5), then the process (2.1) becomes a GBM process with
positive drift rate due to the strong seasonality effect. At other times, the process is mean-reverting.
Note that the deseasoned process (i.e., setting S(t) = 0 in SDE (2.1)) is a mean-reverting process.
As indicated in our calibration results in Section 3.1.4, condition (2.6) is typically satisfied by the
calibrated parameters.
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2.2 Regime-switching model

In order to capture the gas price dynamics more accurately than a one-factor model, Schwartz
(1997); Xu (2004) propose different two-factor models for the natural gas spot price. In this
subsection, we present a one-factor regime-switching model that is able to exhibit behavior similar
to the models introduced in Schwartz (1997); Xu (2004) without introducing an additional stochastic
factor.

Roughly speaking, our model consists of two regimes; each regime corresponds to a distinct
stochastic process (with the same stochastic factor). At any time, the natural gas spot price
follows one of these two processes. However, the price process can jump to another regime with
some finite probability.

The switch between two regimes can be modeled by a two-state continuous-time Markov chain
m(t), taking two values 0 or 1. The value of m(t) indicates the regime in which the risk adjusted
gas spot price resides at time t. Let λ0→1dt denote the probability of shifting from regime 0 to
regime 1 over a small time interval dt, and let λ1→0dt be the probability of switching from regime
1 to regime 0 over dt. Then m(t) can be represented by

dm(t) = (1−m(t−))dq0→1 −m(t−)dq1→0, (2.7)

where t− is the time infinitesimally before t, and q0→1 and q1→0 are the independent Poisson
processes with intensity λ0→1 and λ1→0, respectively.

In the regime-switching model, the risk adjusted natural gas spot price is modeled by an SDE
given by

dP = αm(t−)
(
K

m(t−)
0 − P

)
dt + σm(t−)PdZ + Sm(t−)(t)Pdt, (2.8)

Sm(t−)(t) = β
m(t−)
A sin(2π(t− t0 + CA(t0))) + β

m(t−)
SA sin(4π(t− t0 + CSA(t0))) . (2.9)

As indicated in equations (2.8-2.9), within a regime k ≡ m(t−) the gas spot price follows the
process (2.1-2.2) with parameters αk,Kk

0 , Sk(t), σk (but the signs of αk and Kk
0 are not constrained).

Meanwhile, the stochastic factors for the two regimes are perfectly correlated. Note that we assume
that the centering parameters CA(t0) and CSA(t0), as given in equations (2.3) and (2.4), respectively,
are identical for two regimes in order to reduce the number of calibrated parameters.

Remark 2.2 (Mean-reverting or GBM-like process). From the model (2.8-2.9), the deseasoned
spot price in regime m(t−) can follow either a mean-reverting process or a GBM-like process by
setting parameter values.

If we choose αm(t−) > 0 and K
m(t−)
0 > 0, then the deseasoned gas price (obtained from setting

the seasonality term Sm(t−)(t) = 0 in SDE (2.8)) follows a mean-reverting process

dP = αm(t−)(Km(t−)
0 − P )dt + σm(t−)PdZ (2.10)

with equilibrium level K
m(t−)
0 and mean-reversion rate αm(t−).

If we set K
m(t−)
0 = 0 in equation (2.8), then the deseasoned gas price SDE becomes

dP = −αm(t−)Pdt + σm(t−)PdZ. (2.11)

This is a GBM-like process. Specifically, if the drift coefficient −αm(t−) > 0, then SDE (2.11) is a
standard GBM process, i.e., gas price P will drift up at a rate |αm(t−)| at time t; if −αm(t−) < 0,
then the gas price will drift down at a rate |αm(t−)|.
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2.2.1 Variations of the regime-switching model

As indicated in Remark 2.2, the deseasoned spot price in each regime can follow either a mean-
reverting process or a GBM-like process. Consequently, there exist many possible variations of
the regime-switching model by choosing different combinations of the stochastic processes in two
regimes. We are interested in the following three variations:

MRMR variation

The processes in both regimes are mean-reverting with different equilibrium levels, i.e., Kk
0 > 0,

αk > 0, k ∈ {0, 1} in SDE (2.8). In this variation, the equilibrium level of the gas spot price
switches between two constants, K0

0 ,K1
0 , which thus creates a sort of mean-reverting effect on the

equilibrium level. This simulates the behavior of the equilibrium price in the two-factor model
proposed by Xu (2004), where the gas spot price P follows a one-factor mean-reverting process and
its equilibrium price evolves over time according to the other one-factor mean-reverting process.

MRGBM variation

The process in one regime is mean-reverting while the other regime is a GBM process with a positive
drift, i.e., K0

0 > 0,K1
0 = 0, α0 > 0, α1 < 0 in SDE (2.8). The mean-reverting regime represents the

normal price dynamics, and the GBM regime can be regarded as the sudden drifting up of the gas
price driven by exogenous events.

GBMGBM variation

The processes in both regimes are GBM processes with a positive drift in one regime and a negative
drift in the other, i.e., K0

0 = K1
0 = 0, α0 < 0, α1 > 0 in SDE (2.8). This simulates the behavior of

the two-factor model in Schwartz (1997), where the risk adjusted commodity spot price process is
modeled by a GBM-like process given by

dP = (r − δ)Pdt + σPdZ. (2.12)

Here r is the constant riskless interest rate; δ is the instantaneous convenience yield, following an
Ornstein-Uhlenbeck mean-reverting process. The drift coefficient r− δ can switch between positive
and negative values during a time interval since the value of δ is stochastic and may change signs
during the interval. Thus the gas price P will either drift up or drift down at any time depending
on the sign of r − δ. According to (2.11), the GBMGBM variation can produce a behavior similar
to the SDE (2.12).

3 Empirical Calibration

In this section, we calibrate the models proposed in Section 2 to the market gas futures prices and
options on futures.

3.1 Calibration to Futures

We illustrate the calibration of the regime-switching model (2.8-2.9) to the market futures prices;
the calibration procedure of the MR model (2.1-2.2) is similar but simpler, and hence omitted here.
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The calibration results indicate that the regime-switching model can better fit the market forward
curves compared with the MR model.

3.1.1 Futures Price Valuation

Let F k(P, t, T ) denote the natural gas futures price in regime k, k ∈ {0, 1}, at time t with delivery
at T , while the gas spot price resides at P . Assuming the risk adjusted natural gas spot price follows
the regime-switching model (2.8-2.9), we can write F k(P, t, T ) as the risk neutral expectation of
the spot price at T

F k(p, t, T ) = EQ[P (T ) | P (t) = p, m(t) = k], (3.1)

where m(t) is the two-state Markov chain given in (2.7), representing the regime in which the risk
adjusted gas spot price resides at t. From equation (3.1), F k satisfies two PDEs that are coupled
with each other given by

F k
t +

[
αk

(
Kk

0 − P
)

+ Sk(t)P
]
F k

P +
1
2
(σk)2P 2F k

PP + λk→(1−k)(F 1−k − F k) = 0 , k ∈ {0, 1} (3.2)

with the boundary conditions
F k(P, T, T ) = P , k ∈ {0, 1}. (3.3)

The solution to PDEs (3.2) has the form

F k(P, t, T ) = ak(t, T ) + bk(t, T )P, (3.4)

where functions a, b are independent of P . Substituting equation (3.4) into equations (3.2-3.3) gives
an ODE system

ak
t + λk→(1−k)(a1−k − ak) + αkKk

0 bk = 0

bk
t −

[
αk − Sk(t) + λk→(1−k)

]
bk + λk→(1−k)b1−k = 0 , k ∈ {0, 1}

(3.5)

subject to the boundary conditions

ak(T, T ) = 0 ; bk(T, T ) = 1 , k ∈ {0, 1}. (3.6)

Remark 3.1. For the regime-switching model, equation (3.4) and the ODE system (3.5-3.6) imply
that the futures prices F k(t, T ), k ∈ {0, 1} at time t when the gas spot price is known are independent
of the spot price volatilities σ0, σ1. Similar observations indicate that the futures price is independent
of spot price volatility for the MR model. Consequently, the volatility needs to be calibrated using
financial instruments other than futures contracts; in this paper, we choose options on futures (see
Section 3.2 for the detailed calibration procedure).

3.1.2 Data

The data used to test the models consist of monthly observed delivery prices of NYMEX Henry Hub
natural gas futures contracts. The data are publicly available on the website http://www.econstats.com.

Our data set contains 51 observations in 51 months (one observation each month) during the
period from February 2003 to July 2007. Each observation contains delivery prices for the first
14 contracts that correspond to the deliveries in the next 14 consecutive months starting from the
month of the observation day.
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In order to carry out the calibration, we need to input the gas spot prices. Although there
exists a gas spot market in Henry Hub that trades the next day delivery contract, we cannot use
the delivery price of the contract as the spot price because the delivery periods for the contracts in
the spot market and futures market are different: the delivery lasts for only 24 hours for the former
and normally over a whole month for the latter. However, we can regard the delivery price of the
next month futures contract, each month on the last trading day of the contract, as the proxy for
the gas spot price, since it corresponds to the delivery starting three days later and delivering over
the next month1. The same approach is used in Jaillet et al. (2004). Thus, our monthly observation
is made on the last trading day of the next month delivery contract2, where the delivery price for
that contract is used as the market spot price during calibration and the delivery prices for the rest
of 13 contracts from the observation are used as the market futures prices during calibration (this
amounts to a total of 663 futures prices).

3.1.3 Calibration procedure

Let θ = {αk,Kk
0 , βk

A, βk
SA, A0, SA0, λ

k→(1−k) | k ∈ {0, 1}} denote the set of parameters we need to
obtain through calibrating to the futures price data.

We use a least squares approach for the calibration. For each observation day t, we need
to determine the regime in which the risk adjusted gas spot price lies. Following the approach
in (Cortazar and Schwartz, 2003; Xu, 2004), we treat the regime number as a latent variable and
reveal its value through calibration. Specifically, we perform the calibration by solving the following
optimization problem:

min
θ

∑
t

∑
T

(
F̂ k̂(t;θ)

(
P (t), t, T ; θ

)
− F (t, T )

)2
, where

k̂(t; θ) = arg min
k∈{0,1}

∑
T

(
F̂ k

(
P (t), t, T ; θ

)
− F (t, T )

)2
,

(3.7)

where F (t, T ) is the market futures price on the observation day t with maturity T ; F̂ k̂(t;θ)(P (t), t, T ; θ)
is the corresponding model implied futures price in regime k̂(t; θ) calculated numerically from equa-
tions (3.4-3.6) using the market spot price P (t) and the parameter set θ. In equation (3.7), the
range of t consists of all the observation days in our sample data and that of T covers the thirteen
consecutive delivery months starting two months after the month of t.

Here an optimal regime number k̂(t; θ) is determined for each observation date t and for a
given parameter set θ. Let θ̂ be the parameters returned by the calibration procedure. Then the
regime k̂(t; θ̂) is where the realized market gas price actually resides at time t, revealed from the
calibration. Note that the time spent in a given regime, as determined by calibration, will depend
on the P measure transition densities, not the Q measure densities.

Remark 3.2. In (Schwartz, 1997; Cortazar and Schwartz, 2003), the commodity spot price serves
as an unknown parameter, instead of an observed market value, and is estimated from the calibration
process. This may help improve the calibration results.

1In NYMEX, the trading of the next month delivery contract each month terminates three business days prior to
the first calendar day of the next month.

2Occasionally, the futures prices on that day are not available on the source website. If that is the case, we use
the available price data on the day closest (usually within five days) to the last trading day in the month of the day.
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In Cortazar and Schwartz (2003), the estimated spot price is assured to be consistent with
the simultaneously calibrated model volatilities and correlations. Note that in our case the spot
price is observed from the market and the latent variable k̂(t; θ) does not have such a consistency
requirement. This is because the transition densities under the P and Q measures are not the same.

3.1.4 Calibration results

As suggested in Section 2.2.1, we are interested in three variations of the regime-switching model.
We will determine the best model through calibration, i.e., the model that optimally fits the market
data. For this purpose, we set the initial parameter values so that the calibration procedure starts
from each of the three variations in Section 2.2.1.

Our calibration results are sensitive to the starting values used in the optimization procedure.
For example, if the initial estimates for the parameters has either the MRMR or MRGBM form,
the calibrated parameters retain the same form. As we shall see below, good fits to the data can
be obtained with either MRMR or MRGBM. However, if we use initial parameters consistent with
GBMGBM, then the optimization procedure converges to the MRGBM parameters.

This indicates that the MRMR or MRGBM models are consistent with the market data, while
the GBMGBM model does not appear to be consistent with market data.

The behavior of the volatility of the futures price as T − t becomes large depends in general
on the calibrated parameters. However, for both regimes in the MRMR model, the volatility of
the futures prices declines as the maturity increases. For the MRGBM model, the volatility of the
futures prices declines in the MR regime, but the behavior in the GBM regime is a complicated
function of the calibrated parameters and the seasonality terms. It is worthwhile mentioning that
the seasonality effects are very large for gas futures prices, and a much larger set of futures prices
expiring at long dates would be needed to determine the long term volatility of the futures prices.

Table 3.1 presents the calibrated risk adjusted parameter values for the MR model (2.1-2.2)
and for the MRMR and MRGBM variations. In our calibration procedure, we set a lower bound
of βk

SA = 0. As shown in Table 3.1, the semi-annual seasonality parameters βk
SA for three models

are zero, suggesting that a single trigonometric term can satisfyingly approximate the seasonality
trend in the futures price data. Meanwhile, the table reveals a strong annual seasonality behavior
under the risk neutral world: condition (2.6) is satisfied for the MR model and also for the processes
in regime 0 of the MRMR and MRGBM variations. Consequently, Remark 2.1 implies that the
corresponding gas price dynamics incorporating the seasonality effect are mean-revering within
certain periods of time and switch to (essentially) GBM with positive drift at other times. Regime 1
of the MRMR variation, nevertheless, always shows a mean-reverting effect and that of the MRGBM
variation always follows a GBM with positive drift.

From Table 3.1, for the MRMR variation, the equilibrium level in regime 1 is considerably higher
than in regime 0. As a result, regime 0 represents the relatively low price regime and regime 1
represents the relatively high price regime. Similarly, for the MRGBM variation, regime 0 can be
regarded as the low price regime and regime 1 represents the regime where the gas price drifts up
quickly (according to the value of α1).

Comparing the calibrated parameter values in regime 0 of the MRMR variation with those
in the MR model, we observe that these values are similar except for the equilibrium price: the
former has K0

0 ≈ 4.5 while the latter has K0 ≈ 8.7 > K0
0 . The situation is reversed for regime 1

with K0 < K1
0 ≈ 11.7. The above observation also holds for the MRGBM variation: K0

0 > K0 in
regime 0 and the effective equilibrium price is greater than K0 in regime 1 (we can imagine that
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the GBM regime is equivalent to a mean-reverting regime with equilibrium level at +∞).
Note that the risk neutral parameters in Table 3.1 are not necessarily consistent with their

counterparts under the real world P measure. To further illustrate this point, in Table 3.2 we give,
for the MRGBM variation of the regime-switching model, the regimes k̂(t; θ) where the realized gas
spot price resides at various times in our sample, calibrated using the procedure in Section 3.1.3. We
can observe that the duration of time spent in each regime, implied from Table 3.2, is inconsistent
with the risk neutral regime shift intensities λ0→1, λ1→0 under the Q measure in Table 3.1: the
realized gas price stays in regime 1 for over 45% of the time, while the risk neutral gas price resides
at regime 1 for only about 11% of the time. Regime 1 is a regime in which gas price drifts up
quickly. The risk neutral price stays in this regime (on average) a much shorter time than the
realized price. This observation is consistent with the common paradigm Q is more pessimistic
than P , i.e. investors in gas are risk averse and price gas contracts with a pessimistic view of future
gas prices.

MR MRMR MRGBM

Parameter Description Estimate Estimate Estimate

α (α0) Mean-reversion rate (for regime 0) 0.406 0.430 0.435
K0 (K0

0 ) Equilibrium price (for regime 0) 8.678 4.466 4.748
βA (β0

A) Annual seasonality parameter (for
regime 0)

0.527 0.600 0.550

βSA (β0
SA) Semiannual seasonality parameter

(for regime 0)
0 0 0

A0 Annual seasonality time adjust-
ment parameter

0.483 0.441 0.457

α1 Mean-reversion rate for regime 1 1.033 −0.650
K1

0 Equilibrium price for regime 1 11.709 0
β1

A Annual seasonality parameter for
regime 1

0.571 0.555

β1
SA Semiannual seasonality parameter

for regime 1
0 0

λ0→1 Intensity of the jump from regime
0 to regime 1

0.304 0.283

λ1→0 Intensity of the jump from regime
1 to regime 0

0.975 2.290

Table 3.1: Estimated parameter values for the three models using 663 monthly observed futures
price data from February 2003 to July 2007. The column MR represents the MR model. The
columns MRMR and MRGBM represent the MRMR and MRGBM variation of the regime-switching
model, respectively.

Table 3.3 provides the dollar and the percentage mean absolute errors between the model
and market prices for futures contracts with different delivery months across all observation days.
The table illustrates that the MR model performs the worst in terms of both the dollar and the
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 N/A 0 0 0 0 0 0 0 0 0 0 0
2004 0 0 0 0 0 0 0 1 1 0 0 1
2005 1 1 0 0 N/A 0 0 0 0 0 0 0
2006 1 1 1 1 1 N/A N/A 1 1 1 1 1
2007 1 1 1 1 1 1 1 N/A N/A N/A N/A N/A

Table 3.2: Regimes where the realized market gas spot price resides at various times, where the
spot price follows the MRGBM variation of the regime-switching model. The Table shows that
29 months correspond to regime 0 and 22 months correspond to regime 1. The N/A in the table
corresponds to missing data.

percentage errors. On the other hand, the MRMR and MRGBM variations result in similar errors
(with the difference of the overall errors less than 7%), while the MRMR variation outperforms the
MRGBM variation for the contracts with relatively long maturities.

Note that these fits were obtained with eleven parameters fitting 663 data points. This fit may
not be good enough for trading purposes. However, an exact fit can be obtained to any set of
futures prices at a given time by adding a time dependent fitting function to the gas price process
SDE. However, this fitting function would only have to account for the approximately 7% error
obtained from the global calibration, hence would be relatively small. It seems that the overall
forward curves for gas can be fit reasonably well with either the MRMR or MRGBM models.

Figure 3.1 illustrates the model implied futures prices and the market prices for the longest
maturity contract, which corresponds to the largest calibration errors among all the contracts, in
the sample across all observation days starting from February 2003. Figure 3.1a indicate that the
MR model fits the market prices poorly in observation days close to February 2003. On the contrary,
Figures 3.1b and 3.1c show that the MRMR and MRGBM variations of the regime-switching model
can reasonably fit the data across all the observation days. Therefore, we conclude that among
these models, the regime-switching models outperform the MR model in terms of fitting the market
gas forward curves.

3.2 Calibration to Options on Futures

As stated in Remark 3.1, the spot price volatilities for the models in Section 2 need to be estimated
using derivatives other than the futures contracts. In this section, we calibrate the volatility using
market European call options on natural gas futures. We demonstrate the calibration procedure
only for the regime-switching model (2.8-2.9). Similar but simpler procedures follow for the MR
model.

3.3 Futures Option Valuation

Let V̄ k(F, t, Tv) denote the European call option value in regime k at time t with maturity at Tv,
where F represents the price of the underlying futures contract at time t. Let K denote the strike
price of the option. Let F k(t, T ) represent the price of the underlying futures contract in regime k
at time t with maturity at T , where T satisfies T ≥ Tv.

11



Mean absolute error

Contract maturity MR MRMR MRGBM MR MRMR MRGBM
In Dollars In Percentage

Month+2 0.278 0.240 0.248 3.98 3.57 3.64
Month+3 0.499 0.386 0.388 6.99 5.70 5.56
Month+4 0.645 0.487 0.470 8.96 7.01 6.57
Month+5 0.684 0.504 0.471 9.44 7.08 6.45
Month+6 0.741 0.486 0.502 10.13 6.60 6.60
Month+7 0.827 0.493 0.528 11.14 6.59 6.75
Month+8 0.872 0.492 0.548 11.86 6.66 7.11
Month+9 0.949 0.505 0.563 12.97 6.92 7.37
Month+10 1.011 0.557 0.574 13.93 7.61 7.53
Month+11 1.037 0.603 0.622 14.62 8.20 8.20
Month+12 1.075 0.580 0.640 15.60 8.21 8.53
Month+13 1.118 0.580 0.677 16.65 8.53 9.21
Month+14 1.152 0.585 0.698 17.68 8.97 9.74

Overall 0.838 0.500 0.533 11.84 7.05 7.17

Table 3.3: Mean absolute errors between the model and the market prices for the futures contracts
with different delivery months, where the notation Month+k in the first column represents the kth
month delivery after the month of the observation day. The errors are given both in dollars and
in percentage. The column MR represents the MR model. The columns MRMR and MRGBM
represent the MRMR and MRGBM variation of the regime-switching model, respectively.
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Figure 3.1: Comparison between the model and the market futures prices for the contract with
the longest maturity (for the delivery after 14 months) in the sample across all observation days
starting from February 2003. The x-axis represents the number of days between the observation day
and the starting date. The model implied prices are computed using the calibrated parameters in
Table 3.1. MR represents the MR model. MRMR and MRGBM represent the MRMR and MRGBM
variation of the regime-switching model, respectively.
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In NYMEX, the trading of a European option ends on the business day immediately preceding
the expiration of the underlying futures contract. As a result, we can assume Tv = T , and we will
thus use T as the maturity for both an option and its underlying futures contract.

We can write V̄ k(F, t, T ) in the form of the risk neutral expectation as

V̄ k(f, t, T ) = e−r(T−t)EQ
[(

Fm(T )(T, T )−K
)
1F m(T )(T,T )≥K | F k(t, T ) = f,m(t) = k

]
= e−r(T−t)EQ

[(
P (T )−K

)
1P (T )≥K | ak(t, T ) + bk(t, T )P (t) = f,m(t) = k

]
,

(3.8)

where 1x≥y is an indicator function that returns 1 if x ≥ y, or 0 if x < y; the second equality
above uses the fact that Fm(T )(T, T ) = P (T ) at maturity T as well as the relation (3.4) between
futures price F and spot price P at time t assuming the risk neutral gas spot price follows the
regime-switching model (2.8-2.9). Let V k(P, t, T ) represent a synthetic European call option on
spot price P at time t, in regime k with maturity T . Then we can write V k(P, t, T ) in the form of
the risk neutral expectation as

V k(p, t, T ) = e−r(T−t)EQ [(
P (T )−K

)
1P (T )≥K | P (t) = p, m(t) = k

]
. (3.9)

Comparing equations (3.8) and (3.9), we have

V k

(
f − ak(t, T )

bk(t, T )
, t, T

)
= V̄ k(f, t, T ), (3.10)

where ak and bk are computed from the ODE system (3.5-3.6). As a result, we can compute
V̄ k(F, t, T ) using equation (3.10) as long as we are able to solve for V k(P, t, T ).

Let r denote the constant riskless interest rate. Assuming that the spot price process follows
SDE (2.8-2.9) and using the risk neutral expectation formulation (3.9), we find that the synthetic
option value V k satisfies the coupled PDEs

V k
t +

[
αk

(
Kk

0 − P
)

+ Sk(t)P
]
V k

P +
1
2
(σk)2P 2V k

PP − rV k+

λk→(1−k)(V 1−k − V k) = 0 , k ∈ {0, 1}
(3.11)

subject to the boundary conditions

V k(P, T, T ) = max[P −K, 0] , k ∈ {0, 1}, (3.12)

We will solve equations (3.11-3.12) numerically in the computational domain P ∈ [0, Pmax]
with Pmax � K. For this purpose, we need to impose boundary conditions at the computational
boundary P = 0 and P = Pmax. At the P = 0 boundary, taking the limit as P → 0, equations
(3.11) become

V k
t + αkKk

0 V k
P − rV k + λk→(1−k)(V 1−k − V k) = 0 , k ∈ {0, 1}. (3.13)

Since αkKk
0 ≥ 0 for all variations of the regime-switching model we consider (see Section 2.2.1), the

characteristics are outgoing in the P direction at P = 0. As a result, we can solve equations (3.13)
without requiring additional boundary conditions, as we do not need information from outside the
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computational domain. At the P = Pmax boundary, we make the assumption that V k(Pmax, t, T ) →
payoff. In other words, we impose the Dirichlet boundary condition

V k(Pmax, t, T ) = Pmax −K , k ∈ {0, 1}. (3.14)

The error introduced by this approximation will be small if Pmax is sufficiently large.
During calibration, we will solve equations (3.11-3.14) using a standard fully implicit finite

different scheme that is stable, monotone and consistent and hence the scheme converges to the
unique solution of equations (3.11-3.14). We skip the details here.

3.4 Calibration procedure and results

We choose as input the values of twelve European call options from NYMEX on t = 6/26/2007
with different strike prices. These options have the same underlying futures contract, which expires
in August 2007, denoted by T1. The futures price is 7.002 $/mmBtu at time t. The strike prices
with respect to the twelve options range from 6.5 to 7.5 $/mmBtu, that is, we pick both slightly
in the money and slightly out of the money options3. We assume that the annual riskless interest
rate is r = 5%.

The first step of the calibration is to determine the regime in which the underlying futures
contract lies; the approach is given in Section 3.1.3. After determining the optimal regime, denoted
by k̂, for the futures contract at time t, we use a least squares approach to calibrate the volatility
σk by solving

min
σ0,σ1

∑
K

(
V̄ k̂

(
F (t, T1), t, T1; θ, K, σ0, σ1

)
− C(t, T1;K)

)2
, (3.15)

where C(t, T1;K) represents the value of a market call option on futures at time t with maturity
at T1 and strike price at K; V̄ k̂ is the corresponding model implied option value in regime k̂ using
the market futures price F (t, T1), the parameter set θ = {αk,Kk

0 , βk
A, βk

SA, A0, SA0, λ
k→(1−k) | k ∈

{0, 1}} and the volatility pair σ0, σ1. The values of V̄ k̂ are computed by first solving PDEs (3.11-
3.14) numerically to obtain values of V k at time t and at discrete grid nodes in the P direction and
then linearly interpolating these discrete values using equation (3.10). We choose the mesh size so
that the error in V̄ k̂ is less than 10−2.

Table 3.4 gives the calibration results and mean absolute errors for the MR model and the
MRMR and MRGBM variations of the regime-switching model.

4 Pricing Natural Gas Storage Contracts under the Regime-Switching
Model

In previous sections we have showed that the regime-switching model (2.8-2.9) outperforms the
one-factor mean-reverting model (2.1-2.2) in capturing the dynamics of natural gas futures prices.
In this section, we apply the calibrated model to price the value of a natural gas storage facility
(or, equivalently, a gas storage contract for leasing the storage facility). After giving the pricing

3The data set we choose is relatively small. Nevertheless, as an illustration in our simple constant parameter
setting, it is sufficient to estimate the volatilities for two regimes. One can add more market data into calibration,
such as American options. One can also imagine assuming a volatility surface σk = σk(P, t) in model (2.8-2.9) and
calibrating the surface using futures options with different maturities and different strike prices.
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Volatility Mean absolute error
Model σ0 σ1 In Cents In Percentage
MR 0.428 1.75 4.27

MRMR 0.406 0.453 0.15 0.59
MRGBM 0.394 0.416 0.15 0.60

Table 3.4: Calibrated volatilities and mean absolute errors for the futures options. The errors are
given both in cents and in percentage. The column MR represents the MR model. The columns
MRMR and MRGBM represent the MRMR and MRGBM variation of the regime-switching model,
respectively.

equations for gas storage contracts, we discuss the corresponding boundary conditions. We then
introduce the numerical scheme for solving the pricing equations. Finally, we conduct numerical
convergence tests and investigate the optimal operational strategies on storage facilities implied
from these gas spot price models. Readers can refer to Chen and Forsyth (2007) and the references
therein for a detailed description of the gas storage valuation problem.

4.1 The PDEs for natural gas storage facilities

The natural gas storage valuation problem is characterized as a stochastic control problem that
results in Hamilton-Jacobi-Bellman (HJB) equations. In Chen and Forsyth (2007), a gas storage
HJB equation is formulated assuming the underlying risk adjusted gas spot price follows a one-
factor mean-reverting process. Prior to presenting the gas storage equations in terms of the regime-
switching model (2.8-2.9), we first introduce the following notation.

Let T denote the maturity of the gas storage contract. Let V k(P, I, τ) = V (P, I, τ, k) denote
the value of a natural gas storage facility in regime k when the gas price resides at P , the working
gas inventory lies at I and the current time to maturity of the contract is τ = T − t. The inventory
I can be any value lying within the domain [0, Imax]. Let c be a control variable that represents the
rate of producing gas from or injecting gas into the gas storage, where c > 0 represents production,
c < 0 represents injection, and c = 0 represents doing nothing. Let cmax(I) ≥ 0 and cmin(I) ≤ 0
denote the maximum gas production rate and maximum gas injection rate as a function of I,
respectively. Following Thompson et al. (2003), we assume

cmax(I) = k1

√
I, (4.1)

cmin(I) = −k2

√
1

I + k3
− 1

k4
, (4.2)

where k1, k2, k3 and k4 are positive constants, and k2, k3, k4 satisfy the constraint cmin(Imax) = 0
which means that no gas injection is possible if the gas storage is full. Let a(c) be the rate of gas
loss incurred by the operation with rate c. We assume a(c) = 0 if c ≥ 0, and a(c) = k5 if c < 0,
where k5 is a positive constant. Based on the arguments in Chen and Forsyth (2007), we require
that the control c satisfies c ∈ C(I) where

C(I) = [cmin(I),−k5] ∪ [0, cmax(I)]. (4.3)
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Let r be the riskless interest rate.
Based on the standard hedging arguments in the financial valuation literature (see, e.g., Thomp-

son et al. (2003)), the value of a natural gas storage facility V k(P, I, τ), assuming that the risk
adjusted gas spot price follows the regime-switching model (2.8-2.9) is given by the coupled HJB
equations

V k
τ =

1
2
(σk)2P 2V k

PP +
[
αk(Kk

0 − P ) + Sk(t)P
]
V k

P + max
c∈C(I)

{
(c− a(c))P − (c + a(c))V k

I

}
−

(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k , k ∈ {0, 1} .

(4.4)

4.2 Boundary conditions for the pricing PDEs

In order to completely specify the gas storage problem, we need to provide boundary conditions.
As for the terminal boundary conditions, we use the following penalty payoff function given by
Carmona and Ludkovski (2005):

V k(P, I, τ = 0) = const. · P ·min (I(t = T )− I(t = 0), 0) , k ∈ {0, 1}. (4.5)

This has the meaning that a penalty will be charged if the gas inventory in storage when the facility
is returned is less than the gas inventory at the inception of the contract.

The domain for the PDEs (4.4) is P × I ∈ [0,∞] × [0, Imax]. For computational purposes, we
need to solve PDEs in a finite computational domain [0, Pmax] × [0, Imax]. As I → 0 or I → Imax,
according to the arguments in Chen and Forsyth (2007), no boundary conditions are needed since
the characteristics are outgoing in the I direction.

Taking the limit of equations (4.4) as P → 0, we obtain

V k
τ = αkKk

0 V k
P + max

c∈C(I)

{
−(c + a(c))V k

I

}
−

(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k , k ∈ {0, 1} . (4.6)

Since αkKk
0 ≥ 0 for all variations of the regime-switching model we consider (see Section 2.2.1), the

characteristics are outgoing in the P direction and we can solve equations (4.6) without requiring
additional boundary conditions.

As P →∞, we make the common assumption that V k
PP → 0 (see Windcliff et al. (2004)). We

need to deal with one major issue in that the resulting boundary equations require information
from outside the computational domain. To see the problem, assuming V k

PP → 0 as P →∞, then
the pricing equations (4.4) become

V k
τ =

[
αkKk

0 +
(
Sk(t)− αk

)
P

]
V k

P + max
c∈C(I)

{
(c− a(c))P − (c + a(c))V k

I

}
−

(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k , k ∈ {0, 1} .

(4.7)

Using the calibrated parameter values from Table 3.1, we find that S0(t) − α0 > 0 are positive
for certain ranges of t. In this case, the characteristics of equations (4.7) are incoming in the
P direction at P → ∞ and consequently, a monotone discretization of the equation will require
information from outside the computational domain.

This issue can be resolved using the following approximation. The assumption V k
PP → 0 as

P →∞ implies that
V k(P, I, τ) ≈ fk(I, τ)P + gk(I, τ), (4.8)
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where functions fk and gk are independent of P . If we assume that fk(I, τ)P � gk(I, τ) as P →∞,
we can further write

V k ≈ fk(I, τ)P. (4.9)

Note that the approximation (4.8) is consistent with the payoff (4.5). Now the drift term in the
boundary equation (4.7) can be written as[

αkKk
0 +

(
Sk(t)− αk

)
P

]
V k

P ≈
(
Sk(t)− αk

)
PV k

P

≈
(
Sk(t)− αk

)
V k,

(4.10)

where the first approximation follows since
(
Sk(t) − αk

)
P � αkKk

0 as P → ∞ and the second
approximation is due to equation (4.9). Substituting equation (4.10) into equation (4.7) results in

V k
τ = max

c∈C(I)

{
(c− a(c))P − (c + a(c))V k

I

}
−

(
r + αk − Sk(t) + λk→(1−k)

)
V k

+ λk→(1−k)V 1−k , k ∈ {0, 1}.
(4.11)

Since the drift term in equations (4.11) is zero, we are able to provide a monotone discretization
for the equation without requiring information from outside the computational domain. (Refer to
Section 4.3.2 for more details.)

4.3 Numerical solution

This section briefly introduces the fully implicit, semi-Lagrangian timestepping scheme for solving
the gas storage PDEs (4.4) and the associated boundary equations (4.6) and (4.11). We also analyze
the l∞ stability and monotonicity properties of the scheme and show the convergence of the scheme
to the viscosity solution of the equations (4.4), (4.6) and (4.11).

4.3.1 Discretization

Fully implicit and a Crank-Nicolson timestepping schemes using the semi-Lagrangian approach are
developed in Chen and Forsyth (2007) to solve the gas storage equation for a one-factor mean-
reverting model. We can easily extend the semi-Lagrangian discretizations to solve the gas storage
equations (4.4) and boundary equations (4.6) and (4.11) in the regime-switching framework.

Prior to presenting the matrix form of semi-Lagrangian discretizations, we introduce the follow-
ing notation. We use unequally spaced grids in the P and I directions for the PDE discretization,
represented by [P0, P1, . . . , Pimax ] and [I0, I1, . . . , Ijmax ], respectively. We use the discrete timesteps
0 = τ0 < . . . , < τN = T to discretize the PDEs. Let Un

i,j,k denote an approximation of the exact
solution V k(Pi, Ij , τ

n), where k ∈ {0, 1}. Let Un denote a column vector that includes all values
of Un

i,j,k with the index order arranged as Un =
[
Un

0,0,0, . . . , U
n
imax,0,0, . . . , U

n
0,jmax,0, . . . , U

n
imax,jmax,1

]′.
For future reference, assuming M is a square matrix, then we denote [MUn]ijk = (MUn)i,j,k, and
denote [MUn]jk as the vector

[
(MUn)0,j,k, . . . (MUn)imax,j,k

]′, where the index of (MUn)i,j,k in
MUn is the same as that of Un

i,j,k in Un.
Let L be a differential operator represented by

LV k =
1
2
(σk)2P 2V k

PP +
[
αk(Kk

0 − P ) + Sk(t)P
]
PV k

P −
(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k (4.12)
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for P ∈ [0,∞). While P → ∞, according to the boundary equations (4.11), we define operator L
to be

LV k = −
(
r + αk − Sk(t) + λk→(1−k)

)
V k + λk→(1−k)V 1−k. (4.13)

The operator L can be discretized using standard finite difference methods. Let (LhV )n
i,j,k denote

the discrete value of the operator L at node (Pi, Ij , τ
n, k). Using central, forward, or backward

differencing in the P, I directions, we can write

(LhV )n
i,j,k

=


γn

i,kU
n
i−1,j,k + βn

i,kU
n
i+1,j,k − (γn

i,k + βn
i,k + r + λk→(1−k))Un

i,j,k + λk→(1−k)Un
i,j,1−k i < imax,

−
(
r + αk − Sk(T − τn) + λk→(1−k)

)
Un

i,j,k + λk→(1−k)Un
i,j,1−k i = imax,

(4.14)

where constants γn
i,k, β

n
i,k can be determined using a similar algorithm as that given in Chen and

Forsyth (2007). The algorithm guarantees that γn
i,k, β

n
i,k satisfy a positive coefficient condition:

γn
i,k ≥ 0 ; βn

i,k ≥ 0 i = 0, . . . , imax − 1 ; n = 1, . . . , N. (4.15)

Following Chen and Forsyth (2007), we define a semi-Lagrangian trajectory I(τ) that follows
the ODE

dI
dτ

= c + a(c). (4.16)

According to (4.16), we can write the terms V k
τ + (c + a(c))V k

I in equations (4.4), (4.6) and (4.11)
in the form of a Lagrangian directional derivative

DV k

Dτ
=

∂V k

∂τ
+

∂V k

∂I

dI
dτ

. (4.17)

Then equations (4.4), (4.6) and (4.11) can be written together as

min
c∈C(I)

{
DV k

Dτ
− (c− a(c))P − LV k

}
= 0 , k ∈ {0, 1} . (4.18)

We can construct a semi-Lagrangian discretization of equations (4.18) by first integrating the
equations along the semi-Lagrangian trajectory I(τ) in (4.16) from τ = τn to τ = τn+1, and then
evaluating the resulting integrals using different numerical integration methods: for example, using
the rectangular rule provides a fully implicit timestepping scheme, while using the trapezoidal rule
gives a Crank-Nicolson timestepping scheme. The semi-Lagrangian approach assumes that the
arrival point of the trajectory at τ = τn+1 resides at a grid node (Pi, Ij), while the departure point
of the trajectory at τ = τn is determined by values of optimal control c along this path. We denote
by Un

i,j(i,n+1),k the discrete solution value at the departure point of the semi-Lagrangian trajectory
I(τn). Note that the departure point I(τn) will not necessarily coincide with a grid point in the
I direction. Consequently, we need to interpolate the value Un

i,j(i,n+1),k using discrete grid values
Un

i,j,k, i = 0, . . . , imax, j = 0, . . . , jmax. The arguments in Chen and Forsyth (2007) shows that using
linear interpolation to compute Un

i,j(i,n+1),k is able to achieve the first-order global discretization
error.
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As demonstrated in Chen and Forsyth (2007), the first order fully implicit timestepping scheme
is a better choice than the Crank-Nicolson timestepping scheme since the latter does not converge
at a higher than first order rate and cannot guarantee convergence to the viscosity solution of the
pricing HJB equation. As a result, in this paper we only consider the fully implicit timestepping
scheme. In the above paragraphs we present the main idea on how to construct semi-Lagrangian
discretizations, we then directly write out the matrix form of the fully implicit timestepping scheme
in the following without showing the intermediate steps; readers can refer to Chen and Forsyth
(2007) for more details. Let Ln denote a matrix such that

[LnUn]ijk = (LhV )n
i,j,k, (4.19)

where the discrete value (LhV )n
i,j,k is given in equation (4.14).

We denote by Φn+1 a Lagrange linear interpolation matrix such that[
Φn+1Un

]
ijk

= Un
i,j(i,n+1),k + interpolation error. (4.20)

Let P denote a column vector satisfying [P ]i = Pi. Let ζn
jk be a diagonal matrix containing control

values that need to be determined. Let a
(
ζn
jk

)
denote a diagonal matrix with diagonal entries[

a
(
ζn
jk

)]
ii

= a
(
[ζn

jk]ii
)
. Let I be an identity matrix. Let ∆τn = τn+1 − τn. Given the above

notation, the fully implicit timestepping scheme for the gas storage pricing equations (4.4), (4.6)
and (4.11) can be written as[

[I −∆τnLn+1]Un+1
]
jk

=
[
Φn+1Un

]
jk

+ ∆τn
(
ζn+1
jk − a

(
ζn+1
jk

))
P,

where
[
ζn+1
jk

]
ii

= arg max
[ζn+1

jk ]ii∈Cn+1
jk

{[[
Φn+1Un

]
jk

+ ∆τn
(
ζn+1
jk − a

(
ζn+1
jk

))
P

]
i

}
(4.21)

for j = 0, . . . , jmax and k = 0, 1. Here [ζn+1
jk ]ii represents the optimal control in the admissible set

Cn+1
jk (see Chen and Forsyth (2007) for the definition of the admissible set).

The discrete optimization problems in scheme (4.21) can be solved using both the bang-bang
method and no bang-bang method as proposed in Chen and Forsyth (2007). As shown in Thompson
et al. (2003), the exact solution of equations (4.4), (4.6), (4.11) has the property that the controls
are of the bang-bang type, i.e. the optimal controls can take on only the values in a finite set
which, in our case, consists of the maximum production rate c = cmax(I), maximum injection rate
c = cmin(I) and zero rate c = 0. However, the solutions of the discrete optimization problems
may allow controls which are not possible controls for the exact solution. The bang-bang method,
roughly speaking, considers only those bang-bang controls as appearing in the exact solution, and
the no bang-bang method actually maximizes the discrete problems. We know that both methods
will converge to the correct solution with bang-bang type controls, for sufficiently small mesh
spacing and timestep size. We will conduct numerical experiments using both the bang-bang and
no bang-bang methods.

4.3.2 Properties of the numerical scheme

As shown in Pooley et al. (2003), in the case of nonlinear option pricing problem, seemingly reason-
able discretizations that do not satisfy the sufficient convergence conditions for viscosity solutions
may either never converge or converge to a non-viscosity solution. Provided a strong comparison
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result for the PDE applies, (Barles and Souganidis, 1991; Barles, 1997) demonstrate that a nu-
merical scheme will converge to the viscosity solution of the equation if it is l∞ stable, pointwise
consistent, and monotone.

The consistency of the semi-Lagrangian discretization (4.21) for the gas storage equations in the
regime-switching setting directly follows from the consistency results in Chen and Forsyth (2007).
In this section, we discuss the l∞ stability and monotonicity properties of the scheme (4.21).

Let us define matrix
Qn+1 = I −∆τnLn+1. (4.22)

First, we prove the following Lemma

Lemma 4.1 (M -matrix property of Qn+1). Assuming that scheme (4.21) satisfies the positive
coefficient condition (4.15) and the timestep condition

∆τn <
1

‖α‖+ ‖S‖
, n = 0, 1, . . . , N, (4.23)

where
‖α‖ = max

(
|α0|, |α1|

)
; ‖S‖ = max

t∈[0,T ],k∈{0,1}
|Sk(t)| , (4.24)

then the matrix Qn+1 is an M matrix.

Proof. From equations (4.14), using conditions (4.15) and (4.23), we can verify that −Ln+1 has
nonpositive offdiagonal elements and the sum of elements in each row in matrix Qn+1 is nonnegative.
Note that condition (4.23) is needed to show that the above diagonal dominant property holds for
the last row of the matrix. Hence Qn+1 is an M -matrix.

Remark 4.2 (Explanation of the timestep condition (4.23)). Condition (4.23) is a mild timestep-
ping constraint since Sk(t) is bounded above by a relatively small constant. For example, using the
parameter values from Table 3.1, condition (4.23) is equivalent to ∆τn < 0.49 and ∆τn < 0.52 for
the MRMR and MRGBM variation of the regime-switching model, respectively. This indicates that
a timestep of 0.4 year is sufficient to satisfy the condition.

Let us define ∆τmax = maxn

(
τn+1 − τn

)
, ∆τmin = minn

(
τn+1 − τn

)
. The following Lemma

verifies the l∞ stability of scheme (4.21).

Lemma 4.3 (l∞ stability). Let Dτ = (∆τmax)/(∆τmin), where Dτ > 0 is assumed to be a O(1)
constant. Assuming that discretization (4.21) satisfies the conditions required for Lemma 4.1, then
as ∆τmin → 0, scheme (4.21) satisfies

‖Un+1‖∞ ≤ D1‖U0‖∞ + D2, (4.25)

where D1, D2 are bounded constants given by

D1 = exp
((
‖α‖+ ‖S‖

)
DτT

)
; D2 =

1
‖α‖+ ‖S‖

(D1 − 1) · Pmax ·max {|Cmax(Imax)|, |Cmin(0)|} .

(4.26)

Here ‖Un+1‖∞ = maxi,j,k |Un+1
i,j,k |. Therefore, according to the definition of l∞ stability given in

Chen and Forsyth (2007), the scheme (4.21) is unconditionally l∞ stable.
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Proof. The proof directly follows from using Lemma 4.1 and applying the maximum principle to
the discrete equation (4.21). We omit the details here. Readers can refer to (D’Halluin et al., 2005,
Theorem 5.5) and Forsyth and Labahn (2007) for complete stability proofs of the semi-Lagrangian
fully implicit scheme for American Asian options and the finite difference schemes for controlled
HJB equations, respectively.

Next we discuss the monotonicity of scheme (4.21). We can write the discrete equations (4.21)
at each node (Pi, Ij , k) as

Gn+1
i,j,k

(
Un+1

i,j,k ,
{
Un+1

l,j,k

}
l 6=i

, Un+1
i,j,1−k,

{
Un

i,j,k

})
≡ min

[ζn
jk]ii∈Cn+1

jk

{[
Qn+1Un+1

]
ijk
−

[
Φn+1Un

]
ijk
−∆τn

[
(ζn+1

jk − a(ζn+1
jk ))P

]
i

}
= 0,

(4.27)

where
{
Un+1

l,j,k

}
l 6=i

is the set of values Un+1
l,j,k , l 6= i, l = 0, . . . , imax, and

{
Un

i,j,k

}
is the set of values

Un
i,j,k, i = 1, . . . , imax, j = 1, . . . , jmax.

Definition 4.4 (Monotonicity). The scheme Gn+1
i,j,k

(
Un+1

i,j,k ,
{
Un+1

l,j,k

}
l 6=i

, Un+1
i,j,1−k,

{
Un

i,j,k

})
given in

equation (4.27) is monotone if

Gn+1
i,j,k

(
Un+1

i,j,k ,
{
Un+1

l,j,k + εn+1
l,j,k

}
l 6=i

, Un+1
i,j,1−k + εn+1

i,j,1−k,
{
Un

i,j,k + εn
i,j,k

})
≤ Gn+1

i,j,k

(
Un+1

i,j,k ,
{
Un+1

l,j,k

}
l 6=i

, Un+1
i,j,1−k,

{
Un

i,j,k

})
; ∀i, j, k, ∀εn

i,j,k, ε
n+1
i,j,k ≥ 0.

(4.28)

The definition of monotonicity is equivalent to that introduced in Barles (1997).

Following the proof in (Barles and Jakobsen, 2007; Forsyth and Labahn, 2007) and using
Lemma 4.1, we can obtain the monotonicity of scheme (4.21).

Lemma 4.5 (Monotonicity). If scheme (4.21) satisfies the conditions required for Lemma 4.1, then
the discretization (4.27) is monotone according to Definition 4.4.

Remark 4.6. For different types of controlled HJB equations/inequalities, (Barles and Jakobsen,
2002; Jakobsen, 2003; Barles and Jakobsen, 2007) introduce various definitions of monotonicity in
order to obtain convergence rate estimates for their numerical schemes. These definitions impose
some other conditions in addition to condition (4.28). The discretization (4.27) may not satisfy
these additional conditions since the coefficient of the V k term in the boundary equations (4.11)
may become negative at the node i = imax. However, as shown in Barles (1997), only condition
(4.28) is needed in order to prove the convergence of a numerical scheme to the viscosity solution.

From Lemmas 4.3 and 4.5, using the results in (Barles and Souganidis, 1991; Barles, 1997), we
can obtain the following convergence result:

Theorem 4.7 (Convergence to the viscosity solution). Assuming that discretization (4.21) satisfies
all the conditions required for Lemmas 4.3 and 4.5, and assuming that a strong comparison result
for equations (4.4), (4.6) and (4.11) holds (refer to (Chen and Forsyth, 2007; Barles and Burdeau,
1995; Barles and Rouy, 1998) for explanations of strong comparison results for controlled PDEs),
then scheme (4.21) converges to the viscosity solution of gas storage equations (4.4), (4.6) and
(4.11).
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Cont and Voltchkova (2005) demonstrate that a financially meaningful discretization should
satisfy arbitrage inequalities, which means the inequality of contract payoffs is preserved in the
inequalities of contract values. Using the M -matrix property of matrix Qn+1 (Lemma 4.1), we can
show that scheme (4.21) satisfies the following arbitrage inequalities.

Theorem 4.8 (Discrete arbitrage inequalities). Assuming that discretization (4.21) satisfies the
conditions required for Lemma 4.1, then suppose U and W are two solutions of (4.21), with Un >
Wn, then Un+1 > Wn+1.

Proof. The proof directly follows from the approach in (D’Halluin et al., 2005, Theorem 6.2) by
using the M-matrix property in Lemma 4.1.

4.4 Numerical Experiments

Having introduced the fully implicit semi-Lagrangian discretization scheme in the previous section,
this section conducts numerical experiments based on the proposed scheme. We use “dollars per
million British thermal unit” ($/mmBtu) and “million cubic feet” (MMcf) as the default units for
gas spot price P and gas inventory I, respectively. The numerical experiments use the following
nonlinear payoff function from Carmona and Ludkovski (2005):

V k(P, I, τ = 0) = −2P max(1000− I, 0) , k ∈ {0, 1}. (4.29)

Equation (4.29) indicates that severe penalties are charged if the gas inventory is less than 1000
MMcf and no compensation is received when the inventory is above 1000 MMcf. Naturally, such
a payoff structure will force the operator of a gas storage facility to maintain the gas inventory as
close to 1000 MMcf as possible at maturity to avoid revenue loss.

We first carry out a convergence analysis, assuming that the risk adjusted natural gas spot price
follows the MRMR variation of the regime-switching model (2.8-2.9) and taking model parameter
values from Tables 3.1 and 3.4. Table 4.1 lists other input parameters for pricing the value of a gas
storage contract.

The convergence results for two regimes at the node (P, I) = (6, 1000) obtained from refining
the mesh spacing and timestep size are shown in Table 4.2, where we use both the bang-bang and
no bang-bang methods for solving the discrete optimization problem in scheme (4.21). The results
indicate that the both methods achieve the first-order convergence. A similar observation is found
for the MRGBM variation.

Parameter Value Parameter Value
r 0.05 k2 730000
T 3 years k3 500

Imax 2000 MMcf k4 2500
k1 2040.41 k5 1.7 · 365

Table 4.1: Input parameters used to price the value of a gas storage contract, where Imax is the
maximum storage inventory; k1, k2, k3, k4, k5 are parameters in equations (4.1-4.3). The values
of Imax, k1, k2, k3, k4, k5 are taken from Thompson et al. (2003).

Our next step is to investigate the optimal operational strategies implied from the gas spot
price models. Figure 4.1a plots the optimal control surface of the MR model (2.1-2.2) as a function
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P grid I grid No. of Bang-bang method No bang-bang method
nodes nodes timesteps Value Ratio Value Ratio

Regime 0
87 61 500 3902629 n.a. 4011939 n.a.
173 121 1000 3920017 n.a. 3978633 n.a.
345 241 2000 3932943 1.35 3962706 2.09
689 481 4000 3939135 2.09 3954988 2.06
1377 961 8000 3942166 2.04 3951148 2.01

Regime 1
87 61 500 4836234 n.a. 4962610 n.a.
173 121 1000 4864240 n.a. 4929533 n.a.
345 241 2000 4881661 1.61 4913620 2.08
689 481 4000 4889176 2.32 4905978 2.08
1377 961 8000 4892715 2.12 4902130 1.99

Table 4.2: Value of a natural gas storage facility in two regimes at P = 6 $/mmBtu and I = 1000
MMcf. Risk adjusted gas spot price follows MRMR variation of the regime-switching process (2.8-
2.9) with model parameter values given in Tables 3.1 and 3.4. Convergence ratios are presented for
the bang-bang and the no bang-bang methods in two regimes. The convergence ratio is defined as
the ratio of successive changes in the solution, as the timestep and mesh size are reduced by a factor
of two. Constant timesteps are used. Payoff function is given in (4.29). Other input parameters
are given in Table 4.1. We assume that today is the January 1st of the year.

of forward time t and gas price P when I = 1000 MMcf. We can verify from the figure that the
optimal controls are of the bang-bang type: the controls are either producing at the maximum rate
c = cmax > 0, or injecting at the maximum rate c = cmin < 0, or doing nothing with c = 0.

Another observation from Figure 4.1a is that for a fixed time t, the control is price dependent;
at the same time, the controls evolving over time follow a repeated seasonal pattern. Specifically,
in winter months, it is optimal to produce when the price is sufficiently high, to inject when the
price is relatively low, and to do nothing when the price lies in between. The higher the price,
the longer the production period will be; the lower the price, the longer the injection period will
be. Furthermore, the equilibrium level P = 8.678 approximately resides in the center of the three
bang-bang control regions (i.e., the regions of injection, doing nothing and production). This is
due to the mean-reverting behavior of the MR model during the winter period (see the discussions
in Remark 2.1 and Section 3.1.4). In summer months, however, the optimal control is to inject or
to do nothing, but never to withdraw. The gas price during this period essentially follows a GBM
with a positive drift. As such, it is never optimal to withdraw since the price tends to drift up
during this period due to the strong seasonality effect. From the discussions above, we conclude
that the optimal controls are consistent with the gas price dynamics implied from the calibrated
MR model.

We can also observe from Figure 4.1a that the controls converge to zero when t → T in order
to avoid the revenue loss due to the payoff structure (4.29).

To see the seasonality effect on the control strategies more clearly, in Figure 4.1b we present
the optimal control curve obtained by taking a slice of the control surface in Figure 4.1a at P = 6
$/mmBtu along the t direction. The figure shows that is is optimal to produce between February
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and March (i.e., in the cold season when the gas prices are relatively high), inject between July and
October (i.e., in the warm season when the gas prices are relatively low) and do nothing in other
seasons.
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(b) Control curve at P = 6 $/mmBtu, MR

Figure 4.1: Optimal control surface for the MR model as a function of forward time t and gas
spot price P as well as the corresponding control curve as a function of t when P = 6 $/mmBtu,
where the gas inventory resides at I = 1000 MMcf. Model parameter values are given in Tables 3.1
and 3.4. Fully implicit timestepping with the no bang-bang method and with constant timesteps is
used. Other input parameters are given in Table 4.1. We assume that the starting time t = 0
corresponds to the July 1st of the year.

As a comparison, Figure 4.2 plots, for the MRMR variation of the regime-switching model,
the optimal control surface as a function of t and P with I = 1000 MMcf and the corresponding
control curve at P = 6 $/mmBtu. Comparing three control surfaces in Figures 4.1a, 4.2a and 4.2c,
we observe that they have similar seasonal patterns except that the three bang-bang control re-
gions in each control surface align according to different gas price P , or more precisely, according
to the equilibrium prices of the stochastic processes with respect to the three control surfaces.
Consequently, the MRMR variation generates different control strategies for two regimes that are
consistent with the calibrated processes in those regimes. Moreover, as a regime shift occurs due
to an exogenous event, the seasonal control pattern will change accordingly. For example, if the
regime shifts from 0 to 1 in March, then the control will switch from producing gas to injecting gas
when P = 6 $/mmBtu. As a result, the MRMR variation of the regime-switching model is able
to generate controls that reflect the existence of multiple regimes (if we believe this is true) in the
market as well as the regime shifts. Therefore, we regard the MRMR variation as a richer model,
which has more complex optimal control strategies.

In Figure 4.3, we plot the optimal control surface and the corresponding control curve for the
MRGBM variation of the regime-switching model. The control strategies in regime 0 of the MRMR
and MRGBM variations are similar. However, in regime 1 of the MRGBM variation, for all gas
prices, it is never optimal to produce, even in the winter period (for fixed I = 1000). Again, this is
in accordance with the GBM behavior of the gas price process in this regime. Therefore, similar to
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(d) Control curve at P = 6 $/mmBtu,
Regime 1, MRMR

Figure 4.2: Optimal control surface for the MRMR variation of the regime-switching model as
a function of forward time t and gas spot price P as well as the corresponding control curve as a
function of t when P = 6 $/mmBtu, where the gas inventory resides at I = 1000 MMcf. Model
parameter values are given in Tables 3.1 and 3.4. Fully implicit timestepping with the no bang-bang
method and with constant timesteps is used. Other input parameters are given in Table 4.1. We
assume that the starting time t = 0 corresponds to the July 1st of the year.
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the MRMR variation, the MRGBM variation also produces regime specific control strategies that
are consistent with the gas price dynamics in each regime. Consequently, the MRGBM variation
can also produce very different optimal strategies compared to the MR model.

Finally, we note that from a calibration perspective, it is difficult to distinguish between the
MRMR or MRGBM models. We would need other evidence to determine whether the gas price
dynamics in the high price regime is mean reverting or GBM.

5 Conclusion

In this paper, we propose a one-factor regime-switching model for the risk adjusted natural gas spot
price and study the implication of the model on the valuation and optimal operations of natural
gas storage facilities.

By adjusting parameter values, the deseasoned process in each regime follows either a mean-
reverting process or a geometric Brownian motion (GBM) like process with a positive/negative
drift. This produces several variations of the basic model. We calibrate model parameters to
both market futures prices and options on futures. The calibration to futures indicates that the
MRMR variation (the processes in both regimes are mean-reverting) and the MRGBM variation
(the process in one regime is mean-reverting and that in the other regime follows a GBM with a
positive drift) of the regime-switching model are able to capture the dynamics of the market futures
prices more accurately than a one-factor mean-reverting model. One-factor mean-reverting models
have been the standard choices of other authors who have developed methods for valuing natural
gas storage.

The valuation of a natural gas storage facility is characterized as a stochastic control prob-
lem, resulting in Hamilton-Jacobi-Bellman (HJB) equations. We extend the fully implicit, semi-
Lagrangian discretizations in Chen and Forsyth (2007) to solve the pricing equations in the case of
the regime-switching model. Provided a strong comparison result holds, we then prove the conver-
gence of the scheme to the viscosity solution of the pricing equations. Numerical results show that
our numerical scheme can achieve a first-order convergence rate.

We also observe from the numerical experiments that the optimal control strategies implied from
the MRMR and MRGBM variations of the regime-switching model are able to produce distinct
controls for each regime that are consistent with gas price dynamics in that regime. Therefore, the
regime-switching model can reflect the existence of multiple regimes in the market as well as the
regime shifts driven by various exogenous events, and hence it is a richer model for pricing the gas
storage contracts than one-factor mean-reverting models. The regime-switching models result in
qualitatively different optimal strategies compared to the simple mean-reverting model.

Of course, there are many ways that the regime-switching model can be improved to obtain
better fits to the market data. Nevertheless, it appears that this comparatively simple model is a
major improvement compared to the mean-reverting models used in previous work on gas storage.

In addition, solution of the HJB equation with the regime switching model is only about twice
as computationally expensive as solving the HJB equation with the simple mean-reverting model.
This is much less computationally expensive compared to a full two factor model.

References

Ahn, H., A. Danilova, and G. Swindle (2002). Storing arb. Wilmott Magazine 1.

27



0

20000

40000

60000

C
ontrol(M

M
cf/Y

ear)

1

3

5

7

9

11

13

G
as

P
ric

e
($

/m
m

B
tu

)

Months Forward in Time

Ju
lS
ep

N
ov

Ja
n

M
ar

M
ay

Ju
l

S
ep

N
ov

Ja
n

M
ar

M
ay

M
ayM
arJa

n

N
ovS
epJu

l

Ju
l

(a) Control surface, Regime 0, MRGBM

Months Forward in Time

C
o

n
tr

o
l(

M
M

cf
/Y

ea
r)

-20000

-10000

0

10000

20000

30000

40000

50000

60000

70000

S
ep

N
ov

Ja
n

M
ar

M
ay Ju

l

Ju
l

S
ep

N
ov

Ja
n

M
ar

M
ay Ju

l

S
ep

N
ov

Ja
n

M
ar

M
ay Ju

l

(b) Control curve at P = 6 $/mmBtu,
Regime 0, MRGBM

0

20000

40000

60000

C
ontrol(M

M
cf/Y

ear)
1

3

5

7

9

11

13

G
as

P
ric

e
($

/m
m

B
tu

)

Months Forward in Time

Ju
lS
ep

N
ov

Ja
n

M
ar

M
ay

Ju
l

S
ep

N
ov

Ja
n

M
ar

M
ay

M
ayM
arJa

n

N
ovS
epJu

l

Ju
l

(c) Control surface, Regime 1, MRGBM

Months Forward in Time

C
o

n
tr

o
l(

M
M

cf
/Y

ea
r)

-20000

-10000

0

10000

20000

30000

40000

50000

60000

70000

S
ep

N
ov

Ja
n

M
ar

M
ay Ju

l

Ju
l

S
ep

N
ov

Ja
n

M
ar

M
ay Ju

l

S
ep

N
ov

Ja
n

M
ar

M
ay Ju

l

(d) Control curve at P = 6 $/mmBtu,
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Figure 4.3: Optimal control surface for the MRGBM variation of the regime-switching model as
a function of forward time t and gas spot price P as well as the corresponding control curve as a
function of t when P = 6 $/mmBtu, where the gas inventory resides at I = 1000 MMcf. Model
parameter values are given in Tables 3.1 and 3.4. Fully implicit timestepping with the no bang-bang
method and with constant timesteps is used. Other input parameters are given in Table 4.1. We
assume that the starting time t = 0 corresponds to the July 1st of the year.
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