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Abstract11

We present a neural network approach for multi-period portfolio optimization that12

relaxes the long-only restriction and instead imposes a bound constraint on leverage.13

We formulate the optimization problem for such a relaxed-constraint portfolio as a14

multi-period stochastic optimal control problem. We propose a novel relaxed-constraint15

neural network (RCNN) model to approximate the optimal control. Using our proposed16

RCNN model transforms the original leverage-constrained optimization problem into17

an unconstrained one, which makes solving it computationally more feasible. We prove18

mathematically that the proposed RCNN control model can approximate the optimal19

relaxed-constraint strategy with arbitrary precision. We further propose to compute20

the optimal outperforming strategy over a benchmark based on cumulative quadratic21

shortfall (CS). Using U.S. historical market data from Jan 1926 to Jan 2023, we com-22

putationally compare and assess the proposed neural network approach to the optimal23

leverage-constrained strategy and long-only strategy respectively. We demonstrate that24

the leverage-constrained optimal strategy can achieve enhanced performance over the25

long-only strategy in outperforming a benchmark portfolio.26

1 Introduction27

Traditionally, most mutual fund portfolios operate under a long-only strategy. This means28

that if a security is perceived as undervalued, it can be included in the portfolio. Conversely,29
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if a security is considered overvalued, to capture potentially additional alpha, investors can30

only choose to avoid investing in it rather than actively shorting it.31

To address these limitations, relaxed-constraint portfolios, which permit some chosen32

level of leverage in contrast to long-only, have emerged (Ang et al., 2017). These portfolios33

enable managers to short sell securities considered to be overvalued, while maintaining a net34

exposure to the market of 100%. By shorting some securities and using the proceeds to invest35

in other securities, this approach introduces leverage into the portfolio. Subject to internal36

risk mandates and regulatory requirements (Federal Reserve Board, 1974), these portfolios37

typically cap the total leverage, which can be expressed as imposing an upper bound on38

the total long positions. For instance, the popular 130/30 portfolio allows investors to hold39

short positions totalling up to 30% of the portfolio’s net wealth (or equivalently the total40

long position is bounded below 130%) (Lo and Patel, 2008).41

While there are clear incentives for adopting the relaxed-constraint portfolios, the litera-42

ture on the topic of portfolio optimization for such strategies, particularly in the context of43

multi-period setting, remains scarce. Literature in the domain of multi-period portfolio opti-44

mization either disregards allocation constraints at all (Zhou and Li, 2000; Li and Ng, 2000)45

or considers simple constraints such as long-only stock positions with unbounded leverage46

(Li et al., 2002), with minimal attention given to the unique restrictions of relaxed-constraint47

strategies, which caps the total leverage allowed in the portfolio.48

Consequently, many fund managers had to rely on less rigorous approaches, such as49

ranking systems (Leibowitz et al., 2009; Korhonen and Kunz, 2010), to construct their50

relaxed-constraint portfolios. These challenges perhaps explain why there is little empir-51

ical evidence that relaxed-constraint portfolios brings superior risk and return profiles than52

long-only portfolios (Johnson, 2013).53

Leverage constrained portfolio optimization separates long positions from short positions54

and impose constraints on the total long position and total short position accordingly. This55

leads to an optimization problem that a typical method cannot be immediately applied, since56

it usually assumes a standard formulation expressed by a continuous objective function and57

equality and inequality constraint functions.58

Given the scarcity of literature on the multi-period optimization of relaxed-constraint59

portfolios, we aim to bridge this gap by providing a novel portfolio optimization framework60

that addresses the specific challenges posed by this leverage constraint. Particularly, we pro-61

pose to use a neural network model to approximate the optimal relaxed-constraint strategy.62

On a high level, the idea of approximating the optimal control (allocation strategy) in a63

multi-period portfolio optimization problem is also considered in Han et al. (2016); Tsang64

and Wong (2020); Reppen et al. (2023); Li and Forsyth (2019); Li and Mulvey (2021); van65

Staden et al. (2023); Ni et al. (2022, 2024).66

Notably, Li and Mulvey (2021) use recurrent neural networks to model the upper and67

lower bounds of asset allocations at each timestep. They demonstrate that this approach68

allows the multiperiod optimization problem to be solved in polynomial time, rather than69

exponential time, with respect to the number of rebalancing periods and risky assets, thus70

addressing the curse of dimensionality issue often encountered in traditional numerical meth-71
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ods (Pun and Wong, 2019; Li et al., 2022).72

However, Han et al. (2016); Tsang and Wong (2020); Li and Mulvey (2021) consider73

a stacked neural network approach which uses a different subnetwork at every rebalancing74

time, which is still computationally expensive. On the other hand, Li and Forsyth (2019);75

Reppen et al. (2023); van Staden et al. (2023) use a single recurrent neural network for all76

timesteps, in which time is considered a feature for the network model.77

When computing a neural network model for portfolio optimization, it is desirable to78

incorporate constraints by designing the neural network control model in a way that satis-79

fies constraints explicitly, since this leads to a training optimization problem which can be80

readily solved by a stochastic gradient method. One common approach is to use the softmax81

activation function in the output layer of the network, ensuring that the output allocation82

fractions are non-negative and summing up to one. This technique is widely used in both83

portfolio optimization with long-only constraints and other fields such as classification and84

probabilistic modeling. By formulating the problem as an unconstrained optimization func-85

tion via using appropriate activation functions, gradient-based optimization algorithms like86

stochastic gradient descent (SGD) can be applied effectively (Buehler et al., 2019).87

However, for a leverage-constrained portfolio, which limits the total long (and short)88

position, it is not immediately clear how to design such a neural network model which89

explicitly satisfies the required constraints. The closest work is the proposed methodology90

in Ni et al. (2024), in which the authors consider the multi-period portfolio optimization91

problem where the portfolio also allows bounded leverage. However, in Ni et al. (2024), it92

is assumed that the manager can only short a specific pre-determined subset of the universe93

of securities, whereas in this work we allow the manager to short any security in the entire94

portfolio universe.95

To address this, we propose a novel relaxed-constraint neural network (RCNN) control96

model that specifically satisfies the relaxed-constraint portfolio restrictions. By designing97

the neural network model with appropriate activation functions, we convert the leverage98

constrained stochastic optimization problem into an unconstrained optimization problem,99

which is more computationally feasible to solve. Furthermore, we mathematically prove100

that the RCNN control model can approximate any optimal relaxed-constraint strategy101

arbitrarily well, implying that solving the unconstrained optimization problem can yield102

sufficiently accurate approximation to the optimal relaxed-constraint strategy.103

In practice, relaxed-constraint portfolios are considered as part of the long-only portfolio104

family and are typically evaluated based on their relative performance over a passive bench-105

mark portfolio. To achieve benchmark outperformance, we choose a cumulative quadratic106

shortfall (CS) objective function that measures the tracking difference of the active portfolio107

against a benchmark portfolio.108

We emphasize that the RCNN is flexible and applicable to diverse investment objective109

functions. As long as standard optimization methods can backpropagate through the chosen110

objective function, our proposed approach can be applied to a wide range of investment111

problems with ease.112

Using the proposed neural network approach and based on historical market data, we as-113

3



sess and compare performance of the optimal relaxed-constraint portfolio with to the optimal114

long-only portfolio under the same investment scenario and the CS objective. Our compu-115

tational results demonstrate clear advantages of the relaxed-constraint strategy, showcasing116

superior returns and improved risk management outcomes, which empirically validates the117

effectiveness of our proposed RCNN approach.118

The main contributions of this article are summarized below.119

(i) We propose a novel relaxed-constraint neural network (RCNN) control model, so120

that the otherwise challenging constrained multi-period optimization problem for the121

relaxed-constrained portfolio can be computationally solved by applying an algorithm122

for unconstrained optimization.123

(ii) We mathematically prove that the proposed RCNN control model is capable of ap-124

proximating any relaxed-constraint strategy arbitrarily well. This proof serves as a125

theoretical foundation, validating the efficacy of our proposed methodology.126

(iii) While the proposed neural network approach is computationally flexible and applicable127

to any general continuous objective function, we propose to compute the optimal out-128

performing strategy to overcome a benchmark based on cumulative quadratic shortfall129

(CS) under a leverage constraint, which is relaxed over long-only constraint.130

(iv) Through computational assessment based on the U.S. market data from Jan 1926131

to Jan 2023, we provide evidence of the advantages of relaxed-constraint portfolios132

over traditional long-only portfolios. Our findings are contrary to the commonly held133

view that relaxed-constraint portfolios yield few benefits for investors over long-only134

portfolios.135

Subsequently, in §2, we first mathematically formulate a general multi-period stochastic136

optimal control problem for optimal leveraged portfolio under a relaxed-constraint. In §3,137

we describe the proposed RCNN control model for handling leverage constraints. We estab-138

lish a universal approximation theorem for the proposed RCNN in §4. In §5, we motivate139

our choice of the cumulative quadratic shortfall (CS) objective function to achieve bench-140

mark outperformance. In addition, using the proposed neural network approach, we present141

computational comparison and assessment of the optimal strategies based on market data.142

Finally concluding remarks are given in §6.143

2 Mathematical formulation144

In this section, we mathematically formulate the multi-period portfolio optimization problem145

for relaxed-constraint portfolios.146

Relaxed-constraint portfolios are considered as part of the extended family of long-only147

portfolios and are thus often assessed against a passive benchmark (Ang et al., 2017). There-148

fore, we consider two portfolios: an actively managed portfolio and a benchmark portfolio.149
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We consider a fixed investment horizon [t0, T ]. At any time t ∈ [t0, T ], let W (t), Ŵ (t) de-150

note the (wealth) values of the active portfolio and the benchmark portfolio respectively. To151

ensure a fair assessment of the relative performance of the two portfolios, we assume both152

portfolios start with an equal initial value w0 > 0, i.e., W (t0) = Ŵ (t0) = w0 > 0.153

For simplicity, we assume that both the active portfolio and the benchmark portfolio can154

allocate among the same set of Na assets. Let vector S(t) = (Si(t) : i = 1, · · · , Na)
⊤ ∈ RNa

155

denote prices of the Na underlying assets at time t ∈ [t0, T ]. In addition, let vectors p(t) =156

(p
(t)
i : i = 1, · · · , Na)

⊤ ∈ RNa and p̂(t) = (p̂
(t)
i : i = 1, · · · , Na)

⊤ ∈ RNa denote the allocation157

fractions to the Na underlying assets at time t ∈ [t0, T ] respectively, for the active portfolio158

and the benchmark portfolio. In this article, we consider a passive benchmark portfolio with159

constant allocation, i.e., p̂(t) ≡ p̂(0), ∀t ∈ [0, T ], where p̂(0) is a constant vector that represents160

the pre-defined allocation fractions to respective assets.161

From a stochastic optimal control perspective, the allocation vector p(t) is regarded as162

the control value at time t, which determines the outcome of the system, i.e., the evolution163

of the portfolio values, for a given realization of the environment. The control vector p(t) is164

assumed to be a function of the state variables that fully describe the state of the dynamic165

system at time t. It is shown that under common assumptions of the asset prices, such as166

jump-diffusion processes, the state variables are simply the portfolio values and time (Dang167

and Forsyth, 2014). While we consider the case of the portfolio values and time as state168

variables in this article, incorporating additional factors as state variables poses no technical169

challenges for the proposed methodology. Mathematically, p(t) = p(X(t)) = (pi(X(t)) : i ∈170

{1, · · · , Na})⊤ ∈ RNa , where X(t) =
(
t,W (t), Ŵ (t)

)⊤ ∈ X ⊆ R3, and pi : X 7→ R. Our goal171

is to find the optimal control function p so that some chosen relative performance measure172

of the active portfolio over the benchmark portfolio is maximized.173

In addition, we assume that the active portfolio and the benchmark portfolio follow the174

same discrete rebalancing schedule denoted by T ⊆ [t0, T ]. Specifically, we consider an175

equally spaced discrete schedule with N rebalancing events, i.e.,176

T =
{
ti : i = 0, · · · , N − 1

}
, (2.1)

where ti = i∆t, and ∆t = T/N .177

2.1 Feasible relaxed-constraint strategies178

In practice, a permissible relaxed-constraint portfolio needs to satisfy some specific con-179

straints, e.g., a bound on leverage. In this section, we mathematically define the feasible180

relaxed-constraint strategies.181

Definition 2.1. (Feasible relaxed-constraint strategies). A strategy p : X 7→ RNa is a182

feasible relaxed-constraint strategy if and only if183

Im(p) ⊆ Z, (2.2)
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where Z ⊂ RNa encodes the portfolio constraints, i.e., the summation to one constraint and184

the maximum total long position constraint, as follows.185

Z =

{
z ∈ RNa

∣∣∣∣∣
Na∑
i=1

zi = 1,
Na∑
i=1

(zi)
+ ≤ pmax,

}
, (2.3)

where (zi)
+ = max(zi, 0) is the positive part of zi, and pmax ≥ 1 is a given constant.186

Furthermore, A denotes the set of all feasible strategies, i.e., A = {p : Im(p) ⊆ Z }.187

Remark 2.1. (Financial meaning of pmax). pmax is the maximum total long position of the188

portfolio. For example, the 130/30 portfolios use pmax = 1.3. Note that setting pmax is the189

same as setting a limit on the total leverage of the portfolio, since the leverage is calculated190

based on the amount of debt (short position) raised in the portfolio. In particular, if pmax = 1,191

no leverage is allowed.192

2.2 Stochastic optimal control problem193

In this article, we focus on a registered investment fund operating as a limited-liability194

legal entity (Carney, 1998). This structure is commonly found among investment funds195

in the United States (Fung and Hsieh, 1999; McCrary, 2004). Limited liability is a crucial196

characteristic of these funds that restricts investors’ liability to the amount they have invested197

in the fund (Easterbrook and Fischel, 1985). Consequently, investors are protected from198

personal liability for the fund’s debts or obligations beyond their initial investment.199

For an active portfolio which allows for both long and short positions, there is a theoretical200

possibility for the value of the portfolio to become negative. In such circumstances, the fund201

would initiate a bankruptcy process, resulting in the settlement of outstanding liabilities and202

the cessation of future trading activities. From a mathematical perspective, the portfolio203

value remains at zero throughout the remainder of the investment horizon. In addition,204

for simplicity, we do not consider subsequent cash injections after the initial investment.205

Consequently, the evolution of the portfolio values can be described as follows from the206

perspective of an investor in the limited-liability fund:207 
W (tj+1) =


( Na∑

i=1

pi(X(tj)) · Si(tj+1)−Si(tj)

Si(tj)

)
W (tj), if W (tj) > 0,

0, if W (tj) ≤ 0,

Ŵ (tj+1) =
( Na∑

i=1

p̂i · Si(tj+1)−Si(tj)

Si(tj)

)
Ŵ (tj).

∀j ∈ {0, · · · , N−1},

(2.4)
Let sets Wp = {W (t), t ∈ T } and Ŵp̂ = {Ŵ (t), t ∈ T } represent the trajectories of the208

portfolio values for the active portfolio and the benchmark portfolio respectively, following209

the dynamics specified in equation (2.4). We introduce an investment performance metric210

denoted by F (Wp, Ŵp̂) ∈ R, which quantifies the relative performance of the active portfolio211

in relation to the benchmark portfolio based on their respective value trajectories. In this212
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article, we assume the asset prices S(t) ∈ RNa are stochastic. Consequently, the value213

trajectories Wp, Ŵp̂, and the performance metric F (Wp, Ŵp̂) are also stochastic.214

When investment managers aim to optimize an investment performance, the assessment215

commonly involves evaluating the expectation of a random metric. Let E(t0,w0)
p [F (Wp, Ŵp̂)]216

denote the expectation of the performance metric F , given a specific initial (cash injection)217

value w0 = W (0) = Ŵ (0) at time t0 = 0. The expectation is evaluated on random wealth218

trajectory following an admissible investment strategy p ∈ A and the benchmark investment219

strategy p̂. Since we assume the benchmark strategy to be predetermined and known, we220

keep the benchmark strategy p̂ notationally implicit for simplicity. Subsequently, we try to221

solve the following stochastic optimization (SO) problem:222

(Stochastic optimization problem): inf
p∈A

E(t0,w0)
p

[
F (Wp, Ŵp̂)

]
. (2.5)

The choice of F (·) depends on specifying investment goals appropriate performance as-223

sessment metrics. One of the advantages of our proposed approach is its applicability to224

any function F (ideally continuously differentiable) and computational feasibility for high225

dimensional problems, even under some constraints.226

Solving the constrained stochastic optimal control problem (2.5) is challenging when the227

feasible set A corresponds to the intricate leverage constraint (2.2)&(2.3). Subsequently228

we first focus on addressing this challenge for a general optimal relaxed-constraint problem229

(2.5) by proposing a neural network approach that circumvents the complexity of handling230

this constraint through introduction of a specially designed relaxed-constraint neural net-231

work (RCNN) model. In §5, we motivate the cumulative quadratic shortfall as a suitable232

choice of the objective function in outperforming a benchmark and assess computationally233

performance of the corresponding optimal strategy.234

3 Relaxed-constraint neural network (RCNN)235

In this section, we describe proposed neural network approach for solving the stochastic236

optimization problem (2.5) for relaxed-constraint portfolios described in (2.2) & (2.3). In237

order to efficiently handle these nonstandard constraints, our key idea is to approximate238

the optimal control function using a neural network activation function that automatically239

satisfies the feasibility constraint (2.2).240

Specifically, we want to design a neural network fθ : X 7→ RNa , where θ ∈ RNθ represents241

the parameters of the neural network (i.e., weights and biases), that approximates the control242

function p,243

p(X(t)) ≃ fθ(X(t)), (3.1)

and this neural network itself is a feasible relaxed-constraint strategy, i.e., fθ ∈ A, where244

A is the set of relaxed-constraint strategies described in Definition 2.1. Using such a neural245

network, the original constrained optimization problem (2.5) can be converted to the follow-246

ing unconstrained optimization problem, which can readily be solved computationally using247
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optimization methods for unconstrained optimization,248

(Unconstrained optimization problem): inf
θ∈RNθ

E(t0,w0)
fθ

[
F (Wθ, Ŵp̂)

]
. (3.2)

Here Wθ is the wealth trajectory of the active portfolio with control following the neural249

network approximation function fθ(X(t)) parameterized by θ.250

To design such a neural network model, we first define the commonly used fully connected251

feedforward neural network (Lu and Lu, 2020) as follows.252

Definition 3.1. (Fully connected feedforward neural network f̃θ). A fully connected feed-253

forward neural network (FNN) maps an input vector x ∈ Rd0 to an output vector h ∈ RdK+1,254

where FNN contains K hidden layers of sizes d1, · · · , dK. The neural network is parameter-255

ized by the weight matrices θ(k) ∈ Rdk−1×dk and bias vectors θ
(k)
b ∈ Rdk , for k = 1, · · · , K+1.256

Then, the output h is derived from the input x iteratively as follows.257 
x(0) = x,

x(k) = σ
((

θ(k)
)⊤ · x(k−1) + θ

(k)
b

)
, 1 ≤ k ≤ K,

h =
(
θ(K+1)

)⊤ · x(K) + θ
(K+1)
b .

(3.3)

Here σ is the pointwise sigmoid activation function, i.e., for any vector z, [σ(z)]i = σ(zi).258

For notational simplicity, we flatten and assemble all weight matrices and bias vectors into a259

single parameter vector θ = (θ(1),θ
(1)
b , · · · ,θ(K+1),θ

(K+1)
b )⊤ ∈ RNθ , where Nθ =

∑K+1
k=1 (dk−1 ·260

dk+dk). Furthermore, we use the 2-tuple
(
K, (d1, · · · , dK)⊤

)
to denote the hyperparameters,261

i.e., the number of hidden layers and the sizes of each hidden layer.262

The function defined by the above fully connected feedforward neural network parameter-263

ized by θ is denoted by f̃θ.264

Note that the size of θ depends on hyperparameters
(
K, (d1, · · · , dK)⊤

)
. However, we265

notationally omit the 2-tuple in f̃θ for simplicity.266

To achieve feasibility explicitly, we propose the following relaxed-constraint activation267

function which is applied to the feedforward neural network f̃θ.268

Definition 3.2. (Relaxed-constraint activation function). We define the “relaxed-constraint269

activation function”, ϕ : RNa−1 7→ RNa, as270

ϕ = ϕ3 ◦ ϕ2 ◦ ϕ1, (3.4)

i.e., the relaxed-constraint activation function ϕ is a composition of ϕ3, ϕ2 and ϕ1, where271

ϕ1, ϕ2 and ϕ3 are defined as follows:272

273

bounded mapping ϕ1 : RNa−1 7→ RNa−1. Given a constant α ∈ R, α ̸= 1
2
, for any274

h = (h1, · · · , hNa−1)
⊤ ∈ RNa−1,275

ϕ1(h) = (1− α) + (2α− 1) · σ(h). (3.5)
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Here σ : RNa−1 7→ RNa−1 is the pointwise sigmoid function, i.e. [σ(h)]i = σ(hi). In essence,276

ϕ1 maps the unbounded real vector space RNa−1 into the bounded open set of (1− α, α)Na−1
277

if α > 1
2
or (α, 1− α)Na−1 if α < 1

2
.1278

279

extension mapping ϕ2 : RNa−1 7→ RNa. For any u = (u1, · · · , uNa−1)
⊤ ∈ RNa−1, define280

ϕ2(u) =
(
u, 1−

Na−1∑
i=1

ui

)⊤
. (3.6)

In other words, ϕ2 extends a vector from RNa−1 into a vector in RNa, which has the property281

that all entries of this vector sum up to one.282

283

scaling mapping ϕ3 : RNa 7→ RNa. For any v = (v1, · · · , vNa)
⊤ ∈ RNa, and a constant284

pmax > 1, define the285

ϕ3(v) =

{
v, if

∑Na

i=1(vi)
+ ≤ pmax,

v+ · pmax∑Na
i=1(vi)

+
+ v− · 1−pmax

1−
∑Na

i=1(vi)
+
, if

∑Na

i=1(vi)
+ > pmax.

(3.7)

Here (vi)
+ = max(vi, 0),∀i ∈ {1, · · · , Na}. v+ =

(
max(v1, 0), · · · ,max(vNa , 0)

)⊤ ∈ RNa and286

v− =
(
min(v1, 0), · · · ,min(vNa , 0)

)⊤ ∈ RNa are the positive and negative parts of vector v.287

Namely, ϕ3 scales any vector in RNa so that the sum of all positive entries of the scaled vector288

is less than or equal to the constant pmax.289

Finally, we define the relaxed-constraint neural network (RCNN) as follows.290

Definition 3.3. (Relaxed-constraint neural network). Let X ⊂ R3 be the state space. Given291

hyperparameters
(
K, (d1, · · · , dK)⊤

)
(i.e. number of hidden layers and their sizes), and pa-292

rameter θ, let f̃θ : X 7→ RNa−1 be the fully connected feedforward neural network (FNN)293

function parameterized by θ as defined in Definition 3.1. Let ϕ : RNa−1 7→ RNa be the294

relaxed-constraint activation function defined in Definition 3.2. Then, we define the relaxed-295

constraint neural network (RCNN) function, fθ : X 7→ RNa, as296

fθ = ϕ ◦ f̃θ. (3.8)

We first establish the following lemma to show that the RCNN function defined in Defi-297

nition 3.3 is a feasible strategy that satisfies the constraints defined in Definition 2.1.298

Lemma 3.1. (Feasibility of RCNN function). For any hyperparameters
(
K, (d1, · · · , dK)⊤

)
299

(i.e. number of hidden layers and their sizes) and parameter θ, let fθ be the corresponding300

RCNN function defined in Definition 3.3. Then, fθ is a feasible strategy under the relaxed301

constraints, as described in Definition 2.1.302

1Obviously, if α = 1
2 , then ϕ1 becomes a trivial constant mapping.
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Proof. According to the relaxed constraints in Definition 2.1, it is sufficient to show that303

Im(fθ) ⊆ Z, (3.9)

where Z is the feasibility region defined in (2.3).304

Let y = (y1, · · · , yNa)
⊤ = fθ(x), ∀x ∈ X ⊂ R3, where f̃θ is the FNN in Definition 3.1.305

To show (3.9), it is sufficient to show that306

y ∈ Z, (3.10)

which is equivalent to307 {∑Na

i=1 yi = 1,∑Na

i=1(yi)
+ ≤ pmax.

(3.11)

Let ϕ1, ϕ2 and ϕ3 be the bounded mapping, extension mapping, and scaling mapping308

in Definition 3.2. Let h = f̃θ(x) and v = ϕ2(ϕ1(h)) ∈ RNa . Then y = ϕ3(v). Note that309 ∑Na

i=1 vi = 1 (due to ϕ2).310

If
∑Na

i=1(vi)
+ ≤ pmax, then y = ϕ3(v) = v ∈ Z.311

On the other hand, if
∑Na

i=1(vi)
+ > pmax, then312

y = ϕ3(v) = (v)+ · pmax∑Na

i=1(vi)
+
+ (v)− · 1− pmax

1−
∑Na

i=1(vi)
+
. (3.12)

Note that pmax∑Na
i=1(vi)

+
> 0 and 1−pmax

1−
∑Na

i=1(vi)
+
> 0. Thus,313  (y)+ = (v)+ · pmax∑Na

i=1(vi)
+
,

(y)− = (v)− · 1−pmax

1−
∑Na

i=1(vi)
+
.

(3.13)

Then, we have314 
∑Na

i=1(yi)
+ = pmax∑Na

i=1(vi)
+
·
(∑Na

i=1(vi)
+
)
= pmax ≤ pmax,∑Na

i=1(yi)
− = 1−pmax

1−
∑Na

i=1(vi)
+
·
(∑Na

i=1(vi)
−) = 1−pmax∑Na

i=1(vi)
− · (

∑Na

i=1(vi)
−) = 1− pmax,

(3.14)

and315

Na∑
i=1

yi =
Na∑
i=1

(yi)
+ +

Na∑
i=1

(yi)
− = 1. (3.15)

Therefore, both conditions in (3.11) are satisfied, thus concluding the proof.316

Remark 3.1. (Intuition behind the RCNN design). As shown in Definition 3.3, the pro-317

posed RCNN function is constructed by applying the relaxed-constraint activation function318

ϕ (Definition 3.2) on top of a FNN (Definition 3.1). The FNN provides the approximation319

power by connecting several hidden layers via the sigmoid activation functions. The relaxed-320

constraint activation function ϕ, on the other hand, guarantees that the RCNN function321
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satisfies the relaxed constraints. Particularly, recall the three mappings ϕ1, ϕ2 and ϕ3 in322

Definition 3.2. ϕ1 maps the output region of the FNN (which can be any point in RNa−1)323

into a bounded region of (1 − α, α)Na−1, if α > 1
2
or (α, 1 − α)Na−1, if α < 1

2
. Intuitively,324

the output of ϕ1 represents an initial estimate of the allocation fraction for the first Na − 1325

assets. Due to the maximum total long position of pmax > 1, any feasible allocation fraction326

for each asset falls into [1 − pmax, pmax]. Therefore, we choose α to be slightly larger than327

pmax (in computational study, we use α = pmax + ϵ where ϵ = 10−6 is a small constant),328

so that (1 − α, α)Na−1 tightly covers [1 − pmax, pmax]
Na−1. As we will show in the following329

lemma, choosing α > pmax guarantees the existence of a right inverse of ϕ, which is critical to330

ensuring that the RCNN function can approximate the optimal relaxed-constraint strategy331

accurately. Subsequently, ϕ2 guarantees that the summation to one constraint is satisfied,332

and ϕ3 guarantees that the maximum total long position constraint is satisfied while preserv-333

ing the summation to one property obtained from ϕ2. It is worth noting that without ϕ1, the334

RCNN function is still a feasible relaxed-constraint strategy. However, our computational335

results suggest that applying ϕ1 leads to a faster convergence in the training of the neural336

network.337

Next we show that the mapping ϕ has a right inverse if α > pmax, which is necessary to338

demonstrate that the proposed RCNN can generate any feasible strategy. This property is339

also needed for establishing convergence of RCNN as mentioned in Remark 3.1.340

Lemma 3.2. (Existence of right-inverse of ϕ). Let ϕ : RNa−1 7→ RNa be a relaxed constraint341

activation function as defined in Definition 3.2. Let pmax be the maximum total long position342

defined in (2.3). If α > pmax, then there exists a function
−→
ϕ : Im(ϕ) 7→ RNa−1, such that

−→
ϕ343

is the right-inverse of ϕ, i.e. ϕ(
−→
ϕ (y)) = y,∀y ∈ Im(ϕ).344

Proof. Let y = (y1, · · · , yNa)
⊤ ∈ Im(ϕ) ⊂ RNa . According to Lemma 3.1,345

Im(ϕ) ⊆ Z. (3.16)

Therefore, yi ∈ [1− pmax, pmax],∀i ∈ {1, · · · , Na}. Then,346

yi − 1 + α

2α− 1
∈
[α− pmax

2α− 1
,
α + pmax − 1

2α− 1

]
⊂

( 0

2α− 1
,
2α− 1

2α− 1

)
= (0, 1). (3.17)

We can then define
−→
ϕ : Im(ϕ) 7→ RNa−1 as347

−→
ϕ (y) =

(
σ−1

(y1 − 1 + α

2α− 1

)
, · · · , σ−1

(yNa−1 − 1 + α

2α− 1

))⊤
, (3.18)

where σ−1(·) is the inverse function of the sigmoid function.348

Then, it can be easily verified that
−→
ϕ is a right-inverse of ϕ, i.e., for all y ∈ Im(ϕ),349

ϕ
(−→
ϕ (y)

)
= y. (3.19)

350
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Denote the wealth trajectory following fθ by Wθ. Then, the original constrained opti-351

mization problem (2.5) is converted into the following unconstrained optimization problem:352

(Unconstrained parameterized problem): inf
θ∈RNθ

E(t0,w0)
fθ

[
F (Wθ, Ŵp̂)

]
. (3.20)

An essential question remains unanswered: for the optimal relaxed-constraint strategy353

p∗, is it possible to find a hyperparameters
(
K, (d1, · · · , dK)⊤

)
and parameter θ so that the354

corresponding RCNN function fθ can be arbitrarily close to p∗? If the answer is affirmative,355

it assures that solving the unconstrained problem (3.20) can yield a sufficiently accurate356

approximation of the optimal relaxed-constraint strategy. To address this crucial question,357

we establish an approximation theorem in the following section, providing a formal proof358

of the existence of such approximations. This theorem theoretically justifies effectiveness of359

the neural network methodology for approximating the optimal relaxed-constraint strategy.360

4 Universal approximation theorem for RCNN361

Before we prove the approximation theorem for the RCNN, we first present some mild362

assumptions.363

Assumption 4.1. (Assumption on state space and optimal control).364

365

(i) The state space X is a compact set.366

(ii) The optimal control p∗ : X 7→ Z is continuous.367

Remark 4.1. (Remark on Assumption 4.1). In our particular problem of outperforming368

a benchmark portfolio, the state variable vector is X(t) = (t,W (t), Ŵ (t))⊤ ∈ X where369

t ∈ [0, T ]. In this case, assumption (i) is equivalent to the assumption that the wealth of the370

active portfolio and benchmark portfolio is bounded, i.e. X = [0, T ]× [0, wmax]× [0, ŵmax],371

where wmax and ŵmax are the respective upper bounds for the portfolio values. Assumption372

(ii) assumes that the optimal control is a continuous function, which is common and intuitive.373

Before presenting the approximation theorem, we briefly review the results of Kratsios374

and Bilokopytov (2020).375

Lemma 4.1. Let X ⊂ Rl be a compact set, and Y ⊂ Rm. Let ρ : Rn 7→ Y satisfy the376

following:377

(i) ρ is continuous and has a right inverse on Im(ρ), i.e. ∃−→ρ : Im(ρ) 7→ Rn, s.t.378

ρ(−→ρ (z)) = z, ∀z ∈ Im(ρ).379

(ii) Im(ρ) is dense in Y.380
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Then, for any continuous g : X 7→ Y, and any ϵ > 0, there exists a choice of hyperparam-381

eters
(
K, (d1, · · · , dK)⊤

)
and parameter θ, such that the corresponding FNN f̃θ : X 7→ Rn

382

described in Definition 3.1 satisfies383

sup
x∈X

∥ρ(f̃θ(x))− g(x)∥ < ϵ,∀x ∈ X . (4.1)

Here ∥ · ∥ denotes the vector norm.384

Proof. This is a direct application of Theorem 3.3 of Kratsios and Bilokopytov (2020) (for385

general topological spaces) in the metric space.386

Intuitively, the second assumption of Lemma 4.1 allows the use of an activation function387

(such as the softmax function) whose output values form an open set, as long as this open388

set is dense in Y (which can be a closed set). The two assumptions ensure the existence of389

a continuous mapping of which the image almost covers Y .390

We then proceed to present the approximation theorem for the RCNN.391

Theorem 4.1. (Approximation of optimal relaxed-constraint strategy). Assume that the392

constant α in Definition 3.2 satisfies α > pmax and Assumption 4.1 holds. Given the optimal393

control p∗, ∀ϵ > 0, there exists
(
K, (d1, · · · , dK)⊤

)
, and θ ∈ RNθ such that the corresponding394

RCNN fθ defined in Definition (3.3) satisfies the following:395

sup
x∈X

∥fθ(x)− p∗(x)∥ < ϵ. (4.2)

Proof. Let ϕ be the relaxed constraint activation function in Definition 3.2. According to396

Lemma 3.1,397

Im(ϕ) ⊆ Z. (4.3)

Furthermore, ∀z = (z1, · · · , zNa)
⊤ ∈ Z, zi ∈ [1 − pmax, pmax], ∀i ∈ {1, · · · , Na}. In398

addition, ϕ is continuous and has a right-inverse
−→
ϕ , following Lemma 3.2. Hence

−→
ϕ (z) is399

well-defined and ϕ(
−→
ϕ (z)) = z (see also (3.17)). Therefore,400

Z ⊆ Im(ϕ). (4.4)

Combine (4.4) with (4.3), Im(ϕ) = Z, and thus Im(ϕ) is dense in Z.401

Applying Lemma 4.1, there exists
(
K, (d1, · · · , dK)⊤

)
, and θ ∈ RNθ , such that the402

corresponding FNN f̃θ (Definition 3.1) and RCNN fθ = ϕ ◦ f̃θ satisfy403

sup
x∈X

∥fθ(x)− p∗(x)∥ = sup
x∈X

∥ϕ
(
f̃θ(x)

)
− p∗(x)∥ < ϵ. (4.5)

404

Remark 4.2. (Implication of Theorem 4.1). Theorem 4.1 provides valuable insight that, for405

any feasible control that satisfies the constraints (2.2), there exists hyperparameters and pa-406

rameter values that enables the corresponding RCNN to approximate the control arbitrarily407

well. Consequently, when the RCNN is sufficiently large in terms of the number of hid-408

den nodes, solving the unconstrained optimization problem (3.20) results in an approximate409

solution that closely approximates the optimal control p∗.410
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5 Performance assessment of optimal strategies411

Historically, relaxed-constraint portfolios have achieved a meagre advantage, if any, over their412

long-only counterparts. For example, around 2007, the concept of the 130/30 portfolio gained413

much popularity (Johnson et al., 2007; Gastineau, 2008; Lo and Patel, 2008; Krusen et al.,414

2008)). However, reports indicate that even when compared to long-only portfolios, which415

the 130/30 portfolios were designed to replace, they did not demonstrate superior returns416

(Johnson, 2013). This is counter-intuitive from a mathematical standpoint, since relaxed-417

constraint portfolios theoretically offer a larger solution space than long-only portfolios due418

to the relaxed portfolio constraint.419

In this section, we computationally compare performance of an optimal relaxed-constraint420

portfolio with that of an optimal long-only portfolio, when both portfolios are optimized421

under the same investment objective function, with the only difference being the portfolio422

constraints.423

Particularly, we use the 130/30 portfolio as an example of the relaxed-constraint portfolio.424

However, the methodology can be readily applied to other relaxed-constraint portfolios.425

We conduct computational assessment for the optimal RCNN strategy and long-only426

strategy based on historical market data. This computational investigation requires solv-427

ing problem (3.20) and evaluating performance of the RCNN model associated with the428

computed optimal parameters θ∗.429

Next we first motivate the objective function we choose for outperforming a benchmark.430

In addition we provide a brief overview on how to compute the optimal solution.431

5.1 Investment objective432

A commonly used metric for evaluating the relative performance of an active portfolio com-433

pared to a benchmark portfolio is the information ratio (IR). In the context of dynamic434

investing, the IR of the active portfolio over the interval [0, T ] is defined as follows:435

IR(t0,w0)
p =

E(t0,w0)
p

[
W (T )− Ŵ (T )

]
Stdev

(t0,w0)
p

[
W (T )− Ŵ (T )

] , (5.1)

where W (T ) and Ŵ (T ) represent the terminal value of the active and benchmark portfolios,436

respectively. The IR measures the volatility-adjusted relative performance of the active437

portfolio at the terminal time T . However, it does not capture the intermediate tracking438

difference of the portfolio, which is a crucial aspect of evaluating the performance of an active439

portfolio.440

To address this limitation, van Staden et al. (2024) introduce the cumulative quadratic441

tracking difference (CD) metric:442

(CD) : F (Wp, Ŵp̂) =
∑

t∈T ∪{T}

(
W (t)− eβtŴ (t)

)2

∆t. (5.2)
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In the CD metric, the parameter β represents a predefined outperformance target. The443

CD metric quantifies how closely the value of the active portfolio tracks an elevated target444

rate eβtŴ (t), a concept proposed in Ni et al. (2022). Unlike (5.1), the CD objective captures445

the intermediate tracking performance of the portfolio, and the parameter β provides a clear446

performance goal.447

However, CD metric (5.2) minimizes the relative performance between the active portfolio448

and the elevated target quadratically. In other words, both underperformance and outper-449

formance are penalized. In practice, outperformance of the active portfolio over the elevated450

target is desirable. Therefore, instead of the CD metric, we use the following cumulative451

quadratic shortfall (CS) metric in computational investigation.452

(CS) : F (Wp, Ŵp̂) =
∑

t∈T ∪{T}

(
min

(
W (t)− eβtŴ (t), 0

))2

∆t. (5.3)

Consequently, we investigate the following optimization problem in computational as-453

sessment:454

inf
θ∈RNθ

{
1

Nd

Nd∑
j=1

∑
t∈T ∪{T}

(
min

(
W

(j)
θ (t)− eβtŴ (j)(t), 0

))2

∆t

}
. (5.4)

It is worth noting that in Equation (5.3), the β parameter also reflects the risk appetite455

of the investor. In order to achieve a higher β value, the investor needs to take more risk456

to achieve a higher expected return, thus investing in riskier assets. In §5, we will explore457

varying value of β computationally and examine how this affects the optimal strategy.458

Fundamentally, the goal of the CS objective is to find a balance between portfolio return459

and risk. It is clear that investors aim to exceed the benchmark portfolio return, as demon-460

strated by the outperformance parameter β, which indicates an expected annualized premium461

over the benchmark return. Simultaneously, the CS objective also aims to bound the portfo-462

lio’s tail risks by penalizing underperformance relative to the elevated target quadratically.463

For further discussion of the CS objective function, we refer the reader to van Staden et al.464

(2024); Ni et al. (2024).465

For the computational investigation, we approximate the expectation in (3.20) by utilizing466

samples from a finite training sample set Y = Y (j) : j = 1, · · · , Nd, where Nd denotes the467

total number of samples. Here, Y (j) represents the jth sample return path comprising joint468

observations of asset returns
{
Ri(t), i ∈ {1, · · · , Na}

}
, observed at t ∈ T .2 Mathematically,469

the approximation of problem (3.20) can be formulated as follows:470

inf
θ∈RNθ

{
1

Nd

Nd∑
j=1

F
(
W(j)

θ , Ŵ(j)
p̂

)}
. (5.5)

Here, W(j)
θ =

(
W

(j)
θ (t0), · · · ,W (j)

θ (tN)
)
represents the wealth trajectory of the active port-471

folio, which follows the RCNN control model parameterized by θ. Similarly, Ŵ(j)
p̂ denotes472

2It should be noted that the corresponding set of asset prices can be easily inferred from the set of asset
returns, and vice versa.
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the wealth trajectory of the benchmark portfolio, following the benchmark strategy p̂, i.e.,473

Ŵ(j)
p̂ =

(
Ŵ (j)(t0), · · · , Ŵ (j)(tN)

)
. Both portfolios are evaluated based on the j-th sample474

return path, Y (j).475

We adopt a shallow neural network structure, specifically, with a single hidden layer476

consisting of 10 hidden nodes (K = 1 and d1 = 10). The (feature) input to the RCNN477

network consists of a 3-tuple vector (t,Wθ(t), Ŵ (t))⊤. Here, at any time t ∈ [t0, T ], Wθ(t)478

represents the wealth of the active portfolio determined by the RCNN model parameterized479

by θ, while Ŵ (t) represents the wealth of the benchmark portfolio.480

An important computational advantage of the proposed neural network framework is481

that the control model parameters can be computed directly using gradient descent-based482

methods. Essentially, the control model function is a recurrent neural network (RNN), and483

the procedure for calculating the gradient of the objective function along the jth path is484

outlined as follows.485

∇θF
(
W(j)

θ , Ŵ(j)
p̂

)
=

N∑
i=1

∂F

∂W
(j)
θ (ti)

∇θW
(j)
θ (ti). (5.6)

Let R(ti) = (R1(ti), · · · , R1(ti))
⊤ ∈ RNa denote the return vector at ti. Then the wealth486

dynamics for the value of the active portfolio described in (2.4) can be summarized as487

W
(j)
θ (ti) = fθ

(
W

(j)
θ (ti−1), Ŵ

(j)(ti−1), ti−1

)⊤(
1 +R(ti)

)
W

(j)
θ (ti−1)1W

(j)
θ (ti−1)>0

, (5.7)

where fθ is the RCNN parameterized by θ, and 1
W

(j)
θ (ti−1)>0

is a scalar indicator function.488

Note that ∇θW
(j)
θ (t0) = 0, since the initial portfolio value is a constant value. Then, for489

any i ∈ {1, · · · , N}, the gradients ∇θW
(j)
θ (ti) in (5.6) can be obtained recursively using the490

chain rule, i.e.,491

∇θW
(j)
θ (ti) = ∇θ

(
fθ
(
W

(j)
θ (ti−1), Ŵ

(j)(ti−1), ti−1

)⊤(
1 +R(ti)

)
W

(j)
θ (ti−1)1W

(j)
θ (ti−1)>0

)
(5.8)

= ∇θ

(
fθ
(
W

(j)
θ (ti−1), Ŵ

(j)(ti−1), ti−1

)⊤(
1 +R(ti)

))
W

(j)
θ (ti−1)1W

(j)
θ (ti−1)>0

+
(
fθ
(
W

(j)
θ (ti−1), Ŵ

(j)(ti−1), ti−1

)⊤(
1 +R(ti)

)
1
W

(j)
θ (ti−1)>0

)
∇θW

(j)
θ (ti−1) (5.9)

=
(
∇θfθ

(
W

(j)
θ (ti−1), Ŵ

(j)(ti−1), ti−1

))(
1 +R(ti)

)
W

(j)
θ (ti−1)1W

(j)
θ (ti−1)>0

+
(∂fθ(W (j)

θ (ti−1), Ŵ
(j)(ti−1), ti−1

∂W
(j)
θ (ti−1)

)⊤(
1 +R(ti)

)
1
W

(j)
θ (ti−1)>0

∇θW
(j)
θ (ti−1)

+
(
fθ
(
W

(j)
θ (ti−1), Ŵ

(j)(ti−1), ti−1

)⊤(
1 +R(ti)

)
1
W

(j)
θ (ti−1)>0

)
∇θW

(j)
θ (ti−1)

(5.10)

Subsequently, the optimal parameter θ∗ can be determined numerically by solving prob-492

lem (5.5) using gradient-based optimization algorithms such as SGD or ADAM (Kingma493
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and Ba, 2014). This process is commonly referred to as the “training” of the neural network494

model, and the set Y is commonly known as the training dataset (Goodfellow et al., 2016).495

Once the model is trained, we evaluate the performance of the model on a test dataset Y test,496

which consists of samples unseen in training dataset Y .497

5.2 Bootstrap resampled data498

To evaluate performance of the optimal leveraged strategy RCNN over the long-only strategy499

in outperforming a benchmark, we use the U.S. monthly data from the Center for Research in500

Security Prices (CRSP)3 from January 1926 to January 2023. Particularly, we obtain the real501

historical returns of the equal-weighted/cap-weighted U.S. stock indexes and 10-year/30-day502

treasury indexes by adjusting for the CPI index.503

Conventional approaches in mathematical finance often involve fitting a parametric syn-504

thetic model, e.g., a stochastic process model, to the original historical asset price data505

and subsequently resampling from the fitted model (Merton, 1976; Kou, 2002). While such506

a synthetic model may offer the advantage of often providing a closed-form solution, it507

also presents certain disadvantages. Firstly, accurate estimation of model parameters is of-508

ten challenging and requires a substantial historical data period (Black, 1993; Brigo et al.,509

2008). Secondly, the assumptions for a chosen parametric synthetic model is likely to be510

inconsistent with the characteristics of the real-world financial markets; as such, the validity511

of synthetic models is often up to debate.512

Understanding these limitations, alternative to parametric models, we employ a station-513

ary block bootstrap resampling technique to generate the training and testing datasets. In514

essence, the block bootstrap resampling method randomly selects blocks from the underlying515

historical time series data and combines them to form a new time series path. In contrast to516

synthetic models, the bootstrap resampling method avoids imposing assumptions regarding517

the underlying data-generating model and is considered a relatively unbiased approach.518

The stationary block bootstrap resampling method, originally proposed by Politis and519

Romano (1994), preserves the stationarity of the original time series data by employing520

random block sizes. The pseudo-code for the algorithm can be found in Appendix A. In our521

study, we adopt an expected block size of 6 months and resample 20,000 paths for both the522

training and testing datasets from the real historical returns.523

Finally, we note that the use of bootstrap resampling for testing investment strategies is524

widely adopted by practitioners (Alizadeh and Nomikos, 2007; Cogneau and Zakamouline,525

2013; Dichtl et al., 2016; Scott and Cavaglia, 2017; Shahzad et al., 2019; Cavaglia et al.,526

2022; Simonian and Martirosyan, 2022) as well as academics (Anarkulova et al., 2022).527

3©2023 Center for Research in Security Prices (CRSP), The University of Chicago Booth School of
Business. Wharton Research Data Services (WRDS) was used in preparing this article. This service and
the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its
third-party suppliers.
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5.3 Investment specifications528

We consider four assets for the experiment: the equal-weighted stock index, the cap-weighted529

stock index, the 30-day U.S. T-bill index, and the 10-year U.S. T-bond index. As mentioned530

in §5.2, we use monthly CRSP data from January 1926 to January 2023. Since active531

portfolios are often evaluated by their relative performance against a passive benchmark, we532

choose a simple 70/30 portfolio as the benchmark, which always maintains 70% wealth in533

the equal-weighted stock index,4 and 30% in the 30-day T-bill index.534

Table 5.1 outlines the investment scenario is outlined. In summary, both the active535

portfolio and the benchmark portfolio commence with an initial wealth of 100 at time t0 = 0.536

Monthly rebalancing is implemented for both portfolios over a 10-year investment horizon.537

Investment horizon T (years) 10
Underlying assets CRSP cap-weighted/equal-weighted index (real)

CRSP 30-day/10-year U.S. treasury index (real)
Index samples for bootstrap 1926/01 to 2023/01
Initial portfolio wealth 100
Rebalancing frequency Monthly
Cash injections 0
Benchmark portfolio 70% equal-weighted index/30% 30-day T-bill
Investment objective Cumulative quadratic shortfall (CS)
Outperformance target rate β 0.5% - 5%, incremental by 0.5%

Table 5.1: Investment scenario.

The optimal long-only portfolio under the cumulative quadratic shortfall objective is538

computed using the neural network model for long-only constraints, as proposed in (Li and539

Forsyth, 2019; Ni et al., 2022). Briefly, a two-layer feed-forward neural network, with a540

softmax activation function at the output layer, is used to approximate the optimal control541

function. This neural network uses the same state vector in this article as input (i.e. wealth of542

portfolios and time), and outputs an allocation vector which satisfies the long-only constraint,543

which is a consequence of using the softmax activation function.544

The optimal relaxed-constraint portfolio is computed using the RCNN as described in §2.545

We note, however, that the proposed neural network methodology is agnostic to the choice546

of the objective function and can be applied to a broad range of performance metrics.547

5.4 Enhanced performance of RCNN over long-only548

By varying the outperformance target parameter β across the range of 0.5% to 5% (incre-549

mental with a 0.5% step size), we obtain the corresponding optimal portfolios through the550

4In Ni et al. (2024), bootstrap simulations based on long term historical data show that equal weight
indexes partially stochastically dominate capitalization weighted indexes.
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cumulative quadratic shortfall (CS) objective.551

In Table 5.2, we present the performance of the computed optimal 130/30 portfolio and552

optimal long-only portfolio for tracking elevated targets. Particularly, the outperforming553

performance is reflected in the value of the CS objective, which measures the cumulative554

quadratic shortfall with respect to elevated targets defined by the target rate β.555

β 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
130/30 275 402 622 985 1491 2434 3427 4782 6518 8709

Long-only 280 432 708 1150 1841 2855 4547 6430 9041 12594

Table 5.2: CS objective function values for the optimally trained control models on the test
data for various β (lower is better). The results are based on the performance of trained
models evaluated on the test dataset Y test.

As we can observe from Table 5.2, even though the optimal long-only portfolio is obtained556

under the same investment scenario and optimized under the same objective function, it557

achieves significantly worse tracking performance than the optimal 130/30 portfolio.558

Particularly, the gap between the CS objective function values widens as the target559

outperformance rate β increases, indicating that the long-only portfolio is further restricted560

by the long-only constraints as the outperformance target becomes more ambitious. This561

phenomenon is further demonstrated in Table 5.3, in which we list the median annual return562

of both portfolios.563

β 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
130/30 7.2% 7.6% 8.1% 8.5% 8.9% 9.4% 9.7% 10.0% 10.2% 10.5%

Long-only 7.2% 7.6% 8.1% 8.5% 8.8% 8.9% 8.9% 8.9% 8.9% 8.9%

Table 5.3: Median annualized returns of the optimal trained control models on test data.
The benchmark portfolio has a median annualized return of 6.7%. The results are based on
the performance of trained models evaluated on the test dataset Y test.

As we can see from Table 5.3, when β is modest (< 3%), the long-only portfolio shows564

similar median returns as the 130/30 portfolio (despite that the objective function value565

is slightly worse). However, as β becomes more ambitious (≥ 3%), the long-only portfolio566

has a harder time keeping up with the 130/30 portfolio. Specifically, we can see that the567

median return of the long-only portfolio stagnates for β ≥ 3%. As we will discuss shortly,568

at β = 3%, the optimal long-only portfolio is already allocating almost 100% allocation to569

the equal-weighted stock index, the riskiest asset with the highest expected return. Due to570

long-only constraints, there is less room for the long-only portfolio to take more risks for571

the more aggressive β targets. On the other hand, we can see that the median return of the572

optimal 130/30 portfolio continues to increase with β.573

Next we present more detailed comparison of the optimal RCNN and long-only strategies574

on additional performance characteristics for β = 3%. We plot the quantiles of the wealth575
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ratio W (t)

Ŵ (t)
, which measures the relative pathwise performance of the active portfolio with576

respect to the benchmark portfolio throughout the investment horizon.577
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Figure 5.1: Quantiles of wealth ratio over the investment horizon [0, T ]. β = 3%. The
130/30 portfolio follows the RCNN trained on Y . The long-only portfolio follows the neural
network model from (Li and Forsyth, 2019; Ni et al., 2022) trained on Y . Results in the
plots are testing results evaluated on Y test.

Based on the results and analysis presented in Figure 5.1, it is evident that the 130/30578

portfolio outperforms the long-only portfolio across various quantiles. The wealth ratios of579

the 130/30 portfolio consistently exceed those of the long-only portfolio, indicating superior580

performance. We emphasize that Figure 5.1 compares pathwise performance of the active581

(dynamic) portfolio compared to the benchmark. If wealth ratio is viewed as a risk measure,582

the leveraged portfolio is actually less risky than the unleveraged portfolio.583

Unsurprisingly, the superior performance of the 130/30 portfolio can be attributed to584

its relaxed portfolio constraints. We plot the median allocation fractions of the 130/30585

portfolio and long-only portfolio in Figure 5.2. We can see from Figure 5.2a that the optimal586

130/30 portfolio strategically leverages its position by exceeding 100% exposure to the equal-587

weighted stock index in the first half of the investment period. Interestingly, the 130/30588

portfolio longs the equal-weighted stock and the long-term bond, and shorts the cap-weighted589

stock and the short-term bond, creating long/short patterns within both asset classes (i.e.590

stock and bond). On the other hand, as observed from Figure 5.2b, the optimal long-591

only portfolio is obviously restricted by the long-only constraint. It yields an almost trivial592

strategy that has a close to 100% allocation to the equal-weighted stock index throughout593

the investment horizon.594

We remark however that there is no free lunch, and the optimal 130/30 strategy achieves595

superior results with some compromises. Particularly, if we examine the extreme tail statis-596

tics such as the 1% CVaR of the terminal wealth (i.e. the average of the lowest 1% of the597
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Figure 5.2: Median allocation fractions over the investment horizon [0, T ] when β = 3%.
The 130/30 portfolio follows the RCNN trained on Y . The long-only portfolio follows the
neural network model from (Li and Forsyth, 2019; Ni et al., 2022) trained on Y . Results in
the plots are testing results evaluated on Y test.

terminal wealth), we can see that the 130/30 portfolios have slightly worse results than the598

long-only portfolios, as shown in Table 5.4. This is because the 130/30 portfolios are lever-599

aged and exposed to greater market risk and thus perform worse under rare and persistent600

bear market scenarios.601

β 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
130/30 44 38 32 29 27 25 24 23 22 22

Long-only 44 39 36 35 34 33 32 32 32 32

Table 5.4: 1% CVaR of terminal wealth (mean of the worst one percent of the outcomes,
higher is better). The results are based on the performance of trained models evaluated on
Y test.

However, one cannot simply conclude that (optimal) 130/30 portfolios are riskier than602

(optimal) long-only portfolios. If we look at the 20th quantile of the wealth ratio in Figure603

5.1, we can observe that the optimal 130/30 portfolio exhibits better wealth ratios compared604

to the optimal long-only portfolio, i.e., better pathwise outperformance compared to the605

benchmark. This suggests that the 130/30 portfolio is capable of mitigating downside risks606

well in majority of scenarios.607

We remind the reader that we cannot obtain a strategy which is guaranteed to outper-608

form a benchmark along every path, since this would imply the existence of an arbitrage609

opportunity.610
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Overall, our computational investigation demonstrates the superiority of the relaxed-611

constraint portfolio under the tracking performance-based investment objective. As shown612

in the results, the 130/30 portfolio not only achieves more ambitious returns but also demon-613

strates good risk management. This can be attributed to the broader range of portfolio614

strategies available within the 130/30 structure, which allows for more flexibility and poten-615

tial for generating excess return.616

In addition, we present computational evidence that illustrates the effectiveness of the617

proposed RCNN approach, for which it is not necessary to determine a priori which assets618

need to be shorted. The optimal control solution will find the most effective strategy.619

6 Conclusion620

In this article, we introduced a neural network-based solution for the multi-period optimiza-621

tion problem under relaxed-constraint, which permits bounded leverage. By formulating the622

problem as a multi-period stochastic optimal control problem, we proposed a novel relaxed-623

constraint neural network (RCNN) model to approximate the optimal control.624

The RCNN addresses the complexity of the original leverage constrained optimization625

by proposing a novel activation function and converting the leverage constraint formulation626

into an unconstrained optimization problem, which can be computationally solved efficiently.627

In addition, we provided mathematical proof demonstrating that the RCNN can accurately628

approximate any relaxed-constraint strategy.629

Based on monthly U.S. market return data from Jan 1926 to Jan 2023, we computation-630

ally assess performance of the optimal relaxed-constraint strategy with long-only strategy.631

As an illustration, we consider the 130/30 portfolio. We compared the performance of the632

optimal relaxed-constraint portfolio with the optimal long-only portfolio under the same633

investment specifications. The optimal portfolios are computed and evaluated under the cu-634

mulative quadratic shortfall (CS) objective, which measures the relative performance of the635

active portfolio against a benchmark portfolio throughout the investment horizon. The com-636

putational assessment consistently demonstrates that the optimal relaxed-constraint portfo-637

lio outperforms the optimal long-only portfolio under the CS objective.638

We believe the methodology developed in this article can be applied to investment prob-639

lems of widespread interest, such as finding optimal portfolios of factor ETFs (Glushkov,640

2015). In addition, in the future, it is worth considering other types of securities such as641

options in the portfolio (Andersson and Oosterlee, 2023), which may yield even better results642

in practice.643
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A Stationary block bootstrap algorithm648

Algorithm A.1 presents the pseudocode for the stationary block bootstrap. See Ni et al.649

(2022) for more discussion.650

Algorithm A.1: Pseudocode for stationary block bootstrap

/* initialization */

bootstrap samples = [ ];
/* loop until the total number of required samples are reached */

while True do
/* choose random starting index in [1,...,N], N is the index of the

last historical sample */

index = UniformRandom( 1, N );
/* actual blocksize follows a shifted geometric distribution with

the expected value of exp block size */

blocksize = GeometricRandom( 1
exp block size

);

for ( i = 0; i < blocksize; i = i+ 1 ) {
/* if the chosen block exceeds the range of the historical data

array, do a circular bootstrap */

if index + i > N then
bootstrap samples.append( historical data[ index + i - N ] );

else
bootstrap samples.append( historical data[ index + i ] );

end
if bootstrap samples.len() == number required then

return bootstrap samples;
end

}
end
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