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Abstract1

Members of defined contribution (DC) pension plans must take on additional responsibilities2

for their investments, compared to participants in defined benefit (DB) pension plans. The tran-3

sition from DB to DC plans means that more employees are faced with these responsibilities.4

We explore the extent to which DC plan members can follow financial strategies that have a5

high chance of resulting in a retirement scenario that is fairly close to that provided by DB6

plans. Retirees in DC plans typically must fund spending from accumulated savings. This leads7

to the risk of depleting these savings, i.e. portfolio depletion risk. We analyze the management8

of this risk through life cycle optimal dynamic asset allocation, including the accumulation and9

decumulation phases. We pose the asset allocation strategy as an optimal stochastic control10

problem. Several objective functions are tested and compared. We focus on the risk of portfolio11

depletion at the terminal date, using such measures as conditional value at risk (CVAR) and12

probability of ruin. A secondary consideration is the median terminal portfolio value. The13

control problem is solved using a Hamilton-Jacobi-Bellman formulation, based on a parametric14

model of the financial market. Monte Carlo simulations which use the optimal controls are pre-15

sented to evaluate the performance metrics. These simulations are based on both the parametric16

model and bootstrap resampling of 91 years of historical data. The resampling tests suggest17

that target-based approaches which seek to establish a safety margin of wealth at the end of the18

decumulation period appear to be superior to strategies which directly attempt to minimize risk19

measures such as the probability of portfolio depletion or CVAR. The target-based approaches20

result in a reasonably close approximation to the retirement spending available in a DB plan.21

There is a small risk of depleting the retiree’s funds, but there is also a good chance of accu-22

mulating a buffer which can be used to manage unplanned longevity risk, or left as a bequest.23

24
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1 Introduction27

Nobel laureate William Sharpe has referred to decumulation (i.e. the use of savings to fund spend-28

ing during retirement) as “the nastiest, hardest problem in finance” (Ritholz, 2017). Retirees are29
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confronted with portfolio depletion risk and longevity risk, as well as additional uncertainties asso-30

ciated with unexpected inflation, the level of other sources of income such as government benefits,31

and the changing utility of income over time. We focus on depletion risk, which is the chance of32

running out of money, even when the retirement period is specified, due to the demand for constant33

income from a volatile portfolio. Depletion risk can be assessed in a variety of ways, such as the34

probability of ruin (i.e. depleting savings to a level that is insufficient to fund planned withdrawals),35

or the magnitude of ruin if it occurs.36

Depletion risk is clearly much less important for individuals in traditional DB pension plans,37

and is arguably only a concern if the plan is insolvent. However, solvent DB plans still leave38

retirees exposed to other risks such as possible reductions of government benefits, elevated health39

care expenses, etc. The long-term shift from DB to DC pension plans exposes more individuals40

to significant depletion risk, and has resulted in increased focus on how DC plan members should41

manage their investments both during the accumulation phase when saving for retirement and42

during the post-retirement decumulation period. In this article we explore the question of how43

investments can be managed by DC plan members (or other individuals who are saving on their44

own for retirement) so as to give a reasonably close approximation to the retirement spending45

available from a DB plan.46

Numerous studies have explored issues related to the management of investments for retirement47

saving and spending. Many of them focus on either just the accumulation phase or the decumulation48

period, as opposed to the entire life cycle. Examples of studies that concentrate on accumulation49

include Cairns et al. (2006), Vigna (2014), Yao et al. (2014), Guan and Liang (2014), Wu and Zeng50

(2015), Chen and Delong (2015), Donnelly et al. (2015), Donnelly et al. (2017), Dahlquist et al.51

(2018), and Christiansen and Steffensen (2018). Representative papers that focus on various aspects52

of decumulation include Blake et al. (2003), Gerrard et al. (2004; 2006), Smith and Gould (2007),53

Milevsky and Young (2007), Freedman (2008), and Liang and Young (2018). For an overview of54

the various strategies for decumulation, we refer the reader to MacDonald et al. (2013). Among the55

articles that consider both accumulation and decumulation (i.e. the entire life cycle) are Dammon56

et al. (2004), Cocco et al. (2005), Blake et al. (2014), Horneff et al. (2015), Campanele et al. (2015),57

Fagereng et al. (2017), and Michaelides and Zhang (2017).58

The papers cited above use a variety of approaches and address a diverse set of issues. It is59

standard in the financial economics literature to develop models based on maximizing some form60

of utility function, typically defined over intermediate consumption as well as a final bequest. In61

contrast, actuarial papers are often based on statistical criteria (e.g. mean-variance optimization,62

minimization of ruin probability, etc.), as well as utility maximization. Some studies assume that63

retirees will be forced to annuitize at a pre-determined age, others try to determine the best time to64

annuitize given the option to do so. Many articles incorporate the effects of stochastic labour income65

during the accumulation phase, or of different models for financial market returns (e.g. stochastic66

interest rates, stochastic volatility of equity market returns, regime-switching specifications, etc.).67

Our focus is deliberately narrow, compared to many other studies. As noted previously, the68

fundamental issue we address is the extent to which an asset allocation scheme can be designed69

to lead to approximately the same outcome as that which would be experienced by a DB pension70

plan member. This leads us to avoid utility maximization in favour of objective functions based on71

statistical criteria, for the following reasons: (i) the design of a DB plan cannot take into account72

the individual preferences (e.g. risk-aversion) of plan members; (ii) standard utility functions which73

have infinite marginal utility at zero wealth cannot be applied in our setting because we can only74

minimize ruin probability, not completely eliminate it; and (iii) in our experience typical retirees75

are concerned with concrete issues such as the probability of portfolio depletion and the size of a76

possible bequest, so it is generally easier for practitioners to discuss these issues with their clients as77
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opposed to trying to determine the parameters of a utility function.1 We also ignore other factors78

such as stochastic labour income, other wealth that plan members may have (e.g. home ownership),79

government social programs, taxes, etc. At an individual level, such factors can clearly be quite80

important. However, it would not be feasible for a DB plan to incorporate them, so we exclude81

them here.82

We consider a prototypical DC plan holder who is assumed to be 35 years old with stable83

employment. This individual plans to work until age 65, so our accumulation period is 30 years.84

During this time, the annual combined contribution to the holder’s DC account by the employee85

and employer amounts to 20% of the employee’s salary, which is assumed to be constant in real86

terms.287

During the decumulation phase, the retiree faces longevity risk and perhaps has a bequest88

motive. Due to risk pooling and the earning of mortality credits, it is often suggested that retirees89

should purchase annuities. However, it is well-known that most retirees are very reluctant to do so90

(MacDonald et al., 2013; Peijnenburg et al., 2016). In fact, MacDonald et al. (2013) list 39 reasons91

(behavioural and rational) to avoid annuitization. For example, most annuities do not provide true92

inflation protection, are poorly priced, and retirees desire to have access to capital for emergencies.93

In addition, in the current low interest rate environment, annuities generate very low cash flow94

streams. We refer the reader to MacDonald et al. (2013) for a thorough discussion of this issue.95

We therefore assume that our 35 year old DC plan holder has no intention to annuitize upon96

retirement, and so adopts an asset allocation strategy which will be operational to and through the97

retirement date. Recommended final salary replacement ratios (including government programs)98

are variously estimated from 40% to 70%. We assume constant real withdrawals of 40% of final99

salary (excluding any government benefits). Given possible increases in longevity, and having ruled100

out the use of annuities, it is prudent for our plan holder to allow for a lengthy decumulation101

period, which we assume to last 30 years. By using a fixed, lengthy time for fixed cash outflows,102

we sidestep the issue of longevity risk. We recognize that this is a weakness of our analysis, but it103

appears to be a reasonable approach in the absence of any desire to annuitize. Having ruled out104

annuitization, a conservative estimate of longevity seems prudent.105

Of course, one of the challenges of planning an investment strategy for DC plan holders is that106

retirees as a group have diverse and changing requirements. We focus attention on a specific group107

with the following attributes:108

• the DC plan investors know what real income is required from their investment capital during109

retirement;110

• the primary goal of retirees is to sustain the specified income for a pre-defined period with111

minimal risk;112

• retirees value a portfolio which de-risks rapidly, while satisfying their income requirements.113

1Note that industry surveys suggest that retirees are extremely concerned about possibly exhaust-
ing their savings. For example, see https://www.allianzlife.com/about/news-and-events/news-releases/

Generations-Ahead-Study-2017.
2As mentioned above, we ignore labour income risk. Many studies assume that real earnings are expected to

follow a hump-shaped pattern, rising rapidly until about age 35, then more slowly until around age 45-50, and slowly
declining thereafter (see, e.g. Cocco et al., 2005; Blake et al., 2014). It is common to add diffusive shocks to this trend,
though Cocco et al. (2005) calculate that the utility costs of assuming labour income has no risk are not high, absent
a very large negative shock to income, which would be highly unlikely in a diffusive model. It is also worth noting
here that the hump-shaped pattern described above has been questioned recently by Rupert and Zanella (2015), who
find that while wage rates do rise rapidly in the early years of a typical employee’s career, they do not decline prior
to retirement. Average income does fall on average during those years, but this is due to a reduction in hours worked
by some employees transitioning into retirement.
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We specifically exclude from our consideration those who consider other goals (e.g. a bequest)114

more important than sustaining a specified level of income. If the investor is fortunate to be able115

to secure their retirement income at an agreed level, we assume that in this circumstance, their116

preference is to leave any surplus as a bequest, rather than increasing spending.117

For our working scenario, we postulate 30 years of accumulation at 20% of salary followed by 30118

years of decumulation at 40% of final salary. The contributions and withdrawals are each assumed119

to be constant in real terms. Specifying a constant real annual withdrawal means that, as noted120

above, we are attempting so far as possible to create a defined benefit (DB) experience. We adjust121

the asset allocation throughout the life cycle to minimize the adverse consequences.122

In the absence of annuitization, we emphasize that the ability to generate a specified real123

income with minimal risk is the best a DC plan holder can expect in the quest to obtain a DB plan124

experience. She retains longevity risk as well as the assumption of a finite (specified) investment125

horizon.126

Target date funds (TDFs) are popular investment products which cater to the market for127

retirement saving. A standard TDF begins with a high allocation to equities and moves to a higher128

weighting in bonds as retirement approaches. The fraction invested in equities over time is called129

a glide path. Typically, these glide paths are deterministic strategies, i.e. the equity fraction is130

only a function of time to go. Total assets invested in US TDFs at the end of 2017 were over $1.1131

trillion.3 The rationale for the high initial equity allocation to stocks is often based on human132

capital considerations, i.e. a young DC plan holder has many years of bond-like cash flows from133

employment, and can take on a large equity risk in the DC account. As retirement approaches, the134

future income from employment diminishes, and hence the holder should switch to bonds. However,135

recent work calls into question the effectiveness of the TDF type of approach (see, e.g. Arnott et al.,136

2013; Graf, 2017; Westmacott and Daley, 2015; Forsyth et al., 2017; Forsyth and Vetzal, 2017b).137

For example, Forsyth et al. (2017) and Forsyth and Vetzal (2017b) show that for a fixed value of138

target expected wealth at the end of the accumulation period, there is always a constant weight139

strategy that achieves the same target expected wealth as a deterministic glide path with a similar140

cumulative standard deviation. More recently, deterministic strategies have also been suggested141

for to and through funds, i.e. both the accumulation and the decumulation phases (O’Hara and142

Daverman, 2017).143

We initially consider some deterministic strategies, for which the asset allocation is either con-144

stant or a deterministic function of time (i.e. a glide path). Our main focus, however, is on adaptive145

strategies, in which the asset allocation depends on realized wealth to date in addition to time.146

We specify adaptive strategies as optimal stochastic control problems. We test several candidate147

objective functions, and assess their suitability in terms of metrics of interest to retirees such as148

the probability of portfolio depletion (i.e. ruin) and the conditional value at risk (CVAR), which149

measures how severe ruin is likely to be if it does occur. Amongst objective functions which have150

similar risk statistics, we prefer the strategies which generate larger median values of terminal151

wealth (e.g. a potential bequest). In effect, we view the objective function strictly as a means to152

shape the probability density of the outcome of the investment process, not as an end in itself.153

The first objective function we consider is minimizing the probability of ruin, before the end of the154

decumulation phase. We then consider mean-CVAR strategies (Gao et al., 2017; Strub et al., 2017),155

as well as target-based approaches (Vigna, 2014; Menoncin and Vigna, 2017) that correspond to156

multi-period mean variance strategies (Li and Ng, 2000; Dang et al., 2017).157

We assume that the investment account contains only a stock index and a bond index. We158

model the real (inflation-adjusted) stock index as following a jump diffusion model (Kou and Wang,159

3Investment Company Fact Book (2018), available at www.ici.org.
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2004). We fit the parameters of this model to monthly US data over the 1926:1-2016:12 period.160

We consider two markets in our simulation analysis. The synthetic market assumes that the stock161

and bond processes follow the models with constant parameters fit to the historical time series.162

Given an objective function, we determine optimal strategies by solving a Hamilton-Jacobi-Bellman163

equation in the synthetic market. We use a fully numerical approach, which allows us to impose164

realistic constraints: infrequent rebalancing (yearly) and no leverage/no-shorting constraints. The165

entire distribution function of the strategy is then determined by Monte Carlo simulations in166

the synthetic market. As a stress test, we apply these strategies to bootstrap resampling of the167

historical data, which we refer to as the historical market. The bootstrap tests make no assumptions168

about the actual processes followed by the stock and bond indexes. In some cases, we reject169

strategies which appear promising based on synthetic market results due to poor performance in170

the bootstrapped historical market. This highlights the importance of resampling to assess the171

robustness of recommended strategies, which has rarely been done in the prior actuarial literature172

on long-term asset allocation.4173

2 Formulation174

For simplicity we assume that there are only two assets available in the financial market, namely a175

risky asset and a risk-free asset. In practice, the risky asset would be a broad market index fund.176

For example, many wealth managers have funds which have a fixed weight of domestic and foreign177

equity markets.178

The investment horizon (over both the accumulation and decumulation phases) is T . St and Bt179

respectively denote the amounts invested in the risky and risk-free assets at time t, t ∈ [0, T ]. In180

general, these amounts will depend on the investor’s strategy over time, including contributions,181

withdrawals, and portfolio rebalances, as well as changes in the unit prices of the assets. Suppose182

for the moment that the investor does not take any action with respect to the controllable factors,183

so that any change in the value of the investor’s portfolio is due to changes in asset prices. We refer184

to this as the absence of control. In this case, we assume that St follows a jump diffusion process.185

Let t− = t − ε, ε → 0+, i.e. t− is the instant of time before t, and let ξ be a random number186

representing a jump multiplier. When a jump occurs, St = ξSt− . Allowing discontinuous jumps187

lets us explore the effects of severe market crashes on the risky asset holding.188

More precisely, in the absence of control, St evolves according to189

dSt
St−

= (µ− λE[ξ − 1]) dt+ σ dZ + d

(
πt∑
i=1

(ξi − 1)

)
, (2.1)190

where µ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener191

process, πt is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive random192

variables having distribution given below. Moreover, ξi, πt, and Z are assumed to all be mutually193

independent.194

We assume that log ξ follows a double exponential distribution (Kou and Wang, 2004). If a195

jump occurs, pup is the probability of an upward jump, while 1− pup is the chance of a downward196

jump. The mean upward and downward log jump sizes are 1/η1 and −1/η2 respectively. The197

density function for y = log ξ is198

f(y) = pupη1e
−η1y1y≥0 + (1− pup)η2eη2y1y<0. (2.2)199

4Donnelly et al. (2017) conduct some resampling experiments, but only for the equity market (not the bond
market), and over a relatively short period of time.
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We note that200

E[y] =
pup
η1
− (1− pup)

η2
; E[ξ] =

pupη1
η1 − 1

+
(1− pup)η2
η2 + 1

. (2.3)201

202

203

We focus on jump diffusion models for long-term equity dynamics since sudden drops in the204

equity index can have a devastating impact on retirement portfolios, particularly during the decu-205

mulation phase. Since we consider discrete rebalancing, the jump process models the cumulative206

effects of large market movements between rebalancing times.5207

In the absence of control, we assume that the dynamics of the amount Bt invested in the risk-free208

asset are209

dBt = rBt dt, (2.4)210

where r is the (constant) risk-free rate. This is obviously a simplification of the actual bond market.211

In any case, we will test our strategies in a bootstrapped historical market which introduces inflation212

shocks and stochastic interest rates.213

We define the investor’s total wealth at time t as214

Total wealth ≡Wt = St +Bt. (2.5)215

Since we specify the real withdrawals during decumulation, the objective functions which we con-216

sider below are all defined in terms of terminal wealth WT . If the portfolio is solvent, we impose217

the constraints that shorting stock and using leverage (i.e. borrowing) are not permitted, which218

would be typical of a retirement savings account. In the event of portfolio depletion, withdrawals219

cause an accumulation of debt.220

3 Data, synthetic market, and historical market221

The data used in this work was obtained from Dimensional Returns 2.0 under licence from Di-222

mensional Fund Advisors Canada. In particular, we use the Center for Research in Security Prices223

(CRSP) Deciles (1-10) index. This is a total return value-weighted index of US stocks. We also224

use one month Treasury bill (T-bill) returns for the risk-free asset.6 Both the equity returns and225

the Treasury bill returns are in nominal terms, so we adjust them for inflation by using the US226

CPI index. We use real indexes since long-term retirement saving should be attempting to achieve227

real (not nominal) wealth goals. All of the data used was at the monthly frequency, with a sample228

period of 1926:1 to 2016:12.229

In our tests, we consider a synthetic and an historical market. The synthetic market is generated230

by assuming processes (2.1) and (2.4). We fit the parameters to the historical data using the231

methods described in Appendix A. We then use these parameters to determine optimal strategies232

and carry out Monte Carlo computations. As a test of robustness, we also carry out tests using233

bootstrap resampling of the actual historical data, which we call the historical market. In this case,234

we make no assumptions about the underlying stochastic processes. We use the stationary block235

resampling method described in Appendix B. A crucial parameter for block bootstrap resampling is236

the expected blocksize. We carry out our tests using a range of expected blocksizes. Although the237

5A possible extension would be to incorporate stochastic volatility. However, previous work has shown that
stochastic volatility effects are small for the long-term investor (Ma and Forsyth, 2016). This can be traced to the
fact that stochastic volatility models are mean-reverting, with typical mean-reversion times of less than one year.

6We have also carried out tests using a 10 year US treasury as the bond asset (Forsyth and Vetzal, 2017a). The
results are qualitatively similar to those reported in this paper.
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Investment horizon (years) 60
Equity market index Value-weighted CRSP deciles 1-10 US market index
Risk-free asset index 1-month T-bill
Initial investment W0 0.0
Real investment each year 20.0 (0 ≤ ti ≤ 30), −40.0 (31 ≤ ti ≤ 60)
Rebalancing interval (years) 1
Market parameters See Appendix A

Table 4.1: Input data for examples. Cash is invested at ti = 0,1, . . . , 30 years, and withdrawn at
ti = 31,32, . . . , 60 years. Units for real investment: thousands of dollars.

absolute performance of variance strategies is mildly sensitive to the choice of blocksize, the relative238

performance of the various strategies appears to be insensitive to blocksize. See Appendix B for239

more discussion.240

4 Investment scenario241

Let the inception time of the investment be t0 = 0. We consider a set T of pre-determined242

rebalancing times,243

T ≡ {t0 = 0 < t1 < · · · < tM = T}. (4.1)244

For simplicity, we specify T to be equidistant with ti − ti−1 = ∆t = T/M , i = 1, . . . ,M . At each245

rebalancing time ti, i = 0, 1, . . . ,M , the investor (i) injects an amount of cash qi into the portfolio,246

and then (ii) rebalances the portfolio. At tM = T , the portfolio is liquidated. If qi < 0, this247

corresponds to cash withdrawals. Let t−i = ti − ε (ε→ 0+) be the instant before rebalancing time248

ti, and t+i = ti + ε be the instant after ti. Let p(t+i ,W
+
i ) = pi be the fraction in the risky asset at249

t+i .250

Table 4.1 shows the parameters for our investment scenario. As discussed previously, this251

corresponds to an individual with a constant salary of $100,000 per year (real) who saves 20%252

of her salary for 30 years, then withdraws 40% of her final real salary for 30 years in retirement.253

The target salary replacement level of 40% is at the lower end of the recommended range, but254

it is possible that government benefits could increase this to a more desirable level. We do not255

consider escalating the (real) contribution during the accumulation phase (which also impacts the256

desired replacement ratio), although this is arguably more realistic. Assuming flat contributions257

and withdrawals, we can interpret the above scenario as an investment strategy which allows real258

withdrawals of twice as much as real contributions. We shall see that this rather modest objective259

still entails significant risk. As indicated in Table 4.1, we assume yearly rebalancing.7260

5 Constant weight strategies and linear glide paths261

Let p denote the fraction of total wealth that is invested in the risky asset, i.e.262

p =
St

St +Bt
. (5.1)263

7More frequent rebalancing has little effect for long-term (> 20 years) investors (Forsyth and Vetzal, 2017c).
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Strategy Median[WT ] Mean[WT ] std [WT ] Pr [WT < 0] 5% CVAR

Glide path 935 1385 1795 .15 −483
p = .40 992 1542 2093 .16 −482
p = .60 2922 5422 8882 .093 −516
p = .80 6051 14832 34644 .082 −592

Table 5.1: Synthetic market results for deterministic strategies, assuming the scenario given in
Table 4.1. WT denotes real terminal wealth after 60 years, measured in thousands of dollars. Statistics
based on 6.4× 105 Monte Carlo simulation runs. The constant weight strategies have equity fraction
p. The glide path is linear with pmax = .80 and pmin = 0.0.

A deterministic glide path restricts the admissible strategies to those where p = p(t), i.e. the264

strategy depends only on time and cannot take into account the actual value of Wt at any time.265

Clearly this is a very restrictive assumption, but it is commonly used in TDFs.266

We consider two cases: p(t) = const. and a linear glide path267

p(t) = pmax + (pmin − pmax)
t

T
. (5.2)268

Note that this is a to and through strategy, since t = 0 indicates the beginning of the accumulation269

phase, while t = T represents the end of the decumulation phase.270

Monte Carlo simulations were carried out for the scenario given in Table 4.1, using constant271

weight strategies and the linear glide path in equation (5.2). We run these simulations in the272

synthetic market, assuming processes (2.1) and (2.4), with parameters given in Appendix A. The273

results are shown in Table 5.1. Here, 5% CVAR refers to mean of the worst 5% of the outcomes,274

defined in terms of wealth, not losses.8275

The results in Table 5.1 show the high risks associated with deterministic strategies. Note276

the very high dispersion of final wealth as indicated by the large standard deviations and the277

large differences between the means and medians. Consistent with the findings reported for the278

accumulation phase by Forsyth et al. (2017) and Forsyth and Vetzal (2017b), the results here for279

the entire life cycle for a linear glide path are similar to the results for a constant weight strategy280

having the same time-averaged weighting in stocks (i.e. p = .40 in this case). It is interesting to281

note that while the high constant weighting in equities (p = 0.8) has a much higher dispersion282

of final wealth compared to lower allocations, the p = 0.8 strategy has a smaller probability of283

ruin (i.e. Pr [WT < 0]) and larger median value of terminal wealth compared to the lower equity284

allocation strategies. The downside for the p = .8 case compared to the p = .6 case is an increase285

in the tail risk (5% CVAR).286

Table 5.2 shows the results for constant proportion strategies based on bootstrap resampling of287

the historical market, for a range of expected blocksizes.9 Since we sample simultaneously from the288

stock and bond historical time series, the choice of blocksize is not obvious (see Appendix B). A289

reasonable choice would appear to be an expected blocksize of ' 2 years. Nevertheless, the ranking290

of the three constant weight strategies is preserved across all blocksizes, i.e. the higher allocation291

to equities is superior (in terms of Pr [WT < 0]) compared to the smaller allocation to equities.292

Note that the historical backtests show that the probability of ruin for a typical suggested equity293

weighting of .6 is in the range .05− .09 depending on the assumed expected blocksize.294

8See Appendix C for a precise definition of CVAR as used in this work.
9Results for the linear glide path are again similar to the constant proportion case with p = .40 and have been

excluded from Table 5.2 to save space.
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Strategy b̂ Median[WT ] Mean[WT ] std [WT ] Pr [WT < 0] 5% CVAR

p = .40 0.5 900 1337 1683 .16 −490
p = .60 0.5 2767 4592 6251 .085 −488
p = .80 0.5 5893 12120 21278 .071 −540

p = .40 1.0 955 1367 1637 .16 −493
p = .60 1.0 2896 4614 5814 .081 −466
p = .80 1.0 6075 12028 18991 .068 −514

p = .40 2.0 961 1339 1530 .15 −461
p = .60 2.0 2931 4248 4955 .07 −389
p = .80 2.0 6151 10865 15023 .054 −411

p = .40 5.0 965 1306 1451 .14 −438
p = .60 5.0 2890 4068 4326 .051 −275
p = .80 5.0 5986 9768 12543 .034 −190

Table 5.2: Historical market results for constant proportion strategies with equity fraction p, as-
suming the scenario given in Table 4.1. WT denotes real terminal wealth after 60 years, measured in
thousands of dollars. Statistics based on 10,000 stationary block bootstrap resamples of the historical
data from 1926:1 to 2016:12. b̂ is the expected blocksize, measured in years.

6 Adaptive strategies: overview295

We will attempt to improve on deterministic strategies by allowing the rebalancing strategy to now296

depend on the accumulated wealth, i.e. pi = pi(W
+
i , ti). We will specify an objective function, and297

compute the optimal controls in the synthetic market. This involves the numerical solution of a298

Hamilton-Jacobi-Bellman (HJB) equation to determine the controls. We use the numerical methods299

from Dang and Forsyth (2014; 2016) and Forsyth and Labahn (2018), and refer the reader to these300

sources for a detailed description of the HJB equation and solution techniques. We emphasize301

that, given an objective function, solving the HJB equation gives the provably optimal strategy in302

the constant parameter synthetic market. The following several sections consider various possible303

objective functions in this context. Primarily, we focus on downside risk measures, such as CVAR304

and probability of ruin. We regard the median terminal wealth to be of secondary importance.305

7 Minimize probability of ruin306

Many retirees place a premium on reducing the probability of ruin, i.e. portfolio depletion. There-307

fore, as a first attempt at defining a suitable objective function, we directly minimize probability308

of ruin. A similar objective function for the accumulation phase of DC plans has been suggested in309

Tretiakova and Yamada (2011). Consider a level of terminal wealth Wmin. We wish to solve the310
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following optimization problem:311

min
{(p0,c0), ..., (pM−1,cM−1)}

Pr
[
WT < Wmin

]
312

subject to


(St, Bt) follow processes (2.1)-(2.4); t /∈ T
W+
i = W−i + qi − ci ; S+

i = piW
+
i ; B+

i = W+
i − S

+
i ; t ∈ T

pi = pi(W
+
i , ti) ; 0 ≤ pi ≤ 1

ci = ci(W
−
i + qi, ti) ; ci ≥ 0

. (7.1)313

314

We recognize objective function (7.1) as minimizing the probability that the terminal wealth WT315

will be less than Wmin. If Wmin = 0, then this will minimize the probability of portfolio depletion.316

In problem (7.1), we withdraw surplus cash ci(W
−
i + qi, ti) from the portfolio if investing in the317

risk-free asset ensures that WT ≥Wmin. More precisely, let318

Q` =

j=M−1∑
j=`+1

e−r(tj−t`)qj (7.2)319

be the discounted future contributions as of time t`. If320

(W−i + qi) > Wmine−r(T−ti) −Qi, (7.3)321

then an optimal strategy is to (i) withdraw surplus cash ci = W−i +qi−
(
Wmine−r(T−ti) −Qi

)
from322

the portfolio; and (ii) invest the remainder
(
Wmine−r(T−ti) −Qi

)
in the risk-free asset. This is an323

optimal strategy in this case since Pr [WT < Wmin] = 0, which is the minimum of problem (7.1).324

In the following, we will refer to ci > 0 as surplus cash. We assume that any surplus cash is325

invested in the risk-free asset. Of course, it is also possible to invest it in the risky asset. Some326

experiments with this alternative approach showed a large effect on E[WT ], but very little impact327

on Median[WT ], Pr [WT < 0], and CVAR. Hence we assume that surplus cash is invested in the328

risk-free asset for simplicity.329

If at any point surplus cash is generated (as defined in equation (7.3)), then the objective330

function is identically zero, and the surplus can be invested in any combination of the stock and331

bond. This is obviously not a unique strategy, since E[WT ] will depend on how the surplus cash332

is invested. Hence we must precisely specify what we do with the surplus cash, in order to make333

Problem 7.1 well posed.334

In our summary statistics, we will include surplus cash in measures such as E[WT ], but we335

will exclude it from the standard deviation std [WT ] since this is supposed to be a measure of risk.336

Along any path where surplus cash is generated, we have no probability of ruin. But including337

the surplus cash in std [WT ] will generally increase std [WT ], which seems counter-informative since338

there is no risk (in the sense of ruin) along this path. In any case, we do not believe that std [WT ]339

is a very useful risk measure for these types of problems, due to the highly skewed distribution of340

terminal wealth.341

We begin by computing and storing the optimal controls from solving problem (7.1) with342

Wmin = 0. In other words, we try to minimize the probability of portfolio depletion before year 60.343

To assess this strategy, we use these controls as input to a Monte Carlo simulation in the synthetic344

market. Recall that in this case the simulated paths will have exactly the same statistical properties345

as those assumed when generating the optimal controls. The results are shown in the first row of346

Table 7.1. In this idealized setting, the final wealth distribution has a median that is almost zero,347

but also about a 2% chance of being less than zero. Figure 7.1 plots the cumulative distribution348
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b̂ Wmin Median[WT ] Mean[WT ] std [WT ] Pr [WT < 0] 5% CVAR

Synthetic market

NA 0 3.67 20.7 88.3 .0195 −223
NA 200 204 217 134 .0284 −235
NA 400 406 410 185 .036 −310
NA 600 607 601 240 .042 −436
NA 1000 1009 973 360 .053 −562

Historical market

0.5 0 187 199 103 .07 −353
1.0 0 207 236 105 .068 −346
2.0 0 228 283 86 .053 −245
5.0 0 260 341 59 .034 −121

0.5 200 412 417 141 .043 −335
1.0 200 434 456 145 .040 −337
2.0 200 456 512 118 .030 −183
5.0 200 492 579 85 .017 −9.3

Table 7.1: Optimal control determined by solving problem (7.1), i.e. min Pr[WT < Wmin] in the
synthetic market, with Wmin as indicated, assuming the scenario in Table 4.1. WT denotes real
terminal wealth after 60 years, measured in thousands of dollars. Statistics for the synthetic market
case are based on 6.4 × 105 Monte Carlo simulation runs. Statistics for the historical market cases
are based on 10,000 stationary block bootstrap resamples of the historical data from 1926:1 to 2016:12.
b̂ is the expected blocksize, measured in years. Surplus cash is included in the mean, median, CVAR
and probability of ruin, but excluded from the standard deviation.

function of WT for this case. The sharp increase in the distribution function near WT = 0 suggests349

that this strategy will be very sensitive to the asset market parameters. Table 7.1 also shows350

the results for increasing values of Wmin in the synthetic market. As expected, increasing Wmin
351

increases the median of WT , but this comes at the expense of increasing the probability of ruin.352

Figure 7.2 shows the percentiles of the total wealth (panel (a)) and the optimal fraction invested353

in equities (panel (b)) as a function of time. Figure 7.2(a) shows greater dispersion between the354

5th and 95th percentiles during the accumulation phase (t ≤ 30) than during the decumulation355

phase (30 < t ≤ 60). From Figure 7.2(b), the median fraction invested in the risky stock index is356

surprisingly low, essentially de-risking completely by the end of the accumulation period. Figure357

7.2(c) shows the heat map of the minimize ruin strategy.358

We next test this strategy with Wmin = 0 in the historical market. This implies using the359

same optimal controls as above, but instead simulating by bootstrap resampling of the historical360

data over the 1926:1 to 2016:12 period (see Appendix B). Results for several different expected361

blocksizes b̂ ranging from 0.5 years to 5.0 years are provided in Table 7.1. These results differ362

substantially from the synthetic market case: Median[WT ] and Mean[WT ] are markedly higher in363

the historical market, but so are the risk measures std [WT ], Pr [WT < 0], and 5% CVAR (except364

if b̂ = 5 years). Since we are directly trying to minimize Pr [WT < 0], it is worth emphasizing that365

this ruin probability is higher than in the synthetic market by a factor of more than 3 for the two366

shortest expected blocksizes. Even when b̂ = 5 years, the ruin probability is almost 75% higher367

in the historical market. These results are consistent with our earlier discussion about Figure 7.1:368
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Figure 7.1: Cumulative distribution function. Optimal control determined by solving problem (7.1),
i.e. min Pr[WT < Wmin] in the synthetic market, with Wmin = 0, assuming the scenario in Table 4.1.
Distribution computed from 6.4× 105 Monte Carlo simulation runs in the synthetic market. Surplus
cash is included in the distribution function.
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Figure 7.2: Percentiles of real wealth and the optimal fraction invested in equities. Optimal control
computed by solving problem (7.1), i.e. min Pr[WT < Wmin] in the synthetic market, with Wmin = 0,
assuming the scenario in Table 4.1. Statistics based on 6.4× 105 Monte Carlo simulation runs in the
synthetic market. Surplus cash is included in the real wealth percentiles.
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the very sharp increase in the cumulative distribution function at WT = 0 for the synthetic market369

implies that performance is unlikely to be robust to departures from the statistical properties of370

the idealized synthetic market, which is exactly what happens in the historical market.371

The instability here can be traced to the use of bootstrap historical real interest rates. For372

example, if the case with b̂ = 2.0 years is repeated using the fixed average historical real interest373

rate (i.e. r = .004835) for all time periods, but with the bootstrapped historical stock returns, then374

Pr [WT < 0] = .013 compared to the value of .053 in Table 7.1. In this case, since Wmin = 0 under375

the objective function (7.1), any errors in prediction of the real bond return become magnified, due376

to the very rapid de-risking. It could be argued that the use of bootstrapped real bond returns is377

very pessimistic with a blocksize of 2.0 years. Effectively, this simulates a market where the investor378

de-risks rapidly after the accumulation phase, but then the strategy fails due to real interest rate379

shocks.380

In an effort to determine a more robust strategy, we experimented with setting Wmin > 0, so381

as to provide a buffer of wealth as insurance against misspecification of real interest rates. The last382

four rows of Table 7.1 show the results obtained by computing and storing the optimal strategy383

from solving problem (7.1) with Wmin = 200 in the synthetic market and then using this strategy384

in bootstrap resampling tests. As expected, this strategy is much more stable in terms of the385

probability of ruin compared to the Wmin = 0 case. By any measure, the bootstrap results for386

Wmin = 200 are superior to the those obtained with Wmin = 0.10387

We can summarize our attempts to minimize probability of ruin as follows. Although at first388

glance it would appear that minimizing the probability of negative terminal wealth (i.e. portfolio389

depletion) is a reasonable objective, our tests call this into question. Clearly, aiming for zero final390

wealth is too sensitive to modelling parameters to be useful. This sensitivity appears to be solely391

due to the use of bootstrapped bond return data and not due to the bootstrapped equity return392

data. Due to rapid de-risking, this strategy is sensitive to real interest rate shocks along any paths393

with early allocation to the bond index. The bootstrap resampling approach introduces random394

(and potentially large) real interest rate shocks into the market, which occur more often as the395

expected blocksize gets smaller. It could be argued that this is unduly pessimistic, but we contend396

that this is a useful stress test. This sensitivity to real interest rate shocks is ameliorated somewhat397

by setting the final wealth target to be a non-zero amount. However, comparing the historical398

market results in Tables 5.2 (constant weight allocations) and 7.1 (minimizing probability of ruin),399

it seems that the median terminal wealth is reduced significantly in order to reduce the probability400

of portfolio depletion.401

8 Mean-CVAR optimization402

As another possible objective, we consider minimizing the mean of the worst α fraction of outcomes403

(i.e. CVAR). Recall that we define CVAR in terms of terminal wealth, not losses, so we want to404

maximize CVAR.405

Let P = {p0, p1, . . . , pM−1} be the set of controls at t ∈ T . Let CVARα denote the CVAR at406

10Experiments with larger values of Wmin increased Pr [WT < 0] in the bootstrap tests.
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level α. For a fixed value of α and a scalar κ, the mean-CVAR optimization problem is:407

max
P

CVARPα +κEP [WT ]408

subject to


(St, Bt) follow processes (2.1)-(2.4); t /∈ T
W+
i = W−i + qi ; S+

i = piW
+
i ; B+

i = W+
i − S

+
i ; t ∈ T

pi = pi(W
+
i , ti) ; 0 ≤ pi ≤ 1

, (8.1)409

410

where we use the notation EP [·] to emphasize that the expectation is computed using the control411

P. We give a brief description of the algorithm used to solve problem (8.1) in Appendix C. Due to412

the leverage constraint imposed in equation (8.1), this optimization problem is well-posed without413

adding an additional funding level constraint on the terminal wealth (Gao et al., 2017).414

Note that problem (8.1) is underspecified if κ = 0. By setting κ to a small positive number,415

e.g. κ = 10−8, we can force the following strategy. Let W ∗α be the Value at Risk (VAR) at level416

α (see Appendix C). Along any path where we can achieve WT > W ∗α with certainty by investing417

some amount in bonds, we then invest the remainder in stocks. More precisely, if418

(W−i + qi) > W ∗αe
−r(T−ti) −Qi, (8.2)419

where Qi is defined in equation (7.2), then the optimal strategy is to invest W ∗αe
−r(T−ti) − Qi in420

bonds and (W−i + qi) −W ∗αe−r(T−ti) + Qi in stocks. Effectively, we are maximizing CVARα (i.e.421

minimizing risk) with the tie-breaking strategy that if our wealth is large enough, then we invest422

the amount required to attain WT > W ∗α in bonds and the excess in stocks. Conversely, if we set κ423

to a small negative number, then the optimal strategy along any path where equation (8.2) holds424

will be to switch all accumulated wealth to bonds.425

It is well known that mean-CVAR optimization is not time consistent (Strub et al., 2017). In426

other words, if the optimization problem is restarted at some later time t > 0, then the strategy427

computed at this later time may not agree with the strategy computed at t = 0. The mean-CVAR428

strategy is termed a pre-commitment strategy, since the investor is committed to follow the strategy.429

However, we can view the pre-commitment mean-CVAR strategy, determined at t = 0, as the time430

consistent strategy for an alternative objective function for t > 0. This is discussed in Appendix C.431

Table 8.1 shows the results. In the synthetic market, Median[WT ], Pr [WT < 0], and 5% CVAR432

are the same for both κ = ±10−8, but Mean[WT ] and std [WT ] are dramatically different. This433

indicates that the large mean of terminal wealth for κ = +10−8 is due to small probability paths434

with extremely large values of WT . The bootstrap (i.e. historical market) results are generally435

worse than the synthetic market results, except for an expected blocksize of 5 years. We also436

include a few representative results for non-trivial positive κ in Table 8.1. Note the very rapid437

increase in E[WT ] as κ increases, and the enormous discrepancy between the mean and median438

values of WT . The 5th, 50th, and 95th percentiles of wealth over time for the bootstrap tests are439

shown in Figure 8.1(a) for the case κ = +10−8. Note the U-shape of the 95th percentile. This is440

due to the fact that on any path where the wealth satisfies equation (8.2), the optimal strategy441

is to invest the surplus in stocks since this will maximize expected terminal wealth. Contrast this442

with Figure 8.1(b), which shows the results when κ = −10−8. Recall that this forces the strategy443

to invest in bonds along any path where the wealth satisfies equation (8.2). Figure 8.1(c) shows444

the heat map of the optimal mean-CVAR strategy.445

9 Quadratic shortfall with expected value constraint446

By now it seems clear that directly minimizing a measure of the risk of ruin is not a good strategy,447

since the results are not very stable under the bootstrap tests. Even in the synthetic market tests,448
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b̂ κ Median[WT ] Mean[WT ] std [WT ] Pr [WT < 0] 5% CVAR

Synthetic market

NA 10−8 132 733 13844 .027 −185
NA −10−8 132 137 142 .027 −185
NA .025 455 19935 104100 .029 −227
NA .0375 1015 23593 111886 .031 −249
NA 0.05 1444 25297 115347 .033 −267

Historical market

0.5 10−8 240 855 2957 .047 −283
0.5 −10−8 165 193 182 .048 −285
1.0 10−8 270 1053 2943 .046 −286
1.0 −10−8 172 218 219 .048 −291
2.0 10−8 320 1223 3343 .036 −184
2.0 −10−8 186 259 253 .038 −189
5.0 10−8 409 1434 3222 .024 −74
5.0 −10−8 215 310 292 .025 −81

Table 8.1: Optimal control determined by solving mean-CVAR problem (8.1) with α = .05 in the
synthetic market, assuming the scenario in Table 4.1. WT denotes real terminal wealth after 60 years,
measured in thousands of dollars. Statistics for the synthetic market cases are based on 6.4 × 105

Monte Carlo simulation runs. Statistics for the historical market cases are based on 10,000 stationary
block bootstrap resamples of the historical data from 1926:1 to 2016:12. b̂ is the expected blocksize,
measured in years. κ specifies the asset allocation along paths where WT > W ∗

α with certainty; see
equation (8.2) and accompanying discussion.
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(c)Optimal control heat map, κ =
−10−8.

Figure 8.1: Percentiles of real wealth in the historical market. Optimal control determined by
solving mean-CVAR problem (8.1) with α = .05 and κ = −10−8 in the synthetic market, assuming
the scenario in Table 4.1. Statistics based on 10,000 bootstrap resamples of the historical data from
1926:1 to 2016:12 with expected blocksize b̂ = 2 years. κ specifies the asset allocation along paths
where WT > W ∗

α with certainty; see equation (8.2) and accompanying discussion.
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we can see that there is a very large cost incurred in terms of the median terminal wealth to reduce449

the probability of ruin by a small amount. It seems plausible to attempt to target a reasonable value450

of terminal wealth, and then to minimize the size of the shortfall. A natural candidate objective451

function in this case is minimizing the quadratic shortfall with respect to a target level of final452

wealth (W ∗), as suggested by Menoncin and Vigna (2017) and others. Writing this problem more453

formally:454

455

456

min
{(p0,c0), ..., (pM−1,cM−1)}

E
[
(min(WT −W ∗,0))2

]
457

subject to


(St, Bt) follow processes (2.1)-(2.4); t /∈ T
W+
i = W−i + qi − ci ; S+

i = piW
+
i ; B+

i = W+
i − S

+
i ; t ∈ T

pi = pi(W
+
i , ti) ; 0 ≤ pi ≤ 1

ci = ci(W
−
i + qi, ti) ; ci ≥ 0

. (9.1)458

459

We can interpret problem (9.1) as minimizing the quadratic penalty for shortfall with respect460

to the target W ∗. As in Section 7, we allow surplus cash withdrawals over and above the scheduled461

injections/withdrawals qi. An optimal strategy is to withdraw462

ci = max
[
W−i + qi −

(
W ∗e−r(T−ti) −Qi

)
, 0
]

(9.2)463

from the portfolio and invest the remainder in the bond index (Dang and Forsyth, 2016). Recall464

that Qi is defined in equation (7.2). In addition, the following result due to Zhou and Li (2000)465

implies that problem (9.1) simultaneously minimizes two measures of risk: expected quadratic466

shortfall and variance.467

Proposition 9.1 (Dynamic mean variance efficiency). The solution to problem (9.1) is multi-period468

mean variance optimal.469

Remark 9.1 (Time consistency). There is considerable confusion in the literature about pre-470

commitment mean-variance strategies. These strategies are commonly criticized for being time471

inconsistent (Basak and Chabakauri, 2010; Björk et al., 2014). However, the pre-commitment op-472

timal policy can be found by solving problem (9.1) using dynamic programming with a fixed W ∗,473

which is clearly time consistent. Hence, when determining the time consistent optimal strategy474

for problem (9.1), we obtain the optimal mean variance pre-commitment solution as a by-product.475

Vigna (2017) and Menoncin and Vigna (2017) provide further insight into this. As noted by Cong476

and Oosterlee (2016), the pre-commitment strategy can be seen as a strategy consistent with a fixed477

investment target, but not with a risk aversion attitude. Conversely, a time consistent strategy has478

a consistent risk aversion attitude, but it is not consistent with respect to an investment target. We479

contend that consistency with a target is more useful for life cycle investment strategies.480

We determine W ∗ in problem (9.1) by enforcing the constraint481

E[WT ] = W spec, (9.3)482

where W spec is the desired expected value of WT . Computationally, we do this by embedding483

problem (9.1) in a Newton iteration where we solve the equation (E[WT ] −W spec) = 0 for W ∗.484

Note that adjusting W spec allows us to indirectly adjust Median[WT ]. We choose W spec = 1000.11485

This gives a value of W ∗ = 1123. This choice gives an average allocation to the stock index of486

11Recall that units are thousands of dollars, so this corresponds to real terminal wealth of $1,000,000.
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b̂ Median[WT ] Mean[WT ] std [WT ] Pr [WT < 0] 5% CVAR

Synthetic market

NA 1123 1032 354 .042 −377

Historical market

0.5 1144 1096 344 .041 −345
1.0 1155 1134 334 .038 −311
2.0 1169 1198 290 .026 −112
5.0 1200 1280 234 .015 +154

Table 9.1: Optimal control determined by solving problem (9.1) (quadratic shortfall) with E[WT ] =
1000 (excluding surplus cash) in the synthetic market, assuming the scenario in Table 4.1. WT denotes
real terminal wealth after 60 years, measured in thousands of dollars. Statistics for the synthetic
market case are based on 6.4×105 Monte Carlo simulations. Statistics for the historical market cases
are based on 10,000 stationary block bootstrap resamples of the historical data from 1926:1 to 2016:12.
b̂ is the expected blocksize, measured in years. Surplus cash is included in the mean, median, CVAR,
and probability of ruin, but excluded from the standard deviation.

about 0.42.12 Note that in this case, the mean and median of the terminal wealth are comparable487

hence it is of interest to specify the mean value of the terminal wealth. It results in a median final488

wealth that is roughly comparable in the synthetic market to that seen earlier in Table 5.1 for the489

case with a constant equity weight of p = 0.4.13490

Table 9.1 presents the results. Note that the constraint in equation (9.3) is the mean without491

surplus cash, while the means reported in this table include surplus cash. However, the average492

value of surplus cash is not very large (1032−1000 in the synthetic market). Unlike for the previous493

objective functions considered, in this quadratic shortfall case the results in the historical market494

are generally superior to those in the synthetic market.495

As a point of reference, if we determine the optimal strategy with the constraint that E[WT ] =496

500, then, in the synthetic market, we find that Median[WT ] = 556 and Pr [WT < 0] = .035,497

compared with Median[WT ] = 1123 and Pr [WT < 0] = .042 for the E[WT ] = 1000 case. This is498

a large reduction in median terminal wealth for a fairly small improvement in probability of ruin.499

This effect of a relatively modest reduction in probability of ruin at a cost of a steep reduction in500

median terminal wealth is representative of many test cases we have run, using a wide range of501

parameters.502

Figure 9.1 shows the percentiles of the wealth (panel (a)) and the fraction invested in stocks503

(panel (b)) for the historical market with expected blocksize b̂ = 2.0 years. In Figure 9.1(a), the504

5th percentile represents a very poor outcome. However, in this case there is still a reasonably large505

buffer of remaining wealth at the end of 60 years. Figure 9.1(b) shows that the optimal strategy506

for this quadratic shortfall objective starts out with 100% invested in the equity index over the507

first several years. If market returns are very favourable during that period, there will be a sharp508

fall in the equity fraction (e.g. the 5th percentile case), to the point of possibly being completely509

12This is the time average of the median value of the equity weight p.
13We experimented with other ways of specifying W ∗. For example, rather than using the value which resulted

in E[WT ] = 1000, we determined the value which minimized Pr [WT < 0]. Although this looked promising in
the synthetic market, its performance in the historical market tests was worse compared to the strategy which set
E[WT ] = 1000.
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Figure 9.1: Percentiles of real wealth and the optimal fraction invested in equities. Optimal control
computed by solving the quadratic shortfall problem (9.1) with the constraint that E[WT ] = 1000 in
the synthetic market, assuming the scenario in Table 4.1. Statistics based on 10,000 stationary block
bootstrap resamples of the historical data from 1926:1 to 2016:12. Expected blocksize b̂ = 2 years.

de-risked for the last 25 years of the 60 year horizon. In this case, the 5th percentile represents a510

favourable investment outcome. The median case illustrates the same de-risking, but to a lesser511

extent (approximately 10% invested in the equity index over the last decade). On the other hand,512

the 95th percentile maintains the initial 100% allocation to equities for much longer, starts to de-513

risk, but then turns around with an increasing allocation to equities over approximately the last514

25 years. It appears that withdrawals coupled with poor returns require higher equity exposures515

in order to reach the target. Figure 9.1(c) shows the heat map of the optimal quadratic shortfall516

strategy.517

Unlike most other strategies, the quadratic shortfall strategy produces results in the historical518

market which are generally as good or better than in the synthetic market. The significant ter-519

minal wealth target adds robustness, ameliorating the effect of stochastic interest rates (which are520

introduced in the bootstrap resampling tests). In addition, as shown in Figure 9.1(c), the basic521

strategy is heavily contrarian: when wealth is low (e.g. due to equity market drops) invest more522

in equities, and then capture gains (by moving cash to bonds) when wealth is high (e.g. due to523

favourable equity market returns). Historically, this has been a winning strategy: over very long524

periods the market does move up, but retirees do not enjoy an unlimited time horizon. While there525

will always be a risk that equities do not achieve the growth target, the quadratic shortfall strategy526

greatly reduces risk by recognizing the opportunity of shifting the allocation to bonds when the527

target is within sight.528

Overall, it seems that these strategies, which can be interpreted as minimizing the expected529

quadratic shortfall with respect to a target, with an expected value constraint, are fairly robust. The530

ruin probabilities in the historical market are Pr [WT < 0] ' .03 (b̂ = 2), which may be acceptable531

in practice. Recall that in the synthetic market, the best possible strategy gives Pr [WT < 0] '532

.02. The quadratic shortfall strategies give up only a small amount in terms of probability of533

failure.14 In return we have a good chance of a large bequest (or a safety buffer for longevity), i.e.534

Median[Wt] > 1,000.535

14Recall that the optimal strategy for minimizing Pr [WT < 0] was not very robust in terms of the bootstrap stress
tests.
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10 Some alternative strategies536

We now briefly discuss some other strategies which we have considered. First, we have tested537

strategies where we replace the objective function in the quadratic shortfall problem (9.1) by538

min
{(p0,c0), ..., (pM−1,cM−1)}

E
[
|(min(WT −W ∗,0)|β

]
, (10.1)539

for powers β ∈ {1,3,4}, in addition to the β = 2 case considered in detail in Section 9. Similar540

results were obtained for all choices of β, with β = 2 having a slight edge.541

Another target-based objective function has been recently suggested in Zhang et al. (2017). This542

is the sharp target objective. It seeks to maximize expected terminal wealth over a specified target543

range, where the upper end of the range corresponds to a wealth goal and the lower end represents a544

desired conservative minimum. We give a brief overview of our results using this objective function545

in Appendix D. This objective function produced results similar to the quadratic shortfall criteria,546

but with noticeably worse CVAR. Hence, it appears that the quadratic shortfall (expected value547

constraint) objective function discussed in Section 9 gives somewhat better overall results.548

11 Comparison of strategies549

Table 11.1 compares representative results for several of the strategies discussed earlier.15 This550

comparison is in the historical market, with an expected blocksize of b̂ = 2 years. The focus is551

on the two risk measures which we view as most important in this context: ruin probability and552

5% CVAR. A secondary criterion is the median terminal wealth (since mean terminal wealth can553

be misleading due to a small number of simulated paths with extreme results). Table 11.1 shows554

that in terms of minimizing risk, the quadratic shortfall objective function with an expected value555

constraint from Section 9 seems to be superior to the other objective functions. It also offers a556

relatively high median terminal wealth. It is outperformed significantly on this dimension by the557

constant equity fraction strategies with p = 0.60 and p = 0.80, but these constant weight strategies558

also have much higher risk exposures.559

Figure 11.1 plots kernel-smoothed probability densities of terminal wealth WT in the historical560

market for the three constant weight strategies and the quadratic shortfall strategy from Table 11.1.561

This figure highlights some of the differences between the simpler constant weight approaches and562

the quadratic shortfall strategy. This latter strategy clearly sacrifices a lot of upside potential563

in exchange for downside protection, concentrating the wealth distribution in a narrow range,564

compared to the constant weight cases.565

If we are concerned that too much upside is sacrificed for the quadratic shortfall method, we566

can try using a higher expected value constraint. Suppose, for example, that we target E[WT ] =567

2500 in the synthetic market. Then in the historical bootstrap market (b̂ = 2 years), we obtain568

Median[WT ] = 2961, which is approximately the median obtained for the constant weight p = .6569

case in Table 11.1. The quadratic shortfall risk measures in this case are Pr [WT < 0] = .04, and570

5% CVAR= −331. These results are still superior to the constant weight p = .6 case, but the571

quadratic shortfall strategy has to maintain a relatively high allocation to equities in order to hit572

the expected value target, so that there is less freedom to reduce risk.573

As an additional stress test, we consider a case where the optimal strategy was computed with574

the historical parameters, but, going forward, the stock returns are reduced by 200 basis points per575

15Table 11.1 excludes some strategies which performed relatively poorly, such as minimizing the probability of ruin
with Wmin = 0 and the mean-CVAR strategy with κ = −10−8.
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Strategy Median[WT ] Pr [WT < 0] 5% CVAR

Const. equity fraction p = .40 961 .15 −461
Const. equity fraction p = .60 2931 .07 −389
Const. equity fraction p = .80 6151 .054 −411

Minimize probability of ruin (Section 7) 456 .030 −183
min Pr

[
WT < Wmin

]
; Wmin = 200

Mean-CVAR (Section 8) 320 .036 −184
max CVARα +κE[WT ]; α = .05 ; κ = +10−8

Sharp target (Appendix D) 1138 .031 −204
WL = 100,WU = 1178

Quadratic shortfall (Section 9) 1169 .026 −112

minE
[
(min(WT −W ∗,0))2

]
: W ∗ : E[WT ] = 1000

Table 11.1: Optimal controls determined by solving for strategies in the synthetic market, assuming
the scenario in Table 4.1. Reported results use these controls in the historical market and are based on
10,000 stationary block bootstrap resamples of the historical data from 1926:1 to 2016:12 with expected
blocksize b̂ = 2 years. WT denotes real terminal wealth after 60 years, measured in thousands of
dollars. Surplus cash is included in the median terminal wealth, where applicable.

year relative to the historical average. Obviously all strategies in this case are adversely affected,576

but the quadratic shortfall strategy computed using incorrect parameter estimates is still superior577

to the constant weight strategies.578

12 Conclusion579

DC pension plan holders generally have no choice but to invest in risky assets in order to achieve580

even minimal salary replacement levels. We make the conservative assumption that the DC plan581

holder requires fixed cash flows for 30 years after retirement, after an accumulation period of 30582

years. We also assume that the holder does not choose to annuitize, which is consistent with583

observed behaviour.584

Our main result is that an objective function which focuses purely on a risk measure such as585

minimizing the probability of ruin or maximizing CVAR16 performs well in a synthetic market, but586

poorly in bootstrap backtests (the historical market). The main problem seems to be that these587

strategies are not robust due to real interest rate shocks introduced by the resampling process.588

In addition, even in the synthetic market, we observe that the small decreases in the probability589

of ruin come at the cost of drastically reducing the median terminal wealth (i.e. a bequest or an590

additional longevity safety valve). Greater robustness is achieved by targeting a final wealth greater591

than zero, which acts as a buffer against uncertainties in market parameters. Another side effect592

of this is that a significant terminal wealth acts as additional buffer for longevity risk (e.g. the risk593

of living for more than 30 years of retirement).594

Minimizing the quadratic shortfall with an expected terminal wealth constraint appears to be595

a good strategy in general, as long as the expected terminal wealth constraint is sufficiently large596

16Recall that we define CVAR as the mean of the worst α fraction of terminal wealth, not the losses, so we want
to maximize CVAR to minimize risk.
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Figure 11.1: Kernel smoothed probability densities for three constant weight strategies and the
quadratic shortfall strategy, assuming the scenario in Table 4.1. Densities based on stationary block
bootstrap resampling of the historical data from 1926:1 to 2016:12 with an expected blocksize of b̂ = 2.0
years. WT denotes real terminal wealth after 60 years, measured in thousands of dollars. The quadratic
shortfall method enforces the constraint that E[WT ] = 1000 in the synthetic market used to determine
the optimal control for that strategy.

to buffer the real interest rate shocks. This method results in an acceptable probability of ruin,597

and a significant median terminal wealth. This strategy is also robust to the misspecification of the598

drift of the risky asset, and is superior (by most measures) to standard constant weight strategies.599

However, this approach requires some experimentation in order to set the expected terminal wealth600

constraint appropriately.601

It is interesting to observe that a robust strategy involves aiming for a significant size of terminal602

wealth (which may turn out to be a bequest) in order to have a small probability of ruin. In this603

instance, the investor and her heirs are likely to agree on the strategy.604

We would like to emphasize that it is important to stress test any strategy, e.g. by bootstrapping605

the historical data. Some strategies which appear to work very well in the synthetic market fail606

in the bootstrap stress tests. However, we believe that our tests point the way to some promising607

choices of objective function for full life cycle DC plan asset allocation.608

Any strategy which involves investing in risky assets to meet fixed cash flows has a non-zero609

probability of portfolio depletion before the horizon date. The best that can be done is to make610

this probability acceptably small. Nevertheless, failure can occur, which begs the question of what611

happens then. A possible backup in many cases would be the use of the retiree’s other assets, such612

as real estate. For example, it may be possible to use a reverse mortgage to monetize the retiree’s613

home. As long as the value of any real estate asset is larger than (the negative of) the 5% CVAR,614

then we can regard the real estate asset as at least a partial hedge against the tail risk.615

Our basic question in this work was whether a suitably chosen investment strategy would offer616

a DC plan member the opportunity to have a similar retirement income stream as provided by a617

traditional DB plan. The quadratic shortfall strategy produces a 30-year real annuity with a low618

probability of ruin, not a guaranteed life annuity (assuming DB pension plan solvency). In this619
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respect, it falls a bit short of providing a fully comparable retirement income stream. Offsetting620

this, however, is a reasonably good chance of a large buffer, which could be used to pay for higher621

than anticipated expenses, or as a significant bequest, or as a hedge against extreme longevity.622

The quadratic shortfall strategy can also be regarded as being superior to annuitization, since it623

preserves liquidity and is defined real terms, whereas in practice annuities are almost invariably624

defined in nominal terms, and often considerably overpriced compared to their actuarial value625

(MacDonald et al., 2013).626

We have restricted attention in this paper to requiring a fixed (real) withdrawal during the627

decumulation phase. Another alternative is to allow the withdrawal to vary in response to the628

then current portfolio value, based on an estimate of remaining lifetime. This shifts the risk629

from portfolio depletion to volatile decumulation cash flows (Waring and Siegel, 2015; Westmacott630

and Daley, 2015). In this case, the control problem objective function would be to minimize the631

withdrawal volatility and maximize the cumulative withdrawals. We intend to study this approach632

in the future.633
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Appendices639

A Calibration of model parameters640

To estimate the jump diffusion model parameters, we use the thresholding technique described641

in Mancini (2009) and Cont and Mancini (2011). This procedure is considered to be relatively642

efficient for fairly low frequency data, such as the monthly frequency used here. For details, see643

Dang and Forsyth (2016) and Forsyth and Vetzal (2017a). We use a threshold parameter α = 3 in644

our estimates.17645

Table A.1 provides the resulting annualized parameter estimates for the double exponential646

jump diffusion given in equation (2.2). The drift rate µ corresponds to an expected annual return647

of almost 9%. The diffusive volatility σ might seem slightly low at less than 15%, but recall that648

the overall effective volatility includes this amount plus the contribution to volatility from jumps.649

The jump intensity λ implies that jumps can be expected to occur approximately every 3 years.650

When a jump happens, it is about 3 times more likely to be a move down than a move up. Upward651

jumps are a little larger on average than downward jumps.652

Figure A.1 shows the normalized histogram of real CRSP Deciles (1-10) index log returns for653

the period 1926:1-2016:12. The standard normal density and scaled jump diffusion density are also654

shown. The improved fit from the jump diffusion model is readily apparent.655

17This parameter has the intuitive interpretation that if the absolute value of the log return in a period is larger
an α standard deviation Brownian motion return, then it is identified as a jump.
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µ σ λ pup η1 η2

.08753 .14801 .34065 .25806 4.67877 5.60389

Table A.1: Estimated annualized parameters for the double exponential jump diffusion model given in
equation (2.2) applied to the value-weighted CRSP Deciles (1-10) index, deflated by the CPI. Sample
period 1926:1 to 2016:12. CRSP and CPI data from Dimensional Returns 2.0 under licence from
Dimensional Fund Advisors Canada.
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Figure A.1: Histogram of real log returns of CRSP Deciles (1-10) index, scaled to zero mean and
unit standard deviation. Standard normal density shown, as well as the fitted jump diffusion, double
exponential distribution, also scaled to zero mean and unit standard deviation. Jump diffusion param-
eters: threshold (α = 3) from Table A.1. Sample period 1926:1 to 2016:12. Source: CRSP and CPI
data from Dimensional Returns 2.0 under licence from Dimensional Fund Advisors Canada.

The historical average annualized real interest rate for one-month US T-bills from 1926:1 to656

2016:12 was r = 0.004835. The volatility of the one-month T-bill return was about .018, which657

justifies ignoring the randomness of short term interest rates, at least as a first approximation. We658

test the effect of this assumption on optimal strategies by applying the computed strategies to the659

historical market, which is constructed using bootstrap resamples of the data series and so includes660

the effect of stochastic real interest rates.661

B Bootstrap resampling662

We use bootstrap resampling to study how the various strategies would have performed on actual663

historical data. A single bootstrap resampled path can be constructed as follows. Divide the total664

investment horizon of T years into k blocks of size b years, so that T = kb. We then select k665

blocks at random (with replacement) from the historical data (from both the deflated equity and666

T-bill indexes). Each block starts at a random month. A single path is formed by concatenating667

these blocks. The historical data is wrapped around to avoid end effects, as in the circular block668

bootstrap (Politis and White, 2004; Patton et al., 2009). This procedure is then repeated for many669

paths.670

The sampling is done in blocks in order to account for possible serial dependence effects in the671
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historical time series. The choice of blocksize is crucial and can have a large impact on the results672

(Cogneau and Zakalmouline, 2013). We simultaneously sample the real stock and bond returns673

from the historical data. This introduces random real interest rates in our samples, in contrast to674

the constant interest rates assumed in the synthetic market tests and in the determination of the675

optimal controls.676

To reduce the impact of a fixed blocksize and to mitigate the edge effects at each block end, we677

use the stationary block bootstrap (Politis and White, 2004). The blocksize is randomly sampled678

from a geometric distribution with an expected blocksize b̂. The optimal choice for b̂ is determined679

using the algorithm described in Patton et al. (2009).18 Calculated optimal values for b̂ were 57680

months for the T-bill index and 3.5 months for the real CRSP index. We adopt a paired sampling681

approach whereby we sample simultaneously from both stock and bond indexes, so we must use682

the same blocksize for both indexes. Since the recommended blocksizes are quite different for the683

two indexes, we sidestep this issue by presenting results for a range of blocksizes.684

C Definition of CVAR685

Let p(WT ) be the probability density function of wealth at t = T . Let686 ∫ W ∗α

−∞
p(WT ) dWT = α, (C.1)687

i.e. Pr [WT > W ∗α] = 1 − α. We can interpret W ∗α as the Value at Risk (VAR) at level α. The688

Conditional Value at Risk (CVAR) at level α is then689

CVARα =

∫W ∗α
−∞WT p(WT ) dWT

α
, (C.2)690

which is the average of the worst α fraction of outcomes. Typically α = .01, .05. Note that the691

definition of CVAR in equation (C.2) uses the probability density of the final wealth distribution,692

not the density of loss. Hence, in our case, a larger value of CVAR (i.e. a larger value of worst case693

terminal wealth) is desired. In our examples, we have both positive and negative values of CVAR.694

Given an expectation under control P, EP [·], as noted by Rockafellar and Uryasev (2000) and695

Miller and Yang (2017), the mean-CVAR optimization can be expressed as696

max
P

sup
W ∗

EP
(
W ∗ +

1

α

[
(WT −W ∗)−

]
+ κWT

)
. (C.3)697

Following Miller and Yang (2017), we interchange the max and sup operations in equation (C.3),698

which allows us to rewrite the objective function (C.3) as699

sup
W ∗

{
max
P

EP
(
W ∗ +

1

α

[
(WT −W ∗)−

]
+ κWT

)}
, (C.4)700

and solve the inner optimization problem using an HJB equation (Dang and Forsyth, 2014; Forsyth701

and Labahn, 2018). Standard methods can then be used to solve the outer optimization problem.702

Remark C.1 (Time consistency of mean-CVAR strategies). Suppose that we solve the mean-CVAR703

problem at t = 0, for a given confidence level α. This determines a value of W ∗ in equation (C.4).704

18This approach has also been used in other tests of portfolio allocation problems recently (e.g. Dichtl et al., 2016).
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If we fix the value of W ∗, then the pre-commitment mean-CVAR strategy (computed at t = 0), is705

the time consistent solution for the objective function706 {
max
P

EP
(

(WT −W ∗)− + κ′WT

)}
κ′ = ακ ; α > 0 ; W ∗ = fixed , (C.5)

for all t > 0. Hence the pre-commitment mean-CVAR solution is time consistent in terms of linear707

shortfall with respect to a fixed target W ∗. Alternatively, the pre-commitment mean-CVAR policy708

can also be seen as a time consistent mean-CVAR strategy if we allow time dependent confidence709

level α and wealth dependent expected wealth target (Strub et al., 2017).710

D Sharp target711

Another possible objective function is the sharp target suggested in Zhang et al. (2017):712

max
{(p0,c0), ..., (pM−1,cM−1)}

E [(WT −WL)1WL≤WT<WU
]713

subject to


(St, Bt) follow processes (2.1)-(2.4); t /∈ T
W+
i = W−i + qi − ci ; S+

i = piW
+
i ; B+

i = W+
i − S

+
i ; t ∈ T

pi = pi(W
+
i , ti) ; 0 ≤ pi ≤ 1

ci = ci(W
−
i + qi, ti) ; ci ≥ 0

, (D.1)714

715

where WL,WU are parameters. We can think of WL as a minimum required value of the final wealth716

andWU as the desired value. We withdraw cash from the portfolio if investing the remaining amount717

in the risk-free asset (along any given path) ensures that WT > WU . The surplus (withdrawn718

amount) is also invested in the risk-free asset. Note that we have to specify what rule to use if a719

risk-free investment results in WT > WU , since otherwise the problem is not fully specified.720

The idea of objective (D.1) is to reward outcomes between WL < WT < WU , with higher reward721

for outcomes near WU . There is no reward for outcomes WT > WU . A possible problem is that722

all outcomes WT < WL are penalized equally. To be comparable with the results in Section 9723

(quadratic shortfall with expected value constraint), we fix WL = 100 and determine WU so that724

E[WT ] = 1000 in the synthetic market. This gives WU = 1178.725

The results for the sharp target strategy are shown in Table D.1. Comparing the historical726

market results from this table with those for the quadratic shortfall strategy in Table 9.1, we see727

that the sharp target gives similar results, except that the 5% CVAR is notably worse. This can be728

traced the the fact that all shortfalls below WL are weighted equally in the sharp target objective,729

while larger shortfalls are increasingly penalized with the quadratic shortfall objective function.730
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