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Abstract. In order to ensure convergence to the viscosity solution, the standard method for discretizing HJB
PDEs uses forward/backward differencing for the drift term. In this paper, we devise a monotone method which uses
central weighting as much as possible. In order to solve the discretized algebraic equations, we have to maximize
a possibly discontinuous objective function at each node. Nevertheless, convergence of the overall iteration can be
guaranteed. Numerical experiments on two examples from the finance literature show higher rates of convergence
for this approach compared to the use of forward/backward differencing only.
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1. Introduction. There are a number of financial models which result in nonlinear
Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). These problems usu-
ally arise in the context of optimal stochastic control. Some examples of these HJB type
equations include: transaction cost/uncertain volatility models [22, 3, 27], passport options
[2, 30], unequal borrowing/lending costs [13], large investor effects [1], risk control in rein-
surance [24], pricing options and insurance in incomplete markets using an instantaneous
Sharpe ratio [32, 23, 11], minimizing ruin probability in insurance [29, 14], and optimal con-
sumption [12, 16]. A recent survey article on the theoretical aspects of this topic is given in
[26].

In many cases, classical solutions to these PDEs do not exist, and we seek to find the
viscosity solution of the HJB equation [18]. It is important to ensure that the discrete solution
converges to the viscosity solution as the mesh size and timestep are reduced (see [27] for an
example where seemingly reasonable discretization methods can converge to non-viscosity
solutions).

In order to guarantee convergence to the viscosity solution, the discrete scheme must be
be pointwise consistent, l∞ stable and monotone [10, 4].

A monotone scheme is usually constructed by using a positive coefficient method [21,
25, 7, 19]. Typically, a positive coefficient method is developed using forward or backward
differencing for the drift term. The choice of forward or backward differencing depends on
the control variable. This has the disadvantage that the truncation error in the space-like
direction is only first order.

If implicit timestepping is used, then the nonlinear discretized algebraic equations are
solved by an iterative method. The usual iterative approach [21, 19] requires solution of a
local optimization problem for the optimal control at each grid node, at every iteration. Since
the discretization at each node is a function of the control variable at that node, the type
of discretization (i.e. forward or backward differencing) may change at each iteration. Use
of forward/backward differencing means that the local objective function at each node is a
continuous function of the control variable, but non-smooth.
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In this paper, we take a slightly different approach compared to the standard technique.
We will use a combination of central/forward/backward differencing at each node. Given a
value of the the control variable at a node, we use the following criteria to select the differ-
encing method

• Central differencing is used if the discretization is a positive coefficient method (for
this particular choice of control).

• Forward/backward differencing is used only if central differencing does not result in
a positive coefficient method. One of forward or backward differencing must satisfy
the positive coefficient condition.

This method has the advantage that central differencing is used as much as possible,
so that use of a locally second order method is maximized. However, in general, the local
objective function at each grid node is now a discontinuous function of the control. It would
appear that iterative solution of the discretized equations would be problematic in this case.

In this paper we note that the proof of convergence of the iterative scheme for solution of
the discretized algebraic equations does not, in fact, require continuity of the local objective
function. Hence, convergence of the iterative method for solution of the discrete equations
can be guaranteed, even if the local objective function is a discontinuous function of the
control. Nevertheless, it is not clear that, in practice

• the use of a locally second order method as much as possible will result in improved
convergence as the mesh is refined, for practical parameter values;

• that the rate of convergence of the nonlinear iteration will be acceptable, if the local
objective function is a discontinuous function of the control.

We report the results of several numerical experiments, for passport options [2] and op-
timal asset allocation[15]. These experiments show that we can often obtain higher rates of
convergence using central differencing as much as possible, although at some additional cost
compared to the standard approach.

2. General Form for the Example Problems. To avoid repetition, we will carry out
our analysis for a general form for the example problems.

As is typically the case with finance problems, we solve backwards in time from the
expiry date of the contract t = T to t = 0 by use of the variable τ = T − t. Set

LQV ≡ a(S, τ,Q)VSS + b(S, τ,Q)VS − c(S, τ,Q)V , (2.1)

where the control parameter Q is in general a vector, that is, Q = (q1, q2, . . .)′. We write our
problems in the general form

Vτ = sup
Q∈Q̂

{
LQV + d(S, τ,Q)

}
S ∈ [Smin, Smax] , 0 ≤ τ ≤ T . (2.2)

Here we include the d(S, t,Q) term in equation (2.2) for generality, although in the examples
in this paper, we will always have d ≡ 0. We can also replace the sup in equation (2.2) by an
inf , and all the results of this paper hold in this case as well.

2.1. Boundary Conditions. At τ = 0, we set V (S, 0) to the specified contract payoff.
As S → Smin, S → Smax, we assume that either

• a Dirichlet boundary condition is specified;
• the coefficient a(S, τ,Q) vanishes, and the sign of b(S, τ,Q) is such that no bound-

ary condition is required [9].
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Note that it may be the case that the original problem has Smax = +∞ or Smin = −∞. In
these cases, we will use a finite computational domain, and we assume that financial reasoning
can be used to determine an appropriate Dirichlet condition. This is clearly an approximation,
and introduces a localization error. However, As pointed out in [6], we can expect any errors
incurred by imposing approximate boundary conditions at finite values of Smin, Smax to be
small in areas of interest if |Smin|, |Smax| are selected sufficiently large. We will assume in
the following that the original problem has been localized to a finite domain.

ASSUMPTION 2.1 (Properties of the HJB PDE.). We make the assumption that the
coefficients a, b, c, d are continuous functions of (S, τ,Q), with a ≥ 0, and c ≥ 0, and that
a, b, c, d, are bounded on Smin ≤ S ≤ Smax, Q ∈ Q̂. Since we restrict ourselves to a finite
computational domain Smin ≤ S ≤ Smax, we avoid difficulties associated with coefficients
that grow with S as |S| → ∞. We also assume that the controls Q are bounded. It follows
from [17, 8] that solutions to equation (2.2) along with suitable boundary conditions satisfy
the strong comparison property. Hence, we make the assumption that a unique viscosity
solution exists for equation (2.2).

3. Implicit Controls. Define a grid {S0, S1, . . . , Sp} with S0 = Smin, Sp = Smax and
let V n

i be a discrete approximation to V (Si, τ
n). Let V n = [V n

0 , . . . , V n
p ]′, and let (LQ

h V n)i

denote the discrete form of the differential operator (2.2) at node (Si, τ
n). The operator (2.2)

can be discretized using forward, backward or central differencing in the S direction to give

(LQ
h V n+1)i = αn+1

i V n+1
i−1 + βn+1

i V n+1
i+1 − (αn+1

i + βn+1
i + cn+1

i )V n+1
i . (3.1)

Here αi, βi are defined in Appendix A.
It is important that central, forward or backward discretizations be used to ensure that

(3.3) is a positive coefficient discretization. To be more precise, this condition is
CONDITION 3.1. Positive Coefficient Condition

αn+1
i ≥ 0, βn+1

i ≥ 0, cn+1
i ≥ 0. i = 0, .., p . (3.2)

We will assume that all models have cn+1
i ≥ 0. Consequently, we choose central, forward

or backward differencing at each node to ensure that αn+1
i , βn+1

i ≥ 0. Note that different
nodes can have different discretization schemes.

Equation (2.2) can now be discretized using fully implicit timestepping along with the
discretization (3.1) to give

V n+1
i − V n

i

∆τ
= max

Qn+1∈Q̂

{
(LQn+1

h V n+1)i + dn+1
i

}
. (3.3)

Note that αn+1
i = αn+1

i (Qn+1
i ), βn+1

i = βn+1
i (Qn+1

i ), cn+1
i = cn+1

i (Qn+1
i ) and dn+1

i =
dn+1

i (Qn+1
i ), that is, the discrete equation coefficients are functions of the local optimal

control Qn+1
i . This makes equations (3.3) highly nonlinear in general. We refer to methods

which use an implicit timestepping method where the control is handled implicitly as an
implicit control method in the following.

3.1. Matrix Form of the Discrete Equations. It will be convenient to use matrix nota-
tion for equations (3.3), coupled with boundary conditions.

If a Dirichlet condition is specified at S = Smin, τ = τn (i = 0), then we denote this
value by Gn

0 . If a Dirichlet boundary condition is specified at S = Smax, τ = τn (i = p),
then we denote this value by Gn

p . Set Qn = [Qn
0 , Qn

1 , . . . , Qn
p ]′, with each Qn

i a local optimal
control. We can write the discrete operator (LQ

h V n)i as

(LQ
h V n)i = [AnV n]i

=
[
αn

i V n
i−1 + βn

i V n
i+1 − (αn

i + βn
i + cn

i )V n
i

]
; 1 < i < p. (3.4)



4 J. WANG AND P. A. FORSYTH

The first and last rows of A are modified as needed to handle the boundary conditions. The
boundary conditions at S = Smin, Smax can be enforced by specifying a boundary condition
vector Gn = [Gn

0 , 0, . . . , 0, Gn
p ]′. If a Dirichlet condition is specified at i = p, we set Gn

p to
the appropriate value, and set the last row in An to be zero. With a slight abuse of notation,
we denote this last row in this case as (An)p ≡ 0. Conversely, if no boundary condition
is required at i = p, then we use backward differencing at node i = p (which means that
βp = 0), and set Gn

p = 0. The boundary condition at S = Smin, i = 0, is handled in a similar
fashion. Let Dn be the diagonal matrix with entries

[D]nii =

 dn
i , 1 < i < p
0 , i = 0, p ; if a Dirichlet condition is specified
dn

i , i = 0, p ; if no boundary condition is required

Recalling that An = A(Qn), then the discrete equations (3.3) can be written as[
I −∆τAn+1

]
V n+1 = V n + ∆τDn+1 + (Gn+1 −Gn) ,

where Qn+1
i = arg max

Qn+1
i ∈Q̂

{[
An+1(Qn+1)V n+1 + Dn+1(Qn+1)

]
i

}
.

(3.5)

Here the term (Gn+1 −Gn) enforces possible Dirichlet boundary conditions at S = S0, Sp.
Note also that the discrete equations (3.5) are nonlinear since An+1 = A(Qn+1) and Qn+1 =
Qn+1(V n+1).

4. Convergence to the Viscosity Solution. In [27], examples were given in which
seemingly reasonable discretizations of nonlinear option pricing PDEs were unstable or con-
verged to the incorrect solution. It is important to ensure that we can generate discretizations
which are guaranteed to converge to the viscosity solution [4, 18]. Assuming that equa-
tion (2.2) satisfies the strong comparison property [5, 8, 17], then, from [10, 4], a numerical
scheme converges to the viscosity solution if the method is pointwise consistent, stable (in
the l∞ norm) and monotone.

It is straightforward, using the methods in [7, 19] to show that scheme (3.3) is monotone,
pointwise consistent, and stable.

THEOREM 4.1 (Convergence to the Viscosity Solution). Provided that the original HJB
satisfies Assumption 2.1 and discretization (3.5) satisfies the positive coefficient condition
(3.2) with suitable boundary conditions then scheme (3.5) converges to the viscosity solution
of equation (2.2).

Proof. Using the methods in [7, 19], this can be shown to follow from results in [10, 4].

REMARK 4.1 (Rate of Convergence). If ∆S = maxi(Si+1 − Si) and ∆τ = C1h,
∆S = C2h, where C1, C2 are positive constants, then there has been considerable effort
in recent years in attempts to determine rates of convergence for monotone finite difference
schemes for HJB equations. Typically, one obtains estimates of the error of the form O(hρ)
where ρ varies from 1/27 to 1/2 depending on assumptions about regularity of the solution
and the PDE coefficients. See [7] for an overview of recent work along these lines. These
results seem generally pessimistic when compared with numerical experiments.
It is also useful to note the following property of the matrix [I −∆τAn].

LEMMA 4.2 (M-matrix). If the positive coefficient condition (3.1) is satisfied, and ei-
ther Dirichlet boundary conditions are specified, or no boundary condition is required, then
[I −∆τAn] is an M-matrix.
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Proof. Condition (3.1) implies that αn
i , βn

i , cn
i in equation (3.4) are non-negative. Hence

[I −∆τAn] has positive diagonals, non-positive off diagonals, and is diagonally dominant,
hence it is an M-matrix.

4.1. Discretization of the Control. Suppose we have a single control q ∈ Q̂ where
Q̂ = [qmin, qmax], where (qmin, qmax) are bounded. It is sometimes convenient to discretize
the control, i.e. we replace Q̂ by Ŷ where Ŷ = [y0, y1, y2, ..., yk], with y0 = qmin, yk = qmax.
Let maxi(yi+1 − yi) = C3h, where C3 is a positive constant. Then we have the following
Lemma.

LEMMA 4.3 (Consistency of Discrete Control Approximation). If the HJB equation
satisfies Assumption 2.1, then the discretized control problem with maxi(yi+1 − yi) = C3h

Vτ = sup
Q∈Ŷ

{
LQV + d(S, τ,Q)

}
(4.1)

is consistent with equation (2.2).

Proof. Let φ(S, τ) be a smooth test function possessing bounded derivatives of appro-
priate order, then, in view of the fact that the coefficients of equation (2.2) are assumed to be
continuous, bounded functions of Q, then

∣∣∣∣φτ − sup
Q∈Q̂

{
LQφ + d(S, τ,Q)

}
−

(
φτ − sup

Q∈Ŷ

{
LQφ + d(S, τ,Q)

})∣∣∣∣
= O(h) . (4.2)

LEMMA 4.4 (Discrete Control Approximation: Convergence to the Viscosity Solution).
Let ∆τ = C1h, maxi(Si+1 − Si) = C2h, maxi(yi+1 − yi) = C3h, with Ci being positive
constants. Provided the conditions for Theorem 4.1 and Lemma 4.3 are satisfied, then the
discretization (3.5) with Q̂ replaced by the discrete control set Ŷ converges to the viscosity
solution of equation (2.2) as h → 0.

Proof. This follows immediately from Theorem 4.1 and Lemma 4.3.

5. Solution of Algebraic Discrete Equations . Although we have established that dis-
cretization (3.5) is consistent, stable and monotone, it is not obvious that this is a practical
scheme, since the implicit timestepping method requires solution of highly nonlinear alge-
braic equations at each timestep.

5.1. Iterative Method. Consider the following iteration scheme:
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Iterative Solution of the Discrete Equations

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

For k = 0, 1, 2, . . . until convergence
Solve[
I −∆τA(Qk)

]
V̂ k+1 = V n + (Gn+1 −Gn) + ∆τDk(Qk)

Qk
i = arg max

Qk
i ∈Q̂

{[
Ak(Qk)V̂ k + Dk(Qk)

]
i

}

If (k > 0) and

max
i

∣∣∣V̂ k+1
i − V̂ k

i

∣∣∣
max

(
scale,

∣∣∣V̂ k+1
i

∣∣∣) < tolerance

 then quit

EndFor

(5.1)

The term scale in scheme (5.1) is used to ensure that unrealistic levels of accuracy are
not required when the value is very small. Typically, scale = 1 for options priced in dollars.

Some manipulation of Algorithm (5.1) results in[
I −∆τAk

]
(V̂ k+1 − V̂ k) = ∆τ

[
(AkV̂ k + Dk)− (Ak−1V̂ k + Dk−1)

]
. (5.2)

The proof of convergence of the iteration scheme (5.1) is given in [19]. In [28, 32], a
similar proof was given, but only for the case where the discretization did not depend on
the control. Since scheme (5.1) can be regarded as a variant of Policy iteration for infinite
horizon Markov chains, the convergence proof is similar to the proof of convergence for
Policy iteration [21]. For the convenience of the reader, we sketch the proof below.

In order to prove the convergence of Algorithm (5.1), we first need an intermediate result.
LEMMA 5.1 (Sign of RHS of Equation (5.2)). If Ak(Qk)V̂ k is given by equation (3.4),

with the control parameter determined by

Qk
i = arg max

Qk
i ∈Q̂

{[
Ak(Qk)V̂ k + Dk(Qk)

]
i

}
, (5.3)

then every element of the right hand side of equation (5.2) is nonnegative, that is,[
(AkV̂ k + Dk)− (Ak−1V̂ k + Dk−1)

]
i
≥ 0 . (5.4)

Proof. Recall that Qk is selected so as to maximize AkV̂ k + Dk, for given V̂ k. Hence,
any other choice of coefficients, for example Ak−1V̂ k +Dk−1 cannot exceed AkV̂ k +Dk.
It is now easy to show that iteration (5.1) always converges.

THEOREM 5.2 (Convergence of Iteration (5.1)). Provided that the conditions for Lem-
mas 4.2 and 5.1 are satisfied, then the iteration (5.1) converges to the unique solution of
equation (3.5) for any initial iterate V̂ 0. Moreover, the iterates converge monotonically.

Proof. Given Lemmas 5.1 and 4.2, the proof of this result is similar to the proof of
convergence given in [27]. We give a brief outline of the steps in this proof, and refer
readers to [27] for details. A straightforward maximum analysis of scheme (5.1) can be
used to bound ‖V̂ k‖∞ independent of iteration k. From Lemma 5.1, we have that the right
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hand side of equation (5.2) is non-negative. Noting that
[
I −∆τAk

]
is an M-matrix (from

Lemma 4.2) and hence
[
I −∆τAk

]−1 ≥ 0, it is easily seen that the iterates form a bounded
non-decreasing sequence. In addition, if V̂ k+1 = V̂ k the residual is zero. Hence the itera-
tion converges to a solution. It follows from the M-matrix property of

[
I −∆τAk

]
that the

solution is unique.

REMARK 5.1 (Q Dependent Discretizations). Note that we obtain convergence of itera-
tion (5.1) if the discretization depends on the control Q, and, in particular, even if the discrete
equations, regarded as a function of the control Q, are discontinuous. We do, however, re-
quire that the coefficients a, b, c, d in equations (2.1-2.2) are bounded functions of the control
Q, in order to ensure that the maximum in equation (5.3) exists.

REMARK 5.2 (Uniqueness of Solution). The above argument shows that the solution for
V n+1 is unique. However, this does not imply that the controls Qn+1 are unique. As a simple
counterexample, consider the case where a, b, c, d in equations (2.1-2.2) are independent of
Q, in which case the solution for V is unique for any choice of Q ∈ Q̂.

6. Passport Options. Passport options are financial derivative contracts which allow
the holder to take profit from a trading account while obligating the writer to cover losses
[2, 30]. The holder is allowed to trade an underlying asset S at any time during the option
life time, say T . Let q denote the number of shares of the underlying the holder holds at time
t, 0 ≤ t ≤ T . q is limited to an amount C, i.e. |q| ≤ C. At the maturity T , the holder keeps
any net gain, while any loss is covered by the writer.

In [2], this problem is solved using central weighting. While the results appear to con-
verge to the correct solution, convergence to the viscosity solution cannot be guaranteed. In
[28], it is shown that, for passport options, it is not possible to pre-select central, forward or
backward differencing at a node, independent of the control, and guarantee a positive coeffi-
cient scheme. In other words, the scheme must depend on the control.

6.1. The Pricing Model for Passport Options. Let S be the underlying asset price
which follows the stochastic process

dS = µS dt + σS dZ , (6.1)

where dZ is the increment of a Wiener process, σ is volatility, µ is the drift rate. Let
V (S, W, t) denote the option value at time t with underlying price S and wealth W . Un-
der the process (6.1), the pricing PDE for passport options can be written as [31]

−Vt =− rV + (r − γ)SVS (6.2)

+ sup
|q|≤1

[
−((γ − r + rc)qS − rtW )VW +

σ2S2

2
(VSS + 2qVSW + q2VWW )

]
,

where
W is the accumulated wealth of the underlying trading account.
r is the risk-free interest rate.
γ is the dividend rate on the underlying asset S.
rc is a cost of carry rate.
rt is an interest rate for the trading account.
q is the number of shares of S that an investor holds, which is also termed the trading

strategy. q is limited to |q| ≤ 1 in equation (6.2). Different position limits can be handled by
scaling [20].
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We consider two types of payoff at t = T . The standard payoff is

V (S, W, t = T ) = max(W, 0) , (6.3)

and the asset or nothing payoff [2]

V (S, W, t = T ) =

{
S if W ≥ 0
0 otherwise .

(6.4)

The above payoff can be generalized to specify a non-zero strike, but we assume the form
(6.4) in this paper.

For both these payoffs, we can reduce the problem to solving for V (S, W, t) = Su(x, τ),
where x = W/S and τ = T−t [2], so that equation (6.2) can be reduced to a one-dimensional
problem for u

uτ = −γu + sup
|q|≤1

[
((r − γ − rc)q − (r − γ − rt)x)ux +

σ2

2
(x− q)2uxx

]
, (6.5)

where x ∈ [−∞,+∞]. The standard payoff becomes

u(x, τ = 0) = max(x, 0), (6.6)

with boundary conditions

u(x → −∞, τ) = 0 ; u(x →∞, τ) = x , (6.7)

while the asset or nothing payoff is

u(x, τ = 0) =

{
1 if x ≥ 0
0 otherwise

(6.8)

with boundary conditions

u(x → −∞, τ) = 0 ; u(x →∞, τ) = exp(−γτ) . (6.9)

For computational purposes, we truncate the domain to x ∈ [xmin, xmax], and apply the
boundary conditions (6.7) and (6.9) at xmin, xmax.

6.2. Discretization. Passport option valuation is a special case of the general HJB equa-
tion (2.2), if we note that in this case

Q = (q) , Q̂ = [−1,+1] , a(x, τ,Q) =
σ2

2
(x− q)2 ,

b(x, τ,Q) = (r − γ − rc)q − (r − γ − rt)x ,

c(x, τ,Q) = γ , d(x, τ,Q) = 0 , (6.10)

where Q, Q̂, a, b, c are defined in Section 2. Let the discrete approximation for u(xi, τ
n)

be denoted by un
i with Un = [un

0 , un
1 , ..., un

imax]′. Let Ûk be the k′th estimate for Un, then
the local objective function which must be maximized in Algorithm 5.1 is

[F (q)]i = [A(Q)Ûk + D(Q)]i (6.11)

= ((r − γ − rc)q − (r − γ − rt)xi)[(ûk)x]i +
σ2

2
(xi − q)2[(ûk)xx]i ,
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where [·]i refers to the discrete form for [·]. We need a positive coefficient scheme to solve the
pricing PDE (6.5). Given node x = xi, with current solution estimate Ûk, suppose the sets of
q’s, which give a positive coefficient scheme for central, forward and backward differencing
respectively, are P cent

i , P fwd
i , P bwd

i . Since central differencing is the most accurate, it
should be used as much as possible. Consequently, given a q, if central differencing satisfies
positive coefficient conditions, central differencing will be used for that q. In other words,
the proper ranges of q for various differencings are Rangecent

i = P cent
i , Rangefwd

i =
P fwd

i − (P cent
i ∩ P fwd

i ) and Rangebwd
i = P bwd

i − (P cent
i ∩ P bwd

i ). Note that

Rangej
i ∩Rangek

i = ∅ , where j, k ∈ {cent, bwd, fwd} and j 6= k

Rangebwd
i ∪Rangefwd

i ∪Rangecent
i = Q̂ , (6.12)

so that [F (q)]i is a well-defined function of q. For a given asset grid, and the option values
at the current iteration, Algorithm 6.13 is used to determine the optimal control and to decide
which differencing should be applied. For a given differencing method, the range of possible
values of the control is divided into segments where the objective function is smooth. Stan-
dard methods are then used to determine the maximum within each segment. If an analytic
form for the local objective function is not available, then an alternate approach is discussed
in Section 7.4.

Determining the Optimal Control and the Differencing Method

Apply boundary conditions at the first node x0 and the last node xp

For each x0 < xi < xp

Compute the positive coefficient sets Rangecent
i , Rangefwd

i , Rangebwd
i

diff = cent, q∗ = 0, Fmax = −∞
For j = cent, fwd, bwd

Solve q∗j = arg max
q∈Rangej

i

{[F (q)]i}

If [F (q∗j )]i > Fmax

diff = j, q∗ = q∗j , Fmax = [F (q∗j )]i
EndIf

EndFor
EndFor

(6.13)

6.3. Discontinuity of The Objective Function. When we use central differencing as
much as possible, the local objective function at each node is in general a discontinuous
function of the control q. However, the proof of convergence of the iterative scheme for
solution of the discretized algebraic equations (Theorem 5.2) does not require continuity of
the local objective function. If forward/backward differencing are applied, the local objective
function is continuous but not smooth. Figure 6.1 shows these features, for a given grid and
solution values.

Note that Algorithm 6.13 requires maximization of the local objective function for each
set of points where central, forward, or backward differencing is used. For example, as shown
in Figure 6.1, central differencing can be used on two disjoint intervals of the control space.
On each of the subintervals, the objective function is a smooth function of the control, hence
we can use standard methods to maximize the objective function. Determination of the range
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of controls where central, forward and backward differencing gives rise to a positive coef-
ficient method is generally only possible if we have an analytic expression for the objective
function. If this is not available, we can discretize the control, and use a linear search to find
the maximum as described in Section 7.4. This is, of course, much more computationally
expensive compared to analytic maximization.

q
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FIG. 6.1: Local objective function (6.11) for the Passport option at (xi = 0). (a) using
central differencing as much as possible; (b) using forward/backward differencing only. Pa-
rameters: r = 0.05, σ = 0.03, dividend = 0.04, rc = 0.07, rt = 0.03. Nodes: xi−1 =
−0.01, ui−1 = 0.173298; xi = 0., ui = 0.173888; xi+1 = 0.01, ui+1 = 0.174135.

6.4. Numerical Results. In this section, we will examine the convergence as the grid
and timesteps are refined for various differencing methods.

We use a convergence tolerance of 10−7 in Algorithm 5.1, and we truncate the com-
putational domain to [xmin, xmax] = [−3, 4]. Numerical experiments show that increasing
the size of the computational domain does not affect solution values to six digits. The input
parameters are given in Table 6.1.

Table 6.2 presents a convergence study, which also reports the actual initial option values,
i.e. V = S0 u(x = W0/S0, τ = T ).

An unequally spaced grid in the x direction is used, and new fine grid nodes are added
between each two coarse grid nodes at each level of refinement. In Table 6.2, ratio refers to
the ratio of successive changes in the solution as the grid is refined by a factor of two, and the
timestep sizes are reduced by a factor of four. Since fully implicit timestepping is used, this
allows us to isolate the effect of the use of central weighting as much as possible, compared
to forward/backward differencing only. Local second order convergence (in terms of x node
spacing) would be consistent with a ratio of four, while first order convergence would be
consistent with a ratio of two.

The payoff type is a call (convex payoff). As expected, quadratic convergence is obtained
by using central differencing as much as possible, and first order convergence is obtained by
using forward/backward differencing.

For a convex payoff, it is always optimal to choose q = −1 or 1 [28]. But for a non-
convex payoff, q can be any value in [−1, 1]. Table 6.3 presents a convergence study using
the parameters in Table 6.1, but the payoff type is an asset or nothing with strike K = 0, i.e.
a non-convex payoff (this is a digital call in terms of u, see equation (6.8) ). For the asset
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Table 6.1 Parameters for the convex payoff, passport option.

r 0.08 σ 0.2
dividend rate γ 0.03 rc 0.12

rt 0.05 S0 $100
Payoff Call Strike $10

Initial Wealth 0 Time to expiry T 1 year

Table 6.2 Convergence study, passport option, convex payoff. Fully implicit timestepping is
applied, using constant timesteps. On each refinement, new nodes are inserted between each
coarse grid node, and the timestep is divided by four. Parameters are given in Table 6.1. Ratio
is the ratio of successive changes in computed solution as the discretization parameters are
reduced.

Nodes Timesteps Nonlinear CPU Time Option value Ratio
iterations (Sec)

Central Differencing as much as possible
133 100 223 0.05 6.75321
265 400 847 0.46 6.75951
529 1600 3237 3.51 6.76110 3.962

1057 6400 12801 27.93 6.76150 3.995
2113 25600 51201 217.53 6.76160 3.980

Forward/backward differencing only
133 100 223 0.04 6.79012
265 400 846 0.28 6.77809
529 1600 3241 2.08 6.77042 1.569

1057 6400 12801 16.53 6.76617 1.803
2113 25600 51201 130.93 6.76393 1.905

or nothing payoff, if W0 ≥ 0, the option value will be very high (close to the initial stock
value) and insensitive to the grid refinement, so it is difficult to carry out convergence study.
In this example, option values are reported at W0 = −25 (initial wealth is −$25). When
central differencing as much as possible is applied, the convergence rate is close to second
order. First order convergence is obtained by using forward/backward differencing.

From the numerical results, we can conclude that generally we can obtain higher rates
of convergence using central weighting as much as possible, compared to forward/backward
differencing only. Of course, we cannot guarantee that this will always occur, but we can
rarely obtain second order convergence using forward/backward differencing. In all our nu-
merical experiments, we have never seen a case where central weighting as much as possible
converges at a slower rate compared to forward/backward differencing only.

Note that in both these examples, forward/backward differencing only requires about
60% of the CPU time compared to central differencing as much as possible. This is simply
because of the additional tests required to determine the ranges of possible central weighting
in Algorithm 6.13.

Both Table 6.2 and Table 6.3 show that the number of nonlinear iterations per timestep
is about two, indicating that Algorithm 5.1 converges rapidly, in spite of the discontinuous
objective function that is maximized at each node.

7. Defined Contribution Pension Plan. The second example in this paper concerns
an optimal dynamic asset allocation strategy for a defined contribution pension plan. A
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Table 6.3 Convergence study, passport option, non-convex payoff. Fully implicit timestep-
ping is applied, using constant timesteps. On each refinement, new nodes are inserted between
each coarse grid node, and the timestep is divided by four. Parameters are given in Table 6.1
except that W0 = −25, K = 0, and the payoff is an asset or nothing. Ratio is the ratio of
successive changes in computed solution as the discretization parameters are reduced.

Nodes Timesteps Nonlinear CPU Time Option value Ratio
iterations (Sec)

Central Differencing as much as possible, W0 = −25
133 100 274 0.06 26.6543
265 400 873 0.44 26.9001
529 1600 3307 3.26 26.9650 3.786

1057 6400 12900 25.46 26.9819 3.852
2113 25600 51290 199.83 26.9865 3.695

Forward/backward differencing only, W0 = −25
133 100 274 0.04 27.2442
265 400 873 0.27 27.1997
529 1600 3308 1.95 27.1158 0.5306
1057 6400 12917 15.28 27.0576 1.440
2113 25600 51283 119.69 27.0244 1.753

traditional asset allocation strategy for a defined contribution pension plan is deterministic
lifestyling. Initially, the contributions of the plan are invested entirely in equities. Beginning
on a predetermined date, say N years prior to retirement, the contributions are switched into
bonds at a rate of 1/N per year. Then, all assets are invested in bonds by the date of retire-
ment. Deterministic lifestyling can reduce the losses of the plan in case of a sudden fall in
the stock market just before the date of retirement. This strategy is simple and widely used.
However, obviously it is not the optimal strategy.

We will follow the approach given in [15] to find the optimal dynamic asset allocation
strategy for a defined contribution pension plan. The objective of the strategy is to maximize
the plan member’s utility at retirement. It is assumed that the utility is a function of the plan
member’s wealth to yearly income ratio [15].

We give a brief derivation of the model equations, for details we refer the reader to [15].

7.1. Stochastic Model. Suppose there are two underlying assets in the pension plan:
one is risk free (e.g. a government bond) and the other is risky (e.g. a stock market fund).
The risky asset S follows the stochastic process

dS = (r + ξ1σ1)S dt + σ1S dZ1 , (7.1)

where dZ1 is the increment of a Wiener process, σ1 is volatility, r is the interest rate, ξ1 is the
market price of risk. Suppose that the plan member continuously pays into the pension plan
at a fraction π of her yearly salary Y , which follows the process

dY = (r + µY )Y dt + σY0Y dZ0 + σY1Y dZ1 , (7.2)

where µY , σY0 and σY1 are constants, and dZ0 is another increment of a Wiener process,
which is independent of dZ1. Let W (t) denote the wealth accumulated in the pension plan,
and let p denote the proportion of this wealth invested in the risky asset S, and let 1−p denote
the fraction of wealth invested in the risk-free asset. Then

dW = (r + pξ1σ1)W dt + pσ1WdZ1 + πY dt . (7.3)
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Assume the plan member has a power utility function u(W (T ), Y (T )) at retirement time
T , which is defined as a function of the wealth-income ratio,

u(W (T ), Y (T )) =

{
1
γ (W (T )

Y (T ) )γ where γ < 1 and γ 6= 0

log(W (T )
Y (T ) ) when γ = 0 .

(7.4)

Our goal is to find the optimal asset allocation strategy to maximize the expected terminal
utility. Define a new state variable X(t) = W (t)/Y (t), then by Ito’s Lemma, we obtain

dX = [π + X(−µY + pσ1(ξ1 − σY1) + σ2
Y0

+ σ2
Y1

)]dt (7.5)
−σY0XdZ0 + X(pσ1 − σY1)dZ1 .

Let J(t, x, p) = E[u(Xp(T ))|X(t) = x], where X(t) is the path of X given the asset
allocation strategy p = p(t, x), and E[·] is the expectation operator. We define

V (x, τ) = sup
p∈P̂

E[u(Xp(T ))|X(T − τ) = x] = sup
p∈P̂

J(T − τ, x, p) . (7.6)

where P̂ is the set of all admissible asset allocation strategies, and τ = T − t. Then V (x, τ)
satisfies the HJB equation

Vτ = sup
p∈P̂

{µp
XVx +

1
2
(σp

X)2Vxx} ; x ∈ [0,∞] , (7.7)

with terminal condition

V (x, τ = 0) =

{
γ−1xγ where γ < 1 and γ 6= 0
log(x) when γ = 0 ,

(7.8)

and where

µp
X = π + x(−µY + pσ1(ξ1 − σY1) + σ2

Y0
+ σ2

Y1
)

(σp
X)2 = x2(σ2

Y0
+ (pσ1 − σY1)

2) . (7.9)

with boundary conditions

Vτ (x = 0, τ) = πVx ; V (x →∞, τ) = 0 . (7.10)

For computational purposes, we truncate the domain to [0, xmax], and impose the bound-
ary conditions (7.10) on this finite domain. In order to ensure that Assumption 2.1 holds, we
define the range of controls to be

P̂ = [0, pmax] . (7.11)

Note that in the original problem in [15], P̂ = [0,∞]. A value of p > 1 indicates that the
holder borrows to invest in risky assets. As a practical matter, it is unlikely that anyone could
borrow an unlimited amount relative to her wealth to invest in risky assets. We will choose
pmax sufficiently large so that the computed solution is insensitive to pmax.

The terminal condition (7.4) is undefined for x = 0, if, for example, γ < 0. We adopt
the simple expedient of replacing condition (7.4) by

V (x, τ = 0) =

{
1
γ max(x, ε)γ if γ < 0
1
γ log(max(x, ε)) if γ = 0 ,

(7.12)
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Table 7.1 Computational parameters, pension plan. Convergence tolerance used in Algorithm
5.1. ε is used to adjust the terminal condition (7.12). pmax is the maximum value of the equity
proportion (7.11). xmax is the maximum x value in the finite computational domain.

Convergence Tolerance 10−7

ε 10−3

pmax 200
xmax 80

where ε > 0, ε � 1. We choose ε sufficently small so that the computed results are insensitive
to this value. Table 7.1 shows the computational parameters used in our numerical tests.

Note that the HJB equation (7.7) becomes independent of p at x = 0. This nonuniqueness
of p does not affect the solution value u. It will be understood in the following that if we refer
to a value of, say, (p x) at x = 0, then we are really referring to

lim
x→0

(p x) . (7.13)

7.2. Discretization. The pension plan asset allocation model is a special case, of the
general HJB equation (2.2), if we make the identification

Q = (p) , Q̂ = [0, pmax] , a(x, τ,Q) =
1
2
(σp

X)2 ,

b(x, τ,Q) = µp
X , c(x, τ,Q) = 0 , d((x, τ,Q) = 0 , (7.14)

where Q, a, b, c are defined in equation (2.2). Given node x = xi, with specified solution
estimate V̂ k = [v̂k

0 , ..., v̂k
imax]′, the objective function which is maximized at each node in

Algorithm 5.1 is

[F (q)]i = [A(Q)V̂ k + D(Q)]i

= [µp
X ]i[(v̂k)x]i +

1
2
([σp

X ]i)2[(v̂k)xx]i , (7.15)

where V̂ k is the vector containing the current estimate of the discrete solution values. Similar
to the passport option case, if we want to apply central differencing as much as possible,
Algorithm 6.13 is used to decide which differencing scheme is used (which depends on Q).

7.3. Numerical Results. Given parameters in Table 7.2, Table 7.3 shows the numerical
results. Recall that as we refine the grid, by inserting a fine grid node between two coarse grid
nodes, we reduce the timestep size by four. Since fully implicit timestepping is used (which
guarantees a monotone scheme), then the ratio of successive changes in the solution, as the
grid is refined, should be four for quadratic convergence, and two for linear convergence. As
expected, Table 7.3 shows that quadratic convergence is obtained by using central differenc-
ing as much as possible, and first order convergence is obtained by using forward/backward
differencing. As for the passport option case, convergence of Algorithm 5.1 is rapid.

Numerical tests with the parameters in Table 7.1, indicated that increasing the truncated
domain size xmax, increasing the maximum value of the control pmax, and decreasing the
convergence tolerance and ε, resulted in no change to the results in Table 7.3 to six figures.

In the passport option case, particularly with a convex payoff, numerical experiments
indicate that using central differencing only does converge to the viscosity solution [2, 28].
However, this cannot be guaranteed. In contrast, in the pension plan case, the numerical
scheme does not appear to converge at all using central differencing only. In this respect, the
pension plan problem appears to be more challenging than passport option valuation.
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Table 7.2 Parameters used in the pension plan examples. The time units in this problem are
years, so that the ratio of wealth to salary x has the units of years.

µy 0. ξ1 0.2
σ1 0.2 σY 1 0.05
σY 0 0.05 π 0.1
T 20 years γ -5

Table 7.3 Convergence study, pension plan example. Fully implicit timestepping is applied,
using constant timesteps. On each refinement, new fine grid nodes are inserted between each
coarse grid node, and the timestep size is reduced by four. Parameters are given in Table 7.2.
The utility values are given at x = 1 and x = 0. Ratio is the ratio of successive changes in
computed solution as the discretization parameters are reduced.

Nodes Timesteps Nonlinear CPU Time Utility Ratio
iterations (Sec)

Central Differencing as much as possible, x = 0
87 160 331 0.04 −4.06482× 10−3

173 640 1280 0.36 −3.65131× 10−3

345 2560 5120 2.75 −3.58063× 10−3 5.851
689 10240 20480 21.31 −3.56354× 10−3 4.134
1377 40960 81920 168.07 −3.55922× 10−3 3.961

Forward/backward differencing only, x = 0
87 160 399 0.03 −6.73472× 10−3

173 640 1296 0.22 −4.68055× 10−3

345 2560 5135 1.68 −4.04828× 10−3 3.249
689 10240 20480 13.06 −3.79150× 10−3 2.462
1377 40960 81920 103.09 −3.67543× 10−3 2.213

Central differencing as much as possible, x = 1
87 160 331 0.04 −4.68742× 10−4

173 640 1280 0.36 −4.31528× 10−4

345 2560 5120 2.75 −4.26814× 10−4 7.894
689 10240 20480 21.31 −4.25611× 10−4 3.921
1377 40960 81920 168.07 −4.25305× 10−4 3.920

Forward/backward differencing only, x = 1
87 160 399 0.03 −7.14415× 10−4

173 640 1296 0.22 −5.55931× 10−4

345 2560 5135 1.68 −4.87660× 10−4 2.321
689 10240 20480 13.06 −4.55786× 10−4 2.142
1377 40960 81920 103.09 −4.40348× 10−4 2.064

Given Parameters in Table 7.2, Figure 7.1 shows the expected terminal utility at t = 0
and the corresponding optimal asset allocation strategy p as a function of the salary to wealth
x ratio. Note that as x → 0, the proportion invested in the risky asset becomes very large.
However, as noted in [15], the amount actually invested in the risky asset (p x), tends to zero
as x → 0. This is clearly illustrated Figure 7.1 (d). The results in Figure 7.1 (d) are similar to
the results in [15].

7.4. Discretization of the Control. In some cases, if the form of the HJB equation
is complex, then it may be difficult to implement Algorithm 6.13. In this case, a simpler
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FIG. 7.1: Utility and optimal asset allocation strategy at t = 0, pension plan example.
Parameters are given in Table 7.2. (a) Expected terminal utility; (b) Optimal asset allocation
strategy; (c) Optimal equity amount (p x); (d) Magnified graph of figure (c).

approach is desirable. Suppose there is one control q at each node, and we discretize the
possible control values as described in Section 4.1. From Lemma 4.3, we have that a scheme
using discrete controls will converge to the viscosity solution of the original HJB equation.
To determine the optimal control at each node, as required in Algorithm 5.1, then we simply
perform a linear search of the discrete control values. For a given q, we use central weighting
if this results in a positive coefficient method, otherwise, forward/backward differencing is
used.

Note that since we cannot assume that the objective function is a continuous function
of the control, linear search is the only way to find the optimal value of q. This method has
the obvious advantage that it is very easy to implement, especially in the case where central
differencing is used as much as possible.

The numerical results obtained using this method for the pension plan problem are given
in Table 7.4. The results are very close to the results reported in Table 7.3. Of course, this
method requires much more CPU time compared to Algorithm 6.13. This is simply due to
the comparatively crude method used to find the optimal control at each grid node.
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In an effort to do better than linear search, we experimented with various approximate
methods for finding the optimal control (assuming a discrete set of controls). Seemingly
reasonable methods based on smooth approximations to the objective function were very
unreliable, and Algorithm 5.1 typically failed to converge. This is simply because the smooth
approximation may not maximize the local objective function, and hence the argument used
to prove the convergence of the iteration (Theorem 5.2) breaks down.

Table 7.4 Convergence study, pension plan example, discretized control. x−nodes refers to
the number of nodes in the x grid. p−nodes refers to the number of nodes in the discretization
of the range of control values. Fully implicit timestepping is used with constant timesteps.
On each refinement, new fine grid nodes are inserted between each coarse grid node, and the
timestep is reduced by four. Central differencing is used as much as possible. Ratio is the
ratio of successive changes in computed solution as the discretization parameters are reduced.
Problem data given in Table 7.2.

x-Nodes p-Nodes Timesteps Nonlinear CPU Utility Ratio
iterations (Sec)

x = 0
173 113 640 1317 1.9 −3.65307× 10−3

345 225 2560 5146 29.4 −3.58083× 10−3

689 449 10240 20511 457 −3.56358× 10−3 4.187
1377 897 40961 82016 7240 −3.55923× 10−3 3.965

x = 1.0
173 113 640 1317 1.9 −4.31662× 10−4

345 225 2560 5146 29.4 −4.26845× 10−4

689 449 10240 20511 457 −4.25619× 10−4 3.929
1377 897 40961 82016 7240 −4.25306× 10−4 3.916

8. Conclusions. Many financial models result in nonlinear HJB PDEs. Classical so-
lutions to these PDEs do not usually exist. In order to ensure convergence to the viscosity
solution, monotone difference methods must be used. The standard approach simply uses for-
ward/backward differencing to ensure monotonicity. Clearly, this method suffers from low
accuracy.

However, in many financial applications, it is often the case that central differencing can
be used at many nodes. This possibility seems to have been ignored in previous work. In this
paper, we use central differencing as much as possible. When we use central differencing
as much as possible, the local objective function at each node is a discontinuous function
of the control. However, the proof of convergence of the iterative scheme for solution of the
fully implicit discretized algebraic equations does not require continuity of the local objective
function. Hence convergence of the iterative algorithm for solving the nonlinear discretized
equations is guaranteed.

We have reported numerical experiments for pricing passport options and optimal asset
allocation for defined contribution pension plans. In all cases, use of central differencing as
much as possible converges at a higher rate than use of forward/backward differencing only.
We have seen this same effect in many numerical experiments. Use of central differencing as
much as possible is never worse (in terms of convergence rate) and almost always superior to
forward/backward differencing only. Note that these higher rates cannot be guaranteed, but
convergence to the viscosity solution is guaranteed.

However, use of central differencing as much as possible is more costly than simply
using forward/backward differencing. This is due to the fact that the possible discontinuity
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points of the objective function must be identified, so that standard methods can be used to
maximize the objective function on intervals where the objective function is smooth. This
also adds somewhat to implementation complexity.

In cases where it is not possible to analytically maximize the objective function, a very
straightforward approach is to discretize the control, and to maximize the objective function
using a linear search. This method is very easy to implement, and is also guaranteed to con-
verge to the viscosity solution, but this technique is much more computationally expensive.
In these cases, it is clearly advantageous to use central differencing as much as possible, so
that higher rates of convergence may compensate for the increased computational cost.

Appendix A. Discrete Equation Coefficients. Let Qn
i denote the vector of optimal

controls at node i, time level n and set

an+1
i = a(Si, τ

n, Qn
i ), bn+1

i = b(Si, τ
n, Qn

i ), cn+1
i = c(Si, τ

n, Qn
i ) . (A.1)

Then, we can use central, forward or backward differencing at any node.
Central Differencing:

αn
i,central =

[
2an

i

(Si − Si−1)(Si+1 − Si−1)
− bn

i

Si+1 − Si−1

]
βn

i,central =
[

2an
i

(Si+1 − Si)(Si+1 − Si−1)
+

bn
i

Si+1 − Si−1

]
. (A.2)

Forward/backward Differencing: (bn
i > 0/ bn

i < 0)

αn
i,forward/backward =

[
2an

i

(Si − Si−1)(Si+1 − Si−1)
+ max(0,

−bn
i

Si − Si−1
)
]

βn
i,forward/backward =

[
2an

i

(Si+1 − Si)(Si+1 − Si−1)
+ max(0,

bn
i

Si+1 − Si
)
]

. (A.3)
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