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Abstract5

An advantageous feature of piecewise constant policy timestepping for Hamilton-Jacobi-6

Bellman (HJB) equations is that different linear approximation schemes, and indeed different7

meshes, can be used for the resulting linear equations for different control parameters. Standard8

convergence analysis suggests that monotone (i.e., linear) interpolation must be used to transfer9

data between meshes. Using the equivalence to a switching system and an adaptation of the10

usual arguments based on consistency, stability and monotonicity, we show that if limited,11

potentially higher order interpolation is used for the mesh transfer, convergence is guaranteed.12

We provide numerical tests for the mean-variance optimal investment problem and the uncertain13

volatility option pricing model, and compare the results to published test cases.14
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1 Introduction19

This article is concerned with the numerical approximation of fully nonlinear second order partial20

differential equations of the form21

0 = F (x, V,DV,D2V ) =

{
Vτ − supq∈Q LqV, x ∈ Rd × (0, T ],

V (x)− G(x), x ∈ Rd × {0}, (1.1)

where x = (S, τ) contains both ‘spatial’ coordinates S ∈ Rd and backwards time τ . For fixed q in a22

control set Q, Lq is the linear differential operator23

LqV = tr
(
σqσ

T
q D

2V
)

+ µTq DV − rqV + fq, (1.2)

where σq ∈ Rd×d, µq ∈ Rd and rq, fq ∈ R are functions of the control as well as possibly of x. An24

initial (in backwards time) condition V (0, ·) = G(·) is also specified.25
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These equations arise naturally from stochastic optimization problems. By dynamic program-26

ming, the value function satisfies an HJB equation of the form (1.1). Since dynamic programming27

works backwards in time from a terminal time T to today t = 0, it is conventional to write PDE28

(1.1) in terms of backwards time τ = T − t, with T being the terminal time, and t being forward29

time.30

Many examples of equations of the type (1.1) are found in financial mathematics, including31

the following: optimal investment problems [32]; transaction cost problems [17]; optimal trade32

execution problems [1]; values of American options [25]; models for financial derivatives under33

uncertain volatilities [2, 30]; utility indifference pricing of financial derivatives [15]. More recently,34

enhanced oversight of the financial system has resulted in reporting requirements which include35

Credit Value Adjustment (CVA) and Funding Value Adjustment (FVA), which lead to nonlinear36

control problems of the form (1.1) [12, 31, 13].37

If the solution has sufficient regularity, specifically for Cordes coefficients, it has recently been38

demonstrated that higher order discontinuous Galerkin solutions are possible [36]. Generally, how-39

ever, these problems have solutions only in the viscosity sense of [16].40

A general framework for the convergence analysis of discretization schemes for strongly nonlinear41

degenerate elliptic equations of type (1.1) is introduced in [7], and has since been refined to give error42

bounds and convergence orders, see, e.g., [4, 5, 6]. The key requirements that ensure convergence43

are consistency, stability and monotonicity of the discretization.44

The standard approach to solve (1.1) by finite difference schemes is to “discretize, then opti-45

mize”, i.e., to discretize the derivatives in (1.2) and to solve the resulting finite-dimensional control46

problem. The nonlinear discretized equations are then often solved using variants of policy itera-47

tion [20], also known as Howard’s algorithm and equivalent to Newton’s iteration under common48

conditions [9].49

At each step of policy iteration, it is necessary to find the globally optimal policy (control) at50

each computational node. The PDE coefficients may be sufficiently complicated functions of the51

control variable q such that the global optimum cannot be found either analytically or by standard52

optimization algorithms. Then, often the only way to guarantee convergence of the algorithm is to53

discretize the admissible control set and determine the optimal control at each node by exhaustive54

search, i.e., Q is approximated by finite subset QH = {q1, . . . qJ} ⊂ Q. This step is the most55

computationally time intensive part of the entire algorithm. Convergence to the exact solution is56

obtained by refining QH .57

Of course, in many practical problems, the admissible set is known to be of bang-bang type,58

i.e., the optimal controls are a finite subset of the admissible set. Then the true admissible set is59

already a discrete set of the form QH .60

In both cases, if we use backward Euler timestepping, an approximation to V n+1 at time τn+1
61

is obtained from62

V n+1 − V n

∆τ
− max
qj∈QH

LhqjV
n+1 = 0, (1.3)

where we have a spatial discretization Lhqj , with h a mesh size and ∆τ the timestep.63

1.1 Objectives64

It is our experience that many industrial practitioners find it difficult and time consuming to65

implement a solution of equation (1.3). As pointed out in [34], many plausible discretization66
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schemes for HJB equations can generate incorrect solutions. Ensuring that the discrete equations67

are monotone, especially if accurate central differencing as much as possible schemes are used, is68

non-trivial [38]. Policy iteration is known to converge when the underlying discretization operator69

for a fixed control is monotone (i.e., an M-matrix) [9]. Seemingly innocent approximations may70

violate the M-matrix condition, and cause the policy iteration to fail to converge.71

A convergent iterative scheme for a finite element approximation with quasi-optimal convergence72

rate to the solution of a strictly elliptic switching system is proposed and analysed in [10]. Here, we73

are concerned with parabolic equations and exploit the fact that approximations of the continuous-74

time control processes by those piecewise constant in time and attaining only a discrete set of75

values, lead to accurate approximations of the value function.76

A technique which seems to be not commonly used (at least in the finance community) is based77

on piecewise constant policy time stepping (PCPT) [28, 6]. In this method, given a discrete control78

set QH = {q1, . . . qJ}, J independent PDEs are solved at each timestep. Each of the J PDEs has79

a constant control qj . At the end of the timestep, the maximum value at each computational node80

is determined, and this value is the initial value for all J PDEs at the next step.81

Convergence of an approximation in the timestep has been analyzed in [27] using purely prob-82

abilistic techniques, which shows that under mild regularity assumptions a convergence order of83

1/6 in the timestep can be proven. In this and other works [26, 28], applications to fully discrete84

schemes are given and their convergence is deduced. These estimates seem somewhat pessimistic,85

in that we typically observe (experimentally) first order convergence.86

Note that this technique has the following advantages:87

• No policy iteration is required.88

• Each of the J PDEs has a constant policy, and hence it is straightforward to guarantee a89

monotone, unconditionally stable discretization.90

• Since the PCPT algorithm reduces the solution of a nonlinear HJB equation to the solution91

of a sequence of linear PDEs (at each timestep), followed by a simple max or min operation,92

it is straightforward to extend existing (linear) PDE software to handle the HJB case.93

• Each of the J PDEs can be advanced in time independently. Hence this algorithm is an ideal94

candidate for efficient parallel implementation.95

• In the case where we seek the solution of a Hamilton-Jacobi-Bellman-Isaacs (HJBI) PDE of96

the form97

Vτ − inf
p∈P

sup
q∈Q

Lq,pV = 0, (1.4)

the discretize and optimize approach may fail due to the fact that policy iteration may not98

converge in this case [37]. However, the PCPT technique can be easily applied to these99

problems.100

In view of the advantages of piecewise policy time stepping, it is natural to consider some101

generalizations of the basic algorithm. Since each of the J independent PDE solves has a different102

control parameter, it is clearly advantageous to use a different mesh for each PDE solution. This103

may involve an interpolation operation between the meshes. If we restrict attention to purely104

monotone schemes, then only linear interpolation can be used.105
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However, in [6], it is noted that the solution of the PDE (1.3) can be approximated by the106

solution of a switching system of PDEs with a small switching cost. There, it is shown that the107

solution of the switching system converges to the solution of (1.3) as the switching cost tends to108

zero. In [6], the switching system was used as a theoretical tool to obtain error estimates.109

Building on the work in [6], the main results of this paper are:110

• We formulate the PCPT algorithm in terms of the equivalent switching system, in contrast111

to [27]. We then show that a non-monotone interpolation operation between the switching112

system meshes is convergent to the viscosity solution of (1.3). The only requirement is that113

the interpolation operator be of positive coefficient type. This permits use of limited high114

order interpolation or monotonicity preserving (but not monotone) schemes.115

• We will include two numerical examples. The first example is an uncertain volatility prob-116

lem [30, 2] with a bang-bang control, where we demonstrate the effectiveness of a higher117

order (not monotone) interpolation scheme. The second example is a continuous time mean-118

variance asset allocation problem [39]. In this case, it is difficult to determine the optimal119

policy at each node using analytic methods, and we follow the usual program of discretiz-120

ing the control and determining the optimal value by exhaustive search. We compare the121

numerical results obtained using PCPT and a standard policy iteration method. Compara-122

ble accuracy is obtained for both techniques, with the PCPT method having a considerably123

smaller computational complexity.124

1.2 Outline125

In order to aid the reader, we provide here an overview of the steps we will follow to carry out our126

analysis. We will write the PCPT algorithm in the unconventional form127

V n+1
j −maxJk=1 V

n
k

∆τ
− LhqjV

n+1
j = 0, (1.5)

where the optimization step is carried out at the beginning of the new timestep, as opposed to128

the conventional form whereby the optimization is performed at the end of the old timestep. Note129

that the scheme is a time-implicit discretization for each fixed control qj , while the optimization is130

carried out explicitly. As discussed above, a decided advantage of this approach is that this scheme131

is unconditionally stable and yet no nonlinear iterations are needed in every timestep.132

In order to carry out our analysis, we perform the following string of approximations:133

HJB equation Vτ − sup
q∈Q

LqV = 0 (1.6)

Control discretization Vτ − max
qj∈QH

LqjV = 0 (1.7)

Switching system min(Vj,τ − LqjVj , Vj −max
k 6=j

(Vk − c)) = 0 (1.8)

Discretization min

(
V n+1
j − V n

j

∆τ
− LhqjV

n+1
j , V n+1

j −max
k 6=j

(Ṽ n+1
k,(j) − c)

)
= 0

(1.9)
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In the HJB equation (1.6), the control parameter q is assumed to take values in a compact set Q,134

and for fixed q, Lq is a second order elliptic operator as per (1.2). The compact set is discretized135

by a finite set QH = {q1, . . . , qJ}, where H is the maximum distance between any element in Q136

and QH . Of course, in the case of a bang-bang control, the admissible set is already discrete.137

The resulting equation (1.7) can then be approximated by the switching system (1.8) as in [6]138

when the cost c > 0 of switching between controls j = 1, . . . , J goes to zero. When c→ 0, every Vj139

converges to the solution of (1.7). The switching cost is included to guarantee that the system (1.8)140

satisfies the no-loop condition [24], and hence a comparison property holds. We then freeze the141

policies over time intervals of length ∆τ , i.e., restrict the allowable policies to those that assume142

one of the qj over such time intervals, and discretize the PDEs in space and time. Here, we use the143

same timestep ∆τ for the, say, backward Euler time discretization of the PDE, but generalizations144

are straightforward. We provide for the possibility that the PDEs for different controls are solved145

on different meshes, and in that case interpolation of the discretized value function Vk for control146

qk onto the j-th mesh is needed. We denote by Ṽk,(j) this interpolant of Vk evaluated on the j-th147

mesh.148

The remainder of this article is organized as follows. We conclude this section by giving standard149

definitions and assumptions on the equation (1.1). Section 2 shows that the control space can be150

approximated by a finite set, which prepares the formulation as a switching system. Section 3151

introduces a discretization based on piecewise constant policy timestepping, while Section 4 contains152

the main result proving convergence of these approximation schemes satisfying a standard set of153

conditions, to the viscosity solution of a switching system. Section 5 constructs numerical examples154

for the mean-variance asset allocation problem and the uncertain volatility option pricing model.155

Section 6 concludes.156

1.3 Preliminaries157

We now give the standard definition of a viscosity solution before making assumptions on F . Given158

a function f : Ω→ R, where Ω ⊂ Rn open, we first define the upper semi-continuous envelope as159

f∗(x) = lim
r→0+

sup
{
f(y)

∣∣ y ∈ B(x, r) ∩ Ω
}
, (1.10)

where B(x, r) = {y ∈ Rn
∣∣ |x − y| < r}. We also have the obvious definition for a lower160

semi-continuous envelope f∗(x).161

Definition 1 (Viscosity Solution). A locally bounded function U : Ω→ R is a viscosity subsolution162

(respectively supersolution) of (1.1) if and only if for all smooth test functions φ ∈ C∞, and for all163

maximum (respectively minimum) points x of U∗ − φ (respectively U∗ − φ), one has164

F∗
(
x, U∗(x), D φ(x), D2 φ(x), U∗(x)

)
≤ 0(

respectively F ∗
(
x, U∗(x), D φ(x), D2 φ(x), U∗(x)

)
≥ 0

)
. (1.11)

A locally bounded function U is a viscosity solution if it is both a viscosity subsolution and a viscosity165

supersolution.166

Remark 1 (Smoothness of test functions). Definition 1 specifies that φ ∈ C∞, whereas the common167

definition uses φ ∈ C2. The equivalence of these two definitions is discussed in [3, 35]. Letting168

φ ∈ C∞ simplifies the consistency analysis.169
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Assumption 1 (Properties of F (·)). We assume that Q is a compact set and that σqσ
T
q , µq, rq, fq170

are bounded on Rd+1 × Q, Lipschitz in x uniformly in q (i.e., there is a Lipschitz constant which171

holds for all q) and continuous in q.172

Remark 2 (Comparison principle). Assumption 1 is the same as the one made in [6]. It guarantees173

(see, e.g., [6, 19]) that a strong comparison principle holds for F , i.e., if V and W are viscosity174

sub- and supersolutions, respectively, of (1.1), with V (·, 0) ≤ W (·, 0), then V ≤ W everywhere. It175

also ensures the well-posedness of the switching system (1.8), see [24] and [6].176

2 Approximation by finite control set177

In this section, we analyze the validity of the first approximation step from (1.6) to (1.7), i.e., that178

the compact control set may be approximated by a finite set. More precisely, for compact Q ⊂ Rm179

(i.e., m ∈ N is the dimension of the parameter space) and Qh ⊂ Q such that180

max
q∈Q

min
q̂∈Qh

|q − q̂| ≤ h, (2.1)

we define a discrete control HJB equation by181

0 = Fh(x, V,DV,D2V ) =

{
Vτ − supq∈Qh LqV, x ∈ Rd × (0, T ],

V (x)− G(x), x ∈ Rd × {0}. (2.2)

The following lemma will be useful.182

Lemma 1 (Properties of F (·)). Under Assumption 1, for any x and any C∞ test function φ183

|F (x, φ(x), Dφ(x), D2φ(x))− Fh(x, φ(x) + ξ,Dφ(x), D2φ(x))| ≤ ωh(x, h) + ωξ(ξ),

where ωh(x, h)→ 0 as h→ 0,

ωξ(ξ)→ 0 as ξ → 0, (2.3)

where ωh(x, h) is locally Lipshitz continuous in x, independent of h.184

Proof. See Appendix A.185

Theorem 1. Given Assumption 1, let V and Vh be the unique viscosity solutions to186

F (x, V,DV,D2V ) = 0, (2.4)

Fh(x, Vh, DVh, D
2Vh) = 0. (2.5)

Then Vh → V uniformly on compact sets as h→ 0.187

Proof. A consequence of Lemma 1 is that188

F ∗h (x, φ(x) + ξ, . . . ) ≤ F ∗(x, φ(x), . . . ) + ωh(x, h) + ωξ(ξ). (2.6)

Define, for all x,189

V h(x) = lim inf
y→x

Vh(y), (2.7)

V (x) = lim inf
h→0
y→x

V h(y). (2.8)
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We claim that V is a viscosity supersolution of equation (2.4). To show this, fix x̂ and choose190

a smooth test function φ such that x̂ is a global minimum of V − φ, and that191

V (x̂) = φ(x̂). (2.9)

Then, there exists a sequence x̂h → x̂, h → 0, V h(x̂h) → V (x̂), such that x̂h is a global192

minimum of V h(x̂h)− φ(x̂h). At each point x̂h, since Vh is a viscosity solution of (2.5),193

0 ≤ F ∗h (x̂h, V h(x̂h), Dφ(x̂h), D2φ(x̂h)). (2.10)

Let V h(x̂h) = φ(x̂h) + ξh, ξh → 0, h→ 0, so that equation (2.10) becomes194

0 ≤ F ∗h (x̂h, φ(x̂h) + ξh, Dφ(x̂h), D2φ(x̂h)). (2.11)

From equations (2.6) and (2.11) we obtain195

0 ≤ F ∗(x̂h, φ(x̂h), Dφ(x̂h), D2φ(x̂h)) + ωh(x, h) + ωξ(ξh), (2.12)

which gives us196

0 ≤ lim sup
h→0
x̂h→x̂

F ∗(x̂h, φ(x̂h), Dφ(x̂h), D2φ(x̂h)) + lim sup
h→0 ; ξh→0

x→x̂

(
ωh(x, h) + ωξ(ξh)

)
≤ F ∗(x̂, φ(x̂), Dφ(x̂), D2φ(x̂))

= F ∗(x̂, V (x̂), Dφ(x̂), D2φ(x̂)), (2.13)

where we use equation (2.9) and Lemma 1.197

Using similar steps, we can show that V defined similar to (2.8) is a viscosity subsolution of198

equation (2.4). Invoking the strong comparison principle, V = V = V . Uniform convergence on199

compact sets follows using the same argument as in Remark 6.4, of [16].200

3 Piecewise constant policy timestepping201

Here, we use the equivalence of (1.7) and (1.8) established in [6] as c → 0 to formulate (1.9)202

precisely. Consider the HJB equation203

Vτ = max
qj∈Q

LqjV,

Q = {q1, q2, . . . , qJ}, (3.1)

where we assume a discrete set of controls Q. We have shown in Section 2 that the optimal value204

under controls chosen from a compact set can be approximated by a control problem with a finite205

set.206

According to [6], we can also approximate equation (3.1) by a switching system. Let Uj , j =207

1, . . . , J , be the solution of a system of HJB equations, with208

min

[
Uj,τ − LqjUj , Uj −

(
max
k 6=j

(Uk − c)
)]

= 0, x ∈ Rd × (0, T ],

Uj − G(x) = 0, x ∈ Rd × {0}. (3.2)
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The constant c > 0 is required in order to add some small transaction cost to switching from j → k.209

This cost term also ensures that only a finite number of switches can occur (otherwise there would210

be an infinite transaction cost; see also Remark 8). It is shown in [6] that Uj → V as c ↓ 0, for all211

j.212

For computational purposes, we define a finite computational domain Ω ⊂ Rd. Let ∂Ω̂ denote213

the portions of ∂Ω where we apply approximate Dirichlet conditions. We use the usual notation214

for representing (3.2). Define215

x = (S, τ) , DU = (Uτ , US) , D2U = USS , (3.3)

and let Bj(x) be the approximate Dirichlet boundary conditions on ∂Ω̂. Then, the localized problem216

is defined as217

0 = Fj
(
x, Uj , D Uj , D

2 Uj , {Uk}k 6=j
)

(3.4)

=


min

[
Uj,τ − LqjUj , Uj −

(
maxk 6=j (Uk − c)

)]
, x ∈ Ω\∂Ω̂× (0, T ],

Uj(x)− G(x), x ∈ Ω× {0},
Uj(x)− Bj(x), x ∈ ∂Ω̂× (0, T ],

for j = 1, . . . , J . Letting pj = DUj , sj = D2 Uj , we can write equation (3.4) as218

Fj (x, Uj , pj , sj , {Uk}k 6=j) = 0. (3.5)

Note that system (3.4) is quasi-monotone (see [23]), since219

Fj (x, Uj , pj , sj , {Uk}k 6=j) ≤ Fj (x, Uj , pj , sj , {Wk}k 6=j) if Uk ≥Wk; k 6= j. (3.6)

We include here the definition of a viscosity solution for systems of PDEs of the form (3.5) as used220

in [23, 11, 24].221

Definition 2 (Viscosity solution of switching system). A locally bounded function U : Ω→ RJ is a222

viscosity subsolution (respectively supersolution) of (3.5) if and only if for all smooth test functions223

φj ∈ C∞, and for all maximum (respectively minimum) points x of U∗j −φj (respectively Uj∗−φj),224

one has225

Fj∗
(
x, U∗j (x), D φj(x), D2 φj(x), {U∗k (x)}k 6=j

)
≤ 0(

respectively F ∗j
(
x, Uj∗(x), D φj(x), D2 φj(x), {Uk∗(x)}k 6=j

)
≥ 0

)
. (3.7)

A locally bounded function U is a viscosity solution if it is both a viscosity subsolution and a viscosity226

supersolution.227

Remark 3. Note that the j-th test function only replaces the derivatives operating on Uj. The228

terms which are a function of Uk, k 6= j, are not affected.229

We discretize (3.4) using the idea of piecewise constant policy timestepping. Define a set of230

nodes Sj,i and timesteps τn, with discretization parameters h and ∆τ , i.e.,231

max
1≤j≤J
S∈Ω

min
i
|S − Sj,i| = h, (3.8)

max
n

(τn+1 − τn) = ∆τ.

8



The distinction between ∆τ and h is useful for the formulation of the algorithm, but somewhat232

arbitrary for the analysis. We will therefore label meshes and approximations by h and assume233

that234

∆τ → 0 as h→ 0.

Define235

xnj,i(h) = (Sj,i, τ
n;h) ∈ Ωj,h, (3.9)

where (Sj,i, τ
n) refer to points on a specific grid j, and the set of grid points on the grid parame-236

terized by h is Ωj,h.237

Then we denote the discrete approximation to Uj(x
n
j,i) on a grid parameterized by h by uj(h,x

n
j,i),238

which is extended to a function uj(h, ·) on Ω × {τn} by interpolation. We will sometimes use the239

shorthand notation240

unj,i = uj(h,x
n
j,i), xnj,i = (Sj,i, τ

n), (3.10)

where the dependence on h is understood implicitly. Note that by parameterizing xnj,i by the control241

index j, we are allowing for different discretization grids for different controls.242

Let Lhqj be the discrete form of the operator Lqj . We discretize equation (3.4) for x ∈ Ω\∂Ω̂×243

(0, T ], using ∆τ = τn+1 − τn constant for simplicity, by piecewise constant policy timestepping244

u
n+ 1

2
j,i = max

[
unj,i,max

k 6=j

(
ũnk,i(j) − c

)]
,

un+1
j,i −∆τLhqju

n+1
j,i = u

n+ 1
2

j,i , j = 1, . . . , J, (3.11)

where245

ũnk,i(j) ≡ uk(h,x
n
j,i) (3.12)

is the value of this interpolant uk(h, ·) of uk(h,x
n
j,i) at the i-th point of grid Ωj,h.246

Discretization (3.11) applies the “max” constraint at the beginning of a new timestep. Conven-247

tionally, one thinks of piecewise constant policy timestepping as applying the constraint at the end248

of a timestep.249

Clearly, these would be algebraically the same thing if u
n+ 1

2
j,i instead of unj,i was considered as250

approximation to Uj(x
n
j,i). So at the final timestep, these two possible approximations only differ251

by a final max operation. However, it will be convenient to apply the constraint as in equation252

(3.11). We can then rearrange equation (3.11) to obtain an equation in the form253

Gj

(
xn+1
i , h, un+1

j,i , {ub+1
j,a } a6=i

or b6=n
, {ũnk,i}k 6=j

)
= min

[
un+1
j,i − unj,i

∆τ
− Lhqju

n+1
j,i , un+1

j,i −max
k 6=j

(
ũnk,i(j) − c

)
−∆τLhqju

n+1
j,i

]
= 0, x ∈ Ω\∂Ω̂× (0, T ]. (3.13)

In the event that Lq is strictly elliptic, then we can interpret the effect of switching at the beginning254

of the timestep as adding a vanishing viscosity term to the switching part of the equation. However,255

note that we do not in general require that Lq be strictly elliptic.256
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We omit the trivial discretizations of Fj(·) in the remaining (boundary) portions of the compu-257

tational domain. Note that the notation258

{ub+1
j,a } a6=i

or b 6=n
(3.14)

refers to the set of discrete solution values at nodes neighbouring (in time and space) node (i, n+1).259

4 Convergence of approximations to the switching system260

Here, we prove convergence of the piecewise constant policy approximation (1.9) to the solution of261

the switching system (1.8). We start by summarizing the main conditions we need. We will verify262

that these conditions are satisfied for all the schemes we use in our numerical examples.263

Condition 1 (Positive interpolation). We require that the interpolant ũnk,i(j) of the k-th grid onto264

the i-th point of the j-th grid can be written as265

ũnk,i(j) =
∑

α∈Nk(j,i,n)

ωnk,i(j),αu
n
k,α =

∑
α∈Nk(j,i,n)

ωnk,i(j),αuk(h,x
n
k,α), (4.1)

where266 ∑
α∈Nk(j,i,n)

ωnk,i(j),α = 1, ωnk,i(j),α ≥ 0, (4.2)

and Nk(j, i, n) are the neighbours to the point xnj,i on grid Ωk,h.267

Remark 4 (Monotone versus limited interpolation). Condition (4.1), (4.2) is clearly satisfied by268

linear interpolation on simplices and multi-linear interpolation on hyper-rectangles, in which case269

the weights ωnk,i(j),α are only functions of the coordinates xnj,i and xnk,α. This interpolation is then270

also a monotone operation and results in an overall monotone scheme, as defined below in Condition271

2.272

We can, however, relax the requirement of monotonicity of the interpolation step by allowing273

weights ωnk,i(j),α = ωnk,i(j),α(unk), i.e., possibly nonlinear functions of the interpolated nodal values.274

It is easy to see that as long as275

min
α∈Nk(j,i,n)

unk,α ≤ ũnk,i(j) ≤ max
α∈Nk(j,i,n)

unk,α, (4.3)

one can then always find weights such that (4.1), (4.2) hold. One can enforce (4.3) by a simple276

limiting step applied to any, potentially higher order, interpolant.277

Generally, the decomposition (4.1) will not be the way by which a particular interpolation is278

originally defined or constructed in practice. The point is that whenever (4.3) holds, weights of this279

form exist and this is all that is needed for the theoretical analysis. An example are one-dimensional280

monotonicity preserving interpolants such as those in [21]. As discussed in [18], the interpolation281

in [21] is constructed to be monotonicity preserving (i.e., the interpolant is increasing over intervals282

where the interpolated values are increasing), and therefore satisfies condition (4.2).283

10



Condition 2 (Weak Monotonicity). We require that discretization (3.13) be monotone with respect284

to ub+1
j,a , ũ

n
k,i, i.e., if285

wnj,i ≥ unj,i ∀(i, j, n),

w̃nk,i(j) ≥ ũnk,i(j) ∀(i, k, n), (4.4)

then286

Gj

(
xn+1
i , h, un+1

j,i , {wb+1
j,a } a6=i

or b 6=n
, {w̃nk,i(j)}k 6=j

)
≤ Gj

(
xn+1
i , h, un+1

j,i , {ub+1
j,a } a6=i

or b6=n
, {ũnk,i(j)}k 6=j

)
.(4.5)

Remark 5. Note that the requirement that the scheme be monotone in ũnk,i (the interpolated solu-287

tion) is a weaker condition than requiring monotonicity in unk,α. In particular, let us re-iterate that288

we are not requiring interpolation to be a monotone operation, as long as Condition 1 is satisfied.289

Condition 3 (l∞ stability). We require that the solution of equation (3.13), uj(h,x
n+1
j,i ), exists290

and is bounded independent of h.291

Remark 6. The bounds (4.3) implied by Condition 1 ensure that the interpolation step does not292

increase the l∞ norm of the solution.293

Condition 4 (Consistency). We require that we have local consistency, in the sense that, for any294

smooth function φj, and any functions ρk (not necessarily smooth)295 ∣∣∣∣Gj(xn+1
j,i , h, φn+1

j,i + ξ, {φb+1
j,a } a6=i

or b 6=n
+ ξ, {ρ̃k(xn`j,i)}k 6=j

)
−Fj

(
xn+1
j,i , φj(x

n+1
j,i ), D φj(x

n+1
j,i ), D2 φj(x

n+1
j,i ), {ρ̃k(xn`j,i)}k 6=j

)∣∣∣∣ ≤ ω1(h) + ω2(ξ),

ω1(h)→ 0 as h→ 0, ω2(ξ)→ 0 as ξ → 0. (4.6)

Theorem 2. Under Assumption 1, the solution of any scheme of the form (3.13) satisfying Con-296

ditions 1–4 converges to the viscosity solution of (3.4), uniformly on bounded domains.297

Proof. We basically follow along the lines in [7], with the generalizations in [11] for weakly coupled298

systems. We include the details here in order to show that we only require Condition 1 for the299

interpolation operator, and this permits use of certain classes of high order interpolation.300

Define the upper semi-continuous function u by301

uj(x̂) = lim sup
h→0

xn+1
j,i →x̂

uj(h,x
n+1
j,i ) , (4.7)

where xn+1
j,i ∈ Ωj,h. Similarly, we define the lower semi-continuous function u by302

uj(x̂) = lim inf
h→0

xn+1
j,i →x̂

uj(h,x
n+1
i ) . (4.8)

Note that the above definitions imply that u∗j = uj and uj∗ = uj .303
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Let x̂ be fixed and φj be a smooth test function such that304

φj(x̂) = uj(x̂),

φj(x) > uj(x), x 6= x̂. (4.9)

This of course means that (uj − φj) has a global maximum at x = x̂. Consider a sequence of grids305

with discretization parameter h`, such that h` → 0 for l→∞. We use the notation306

xn`+1
j,il

= (Sj,i` , τ
n`+1;h`) ∈ Ωj,h` (4.10)

to refer to the grid point (i`, n` + 1) on the grid parameterized by h`, associated with discrete307

control qj . Let xn`+1
j,i`

be the point on grid Ωj,h` such that308 (
uj(h`,x

n`+1
j,i`

)− φj(xn`+1
j,i`

)

)
(4.11)

has a global maximum, where φj is a test function satisfying equation (4.9). Note that in general,309

for any finite h`, xn`+1
j,i`

6= x̂.310

Following the usual arguments from [7], and more particularly in [11], for a sequence of grids311

Ωj,h` parameterized by hl, there exists a set of grid nodes (i`, n` + 1), such that (4.11) is a global312

maximum and313

xn`+1
j,i`

→ x̂, xn`j,i` → x̂, uj(h`,x
n`+1
j,i`

)→ uj(x̂), for `→∞,

where xn`+1
j,i`

,xn`j,i` ∈ Ωj,h` and, for k 6= j, noting equation (4.2) for the interpolant ũk(x
n`
k,i`(j)

), we314

have315

ũn`k,i`(j) ≡ ũk(h`,x
n`
j,i`

) =
∑

α`∈Nk(j,i`,n`)

ωn`k,i`(j),α`u
n`
k,α`

=
∑

α`∈Nk(·)

ωn`k,i`,α`uk(x
n`
k,α`

), k 6= j ,

∑
α`∈Nk(·)

ωn`k,i`,α`x
n`
k,α`
→ x̂, `→∞ ,

lim sup
`→∞

ũk,i`(j) ≤ uk(x̂) , (4.12)

where xn`k,α` ∈ Ωk,h` and x̂ = (Ŝ, τ̂). Let316

un`+1
j,i`

≡ uj(h`,x
n`+1
j,i`

) ,

φn`+1
j,i`

≡ φ(xn`+1
j,i`

) . (4.13)

Note that for any finite mesh size h` the global maximum in equation (4.11) is not necessarily zero,317

hence we define ξl by318

un`+1
j,i`

= φn`+1
j,i`

+ ξl ,

such that319

ξ` → 0 for `→∞ . (4.14)
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Since (4.11) is a global maximum at xn`+1
i`

, then320

{ub`+1
j,a`
} a` 6=i`

or b` 6=n`
≤ {φb`+1

j,a`
} a` 6=i`

or b` 6=n`
+ ξ` . (4.15)

Substituting equations (4.14) and (4.15) into equation (3.13), and using the monotonicity prop-321

erty of the discretization (4.4) gives322

0 ≥ Gj
(

xn`+1
j,i`

, h`, φ
n`+1
j,i`

+ ξ`, {φb`+1
j,a`
} a6=i

or b 6=n
+ ξ`, {ũn`k,i`}k 6=j

)
. (4.16)

Note that we do not replace {ũn`k,i`}k 6=j by the test function in equation (4.16). This is because the323

test function is only defined such that φj ≥ uj , and there is no such relationship with uk, k 6= j.324

Let325

ρ̃n`k,i` = ρ̃k(x
n`
j,i`

) = max(ũk(x
n`
j,i`

), uk(x̂)) . (4.17)

From equation (4.12), we have that326

lim
`→∞
{ρ̃k(xn`j,i`)}k 6=j = uk(x̂) , (4.18)

and that327

ρ̃n`k,i` ≥ ũ
n`
k,i`

. (4.19)

Substituting equation (4.17) into equation (4.16), and using the monotonicity property of the328

discretization (4.4) gives329

0 ≥ Gj
(

xn`+1
j,i`

, h`, φ
n`+1
j,i`

+ ξ`, {φb`+1
j,a`
} a6=i

or b 6=n
+ ξ`, {ρ̃n`k,i`}k 6=j

)
. (4.20)

Equations (4.20) and (4.6) then imply that330

0 ≥ Fj

(
xn`+1
j,i`

, φj(x
n`+1
j,i`

), D φj(x
n`+1
j,i`

), D2 φj(x
n`+1
j,i`

), {ρ̃k(xn`j,i)}k 6=j
)
− ω1(h`)− ω2(ξ`) .

Recalling equation (4.18), we have that331

0 ≥ lim inf
`→∞

Fj

(
xn`+1
i`

, φj(x
n`+1
i`

), D φj(x
n`+1
i`

), D2 φj(x
n`+1
i`

), {ρ̃k(xn`j,i`)}k 6=j
)

− lim inf
`→∞

ω1(h`)− lim inf
`→∞

ω2(ξ`)

≥ Fj∗

(
x̂, φj(x̂), D φj(x̂), D2 φj(x̂), {uk(x̂)}k 6=j

)
= Fj∗

(
x̂, uj(x̂), D φj(x̂), D2 φj(x̂), {uk(x̂)}k 6=j

)
. (4.21)

Hence uj is a subsolution of equation (3.4). A similar argument shows that uj is a supersolution of332

equation (3.4). Since a strong comparison principle holds for the switching system under Assump-333

tion 1 (see Proposition 2.1 in [6] and Remark 2), we then have uj = uj is the unique continuous334

viscosity solution of equation (3.4).335

We have thus shown the result.336
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Remark 7. Note that we have {ũnk,i(j)} appearing in equation (3.13), which would appear to cause337

a problem in terms of consistency, since we cannot assume that ũnk,i(j) = ũn+1
k,i(j) + O(h) since unk,α338

are not necessarily smooth. The key fact here is that since equation (4.18) holds, we do not need339

smoothness.340

Remark 8 (Interpolation and switching cost). We include here a brief example of the role of the341

switching cost c in (3.2). Assume we solve the degenerate equation ut = 0 and write it as the trivial342

HJB equation supθ∈{0,1} u
θ
t = 0. We represent u0 and u1 on two different meshes with nodes at343

xθi = (i + 0.5 θ)h, i.e., shifted by half a mesh size. The fully implicit discretization over a single344

timestep is uθ,n+1 = uθ,n for both controls. Consider now the situation of convex (u0
i ), such that345

linear interpolation increases the solution. Using piecewise linear interpolation with c = 0 at the346

end of the timestep,347

u1,n+1
i = (u0,n+1

i + u0,n+1
i+1 )/2,

and similarly for u0,n+1
i . Repeating this for the next timestep, the piecewise constant policy dis-348

cretization is equivalent to349

uθ,n+2
i = 1

4 u
θ,n
i−1 + 1

2 u
θ,n
i + 1

4 u
θ,n
i+1 ⇔

uθ,n+2
i − uθ,ni

(h/2)2
=
uθ,ni−1 − 2uθ,ni + uθ,ni+1

h2
.

If we pick ∆τ = h2/8, this discretization is consistent with the standard heat equation ut = uxx350

instead of ut = 0.351

With the cost c > 0 switched on, for sufficiently small h, we will have352

u1,n
i > (u0,n+1

i + u0,n+1
i+1 )/2− c,

such that u1,n+1 = u1,n and, by induction, the equation ut = 0 is solved exactly.353

For an overall convergent method, one has to pick h and ∆t as a function of c, depending on354

the interpolation method and smoothness of the solution, and then let c → 0. We discuss this in355

more detail in Section 5 for concrete examples.356

Remark 9 (Reduction to standard piecewise constant policy method [27, 6]). Discretization (3.11),357

with c = 0, can be viewed as a form of the usual piecewise constant policy method [27, 6]. As a358

result, if linear interpolation is used to transfer information between grids, then (3.11) is a monotone359

discretization of HJB equation (3.1), which is easily shown to satisfy the standard requirements for360

convergence to the viscosity solution. If we use standard finite difference schemes, we would expect361

the spatial error (for smooth test functions) to be of size O(h) with timestepping error of size O(∆τ).362

In this case (c = 0), if the solution is smooth, we would expect the total discretization error to be363

of size O(h) + O(∆τ) + O(h2/∆τ), where the last term arises from a linear interpolation error364

accumulated O(1/∆τ) times. Note that this term will be absent in the case c > 0, since the finite365

switching cost will prevent an O(1/∆τ) accumulation of interpolation error.366

5 Numerical examples367

In this section, we study the convergence of discretization schemes based on piecewise constant368

policy timestepping in numerical experiments. We present two examples, the uncertain volatility369

model from derivative pricing, and a mean-variance asset allocation problem. In both examples,370

we investigate the convergence with respect to the timestep and mesh size.371
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r σmin σmax T K K1 K2 S0

0.05 0.3 0.5 1 100 80 120 100

Table 5.1: Model parameters used in numerical experiments for uncertain volatility model.

5.1 The uncertain volatility model372

We study first the uncertain volatility option pricing model [30]. In this example, we also examine373

the role of the switching cost and the impact of different interpolation methods.374

The super-replication value of a European-style derivative is given by the HJB equation375

∂V

∂τ
− sup
σ∈Σ

LσV = 0, (5.1)

where376

LσV = 1
2σ

2S2∂
2V

∂S2
+ rS

∂V

∂S
− rV (5.2)

for S ∈ (0,∞), τ ∈ (0, T ], with τ = T − t and377

Σ = [σmin, σmax]. (5.3)

In addition to the PDE, the value function satisfies a terminal condition. For the numerical tests,378

we choose a butterfly payoff function P such that379

V (S, 0) = P (S) = max(S −K1, 0)− 2 max(S −K, 0) + max(S −K2, 0)

and we localize the domain to [Smin, Smax] with380

V (Smax, τ) = 0, (S, τ) ∈ {Smax} × (0, T ] ,

Vτ = −rV, (S, τ) ∈ {Smin} × (0, T ],

and parameters as in Table 5.1.381

It is well understood [30] that the optimal control is always attained at one of the interval382

boundaries (‘bang-bang’), depending on the sign of the second derivative of the value function V .383

The payoff function was chosen such that V has mixed convexity and therefore the optimal control384

differs between different regions of the state space and changes in time.385

We use logarithmic coordinates X = logS, so instead of (5.2) we approximate386

LσV = 1
2σ

2 ∂
2V

∂X2
+
(
r − σ2/2

) ∂V
∂X
− rV, (5.4)

and now the coefficients are bounded and X ∈ [logSmin, logSmax], so Assumption 1 is satisfied.387

Here, it is straightforward to construct “positive coefficient” schemes for the linear PDE arising388

when the control set is a singleton. A well-established route allows us to construct monotone, con-389

sistent and `∞ stable schemes for the fully non-linear problem from positive coefficient discretization390

operators Lhq using a direct control method of the “discretize, then optimize” type, see [20],391

min
j∈{1,2}

(
V n+1 − V n

∆τ
− LhqjV

n+1

)
= 0, (5.5)
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where q1 = σmin and q2 = σmax.392

The resulting non-linear finite dimensional system of equations can be solved by policy iteration393

(Howard’s algorithm, see [9]). In particular, we will use standard central finite differences in space394

and an implicit Euler discretization in time. For small enough h, this scheme is monotone, `∞395

stable and consistent in the viscosity sense.396

We compare the direct control method to several variants of piecewise constant policy timestep-397

ping on the basis of these discretizations, as described in Section 3, specifically equation (3.11).398

Here, only two control values have to be considered and the switching system is two-dimensional.399

In the case of no interpolation, the scheme simplifies to400

V n+1
j −maxk∈{1,2} (V n

k − ck,j)
∆t

= LhqjV
n+1
j , j = 1, 2,

ck,j =

{
c, k 6= j,

0, k = j.
(5.6)

We again discretize Lqj using a positive coefficient discretization, hence it is straightforward to401

verify that Assumption 1 and Conditions 1–4 hold (on the localized domain S ∈ [Smin, Smax]).402

A solution extrapolated from the finest meshes was computed as an approximation to the exact403

solution and used to estimate the errors. The numerical value of this solution is V (S0, 0) = 1.67012404

(see also [33]). From this, we approximate the error as405

e(h,∆τ) = |V (S0, 0)− Ũ1(h,∆τ, c;S0, 0)|, (5.7)

where V is the exact solution and Ũ1(h,∆τ, c; ·, ·) the numerical approximation to U1, the first406

component of the switching system, for mesh size h, timestep ∆τ , and switching cost c.407

Dependence on timestep ∆τ and switching cost c408

We first analyze how the switching cost affects convergence of the approximations. In Fig. 5.1, we409

compare the following two cases.410

1. Policy timestepping, fixed mesh: We use (5.6) on a single uniform mesh on [log(K) −411

4 · σ̄, log(K) + 4 · σ̄], i.e., encompassing four standard deviations either side, where σ̄ is the412

average of the two extreme volatilities.413

For fixed switching cost, the error first decreases linearly as the timestep decreases, but414

eventually converges to a non-zero value. This convergence is monotone. Moreover, for fixed415

(sufficiently small) h, the asymptotic error for ∆τ → 0 is decreasing with c.416

2. Policy timestepping, linear interpolation: We also study the use of separate meshes for417

the two components of the switching system, V1 and V2. In particular, we use uniform meshes418

on the intervals [log(K)− 4 ·σmin, log(K) + 4 ·σmin] and [log(K)− 4 ·σmax, log(K) + 4 ·σmax],419

so that for the chosen parameters mesh points on the two meshes do not coincide. Then,420

interpolation is necessary to represent these solutions on both meshes and to evaluate the421

explicit terms (those at time-level n + 1) in (5.6). In the case of linear interpolation, the422

overall scheme is monotone, and trivially satisfies Condition 1. As a result of the switching423

cost, the cumulative effect of linear interpolation in each timestep is controlled even for small424

∆τ (see Remark 9).425
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Figure 5.1: The uncertain volatility test case with parameters as in Table 5.1. Shown is
for different methods the log2 error, where em = e((∆τ)m, h, c) from (5.7) is the error for
timestep (∆τ)m = 1/8 · 2−m ∈ {1/8, . . . , 1/32768} and in each plot, from top to bottom,
c = 1/20, 1/40, 1/80, 1/160, 1/320, 1/640. The mesh size is fixed at h = 1/1024. The dotted line has
slope −1. Left: Piecewise constant policy timestepping on a single mesh; right: linear interpolation
between individual meshes for each control.

Next, we analyze the convergence jointly in h and ∆τ for fixed c, as well as the convergence426

with respect to c for the case with interpolation. The results are given in Table 5.2. For fixed427

positive switching cost c > 0, we compute approximations on a sequence of time and space meshes428

with Nk = 2Nk−1 and Mk = 2Mk−1. The asymptotic ratio of about two is consistent with an error429

of O(h) +O(∆τ).430

We now study the difference between the solution of the switching system for fixed cost c431

and the solution of the HJB equation (5.1). Considering the boldface values in the table as good432

approximations for this difference, we observe convergence as c → 0 which is roughly consistent433

with order 3/4. The theoretically proven order of 1/3 from Theorem 2.3 in [6] does not seem sharp434

for these data.435

The approximation error in ∆t and h does not appear to be affected by c as long as c > 0,436

which is seen by comparison of the lines ‘(c)’ in Table 5.2 for c = 1/10 to c = 1/640, for small437

enough mesh parameters (last three columns). In computations, it would therefore seem prudent438

to pick ∆t = O(h) and c = O(h4/3) i.e., proportional errors, even though faster, but more erratic439

convergence is obtained setting c = 0 uniformly.440

Dependence on timestep ∆τ and mesh size h441

In Fig. 5.2, we show the convergence in both the timestep and mesh size for two different costs,442

c = 0.01 and c = 0.16. Compare this to the case c = 0 in Fig. 5.3 (middle row, left). We can443

make a number of observations. For large switching cost (right plot), the difference between the444

switching system and the HJB equation is large and dominates the discretization error. For fixed c445

and h, there appears to be convergence as ∆τ → 0, and if we also let h→ 0 the solutions converge446

to the solution of the switching system with fixed c. For comparable values for h and ∆τ , there447
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Nk 32 64 128 256 512 1024 2048 4096
Mk 512 1024 2048 4096 8192 16384 32768 65536

c
1/10 (a) 2.0692 1.9724 1.9660 1.9532 1.9491 1.9478 1.9474 1.9472

(b) 0.3991 0.3023 0.2958 0.2831 0.2789 0.2777 0.2773 0.2771
(c) -0.0968 -0.0065 -0.0127 -0.0042 -0.0012 -0.0004 -0.0002
(d) 14.9669 0.5079 3.0621 3.4257 2.8297 2.3076

1/40 (a) 1.6126 1.5441 1.7406 1.7663 1.7623 1.7612 1.7608 1.7606
(b) -0.0575 -0.1260 0.0705 0.0961 0.0922 0.0910 0.0906 0.0905
(c) -0.0685 0.1965 0.0256 -0.0040 -0.0011 -0.0004 -0.0002
(d) -0.3486 7.6692 -6.4629 3.5076 2.7965 2.3037

1/160 (a) 1.1989 1.2205 1.5510 1.7019 1.7033 1.7022 1.7018 1.7016
(b) -0.4712 -0.4496 -0.1191 0.0318 0.0331 0.0320 0.0317 0.0315
(c) 0.0216 0.3305 0.1509 0.0013 -0.0011 -0.0004 -0.0002
(d) 0.0653 2.1902 112.7836 -1.2152 2.7969 2.2994

1/640 (a) 0.9256 0.9897 1.3752 1.6448 1.6833 1.6822 1.6818 1.6816
(b) -0.7446 -0.6804 -0.2949 -0.0254 0.0132 0.0121 0.0117 0.0115
(c) 0.0641 0.3855 0.2696 0.0385 -0.0011 -0.0004 -0.0002
(d) 0.1664 1.4301 6.9932 -35.1108 2.7835 2.3009

0 (a) 0.8271 0.7221 1.0227 1.4109 1.6654 1.6702 1.6703 1.6702
(b) -0.8430 -0.9480 -0.6474 -0.2592 -0.0047 0.0001 0.0002 0.0001
(c) -0.1050 0.3005 0.3882 0.2545 0.0048 0.0001 -0.0001
(d) -0.3494 0.7742 1.5252 53.3568 39.0446 -1.6580

Table 5.2: The uncertain volatility test case with parameters as in Table 5.1; piecewise constant
policy timestepping with linear interpolation between individual meshes for each control; convergence
with respect to mesh parameters and switching cost. Shown are: (a) the numerical solution Vk =

Ṽ (Nk,Mk, c;S0, 0); (b) the difference to the exact solution Vk − V (S0, 0); (c) the increments Vk −
Vk−1; (d) the ratios of increments (Vk − Vk−1)/(Vk−1 − Vk−2).
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Figure 5.2: The uncertain volatility test case with parameters as in Table 5.1. Piecewise
constant policy timestepping with linear interpolation between individual meshes for each con-
trol. Shown is the log2 error, where em = e((∆τ)m, h, c) from (5.7) is the error for timestep
(∆τ)m = 1/8 · 2−m ∈ {1/8, . . . , 1/524288} and in each plot, from top to bottom, h =
1/4, 1/16, 1/64, 1/256, 1/1024, 1/4096. The cost size is fixed at c = 0.01 (left) and c = 0.16 (right).
The dotted line has slope −1. The downward spikes are a result of error cancellation for a particular
combination of h, ∆τ and c.

appears to be a cancellation of leading order errors in h and ∆τ with opposite signs, which appears448

as downward spikes in the left and middle plot.449

In this particular case of linear interpolation, since the overall scheme is monotone, convergence450

to the viscosity solution of (5.1) is ensured if c = 0 as long as the discretization is consistent. Recall451

from Remark 9, that (for smooth solutions) the discretization error is of the form O(∆τ) + O(h2)452

+ O(h2/∆τ), with the third term being the cumulative effect of linear interpolation over O(1/∆τ)453

timesteps. Hence we can ensure consistency by requiring that ∆τ = O(h).454

We now analyze in more detail the convergence in ∆τ and h for the degenerate case with c = 0.455

The computational results are shown in Fig. 5.3 and are discussed in the following list.456

1. Policy timestepping, fixed mesh: We use (5.6) on a single uniform mesh on [log(K) −457

4 · σ̄, log(K) + 4 · σ̄], i.e., encompassing four standard deviations either side, where σ̄ is the458

average of the two extreme volatilities. For fixed mesh size, the error approaches a constant459

level for decreasing time-step, but for simultaneously diminishing mesh size the observed time460

discretization error is clearly of first order in the timestep.461

2. Direct control: Here, the optimal control is implicitly found with the solution as described462

above – see, in particular, (5.5) – and therefore we can disentangle the Euler discretization463

error from the effect of piecewise constant control. Comparing the envelope to the curves,464

parallel to the dotted line with slope minus one, shows first order convergence as in the465

previous case, but with a lower intercept which indicates that the time discretization error466

is about a factor 4 smaller. Although the number of policy iterations per time-step was467

consistently small (usually 2–4), the computational time here was dramatically larger (due468

to the need to generate new matrices in each iteration) and therefore solutions could not be469
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computed for the same number of timesteps as for the other cases.470

3. Policy timestepping, linear interpolation: Again, first order convergence in the timestep471

is observed, however, the leading error terms are, from Remark 9, of the form O(h)+O(∆τ)+472

O(h2/∆τ). As a result, convergence is ensured only if h goes to zero faster than
√
τ , and473

for h ∼ ∆τ first order convergence is expected. Because of the maximum norm stability and474

linear interpolation, the error does not explode even as ∆τ → 0 for fixed h. In fact, the475

solution goes to zero here as the interpolation introduces increasing artificial diffusion (see476

also Remark 8) and the solution is absorbed at the boundaries.477

4. Policy timestepping, linear interpolation, reference mesh: Although not an issue478

for J = 2 control parameters, if the dimension of the switching system is J , the number of479

interpolations from each mesh onto all other meshes is an O(J2) operation. We can avoid480

this using a single ‘reference mesh’ to keep track of the solution. So in addition to the two481

meshes associated with V1 and V2 as above under item 3., we introduce a reference mesh,482

uniform on [log(K)− 4 · σ̄, log(K) + 4 · σ̄], and Ṽk,i is constructed by linear interpolation from483

Vk onto the reference mesh and then onto the i-th mesh point of the j-th mesh. With now484

two interpolations for each solution every timestep, convergence is still of first order but with485

a significantly higher factor than with direct interpolation between meshes. The number of486

interpolations needed for a J-dimensional switching system is now O(J).487

5. Policy timestepping, cubic interpolation: Finally, to reduce the accumulated interpola-488

tion error, we use the possibility of limited higher order interpolation for the mesh transfer489

afforded to us by Condition 1, first without the use of a reference mesh. In particular, we use490

monotone piecewise cubic Hermite interpolation as in [21]. Note that the interpolation [21] is491

monotonicity preserving but not monotone in the viscosity sense [7]. However, Condition 1492

is satisfied. Note that we use c = 0 in this test case, which, strictly speaking, does not ensure493

convergence to the viscosity solution. However, it is clear from Figure 5.1 that the limiting494

case of c→ 0 does in fact converge to the viscosity solution, hence it is interesting to include495

the case c ≡ 0.496

The approximation order of the interpolation method in [21] is guaranteed to be cubic only497

if the data are in fact monotone, and this is not the case for our initial data. Nonetheless,498

the error is significantly reduced compared to the linear interpolation case.499

6. Policy timestepping, cubic interpolation, reference mesh: The results with cubic500

interpolation onto a reference mesh are not as accurate as for direct cubic interpolation501

between the computational meshes, and have a similar accuracy to the results for linear502

interpolation without reference mesh.503

5.2 Mean-variance asset allocation504

As a second example we study the mean-variance asset allocation problem as discussed in [39],505

following the embedding technique introduced in [29, 41]. In this example, we use the same grids506

for each constant policy mesh, and focus on the effects of discretization of the control. This example507

demonstrates that piecewise constant policy timestepping does not introduce any significant extra508

error compared to first order Euler timestepping with either known optimal control, or a numerical509
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Figure 5.3: The uncertain volatility test case with parameters as in Table 5.1. Shown is
for different methods the log2 error, where em = e((∆τ)m, h) from (5.7) is the error for
timestep (∆τ)m = 1/8 · 2−m ∈ {1/8, . . . , 1/524288} and in each plot, from top to bottom,
h = 1/4, 1/16, 1/64, 1/256, 1/1024, 1/4096. The dotted line has slope −1. The plots refer to, from
top left lexicographically: the piecewise constant time-stepping method on a fixed mesh; the direct
control method; the piecewise constant time-stepping method with: linear interpolation; linear in-
terpolation onto a reference mesh; cubic interpolation; cubic interpolation onto a reference mesh.
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optimal control obtained implicitly from the finite difference scheme. We will also see that even510

a fairly coarse discretization of the control admissible set yields good results. We have seen this511

property of discretized controls in many examples.512

The method determines the pre-commitment mean variance optimal strategy [8]. Note that it513

is possible to develop a numerical method for solution of the time-consistent version of this problem514

[40]. However, since the time consistent problem can be viewed as a constrained solution of the pre-515

commitment problem, the time consistent solution is sub-optimal compared to the pre-commitment516

solution. Specifically, we consider here the sub-problem given by the equation517

∂V

∂τ
− inf
p∈P
LpV = 0, (5.8)

V (W, 0) =
(
W − γ

2

)2
, (5.9)

on (−∞,∞), and (0,∞), with518

LpV = 1
2σ

2p2W 2 ∂
2V

∂W 2
+ (π +W (r + pσξ))

∂V

∂W
(5.10)

and either p ∈ (−∞,∞) or p ∈ [0, pmax]. Observe that (5.8) does not satisfy Assumption 1 since p519

can be unbounded. We will re-parameterize the control variable to avoid this problem.520

By solving equation (5.8–5.9) for various values of the parameter γ, we can trace out the efficient521

frontier in the expected value, variance plane [39].522

We use the standard finite difference discretization and make “maximum” use of central differ-523

ences [38] whenever a positive coefficient scheme is achieved and use upwind differences only where524

necessary for monotonicity.525

The PDE (5.8–5.9) is specified on an infinite domain. For numerical purposes, we approximate526

this by means of a localized problem, with approximate boundary conditions at finite values of |W |.527

We use an asymptotic approximation of V for large |W |. In the cases we consider, an asymptotic528

value for the optimal control is more directly available than for the value function. Therefore, the529

following solution under constant control will be applied as approximate boundary condition. More530

precisely, the solution to the PDE531

∂V

∂τ
− 1

2a
2W 2 ∂

2V

∂W 2
+ (π + bW )

∂V

∂W
= 0 (5.11)

with terminal condition (5.9) is given by532

V (W, τ) = α(τ)W 2 + β(τ)W + δ(τ), (5.12)

where τ = T − t and533

α(τ) = exp((a2 + 2b)τ),

β(τ) = −(γ + c) exp(bτ) + c exp((a2 + 2b)τ),

δ(τ) = −π(γ + c)

b
(exp(bτ)− 1) +

πc

a2 + 2b

(
exp((a2 + 2b)τ)− 1

)
+
γ2

4
, where

c = 2π/(a2 + b).
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r σ ξ π W0 T γ λ

0.03 0.15 0.33 0.1 1 20 14.47 1.762

Table 5.3: Model parameters used in numerical experiments for mean-variance problem.

In comparison to [39], who only derive the highest-order term, this gives an asymptotically more534

accurate approximation and allows us to use substantially smaller domains for the computation.535

Following [39], we use the parameters in Table 5.3 throughout.536

We study two different cases for the permissible sets for state-variable and controls, one where537

W,p ∈ R, and one where W ≥ 0, p ∈ [0, pmax].538

Bankruptcy allowed, unbounded control539

If bankruptcy (W < 0) is allowed, the PDE (5.8–5.9) holds on (−∞,∞). In this case, a closed-form540

solution is known from [22], where the optimal policy is given by541

p?(W, t) = − ξ

σW

[
W −

(
γe−r(T−t)

2
− π

r
(1− e−r(T−t))

)]
. (5.13)

Moreover, under this optimal policy, we find from the formulae in [22],542

V ar[WT ] =
e−ξ

2T

1− e−ξ2T

[
E[WT ]−

(
W0e

rT +
π(erT − 1)

r

)]2

,

E[WT ] =

(
W0 +

π

r

)
e−(ξ2−r)T +

γ(1− e−ξ2T )

2
− π

r
e−ξ

2T ,

such that (
√
V ar[WT ], E[WT ]) = (0.794, 6.784), and E[(WT − γ/2)2] = V ar[WT ] + E[WT ]2 −543

γE[WT ] + γ2/4 = 0.8338 for the parameters in Table 5.3.544

As the optimal policy in the form (5.13) is unbounded, we perform the control discretization in545

a different control variable. Noting that p∗W is bounded as W → 0, it seems natural to consider546

pW as control variable in this area; however, p∗W ∼ −ξ/σW as |W | → ∞. This leads us to547

consider548

q =
pW

max(1, ω|W |)
(5.14)

as control variable for some ω > 0, and549

L̃qV = 1
2σ

2q2 max(1, ω2W 2)
∂2V

∂W 2
+ (π +Wr + qmax(1, ω|W |)σξ) ∂V

∂W
. (5.15)

The optimal control q∗(W, t) will be bounded on a localized domain, and we fix an interval550

Q = [qmin, qmax] in which we search for the optimal control by a crude approximation. In this551

whole process, a precise knowledge of the exact optimal control is not necessary, as we only use the552

rough asymptotic shape. For the computations below, we pick ω = 5 and Q = [−2.5, 3.5]. Since553

we solve the PDE on a localized domain (|W | bounded), and the control is now bounded as well,554

the localized version of equations (5.8–5.9) now satisfies Assumption 1.555
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Figure 5.4: The mean-variance test case with parameters as in Table 5.3. Left: The numerical
approximation to V (W, 0) for piecewise constant policies for M = 80, N = 80 and 20 policy
steps. The dashed line is the asymptotic approximation for |W | → ∞. Right: The corresponding
approximation to the optimal policy q(W, 0), and the analytical optimal policy (5.13). The horizontal
lines are at the asymptotic optimal policies for |W | → ∞.

We note that this is an example where the optimal control is an unbounded function of the556

state variable, but by a suitable reformulation the piecewise constant policy timestepping method557

can still be applied, with the policy chosen from a bounded set.558

From (5.13) one sees that q∗(W, t) → −ξ/σ for |W | → ∞. Therefore, asymptotically, (5.8),559

(5.10) takes the form (5.11) with suitable a and b, obtained by inserting the constant asymptotic560

optimal policy. We can then use the asymptotically exact boundary conditions (5.12) for both561

Wmax and Wmin. We choose Wmax = 40 and Wmin = −40 in the computations.562

The discretized switching system has the form563

V n+1
j −min1≤k≤J(V n

k − ck,j)
∆τ

− LhqjV
n+1
j = 0, j = 1, . . . , J, (5.16)

where ck,j is defined as in equation (5.6). In this case, we can set the switching parameter ck,j = 0564

since no interpolation is used, and this reduces to conventional piecewise constant policy timestep-565

ping [27]. Then the numerical approximations to all J components of the switching system are the566

same in each timestep after the minimum is taken.567

Fig. 5.4 shows the value function V and its asymptotic approximation for large |W |. The two568

functions have visually identical tangents at the boundaries, and indeed experimentation with the569

values of Wmin and Wmax shows that the results around W = 1 are not significantly affected by570

this approximation.571

Also shown in Fig. 5.4 is the approximate optimal policy obtained numerically from the policy572

timestepping discretization with 20 policy steps, and the exact formula (5.13), transformed into a573

bounded control as per (5.14).574

Table 5.4 illustrates the convergence as the control mesh is refined for a fixed time and spatial575

mesh. The estimated order of convergence over these refinement levels is 2. We pick J = 40 fixed576

for the following tests of the convergence in the mesh size and timestep. For this value, the control577
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J = 5 J = 8 J = 10 J = 15 J = 20 J = 29 J = 40 J = 57 J = 80

(a) 2.257 1.531 1.429 1.254 1.230 1.196 1.186 1.180 1.178
(b) -0.725 -0.101 -0.175 -0.0241 -0.0339 -0.0104 -5.4 ·10−3 -2.5 ·10−3

(c) 7.12 0.58 7.26 0.71 3.25 1.92 2.16

Table 5.4: The mean-variance test case with parameters as in Table 5.3. Convergence of the
control discretization alone for N = 480, M = 120. Shown are: (a) the numerical solution Vk =
Ṽ (N,M, Jk;W0, 0); (b) the increments Vk − Vk−1; (c) the ratios (Vk − Vk−1)/(Vk−1 − Vk−2), for

Jk =
⌈
5 ·
√

2
k−1
⌉
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Figure 5.5: The mean-variance test case with parameters as in Table 5.3. Similar to Fig. 5.3
in the previous section, the log2 error for (∆τ)m = 1/8 · 2−m ∈ {1/8, . . . , 1/32768} and in each
plot, from top to bottom, h = 1/4, 1/16, 1/64, 1/256, 1/1024. The straight line has slope −1. Left:
Piecewise constant policy timestepping with 40 equally spaced policies in [−2.5, 3.5]. Right: Using
the exact policy given by (5.13).

discretization error was empirically negligible (compared to the time and spatial discretization578

error).579

Fig. 5.5 shows the convergence of the approximations for piecewise constant policy timestepping580

and for the use of the exact policy given by (5.13). In the latter case, the error is solely due to581

the Euler time-discretization and spatial finite differences. For piecewise constant timestepping,582

40 policies were used, so that the computational time for the same mesh is about a factor of583

40 larger than for a single policy, hence we show slightly fewer refinements. It appears that the584

spatial approximation error for large mesh size h is smaller if knowledge of the optimal control is585

used. The envelope showing the time discretization error is consistent with first order convergence.586

Interestingly, the intercept is about 4 units higher for the exact policy, so that the results using587

policy timestepping are about a factor 16 more accurate for the same timestep. This is not to be588

expected generally and must result from opposite signs of the Euler truncation error and the error589

due to piecewise constant policies.590
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Figure 5.6: The mean-variance test case with parameters as in Table 5.3, with no bankruptcy and
bounded control. All model parameters are as in Table 5.3. Left: Value function V (W, 0) (solid
line) and the asymptotic approximation (dashed line) for large W . Right: The numerical optimal
policy p(W, 0).

No bankruptcy, bounded control591

If bankruptcy (W < 0) is not allowed, the PDE (5.8–5.9) holds on (0,∞). The boundary equation592

at W = 0 is then593

Vτ (0, τ)− πVW (0, τ) = 0, (5.17)

see [39] for a discussion. For π > 0 there is an outgoing characteristic (going backwards in time)594

so that no boundary condition is required and we can approximate (5.17) by upwind differences595

from interior mesh points. In fact, as we are switching to upwind differences locally whenever the596

monotonicity of the scheme is violated (see above and [38]), upwinding will always be used for small597

W if π > 0.598

For bounded control with no short-selling, P = [0, pmax] in (5.8). In the computations, we599

choose pmax = 1.5 as an attained upper bound (the same used in [39]). This would correspond to a600

typical leverage constraint. For large W , we use again the approximation (5.12), with coefficients601

based on the asymptotic optimal control p = 0 (see Fig. 5.6).602

The numerically computed value function (a closed-form solution is not available in this case)603

is shown in Fig. 5.6, together with the asymptotic approximation for large W . Also shown is the604

numerically computed optimal control.605

We compare the results achieved by piecewise policy timestepping to those achieved by the606

direct control formulation. For clarity, the two discretizations used are607

V n+1 − V n

∆τ
− min
q∈Qh

LhqV
n+1 = 0 (5.18)

for the direct control method and (5.16) for the piecewise constant timestepping method.608

We use policy iteration as in [9] to solve the discrete control problem in (5.18). We use a609

positive coefficient discretization [38] with central differencing used as much as possible. For the610

direct control method, and the piecewise constant policy timestepping method, it is straightforward611
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M = 800 M = 1600 M = 3200 M = 6400 M = 12800
N = 50 N = 100 N = 200 N = 400 N = 800
J = 5 J = 8 J = 10 J = 15 J = 20

Policy (a) 1.5930 1.5589 1.5447 1.5378 1.5350
timestepping (b) -0.0341 -0.0141 -0.0069 -0.0028

(c) 2.41 2.04 2.45

Direct (a) 1.5902 1.5577 1.5442 1.5376 ?
control (b) -0.0326 -0.0135 -0.0066 ?

(c) 2.4167 2.0333 ?

Fixed (a) 3.4268 3.4199 3.4140 3.4104 3.4085
control (b) -0.0069 -0.0059 -0.0036 -0.0019
(q = 1.5) (c) 1.1733 1.6523 1.8399

Table 5.5: The mean-variance test case with parameters as in Table 5.3, with no bankruptcy
and bounded control. Shown are, for the policy timestepping method, the direct control method,
and for a fixed constant control: (a) the numerical solution Vk = Ṽ (Nk,Mk, Jk;W0, 0); (b) the
increments Vk−Vk−1; (c) the ratios (Vk−Vk−1)/(Vk−1−Vk−2) for Mk = 800 ·2k−1, Nk = 50 ·2k−1,

Jk =
⌈
5 ·
√

2
k−1
⌉

(except for the fixed control case, where J = 1).

to verify that the discretization is monotone, consistent and stable [38, 27]. The results are shown612

in Table 5.5.613

In each step of the policy iteration, the maximum (over parameters) of the discretized differential614

operator at any given mesh-point has to be computed. As the discretization (local upwinding based615

on the coefficients) depends on the control parameter in a discontinuous way, this maximum is found616

by discretizing the control and exhaustive search. This makes the complexity of a single policy617

iteration identical to a single timestep of the constant policy timestepping algorithm. Thus, overall,618

the typically observed 4–6 iterations in every timestep translates into a 4–6 factor of increase in619

the CPU cost of the direct control method compared to the piecewise constant policy timestepping620

technique. Due to this increased cost, we do not show the direct control results for the finest level621

(marked ?).622

The refinements were chosen such that at the coarsest level a single separate refinement of the623

spatial mesh, timestep and control mesh gave comparable (empirical) accuracy improvements. This624

ensures that the data test the convergence order in all three discretization parameters. It is clear625

that the achieved accuracy is almost identical for both methods.626

We also include results for the value achieved with a fixed control, q = 1.5. This is the chosen627

upper bound and the optimal value attained in an interval around W0 = 1, see Fig. 5.6. The628

results are distinctly different from those under the optimal control, which shows that the similar629

performance of policy timestepping and direct control is not a result of the control being constant630

near W = 1. The errors for fixed control are purely due to the time and spatial finite difference631

discretization, and are slightly smaller than those observed in the true optimal control problems.632

6 Conclusions633

This article analyzes the piecewise constant policy timestepping method both from a theoretical634

and an applications perspective. Our main result is that if we use different meshes for each constant635
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policy PDE solve, then convergence to the viscosity solution can be proven even if high order (not636

necessarily monotone) interpolation techniques are used. Essentially, this is because we can view637

the piecewise constant policy timestepping method as the solution to a switching system of PDEs,638

where the coupling between the PDEs occurs only in the zeroth order term. However, this generality639

comes at a price: we must include a finite switching cost in the switching system. Convergence to640

the solution of the original HJB PDE occurs only in the limit as the switching cost tends to zero.641

However, our numerical experiments show that good results are obtained for very small (even zero)642

switching costs.643

The general approach we follow also has superficial similarities with the “semi-Lagrangian meth-644

ods” (SLM) of [14] and [18]. They both make use of the fact that for given coefficients (controls),645

it may be easier to construct monotone schemes together with the underlying mesh, especially in646

more than one dimension. If different controls require different meshes, interpolation of the mesh647

solution is needed in every timestep. In the present method this serves to carry out the optimization648

over solutions with different policies.649

The computational results demonstrate that a smaller error is obtained using the high order650

interpolation, compared to linear interpolation.651

In many practical situations, the local optimization problem at each node is determined by652

discretizing the control and using exhaustive search. In this case, our tests show that piecewise653

constant policy timestepping is more efficient than standard direct control methods, as a similar654

level of accuracy is achieved with less computational effort. This is simply due to the fact that655

piecewise constant policy timestepping is unconditionally stable, and does not require a policy656

iteration to solve nonlinear discretized equations.657

The use of piecewise constant policy timestepping can be useful in situations where generic658

monotone schemes are hard to construct, e.g., in multidimensional settings, whose implementation659

we do not consider here and leave for future work.660

Finally, we note that it is straightforward to implement piecewise constant policy timestepping661

in existing linear PDE solution software. Hence these existing algorithms can be easily converted662

to solve nonlinear HJB equations.663

A Proof of Lemma 1664

We provide here a proof of Lemma 1,665

Proof. By insertion one gets666

|F (x, φ(x), Dφ(x), D2φ(x))− Fh(x, φ(x) + ξ,Dφ(x), D2φ(x))| =

∣∣∣∣∣ sup
q∈Qh

Lq(φ+ ξ)− sup
q∈Q

Lqφ

∣∣∣∣∣
≤

∣∣∣∣∣ sup
q∈Qh

Lq(φ+ ξ)− sup
q∈Q

Lq(φ+ ξ)

∣∣∣∣∣+

∣∣∣∣∣sup
q∈Q

Lq(φ+ ξ)− sup
q∈Q

Lqφ

∣∣∣∣∣
by the triangle inequality. From Assumption 1 and the compactness of Q, then the supremum of667

Lqφ is attained, say at q∗, and then668

Lq∗φ− rq∗ξ = Lq∗(φ+ ξ) ≤ sup
q∈Q

Lq(φ+ ξ) ≤ sup
q∈Q

Lqφ+ sup
q∈Q

Lqξ = Lq∗φ+ sup
q∈Q

(−rq)ξ,
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hence669 ∣∣∣∣∣sup
q∈Q

Lq(φ+ ξ)− sup
q∈Q

Lqφ

∣∣∣∣∣ ≤ ξ sup
q∈Q
|rq|. (A.1)

Now let q∗ξ be the maximizer of Lq(φ + ξ). We also have by (2.1) that there is q∗h ∈ Qh with670

|q∗h − q∗ξ | ≤ h. By uniform continuity of the coefficients in q on the compact set Q, there exists a671

function ω̄1 so that672

‖σq∗ξσ
T
q∗ξ
− σq∗hσ

T
q∗h
‖+ ‖µq∗ξ − µq∗h‖+ |rq∗ξ − rq∗h |+ |fq∗ξ − fq∗h | ≤ ω̄1(x, h)→ 0, h→ 0

with the usual vector and matrix norms, and hence673 ∣∣∣Lq∗ξ (φ+ ξ)− Lq∗h(φ+ ξ)
∣∣∣ ≤ ω̄1(x, h) max

(
1, |ξ|, |φ|, ‖Dφ‖, ‖D2φ‖

)
≡ max(1, |ξ|)ω̄2(x, h)

for a suitably defined ω̄2. Using also that Qh ⊂ Q,674

sup
q∈Q

Lq(φ+ ξ)−max(1, |ξ|)ω̄2(x, h) ≤ sup
q∈Qh

Lq(φ+ ξ) ≤ sup
q∈Q

Lq(φ+ ξ),

so that675 ∣∣∣∣∣ sup
q∈Qh

Lq(φ+ ξ)− sup
q∈Q

Lq(φ+ ξ)

∣∣∣∣∣ ≤ max(1, |ξ|)ω̄2(x, h) ≤ ω̄2(x, h) +
ω̄2

2(x, h)

2
+
ξ2

2
. (A.2)

From Assumption 1, and noting that the equation coefficients are uniformly continuous in q, it is676

easily shown that the right hand side of (A.2) is locally Lipshitz in x, independent of h. The result677

then follows from (A.1) and (A.2), with an appropriate choice of ωh and ωξ.678

679
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