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Abstract

One method for valuing path-dependent options is the augmented state space approach described in Hull and
White (1993) and Barraquand and Pudet (1996), among others. In certain cases, interpolation is required
because the number of possible values of the additional state variable grows exponentially. We provide a
detailed analysis of the convergence of these algorithms. We show that it is possible for the algorithm to
be non-convergent, or to converge to an incorrect answer, if the interpolation scheme is selected inappropri-
ately. We concentrate on Asian options, due to their popularity and because of some errors in the previous
literature.



1 Introduction

The valuation of path-dependent contingent claims continues to be an active area of research in finance.

With the general absence of analytic solutions, the development of effective numerical algorithms has taken

on added importance. Broadly speaking, these fall into three categories. Monte Carlo methods are relatively

straightforward to implement, though there are some significant issues with regard to variance reduction

methods as well as monitoring frequencies. The general survey paper on Monte Carlo techniques by Boyle

et al. (1997) includes some discussion of these aspects of path-dependent option valuation and provides ref-

erences to this literature. A general approach based on partial differential equations is described in Wilmott

et al. (1993). An illustration of how this type of approach may be used to value lookback options is pro-

vided in Forsyth et al. (1999). Finally, given their popularity and simplicity in the context of vanilla options,

it is not surprising that much effort has been devoted to adapting lattice based methods (i.e. binomial and

trinomial trees) to the context of path-dependent contracts. Although there are numerous examples of this

type of approach in the literature, we wish to concentrate on a subset of these. In particular, certain authors

have proposed a method in which the usual tree is augmented by a second state vector which is intended to

capture the path-dependent aspects of the claim. The elements of this auxiliary vector may be, for example,

possible values for the maximum or minimum stock price reached thus far in the case of a lookback or

candidates for the average stock price in the case of an Asian option.

For present purposes, an important feature of the auxiliary state vector is whether it contains exact

values of the path-dependent feature or whether it is a representative grid spanning the range of possible

values. In the case of a lookback, the highest or lowest price is necessarily one in the stock price tree.

Consequently it is easy to construct the second state vector so that each element corresponds to a possible

value of the maximum or minimum price reached thus far. On the other hand, the number of possible values

for the arithmetic average grows exponentially with the number of timesteps. It is not feasible to track every

possible average in the auxiliary vector. Instead the vector contains a grid which covers the range of possible

averages, and interpolation between the nodes of this grid is required when solving backwards through the

tree to find the initial value of the claim.

The first authors to propose this type of method were Ritchken et al. (1993) and Hull and White (1993).

Ritchken et al. examined European and American style Asian options, whereas Hull and White considered

a variety of path-dependent claims including American and European lookbacks and Asians. A similar set

of contracts was studied by Barraquand and Pudet (1996) using a slightly different algorithm which they

called the forward shooting grid (FSG) method. Li et al. (1995) and Ritchken and Chuang (1999) have

used this general kind of approach to value interest rate contingent claims. Another application is provided

by Ritchken and Trevor (1999) in the context of pricing options where the underlying stock price follows

various kinds of GARCH processes.

Given the wide applicability of this methodology, it is clearly important to understand its convergence

properties. Somewhat surprisingly, only Barraquand and Pudet (1996) have provided much analysis in this

regard. Most authors have confined themselves to illustrating convergence through numerical examples,

but this does not prove convergence to the correct answer. Unfortunately, although the convergence proof

provided by Barraquand and Pudet is correct for situations which do not require interpolation, there is a
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problem with their proof for contracts where interpolation is needed. More precisely, Barraquand and Pudet

claim that

� the FSG method is convergent if nearest lattice point interpolation is used;

� unconditional convergence is obtained provided that the timestep ∆t and the spacing of the nodal

averages tend to zero, regardless of any quantitative relationship between these two quantization pa-

rameters (Barraquand and Pudet (1996), p. 42).

Since an interpolation error is introduced at each timestep, it is clear that the cumulative effect of a finite

error applied an infinite number of times (as the timestep tends to zero) must be carefully monitored. The

basic problem with Barraquand and Pudet’s analysis is that they consider the interpolation error only during

the last timestep of the tree, ignoring the additional errors that occur at each preceding timestep.

After outlining the Asian option pricing problem in Section 2, and describing the forward shooting grid

algorithm in Section 3, Section 4 presents a worst case error analysis for the propagation of the interpolation

error which shows that:

� if nearest lattice point interpolation is used, then the FSG method may not be convergent;

� if linear interpolation is used, then the error is not reduced in the limit as ∆t � 0, unless the limit

is carried out in a certain way. In particular, the grid spacing in the auxiliary vector must be an

appropriate function of ∆t.

This latter point illustrates the importance of a formal convergence analysis. Numerical examples intended

to demonstrate convergence are not sufficient here because it is possible to converge to a value which differs

from the correct price by a constant. Now in practice, it should be pointed out that this constant appears

to be quite small, at least for the examples which we have examined. This means that there do not appear

to be any significant problems from using a theoretically inappropriate grid spacing in the auxiliary vec-

tor. Nonetheless, such problems might occur and our recommended approach provides a simple means of

ensuring that they do not.

Using a similar analysis, Section 5 demonstrates that the Hull and White (1993) method is convergent

provided that the grid quantization parameter is chosen appropriately. Section 6 describes a partial dif-

ferential equation (PDE) based method and shows that it is convergent as well. Section 7 presents some

numerical examples. Section 8 provides a brief illustration of the use of interpolation for mortgage-backed

securities. In particular, we use this example to illustrate how the frequency with which the interpolation

must be applied affects the rate of convergence. Section 9 concludes.

2 Formulation: Asian Options

A standard approach for valuing Asian and other path-dependent options is to augment the state space. Let

the discretely observed average be given by observing the asset price at discrete times t0 � t1 ��������� tn, with
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corresponding asset prices S0
� S1

������� � Sn. The average is then defined as

An �
n

∑
i � 0

Si

n
�

1
(2.1)

with A0 � S0. A recursive expression for the average at observation time tn � 1 is given by

An � 1 � An ��� Sn � 1 � An �
n
�

2 � (2.2)

The value of an option whose payoff depends on the (discretely observed) average asset price is given

by V � V � S � A � t � , where the average A can take on any value. We assume that the underlying asset price

follows the process

dS � µSdt
� σSdZ

where µ is the drift rate, σ is the volatility, and dZ is the increment of a Wiener process. At times other than

observation dates, standard arguments imply that the option satisfies the usual Black-Scholes equation

Vt
� σ2S2

2
VSS
�

rSVS
� rV � 0 (2.3)

where r is the risk free interest rate. At observation dates no-arbitrage considerations imply that

V � S � An � 1
� t
�
n
� � V � S � An

� t 	n � (2.4)

where t �n (t 	n ) is the time immediately after (before) the observation date tn, and

An � 1 � An � � S � An �
n
�

2
(2.5)

with A0 � S0. Equations (2.3-2.5) represent an infinite set of one-dimensional PDEs, where the average

value A appears as a parameter. These one-dimensional PDEs (for a given value of A) depend only on the

asset price S. At each observation date tn, these one-dimensional problems exchange information based on

conditions (2.4-2.5).

To complete the specification of the problem, terminal and boundary conditions are required. Equations

(2.3-2.5) are posed on the domain 0 
 S 
 ∞ and 0 
 A 
 ∞. At t � T , the terminal condition is given by

the payoff function. For example, a fixed strike Asian call/put would result in the condition

V � S � A � t � T � � max � E � A � 0 � for a put
� max � A � E � 0 � for a call � (2.6)

where E is the exercise price. At S � 0, equation (2.3) reduces to the ordinary differential equation Vt
� rV �

0, so no boundary condition needs to be explicitly enforced here. Since equation (2.3) contains no explicit
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dependence on A, we need only specify the behavior of V as S � ∞. Initially, the asymptotic form of V as

S � ∞ is given by the payoff condition (2.6). At observation dates, the asymptotic form is updated using the

jump conditions (2.5). Following Hull and White (1993) and Barraquand and Pudet (1996), we assume (for

simplicity) that there is a constant interval between the discrete observations, i.e. tn � 1
� tn � δt. Note that

the interval between observations is completely unrelated, in general, to a timestep ∆t in a discretization of

the PDE.

In some cases (e.g. the floating strike as described in Andreasen (1998)), the two state variable problem

can be reduced to a single state variable problem. However, in general (e.g. an American fixed strike,

discretely observed option), the problem cannot be reduced to one with a single factor. Since our focus in

this article is on convergence issues related to interpolation of discrete quantities, we will not concentrate

on options with early exercise. However, all of the algorithms discussed here can be trivially generalized to

handle this, and we do provide some numerical results for this case.

Although most (if not all) Asian option contracts are based on discrete observation of the underlying

asset, in some cases the assumption of continuous monitoring can provide a reasonable approximation. In

this case, the average is defined as

A � � t
0 S � τ � dτ

t
� dA � � S

� A � dt
t � (2.7)

Using standard arguments, the value of an option whose payoff is a function of S and A, where A is contin-

uously observed, is given by V c � V c � S � A � t � , where V c satisfies (see Barraquand and Pudet (1996))

V c
t
�

rS
∂V c

∂S
� σ2S2

2
∂2V c

∂S2
� � S � A �

t
∂V c

∂A
� rV c � 0 � (2.8)

Clearly, as the number of observations becomes infinite, and the time between observations tends to zero,

then definition (2.1) � definition (2.7), and the solution of equations (2.3-2.5) tends to the solution of

equation (2.8). Note however, that if constant observation intervals of size δt are used in equations (2.3-2.5),

then the discretely observed model will converge only at a rate of O � δt � to the continuously observed limit.

In the following, we will base our analysis on the discretely observed Asian options defined by equations

(2.3-2.5), where we take the limit as the number of observations becomes large, and hence converge to the

continuously observed limit. This approach is a convenient starting point for analyzing the algorithms in

Barraquand and Pudet (1996) and Hull and White (1993), as well as PDE methods for discretely observed

Asian options. In addition, it is straightforward to modify these methods so that they can be used to price

options where δt represents a fixed observation interval (e.g. one day). Note that PDE methods for directly

solving the continuous limit equation (2.8) are discussed in Zvan et al. (1998).
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3 Analysis of the Forward Shooting Grid Method

In this section, we introduce a general framework which will be used to analyze the FSG method. We use

the notation in Barraquand and Pudet (1996) to facilitate comparison with that work. Let

∆Z � σ � ∆t

∆Y � ρ∆Z (3.1)

where σ is the volatility, ∆t is the (discrete) timestep, and ρ is a quantization parameter for spacing in the Y

(average) direction. In the following, we assume that 1 � ρ is an integer. Also, note that in Barraquand and

Pudet (1996) it is implicitly assumed that the discrete timestep ∆t is equal to the observation frequency δt,

so that convergence to the continuously observed limit is desired as ∆t � 0.

Let discrete values of the asset price S and average price A be given by

Sn
j
� S0e j∆Z

An
k
� S0ek∆Y

n � 0 ������� � N; j � � n ���������
�

n; k � � km � n � ������� � � km � n � (3.2)

where N is the number of timesteps and

km � n � � n � ρ � (3.3)

Recall that 1 � ρ is an integer which controls the fineness of the quantization in the average direction. To

avoid unnecessary algebraic complication, and without any loss of generality, take S0
� 1 in equation (3.2),

which then becomes

Sn
j
� e j∆Z

An
k
� ek∆Y

� (3.4)

It follows that all error estimates will be relative to S0, consistent with Barraquand and Pudet (1996).

Under the usual binomial approximation, we associate an upward transition Sn
j
� Sn � 1

j � 1 with (risk-

neutral) probability p, and a downward transition Sn
j
� Sn � 1

j 	 1 with (risk-neutral) probability � 1 � p � , during

the time t � n∆t to the time t � � n � 1 � ∆t. The average is updated based on the transitions:

An � 1
k ��� j � k � � An

k
�

�
Sn � 1

j � 1
� An

k �
� n � 2 �

An � 1
k 	
� j � k � � An

k
�

�
Sn � 1

j 	 1
� An

k �
� n � 2 � (3.5)

with A0
0
� S0

0
� 1. Each asset price node in the tree has associated with it a set of average values An

k and
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FIGURE 1: Asset price tree indicating that a set of discrete averages (An � 1
k ) and approximate option values

(Un � 1
j � 1 � k) exists at each node of the tree.

approximate option prices U n
k . This is illustrated in Figure 1.

Note that An � 1
k � � j � k � and An � 1

k 	 � j � k � in equation (3.5) do not necessarily coincide with the lattice values in

equation (3.4). This necessitates some form of interpolation (Hull and White (1993); Barraquand and Pudet

(1996)). For future reference, define

k
�
f loor � j � k � � floor

��
log

�
An � 1

k � � j � k � �
ρ∆Z

��
k
�
ceil � j � k � � k

�
f loor � j � k � � 1 � (3.6)

These are simply the indices for the lattice average values in equation (3.4) which bracket the updated

average values in equation (3.5).

Let Un
j � k � U � Sn

j � A
n
k � n∆t � be the approximate value of the option obtained using the FSG method at

t � n∆t, A � An
k , S � Sn

j . The value of the option given a suitable terminal payoff condition U N
j � k is given by

the usual backward recursion, bearing in mind that the required values of the averages at t � n
�

1 must be

interpolated from the given lattice values at t � n
�

1 (as shown in Figure 2):

Un
j � k � e 	 r∆t � p � αn � 1

k �f loor � j � k � Un � 1
j � 1 � k �f loor � j � k � � � 1 � αn � 1

k �f loor � j � k ��� Un � 1
j � 1 � k �ceil � j � k ���

� � 1 � p � � αn � 1
k 	f loor � j � k � Un � 1

j 	 1 � k 	f loor � j � k � � � 1 � αn � 1
k 	f loor � j � k � � Un � 1

j 	 1 � k 	ceil � j � k � ���
n � N � 1 ��������� 0; j � � n ���������

�
n; k � � km � n � ������� � � km � n � � (3.7)
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FIGURE 2: The values of Un � 1
j � 1 � k � ! j � k " and Un � 1

j # 1 � k 	 ! j � k " must be interpolated from the known values at t $
n % 1.

In equation (3.7), the risk-neutral probability p is

p � er∆t � e 	 σ & ∆t

e � σ & ∆t � e 	 σ & ∆t
� (3.8)

and the α’s are determined by the type of interpolation used, nearest lattice point (a.k.a. nearest neighbor)

or linear. Note that in both of these cases

0 
 αn � 1
k �f loor � j � k � 
 1

0 
 αn � 1
k 	f loor � j � k � 
 1 � (3.9)

4 Error Analysis

In this section, we will analyze the FSG method as described above, and relate this method to the problem

as posed in equations (2.3-2.5). For expository purposes, we shall make the following two simplifying

assumptions:

1. The exact solution V to equations (2.3-2.5) for a given value of the observation interval δt has contin-

uous bounded derivatives up to fourth order with respect to S, and up to second order with respect to

A and t. The payoff condition has continuous bounded first and second derivatives with respect to A

and S. (A fixed strike payoff is independent of S. In Appendix D, we show how to take into account

the fact that the payoff derivatives w.r.t. A are not bounded everywhere).
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2. We will assume that the effect of interpolation errors, introduced at large (but finite) values of A � A �
have negligible effect on the approximate solution U 0

0 � 0. This is plausible, since we expect that states

with very large values of A are exceedingly improbable. This assumption can be removed as shown

in Appendix C.

The above assumptions allow us to focus on the effect of the interpolation error (as in equation (3.7)),

without tedious algebraic complication. In fact, the derivatives of usual payoffs are not smooth at the strike.

However, intuitively, we can expect that a diffusion type equation will rapidly smooth out any initial rough

data. Similarly, we would also expect that the effect of states with large values of the average would have a

vanishingly small effect (A � � ∞) at any finite initial value of S, since these states have a very low probability

of being reached in a finite time. In Appendix D, we indicate in a heuristic way how these assumptions can

be relaxed. However, we anticipate that a completely rigorous argument to account for lack of smoothness

of the payoff would be quite long and involved. We leave this as a topic for future research.

Let V n
j � k denote the exact solution of equations (2.3-2.5), evaluated at S � Sn

j , A � An
k , t � � nδt � � � t �n ,

for a given discrete observation interval δt:

V n
j � k � V � Sn

j � A
n
k � t
�
n
�
� (4.1)

Note that this exact solution is independent of any approximation used to solve the PDEs, but does depend on

the discrete observation interval δt. Also note that V n
j � k refers to values the instant after a discrete observation.

We denote values of V at the instant before a discrete observation by � V n
j � k � 	 , at S � Sn

j , A � An
k , t � � nδt � 	 �

t 	n :

� V n
j � k � 	 � V � Sn

j � A
n
k � t 	n � � (4.2)

This distinction is required in view of the jump conditions (2.4). Recall that, from equation (2.1), A0 � S0.

Therefore no jump condition is required at n � 0, and so � V 0
0 � 0 � 	 � V 0

0 � 0. In order to be consistent with the

FSG algorithm as described above, we let the discrete observation period be equal to the discrete timestep,

i.e. δt � ∆t.

Observe that if we define X � logS, then equation (2.3) becomes (for fixed A)

Vt
� σ2

2
VXX
� � r � σ2

2
� VX
� rV � 0 � (4.3)

In Appendix A, by means of Taylor series, we show the following result:

Proposition 1 (Recursion Satisfied by the Exact Solution to Equation (4.3)) The exact

solution to equation (4.3) at discrete points � j � k � n � satisfies

V n
j � k � e 	 r∆t � p �

V n � 1
j � 1 � k � 	 � � 1 � p �

�
V n � 1

j 	 1 � k � 	 � � truncation error �

truncation error � O
� � ∆t � 2 �

� (4.4)
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In order to obtain a recursion in terms of V n
j � k in equation (4.4), we must eliminate the dependence on�

V n � 1
j
�

1 � k � 	 . Let V n � 1
j � 1 � k � � j � k � denote the value of the exact solution to equations (2.3-2.5), evaluated at asset

price Sn � 1
j � 1 , and average value An � 1

k � � j � k � (as defined in equation (3.5)) with discrete observation interval δt � ∆t,

and at t �n � 1. Note that the jump conditions (2.4) can be written (at discrete points) as

�
V n � 1

j � 1 � k � 	 � V n � 1
j � 1 � k � � j � k ��

V n � 1
j 	 1 � k � 	 � V n � 1

j 	 1 � k 	 � j � k � � (4.5)

Substituting equation (4.5) into equation (4.4), we obtain

V n
j � k � e 	 r∆t � pV n � 1

j � 1 � k � � j � k � � � 1 � p � V n � 1
j 	 1 � k 	 � j � k ��� � truncation error

n � N � 1 ��������� 0; j � � n ������� �
�

n; k � � km � n � ������� � � km � n � � (4.6)

From the Taylor series expansion we have

V n � 1
j � 1 � k � � j � k � � αn � 1

k �f loor � j � k � V n � 1
j � 1 � k �f loor � j � k � � � 1 � αn � 1

k �f loor � j � k � � V n � 1
j � 1 � k �ceil � j � k �

� � βq
k �f loor � j � k � � n � 1

V n � 1
j 	 1 � k 	 � j � k � � αn � 1

k 	f loor � j � k � V n � 1
j 	 1 � k 	f loor � j � k � � � 1 � αn � 1

k 	f loor � j � k � � V n � 1
j 	 1 � k 	ceil � j � k �

� � βq
k 	f loor � j � k � � n � 1

(4.7)

where for q � 1 (nearest lattice point interpolation) and q � 2 (linear interpolation)

�
β1

k �f loor � j � k � � n � 1 � min � � An � 1
k �ceil � j � k � � An � 1

k � � j � k � � � � An � 1
k � � j � k � � An � 1

k �f loor � j � k � ��� ∂V n � 1
j � 1 � η �
∂A

�
β2

k �f loor � j � k � � n � 1 � �
� An � 1

k � � j � k � � An � 1
k �f loor � j � k � �

2

�
An � 1

k �ceil � j � k � � An � 1
k ��� j � k � � ∂2V n � 1

j � 1 � η �
∂A2 (4.8)

with η � � An � 1
k �f loor � j � k � � An � 1

k �ceil � j � k � � in each case. Substituting equation (4.7) into equation (4.6) gives

V n
j � k � e 	 r∆t � p � αn � 1

k �f loor � j � k � V n � 1
j � 1 � k �f loor � j � k � � � 1 � αn � 1

k �f loor � j � k � � V n � 1
j � 1 � k �ceil � j � k � �

� � 1 � p � � αn � 1
k 	f loor � j � k � V n � 1

j 	 1 � k 	f loor � j � k � � � 1 � αn � 1
k 	f loor � j � k � � V n � 1

j 	 1 � k 	ceil � j � k � � �
�

e 	 r∆t � p � βq
k �f loor � j � k � � n � 1 � � 1 � p � � βq

k 	f loor � j � k � � n � 1 �
�

truncation error � (4.9)
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Let the difference between the exact solution V (of equations (2.3-2.5) with observation interval δt � ∆t),

and the approximate solution U (from the FSG algorithm) be denoted by E n
j � k where

En
j � k � V n

j � k � Un
j � k � (4.10)

Then an equation for the propagation of the error due to interpolation and truncation error can be deduced

by subtracting equation (3.7) from equation (4.9) to obtain

En
j � k � e 	 r∆t � p � αn � 1

k �f loor � j � k � En � 1
j � 1 � k �f loor � j � k � � � 1 � αn � 1

k �f loor � j � k � � En � 1
j � 1 � k �ceil � j � k � �

� � 1 � p � � αn � 1
k 	f loor � j � k � En � 1

j 	 1 � k 	f loor � j � k � � � 1 � αn � 1
k 	f loor � j � k � � En � 1

j 	 1 � k 	ceil � j � k � ���
�

interpolation error
�

truncation error � (4.11)

where

interpolation error � e 	 r∆t � p � βq
k �f loor � j � k � � n � 1 � � 1 � p � � βq

k 	f loor � j � k � � n � 1 �
� (4.12)

From the recursion (4.11), we can bound the cumulative effect of the interpolation error and the trun-

cation error on the solution at S0
0 � 0, which is denoted by E0

0 � 0. Details of this are given in the Appendices.

However, for expository purposes, we will use a heuristic argument to obtain the main result.

We assume that there exists an A � such that the effect of interpolation errors induced at A � A � , is

negligible at S0
0 � 0 (this assumption is removed in Appendix C). We will also assume that

����
∂V n

j � A �
∂A

���� 
 M1

�����
∂2V n

j � A �
∂A2

����� 
 M2 (4.13)

for any n � j, where M1 and M2 are constants independent of ∆t. Consequently, the interpolation errors in

equation (4.8) can be bounded by

max � ���� β
q
k �f loor � j � k �

����
n � 1

�

���� β
q
k 	f loor � j � k �

����
n � 1 �


 � Mq � A � � q � 1 � e 	 ρ∆Z � q � � (4.14)

Equation (4.14) becomes, in the limit as ∆t � 0,

interpolation error � O
�
� ρσ � ∆t � q � � (4.15)
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If we define the maximum error at step n as �
En � � max

j � k �� En
j � k �� (4.16)

then, since the interpolation coefficients α and the probabilities p are all in the range � 0 � 1 � , it follows from

equation (4.11) that �
En � 
 e 	 r∆t � p � αn � 1

k �f loor � j � k � � 1 � αn � 1
k �f loor � j � k � �

� � 1 � p � � αn � 1
k 	f loor � j � k � � 1 � αn � 1

k 	f loor � j � k � ��� �� En � 1
��

�
interpolation error

�
truncation error


 �� En � 1
�� � interpolation error

�
truncation error (4.17)

Assuming that

interpolation error � O � � � ∆t � q �
truncation error � O � � ∆t � 2 � (4.18)

then it follows from equations (4.17-4.18) that after N � O � 1 � � ∆t � � steps, we have that the worst case error

bound is �� E0
�� 
 O � ∆t � � O

�
� � ∆t � q �

∆t �
� O � ∆t � � O

�
� ∆t � q � 2 	 1 � (4.19)

so that if nearest neighbor � q � 1 � or linear interpolation (q � 2) is used, there is no guarantee that the

numerical result will converge to the correct solution as ∆t � 0. More precisely, in Appendix B, we show

the following result:

Proposition 2 (Convergence of the Forward Shooting Grid Method) Under the assumption that the deriva-

tives w.r.t. A in equations (4.8) are bounded, then the cumulative error due to interpolation
��� E0

0 � 0 ��� I
is

bounded by �� E0
0 � 0 �� I 
 min � B � NCq

� 1 � e 	 ρ∆Z � q � (4.20)

where B is a constant which depends on the strike, but is independent of ∆t, Cq is a constant which is

independent of ∆t, but depends on the type of interpolation used, and N∆t � T. The cumulative error due to

the truncation error is O � ∆t � .
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Note that equation (4.20) can be approximated for small ∆t as�� E0
0 � 0 �� I 
 min � B � NCq

� 1 � e 	 ρ∆Z � q �
� min

��
B �

TCq

�
ρσ � ∆t � q

∆t

��
; ∆t � 0 (4.21)

Observe that for q � 1 and q � 2 the bound does not tend to zero as ∆t � 0.

We have derived an upper bound for the error of the FSG method. If the upper bound tends to zero as

∆ � 0, then convergence is ensured. However, the upper bound in equation (4.21) does not show this, so we

are unable to make the claim that the FSG method is convergent. In fact, this suggests that we can expect

problems with the FSG method. This is due to the fact that at each step, an interpolation error of size

� � ∆t � q (4.22)

is introduced. In the worst case, the cumulative error is

O

�
� � ∆t � q

∆t � � (4.23)

Of course, this analysis does not say give us any information about whether this worst case is actually

attained. In a subsequent section, we will give numerical examples which show that these worst case errors

are in fact attained, and that the cumulative error does not tend to zero for the FSG method.

It is clear, then, that in order to guarantee convergence as ∆t � 0, we must construct a method where

the interpolation error at each step tends to zero faster than O � � ∆t � . In the context of a lattice method, it

is seemingly natural to choose ∆Z � σ � ∆t. However, this spacing in the A direction is not fine enough to

ensure convergence if linear or nearest neighbor interpolation is used, due to the cumulative effect of these

local errors after O � 1 � � ∆t � � timesteps.

For payoffs of type (2.6), VAA becomes unbounded as t � T (the first derivative with respect to A is

discontinuous at A � E). However, the exact payoff is available at t � T (n � N) so that no interpolation

error is induced in making the transition from t �N � t 	N . Also, note that even if VAA does not exist, the

interpolation error does not become unbounded, but simply reduces to a first order error in the spacing in

the A direction. At n � 0 or t � 0, we have that S0
0
� A0

0, so that VA
� VAA

� 0. This can also be seen from

the continuously observed model equation (2.8), where the coefficient of the VA term becomes infinite for

S
�� A, which means that the solution becomes independent of A as t � 0. Consequently, although VAA is

large at A � E as t � T , VAA
� 0 as t � 0. The jump conditions (2.4) tend to smooth derivatives in the A

direction, while the diffusion term tends to smooth in the S direction. In Appendix D, we discuss the form

of VAA as t � T , and indicate how the error analysis would have to be modified in order to take this into

account. However, as mentioned previously, a complete analysis is beyond the scope of this work.

In equation (4.20), it is easy to see that convergence can be obtained if the grid quantization parameter

ρ tends to zero as ∆t � 0 as a power of ∆t. In particular, if we desire an overall convergence rate of at least
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∆t, then we must have

ρ � O � � ∆t � � 2 	 q � 2 � � q � � (4.24)

For the case of nearest neighbor interpolation � q � 1 � , ρ � O � � ∆t � 3 � 2 � . This implies that at timestep n (from

equation (3.3)),

km
� O � n

� ∆t � 3 � 2 � � (4.25)

This results in the total number of nodes at step n being O � n2 � ∆t � 	 3 � 2 � . The total computational complexity

after N steps is then O � N3 � ∆t � 	 3 � 2 � � O � N9 � 2 � . For linear interpolation, a similar calculation gives the total

number of nodes at step n as n2 � ∆t � 	 1 � 2, with total complexity for N steps of O � N7 � 2 � .
We emphasize here that the above complexities assume that ρ satisfies equation (4.24), but ρ is assumed

to be a constant independent of ∆t in Barraquand and Pudet (1996). For constant ρ, the complexity of the

FSG method is O � N3 � , but convergence is problematic.

5 Analysis of the Hull and White Method

The method developed in Hull and White (1993) is actually a more efficient implementation of the method

described in Barraquand and Pudet (1996). The node spacing in the A direction in Hull and White (1993) is

An
k
� S0ekh (5.1)

where, for given h, the range in k values in equation (5.1) is selected to span the possible averages at timestep

n. Recall that in equation (3.2) the range of A values at each timestep n is the same as the range of S values,

which is clearly an overestimate. Consequently, the Hull and White method has a more efficient average

node placement compared to the FSG method.

Using an argument similar to that used to derive equation (B.14), we obtain the estimate

�� E0
0 � 0 �� I 
 TCq

� 1 � e 	 h � q

∆t � (5.2)

Hull and White (1993) suggest either linear or quadratic interpolation. It is worth emphasizing that Hull and

White specify h as a constant, but our analysis indicates that convergence of this method requires that h be

specified as an appropriate function of ∆t. If we take h � C∆t, for example, then

�� E0
0 � 0 �� 
 TCq

� 1 � e 	 h � q

∆t
� TCqC

q � ∆t � q 	 1
� (5.3)

We will refer to this version of the method as the “modified Hull and White method”. Equation (5.3)

indicates that the modified Hull and White method is convergent as long as linear interpolation � q � 2 �
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is used. The convergence arguments for lattice type methods used in this paper rely on the interpolation

coefficients being in the range � 0 � 1 � . As such, they do not apply for the case of quadratic interpolation and

so we do not consider such methods here. The expression in equation (5.3) considers only the effect of the

interpolation error. There will also be the usual truncation error of size O � ∆t � , so that the global convergence

rate of the modified Hull and White method should be of O � ∆t � .
Following Chalasani et al. (1999), we can estimate the number of nodal averages at timestep n for large

n. The maximum possible average value for a lattice after n steps is

An
max

�
n

∑
k � 0

ekσ & ∆t

n
�

1

� 1 � eσ & ∆t � n � 1 �
� n � 1 �

�
1 � eσ & ∆t �

� O

��
eσ � n � 1 �
& ∆t

� n � 1 �
�
eσ & ∆t � 1 �

��
as n � ∞ � (5.4)

The minimum possible value of the average after n steps is

An
min
�

n

∑
k � 0

e 	 kσ & ∆t

n
�

1

� 1 � e 	 σ & ∆t � n � 1 �
� n � 1 �

�
1 � e 	 σ & ∆t �

� O

��
eσ & ∆t

� n � 1 �
�
eσ & ∆t � 1 �

��
as n � ∞ � (5.5)

Letting

em1C∆t � eσ � n � 1 � & ∆t

� n � 1 �
�
eσ & ∆t � 1 �

em2C∆t � eσ & ∆t

� n � 1 �
�
eσ & ∆t � 1 � � (5.6)

then the total number of average nodes � m1
� m2
� is O � n � � ∆t � . This gives the total number of nodes at each

step as O � n2 � � ∆t � , with resulting complexity O � N7 � 2 � .
Note that there are other possibilities for choice of the node spacing in the average direction. The Hull

and White method uses a fixed h, and the range of k (equation (5.1)) is adjusted at each node. Alternatively,

one could fix the range of k, and adjust h at each node to span the maximum and minimum possible averages

at each node. This latter approach would use smaller grid spacing at certain lattice nodes. However, the
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cumulative error will be proportional to the largest value of h at any timestep, so this use of local refinement

in the average direction may improve the constant in the rate of convergence, but the order of convergence

will remain the same.

6 Analysis of PDE Methods

The discrete Asian option pricing problem can be solved using the system of one-dimensional PDEs (2.3-

2.5) as described in Wilmott et al. (1993), Dempster et al. (1998) and Zvan et al. (1999). Convergence

of the PDE method is easily demonstrated. Away from the observation dates, we simply solve a set of

one-dimensional problems (equation (2.3)) for each discrete value of the average, using standard numerical

methods. The PDEs are posed on a finite domain, 0 
 S 
 Smax and 0 
 A 
 Amax. For example, suppose

that second order spatial discretization is used with Crank-Nicolson time weighting. Since this is a stable,

consistent method, the solution converges at a rate O
� � ∆S � 2 � � ∆t � 2 � . Note that this rate of convergence can

be obtained even for rough initial data (Rannacher (1984)), which is characteristic of payoff functions. The

only unusual feature in this problem is that at each observation date, a new initial condition is generated

using the condition (2.5). Since generally An � 1 will not coincide with a grid node, interpolation (linear or

quadratic) is used to estimate the value of the approximate solution U � S � An � 1
� t �n � . The interpolation at each

observation date is illustrated in Figure 3.

Since a stable method is being used, the interpolation errors do not become amplified by the difference

scheme. In the worst case, the errors simply persist (i.e. do not get damped out). Consequently, if N

interpolation errors are introduced at N observation times, then the worst case effect of these errors is simply

N times the maximum interpolation error.

Assuming that the same grid spacing is used in the S and A direction, and letting ∆Smax be the maximum

grid spacing in the S or A direction, then the interpolation error at each step is

interpolation error at each observation � O � � ∆Smax
� q � (6.1)

where q � 2 for linear interpolation and q � 3 for quadratic interpolation. After N � O � 1 � ∆t � steps, we have

global interpolation error � O � � ∆Smax
� q

∆t � � (6.2)

Assuming second order space and time truncation errors, then the total error will be

global discretization error � O � � ∆Smax
� q

∆t � � O � � ∆Smax
� 2 � � O � � ∆t � 2 � � (6.3)

If we use quadratic interpolation as in Zvan et al. (1999), and take the limit in such a way that ∆Smax
� C∆t

where C is a constant, then we obtain

global discretization error � O
� � ∆t � 2 �

� (6.4)
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FIGURE 3: Between each observation date, one-dimensional PDEs for each value of the average A are
solved. The values of the approximate option price U # before each observation date are interpolated from
the values just after the observation date U � .

Further details concerning the PDE method can be found in Zvan et al. (1999).

Consider a limiting process whereby for a timestep of ∆t � T � N we take O � N � nodes in both the average

and asset grids. Since the cost of solving N implicit one-dimensional PDEs each consisting of N nodes

is O � N2 � , we have a total complexity after N steps of O � N3 � . This complexity is smaller than that of

the Hull and White (1993) method and is the same as that of the FSG method with constant ρ (equation

(3.1)). The rate of convergence for the PDE method is O
� � ∆t � 2 � , compared to at best O � ∆t � for the lattice

methods. Therefore it would appear that the PDE method will be superior for sufficiently small convergence

tolerances. However, equation (6.4) only takes into account the truncation error of the discretization of

the PDE and the interpolation error. There is an additional error due to the fact that we are attempting to

converge to a continuously observed Asian option using a discretely observed model. This will introduce

an O � ∆t � error which will eventually dominate the other errors. Note that the lattice methods suffer from

this error as well, but these methods are only O � ∆t � to start with. Of course, in situations where we are

attempting to price discretely monitored Asian options with a specified finite observation interval, then the

faster asymptotic convergence of the PDE approach may be more useful.
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7 Numerical Examples

This section provides some numerical computations to support our analysis. We considered the example

of a European fixed strike call option, and computed prices using the FSG, modified Hull and White, and

PDE methods. The algorithms were coded in C++. Computations were performed on a Sun Ultrasparc

workstation.

We begin by describing some further details about the algorithms. The FSG method was implemented

as described in Barraquand and Pudet (1996). Both nearest lattice point and linear interpolation methods

were examined. Barraquand and Pudet (p. 47) recommend values of ρ � 0 � 5 for linear interpolation and

ρ � 0 � 1 for nearest lattice point interpolation. We computed values using both of these values of ρ for each

interpolation scheme. In addition, we also used the value ρ � 1 � 0. In this case the number of nodes for the

average was the same as that for the stock price. This particular scheme was not expected to perform very

well, but it provided an interesting point of comparison.

The Hull and White (1993) method was implemented as described in that article, but modified in the

manner described above in section 5. In particular, the average node spacing parameter h in equation (5.1)

was specified as:

h � α

�
0 � 25

T
σ2∆t � (7.1)

This choice of scaling factor for h was selected so as to give roughly the same number of average nodes at

t � T for the different maturities and volatilities we considered. The parameter α in equation (7.1) controls

the fineness of the grid in the average direction. Three values of α were used for each test case. Linear

interpolation was used.

The PDE method employed an irregularly spaced finite difference method with Crank-Nicolson timestep-

ping. The finite difference method in one dimension is algebraically identical to a finite element discretiza-

tion with linear basis functions and mass lumping. Constant timesteps were used to facilitate comparison

with the lattice methods. The same grid spacing was used in both the A and S directions. On the initial

coarse 50 � 50 grid, the spacing near the exercise price was selected to be similar to the spacing used in the

lattice methods. Finer grids were constructed by halving the spacing of the coarse grids. The timestep size

was also halved with each grid refinement. Quadratic interpolation was used.

Preliminary evidence regarding the convergence properties of the FSG method is provided in Table 1,

which shows results for two examples (one with low volatility and short time until maturity, one with high

volatility and long time until maturity) of Asian call options where the exercise price of the option is set to

zero. Although of little practical relevance, this is an interesting case because: i) as noted by Barraquand and

Pudet (1996), there is an analytic solution; and ii) since the payoff function is linear, linear interpolation is

exact. Our analysis above suggests that although the FSG method should perform poorly with nearest lattice

point interpolation, it should converge to the analytic solution with linear interpolation. This behavior is

clearly documented in the table. For Case 1, the analytic solution value is $98.7604. When ρ
�� 0 � 1, the

nearest lattice point scheme gives unsatisfactory answers. If ρ � 0 � 1, the calculated prices are reasonably

accurate when the number of timesteps is small, but the performance of the method deteriorates markedly
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TABLE 1: Convergence of the forward shooting grid method for zero strike European-Asian call options. ρ
is a parameter which specifies the grid spacing in the average direction (smaller ρ means a finer grid). CPU
times are normalized to 1 second for the case where ρ $ 1 � 0 and there are 50 timesteps. The exact solution
for this problem is linear in A, so the interpolation error is identically zero for linear interpolation. Note the
poor results for nearest neighbor interpolation.

Nearest Neighbor Linear
Interpolation Interpolation

ρ Timesteps Option Value CPU (sec) Option Value CPU (sec)
Case 1: r � � 10, σ � � 10, T � 0 � 25 years, E � $0, S � $100

1 � 0 50 97.9020 1.0 98.7602 1.8
100 97.7548 7.5 98.7603 13
200 97.6709 59 98.7603 104
400 97.6209 470 98.7603 828

0 � 5 50 98.2868 2.0 98.7602 3.3
100 97.9820 15 98.7603 26
200 97.7703 118 98.7603 207
400 97.6550 943 98.7603 1655

0 � 1 50 98.7667 9.3 98.7602 16
100 98.7636 14 98.7603 26
200 98.7525 590 98.7603 1035
400 98.6688 4705 98.7603 8273

Analytic Value: $98.7604
Case 2: r � � 10, σ � � 50, T � 5 � 0 years, E � $0, S � $100

1 � 0 50 74.7619 1.0 78.6535 1.8
100 69.7366 7.8 78.6736 13
200 66.1876 62 78.6837 105
400 63.6150 488 78.6888 835

0 � 5 50 81.0266 2.0 78.6535 3.3
100 76.8897 16 78.6736 26
200 72.4131 123 78.6837 209
400 68.2997 978 78.6888 1670

0 � 1 50 78.5366 9.5 78.6535 17
100 78.9473 77 78.6736 133
200 80.7914 615 78.6837 1108
400 82.5950 4890 78.6888 8413

Analytic Value: $78.6939
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as the number of timesteps is increased to 400. By contrast, the linear interpolation results are virtually

identical to the analytic value. Note that although the table provides results for the linear interpolation

scheme for all three values of ρ, much of this information is redundant because the linear payoff structure

implies that the calculated answers are independent of ρ (though they obviously do depend on the number of

timesteps). This general pattern is repeated for Case 2. Once again the nearest lattice point technique fails

to provide satisfactory answers, except possibly for ρ � 0 � 1 with a small number of timesteps. The results

for the linear interpolation scheme are not as close to the analytic value as for Case 1, but it is worth noting

that extrapolation to ∆t � 0 of the calculated answers for each value of ρ gives a price estimate equal to the

analytic solution value of $78.6939.

For the remainder of this section, we concentrate on more realistic cases, using the same examples

as above but changing the exercise price to $100. The results for the FSG method are given in Table 2.

Consider Case 1 first. Clearly, the computations for nearest lattice point interpolation are in agreement

with the convergence analysis presented above. As will be shown below, the correct price for this option is

about $ 1 � 8515
�

� 0001. When ρ � 1 � 0 or ρ � 0 � 5, the computed values are nowhere near the true price.

When ρ � 0 � 1, the results for a small number of timesteps (50-100) are reasonably close to the correct

price. However, as ∆t is decreased the solution begins to diverge. When linear interpolation is used, our

convergence analysis indicates that the FSG method will converge to the correct solution plus a constant

error as ∆t � 0. Extrapolation of the prices in the table for ρ � 0 � 1 with linear interpolation to ∆t � 0 gives

a value of $1.8522, a little higher than the true price.

Turning to Case 2, we begin by noting that the correct price here is � $28 � 40525
�

� 00015. Again, very

poor results are obtained using nearest lattice point interpolation. The solution with linear interpolation is

close to the true price with ρ � 0 � 1 and 400 timesteps. Extrapolation to ∆t � 0 of the prices in the table

for linear interpolation with ρ � 0 � 1 gives a value of $28.4147. For both cases, the FSG method with linear

interpolation converges to a number which, although close to the correct price, is not that price.

The modified Hull and White algorithm results for both cases (with an exercise price of $100) are

presented in Table 3. This method is well-behaved for all values of α and numbers of timesteps. This is

consistent with our analysis because the grid spacing in the average direction is selected as in equation (7.1),

providing a convergent method. The complexity estimate of O � N 7 � 2 � is clearly confirmed in the table, both

in terms of CPU time and the number of grid nodes at t � T . The rate of convergence implied by the numbers

in the table is O � ∆t � (consistent with our analysis). Extrapolation to ∆t � 0 of the values when α � 1 gives

price estimates of $1.8516 for Case 1 and $28.4051 for Case 2.

Table 4 contains the results for the PDE method for both cases. As expected, this method is also con-

vergent and shows an O � N3 � complexity. The rate of convergence is O � ∆t � . As noted above, this is slower

than the O
� � ∆t � 2 � convergence rate that one might expect due to the fact that we are taking the continuous

limit of a discrete observation model. Extrapolating the results to ∆t � 0 gives prices of $1.8514 for Case

1 and $28.4054 for Case 2, in excellent agreement with the modified Hull and White extrapolated prices of

$1.8516 and $28.4051. As both of these methods are convergent, this leads to the conclusion that the true

prices are � $1 � 8515
�

� 0001 and $28 � 40525
�

� 00015. By contrast, recall that the FSG extrapolated prices

were $1.8522 and $28.4147. This is clearly consistent with our analysis indicating that the FSG method
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TABLE 2: Convergence of the forward shooting grid method for fixed strike European-Asian call options.
ρ is a parameter which specifies the grid spacing in the average direction (smaller ρ means a finer grid).
CPU times are normalized to 1 second for the case where ρ $ 1 � 0 and there are 50 timesteps. The analysis
suggests that large errors will occur as ∆t � 0 for nearest lattice point interpolation. If linear interpolation
is used, the FSG method should converge to the correct solution plus a small constant.

Nearest Neighbor Linear
Interpolation Interpolation

ρ Timesteps Option Value CPU (sec) Option Value CPU (sec)
Case 1: r � � 10, σ � � 10, T � 0 � 25 years, E � $100, S � $100

1 � 0 50 0.5875 1.0 1.8738 1.8
100 0.3892 8.3 1.8691 13.3
200 0.2634 65 1.8649 106
400 0.1806 520 1.8615 843

0 � 5 50 1.1974 2.0 1.8603 3.0
100 0.8089 16 1.8592 23
200 0.5208 130 1.8577 187
400 0.3391 1035 1.8563 1480

0 � 1 50 1.8533 10 1.8492 16
100 1.8524 82 1.8508 130
200 1.8347 650 1.8516 1038
400 1.7147 5175 1.8519 8305

Case 2: r � � 10, σ � � 50, T � 5 � 0 years, E � $100, S � $100
1 � 0 50 16.2053 1.0 28.7217 1.5

100 10.7957 7.5 28.6631 12
200 6.9113 60 28.6052 92
400 4.0803 478 28.5556 728

0 � 5 50 25.0508 2.0 28.5168 2.8
100 19.9843 15 28.5107 23
200 14.7166 120 28.4934 183
400 9.9951 955 28.4745 1405

0 � 1 50 28.2968 9.5 28.3440 14
100 28.6676 75 28.3816 114
200 29.3198 603 28.3996 915
400 29.1303 4765 28.4071 7270
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TABLE 3: Convergence of the modified Hull and White method for fixed strike European-Asian call options.
The grid size is the number of nodes in the A direction at t $ T . The parameter α controls the grid spacing
in the A direction (smaller α means a finer grid). CPU times are normalized to 1 second for the forward
shooting grid method with ρ $ 1 � 0 and 50 timesteps. The analysis predicts that the modified H&W method
is convergent as ∆t � 0 for any α.

α Timesteps Grid Size Option Value CPU (sec)
Case 1: r � � 10, σ � � 10, T � 0 � 25 years, E � $100, S � $100
40 50 200 1.8542 2.0

100 577 1.8529 24
200 1503 1.8523 247
400 4279 1.8519 2760

20 50 391 1.8502 4
100 1055 1.8509 42
200 2969 1.8512 478
400 8214 1.8514 5298

4 50 1794 1.8486 18
100 5050 1.8501 204
200 14247 1.8508 2293
400 40198 1.8512 25918

Case 2: r � � 10, σ � � 50, T � 5 � 0 years, E � $100, S � $100
10 50 163 28.5098 1.8

100 450 28.4583 19
200 1225 28.4319 207
400 3394 28.4186 2283

5 50 308 28.4310 3.3
100 844 28.4180 36
200 2356 28.4115 400
400 6579 28.4083 4455

1 50 1440 28.3899 15
100 4051 28.3972 168
200 11415 28.4011 1893
400 32196 28.4031 21370
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TABLE 4: Convergence of the PDE method for fixed strike European-Asian call options. A Cartesian
product grid is used. The grid size is given as number of nodes in the S and A directions. CPU times are
normalized to 1 second for the forward shooting grid method with ρ $ 1 � 0 and 50 timesteps. Convergence
to the continuously observed limit should be at a first order rate as ∆t � 0.

Grid Size Timesteps Option Value CPU (sec)
Case 1: r � � 10, σ � � 10, T � 0 � 25 years, E � $100, S � $100
50 � 50 50 1.8478 4.8
100 � 100 100 1.8492 55
200 � 200 200 1.8503 313
400 � 400 400 1.8509 2540
Case 2: r � � 10, σ � � 50, T � 5 � 0 years, E � $100, S � $100

50 � 50 50 28.3573 5.5
100 � 100 100 28.3842 36
200 � 200 200 28.3952 280
400 � 400 400 28.4003 2278

converges to a price with a constant error if linear interpolation is used. Of course, our analysis suggests

that the FSG method could be modified so that it is convergent. This could be done, for example, by mak-

ing ρ depend on � ∆t. However, this would result in what amounts to an inefficient implementation of the

modified Hull and White method, owing to an unnecessarily large number of nodes in the average direction.

Table 5 presents results for the FSG and modified Hull and White methods for American style fixed

strike Asian options for Case 1 and Case2. As for the European case, the FSG method with nearest neighbor

interpolation is divergent, whereas with linear interpolation the FSG method converges to a value which

is slightly higher than the modified Hull and White method. In particular, for Case 1 with ρ � 0 � 1 the

extrapolated FSG price is � 1 � 9605 whereas the Hull and White extrapolated price with α � 4 is � 1 � 9596.

Similarly, for Case 2 the extrapolated FSG price is � 34 � 3322 while for the Hull and White scheme it is
� 34 � 3065.

Although our main emphasis is on convergence, it might be worth concluding this section by making

some observations on the relative merits of the PDE and modified Hull and White methods. For this partic-

ular case, where we are attempting to converge to the continuous observation limit, the two approaches are

quite comparable. It might be possible to employ quadratic interpolation to improve the efficiency of the

Hull and White method. This has been suggested by both Hull and White and Ritchken and Chuang (1999).

The tradeoff here would be between fewer nodes in the average direction (observe that our PDE approach

using quadratic interpolation requires far fewer grid points than the Hull and White method to achieve com-

parable accuracy) versus more floating point operations being required for the interpolation. However, we

stress that the convergence of such an approach has not been formally demonstrated.

In practice, a typical contract would feature discrete monitoring. In such cases the PDE method can

be expected to be superior. Both the Hull and White and FSG methods at best would converge at a rate

of O � ∆t � , and at best have O � N3 � complexity. The PDE method also has complexity of order N 3, but its

convergence rate is O
� � ∆t � 2 � . This means that in order to obtain a given error, lattice based methods require
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TABLE 5: Convergence of the forward shooting grid and modified Hull and White methods for fixed strike
American-Asian call options. The parameters ρ and α control the grid spacing in the average direction
(smaller values indicate finer grids). The results are similar to those reported for the European cases in
Tables 2 and 3. The forward shooting grid method is divergent if nearest neighbor interpolation is used,
and it converges to a slightly higher value than the modified Hull and White method if linear interpolation
is used.

Forward Shooting Grid H & W
Nearest Neighbor Linear

Timesteps ρ Interpolation Interpolation α
Case 1: r � � 10, σ � � 10, T � 0 � 25 years, E � $100, S � $100
50 1.0 0.6423 1.9839 40 1.9460

100 0.4317 1.9827 1.9519
200 0.2950 1.9790 1.9555
400 0.2037 1.9750 1.9575
50 0.5 1.2363 1.9574 20 1.9397

100 0.8412 1.9634 1.9488
200 0.5498 1.9653 1.9540
400 0.3636 1.9653 1.9568
50 0.1 1.9422 1.9383 4 1.9374

100 1.9454 1.9487 1.9477
200 1.9200 1.9545 1.9534
400 1.7840 1.9575 1.9565
Case 2: r � � 10, σ � � 50, T � 5 � 0 years, E � $100, S � $100
50 1.0 19.7377 34.8352 10 33.7946

100 13.5666 34.9001 34.0067
200 9.0702 34.8434 34.1450
400 5.7163 34.7529 34.2253
50 0.5 27.9919 33.9884 5 33.5438

100 22.9004 34.2788 33.8868
200 17.3613 34.4083 34.0866
400 12.2003 34.4454 34.1964
50 0.1 33.3721 33.4220 1 33.4484

100 33.7052 33.8425 33.8398
200 33.6270 34.0793 34.0636
400 32.7148 34.2057 34.1851
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work of order N3 whereas the PDE method requires work of order N3 � 2 due to the implicit discretization.

Even so, in our view the real strength of the PDE method lies in its flexibility in terms of handling more

complex path-dependent features such as barrier provisions. Various types of Asian options with assorted

barriers have been examined using the PDE method by Zvan et al. (1999). Examples include Parisian style

cases where the barrier provisions depend on the length of time for which the underlying asset lies outside

a pre-specified range, as well as situations where the barrier is in terms of the average rather than the price.

It is also easy to adapt the PDE method to alternative stochastic processes for the underlying asset such as

a CEV model. By comparison, we suspect that the incorporation of such characteristics into a lattice based

approach would be somewhat more difficult.

8 An Additional Example: Mortgage-Backed Securities

A mortgage-backed security (MBS) is a fixed rate debt contract whose principal may be paid off prior to

maturity. The debt in question is a pool of residential mortgages. The prepayment behavior of mortgage

holders is usually analysed based on historical data. The results are encapsulated in a prepayment function

which relates the amount of prepayment to various economic factors. We will assume that prepayment is

a deterministic function of the spot interest rate. At any time, we assume that the principal outstanding is

denoted by F . The prepayment function is then given by Π � Π � F � r � where r is the spot risk free rate. We

assume that prepayment can only occur at discrete time intervals (prepayment times).

If we assume a standard CIR square root model for the evolution of the spot risk free rate

dr � a � b � r � dt
� σr � rdZ � (8.1)

then the value of the MBS V � V � r� F � t � is given by the solution to

Vt
� σ2

r r
2

Vrr
� � a � b � r � � λr � Vr

� rV � 0 � (8.2)

where λ is the market price of interest rate risk. At the expiry of the security, we have

V � r� F � t � T � � F � (8.3)

As r � ∞, then V � r� F � t � � 0 � Depending on the values of a, b, and σr, a boundary condition may or may

not need to be specified at r � 0 (see d’Halluin et al. (2001) for a detailed discussion).

We will assume that the mortgage can be prepaid at discrete times ti, which coincide with the coupon

payment dates. If t 	i � t
�
i are the times just before and after the prepayment dates, then no-arbitrage consid-

erations yield the following jump condition

V � r� F � t 	i � � V � r� F � Π � F � r � � t �i � � Π � r� F � � Ki � (8.4)

where Ki is the coupon at ti. In the PDE context, we simply solve equation (8.2) for a set of discrete
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TABLE 6: Parameters used for the mortgage-backed security example.

MBS parameters
P0 $100
T 5 years

mortgage prepayments every six months
coupon payments $25 every six months

α � 50
rmin � 02
rmax � 05

Interest rate model parameters
σ .03
a .50
b .05
λ 0.0

values of Fj, where 0 
 Fj 
 P0, and where P0 is the original principal. Along each line of constant F ,

we then discretize equation (8.2) in the r direction using a finite volume method with Crank Nicolson

timestepping (see d’Halluin et al. (2001) for details). We then solve each one dimensional problem (for

fixed Fj) backwards in time. At each prepayment/coupon payment date, we apply the jump condition (8.4).

In general, interpolation is required to determine V � r� F � Π � F � r � � t �i � . We will use either linear or quadatric

interpolation (in the F direction). Note that, in contrast to the case of an Asian option in the limit of

continuous observation, the interpolation error will be of the form

MBS interpolation error � ∑
prepayment dates

O � � ∆F � q � � (8.5)

where q � 2 for linear interpolation and q � 3 for quadratic interpolation. In the MBS case, the sum in

equation (8.5) is over the finite number of prepayment times. Consequently, the cumulative effect of the

interpolation error is not as serious as for continuously observed Asian options.

In our numerical examples we use a prepayment function similar to that in Hull and White (1993),

Π
� � 0 ; r � rmax

� P0 α

�
rmax

r
� 1

rmax
rmin

� 1 � ; rmin � r � rmax

� P0 α ; r � rmin

Π � min � Π �
� F � (8.6)

where rmax � rmin, and α are parameters, and P0 is the original principal.

The parameters used in our numerical tests are shown in Table 6. We ran this problem on a sequence of

grids. Each grid refinement doubled the number of nodes in the r and F directions and halved the timestep

size. For the initial coarse grid, there were 10 timesteps per year. We used Crank-Nicolson timestepping
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TABLE 7: Results for the MBS example. Value of the security at r $ � 05, t $ 0. Parameters are given in
Table 6. Grid size is the number of nodes in the r and F directions. Change refers to the change in the
solution from the previous (coarser) grid. Ratio is the ratio of successive changes.

Grid Size Timestep Value Change Ratio
Linear Interpolation

34x5 .1 99.644797
67x9 .05 99.630542 .014255

133x19 .025 99.626379 .004163 3.42
264x37 .00125 99.625338 .001041 4.00
529x63 .000625 99.625077 .000261 3.99

Quadratic Interpolation
34x5 .1 99.643421
67x9 .05 99.630441 .013040

133x19 .025 99.626359 .004082 3.19
264x37 .00125 99.625333 .001026 3.98
529x63 .000625 99.625076 .000257 3.99

with the modification suggested in Rannacher (1984). The results for the value of the MBS at r � � 05 � t � 0

are shown in Table 7. There is clearly not much advantage here to using quadratic interpolation. This

is in contrast to the results in Zvan et al. (1999) where quadratic interpolation noticeably improved the

convergence of continuously observed Asian options. It is also in contrast to the results reported in Hull and

White (1993), who report that quadratic interpolation produces significant improvement for coarse grids (in

the F direction). This may be due to a variety of factors. Hull and White use a different term structure

model, with a different prepayment function. As their reported values are lower than ours, the prepayment

option is more valuable in their example. In any case, the relative performance on coarse grids of the linear

and quadratic interpolation methods does not imply anything about the rate of convergence. Table 7 clearly

shows that the convergence is quadratic as the grid/timestep is refined (the ratio of successive changes in the

solution as the grid is refined is � 4). This is to be expected for finite prepayment intervals.

9 Conclusion

The convergence analysis presented in this paper suggests that, in the worst case, the forward shooting grid

method proposed by Barraquand and Pudet (1996) with nearest lattice point interpolation will exhibit large

errors as the number of timesteps becomes large. This analysis is confirmed by some numerical experiments.

If linear interpolation is used, then the FSG method should converge to the correct solution plus a constant

error term which is not reduced by decreasing the timestep. The constant appears to be fairly small if a large

number of nodes is used in the average direction, but this method should be used with caution.

As long as the average node spacing parameter is selected appropriately, then the Hull and White (1993)

method is convergent. If linear interpolation is used, then the complexity of this algorithm is O � N 7 � 2 � ,
where N is the number of timesteps. If quadratic interpolation is used, then it may be possible to reduce this
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complexity, although not to O � N3 � . Moreover, it has not been formally shown that such an approach would

be convergent. We remark here that the analysis of this paper has been extended for the modified Hull and

White method by Davidson (1999), who suggests a modification which results in convergence at a rate of

O � ∆t � with complexity O � N5 � 2 � if linear interpolation is used.

The PDE method is also convergent in the continuous limit for Asian options. The PDE method has

complexity O � N3 � , where N is the number of timesteps. In the case of discretely observed Asian options,

this method converges as O
� � ∆t � 2 � , where ∆t is the timestep size (Zvan et al. (1999)). When using this

method to converge to the continuously observed limit, the rate of convergence is reduced to O � ∆t � .
Generally, when dealing with straightforward Asian options, either of the modified Hull and White or the

PDE methods are effective. The FSG approach is somewhat problematic. The PDE method shows promise

as being a flexible, general technique which can be used to price a wide variety of more complex path-

dependent options. Between observation dates, the PDE algorithm consists of solving a set of independent

one-dimensional PDEs. These one-dimensional problems only exchange information at observation dates.

This would seem to be ideally suited to a parallel implementation, if speed of computation is of paramount

concern (Windcliff et al., 2000).

In more general terms, our results are indicative of when interpolation errors should be expected to

cause difficulties. For cases where the interpolation must be performed relatively infrequently (such as our

mortgage-backed security example above), there would not seem to be much to be gained from using higher

order (e.g. quadratic) interpolation over linear interpolation, particularly in terms of the rate of convergence.

Another context in which this would apply is pricing options with discrete dollar dividends: this can require

interpolation at dividend payment dates, which obviously will be fairly infrequent. At the risk of stating

the obvious, it is apparent that the effects of interpolation errors will be more serious when interpolation is

applied more often. For the extreme case where we attempt to converge to a continous limit, we must ensure

that the interpolation error at each timestep tends to zero faster than O � � ∆t � . In this situation, either the

modified Hull and White algorithm or the PDE method will converge to the correct answer, and in some

cases it may be advantageous to use quadratic (rather than linear) interpolation. As a final observation,

note that our results here apply to cases where interpolation is applied to a variable which appears directly

in the payoff function. In some other contexts, this is not the case. For instance, consider the GARCH

option pricing algorithm proposed by Ritchken and Trevor (1999). For vanilla options, the interpolation

used in this method applies to the conditional variance of the underlying asset, and so it does not directly

affect the payoff function. However, for a contract such as a volatility or variance swap, then the payoff

function is directly affected by the interpolation. We conjecture that in the GARCH framework there may

be larger differences between various types of interpolation methods applied to this kind of pricing problem,

as opposed to plain vanilla options. We leave the investigation of this as a topic for future research.

Appendices
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A Proof of Proposition 1

Under the assumption that V has the appropriate number of bounded derivatives with respect to X , a Taylor

series expansion of equation (4.3) gives

V n
j � k � e 	 r∆t � p �

�
V n � 1

j � 1 � k � 	 � � 1 � p � �
�
V n � 1

j 	 1 � k � 	 � � � Edis
� n � 1

j � k
p � � 1

2
� 1 � � ∆t

� r
σ
� σ

2 � �
� Edis
� n � 1

j � k � O � � ∆t � 2 � � C � � n � 1
j � k

� C � � nj � k � max � L1 � L2 � L3
�

L1
� ��� � � Vtt

� n
j � k � 	 ���

L2
� ��� � � VXXX

� n
j � k � 	 ���

L3
� ��� � � VXXXX

� n
j � k � � 	 ��� (A.1)

which is simply an explicit finite difference approximation to equation (4.3) with a constant grid spacing in

the X direction with ∆X � σ � ∆t.

Assume that �
V n � 1

j � 1 � k � 	 � �
V n � 1

j 	 1 � k � 	
σ � ∆t

� O � � � VX
� n � 1

j � k � 	 � as ∆t � 0 (A.2)

and define

� C � nj � k � max � � C � � nj � k � L4
�

L4
� ��� � � VX

� n
j � k � 	 ��� � (A.3)

Then expanding p (equation (3.8)) in a Taylor series and comparing with p � in equation (A.1) gives

V n
j � k � e 	 r∆t � p �

V n � 1
j � 1 � k � 	 � � 1 � p �

�
V n � 1

j 	 1 � k � 	 � � truncation error �

truncation error � O
� � ∆t � 2 � � C � n � 1

j � k � (A.4)

B Proof of Proposition 2

In this Appendix, we provide a proof of Proposition 2. We start by considering equations (4.11-4.12). Since

equation (4.11) is linear, we can decompose the error E n
j � k into contributions due to the interpolation error
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�
En

j � k � I
and the truncation error

�
En

j � k � T
:

� En
j � k � I � e 	 r∆t � p

�
αn � 1

k �f loor � j � k � � En � 1
j � 1 � k �f loor � j � k � � I � � 1 � αn � 1

k �f loor � j � k � � �
En � 1

j � 1 � k �ceil � j � k � � I �
� � 1 � p �

�
αn � 1

k 	f loor � j � k � � En � 1
j 	 1 � k 	f loor � j � k � � I � � 1 � αn � 1

k 	f loor � j � k � � �
En � 1

j 	 1 � k 	ceil � j � k � � I � �
�

e 	 r∆t � p � βq
k �f loor � j � k � � n � 1 � � 1 � p � � βq

k 	f loor � j � k � � n � 1 �
(B.1)

� En
j � k � T � e 	 r∆t � p

�
αn � 1

k �f loor � j � k � � En � 1
j � 1 � k �f loor � j � k � � T � � 1 � αn � 1

k �f loor � j � k � � �
En � 1

j � 1 � k �ceil � j � k � � T �
� � 1 � p �

�
αn � 1

k 	f loor � j � k � � En � 1
j 	 1 � k 	f loor � j � k � � T � � 1 � αn � 1

k 	f loor � j � k � � �
En � 1

j 	 1 � k 	ceil � j � k � � T � �
�

truncation error (B.2)

En
j � k � � En

j � k � T � � En
j � k � I

� (B.3)

A typical asymptotic form for V as S � ∞ is V � Sγ � eγX (where γ � 0), which means that Cn
j � k in equation

(A.3) is bounded by O � eγX � � O
�
eγ jσ & ∆t � , j 
 n. Consider the truncation error

�
E0

0 � 0 � T
as the sum of

errors incurred for X � Xc and X � Xc, where Xc is constant and independent of ∆t. For discretization errors

encountered for X � Xc, the last term of equation (B.2) is O � � ∆t � 2 � . Since 0 
 p 
 1 and 0 
 α 
 1, we

have immediately (from equation (B.2)) that (N � number of timesteps)� �� E0
0 � 0 �� T � X � Xc


 N � � truncation error �

� T
∆t

O � � ∆t � 2 �
� O � ∆t � � (B.4)

Now, if the last term of (B.2) is O � eγ jσ & ∆t � ∆t � 2 � for j � jc � ceil � logXc � � σ � ∆t � � , then this bound depends

only on j (and not on k), so that

� En
j � k � T

X � Xc

 e 	 r∆t � p �

En � 1
j � 1 � k � T � � 1 � p �

�
En � 1

j 	 1 � k � T �
�

O � � ∆t � 2 � eγ jσ & ∆t
� (B.5)

We choose Xc
� Xc � T � σ � sufficiently large so that the discrete Green’s function (corresponding to the effect

at S0
0 � 0 of a perturbation at Sn

j
� e jσ & ∆t , jc 
 j 
 n) for equation (B.5) is bounded by

G � j � n � � O

�
e 	 β j2 � n

� n � ; j � jc

β � β � T � σ � Xc
� � 0 � (B.6)

29



This can be deduced from the results in Cox et al. (1979), and from the continuous Green’s function de-

scribed in Wilmott (1998). Intuitively, equation (B.6) states that the effect of a perturbation in a payoff at

a large value of S is given by the tail of the lognormal distribution. From equation (B.5) and (B.6) we can

deduce that (N � T � ∆t)

� �� E0
0 � 0 �� T � X � Xc



N

∑
n � 1

O � � ∆t � 2 � n

∑
j � jc

eγ jσ � T � N

�
e 	 β j2 � n

� n �
� N

∑
n � 1

O � � ∆t � 2 �
� O � ∆t � � (B.7)

Thus we have

�� E0
0 � 0 �� T � � �� E0

0 � 0 �� T � X � Xc

� � �� E0
0 � 0 �� T � X � Xc

� O � ∆t � � (B.8)

so that the cumulative effect of the truncation error is O � ∆t � . Another difficulty occurs since the payoff

functions are not particularly smooth (as in equation(2.6)). For example, if the payoff condition does not

have the necessary smoothness in derivatives with respect to S, it can still be shown that the exact solution

to equation (2.3) is smooth for any time t � T . However, there are some technical difficulties in ensuring

that the local truncation error will be O � � ∆t � 2 � . Intuitively, this is because the payoff conditions introduce

high grid frequency errors which are not damped by the difference scheme. Provided that the initial data

is smoothed appropriately, these high frequency errors can be damped sufficiently so as not to reduce the

order of convergence. Consequently, the estimate (B.8) is valid even for rough initial data. For detailed

discussions of this, see Kreiss et al. (1970), Rannacher (1984), and Wahlbin (1980). The problem near

t � T has also been noted (in the binomial model context) by Leisen and Reimer (1996) and Heston and

Zhou (2000). We shall not dwell on this topic further in this work. We assume in the following that an

appropriate method has been used near the payoff so that estimate (B.8) holds.

In order to bound the error terms due to interpolation, let

����
∂V n

j � A �
∂A

���� 
 M1 � T � σ � ; � n � j n � j � ∞
�����
∂2V n

j � A �
∂A2

����� 
 M2 � T � σ � ; � n � j n � j � ∞ (B.9)

where M1 and M2 are bounded independent of ∆t, and where A 	 km � n � 1 � 
 A 
 A � km � n � 1 � in each case. We
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can then write equation (B.1) as

�� En
j � k �� I 
 e 	 r∆t � p

�
αn � 1

k �f loor � j � k �
���� En � 1

j � 1 � k �f loor � j � k �
����
I � � 1 � αn � 1

k �f loor � j � k � � ��� En � 1
j � 1 � k �ceil � j � k �

���
I �

� � 1 � p �
�

αn � 1
k 	f loor � j � k �

���� En � 1
j 	 1 � k 	f loor � j � k �

����
I � � 1 � αn � 1

k 	f loor � j � k � � ��� En � 1
j 	 1 � k 	ceil � j � k �

���
I � �

�
e 	 r∆t � Mq

�
An � 1

k �ceil � j � k � � q � 1 � e 	 ρ∆Z � q � � (B.10)

Assume that interpolation errors introduced for An � 1
k �ceil � j � k �

� A � can be ignored (this will be justified in Ap-

pendix C). Since the interpolation coefficients α and the probability p are all in the range � 0 � 1 � , if�
En � I � max

j � k �� En
j � k �� I (B.11)

then from equations (B.10-B.11)�
En � I 
 e 	 r∆t

� �� En � 1
�� I � � Mq � A � � q � � 1 � e 	 ρ∆Z � q � � � (B.12)

Equation (B.12) states that the interpolation error generated during timestep n
�

1 � n does not become

amplified, but propagates with non-increasing size throughout the remainder of the computation. However,

the cumulative error grows linearly with each step, due to the fact that a new interpolation error occurs at

each step. In the worst case, we obtain the bound after N steps from equation (B.12) (with N∆t � T ) of�� E0
�� I 
 NMq � A � � q � 1 � e 	 ρ∆Z � q

�
TMq � A � � q

�
ρσ � ∆t � q

∆t

� TCq

�
ρσ � ∆t � q

∆t
(B.13)

where Cq
� Mq � A � � q. Note that this tends to zero only if q � 3. In particular, for q � 1 (nearest lattice

point interpolation), equation (B.13) indicates that the scheme may be divergent. This is illustrated in some

example computations Section 7.

In Appendix D, we discuss the form of VAA as t � T , and indicate how the error analysis would have

to be modified in order to take this into account. However, as mentioned previously, a complete analysis is

beyond the scope of this work.

In the following, we assume that the interpolation error is given by equation (B.13), (as ∆t � 0 with

T � N∆t)

�� E0
�� I 
 NCq

� 1 � e 	 ρ∆Z � q �
TCq

�
ρσ � ∆t � q

∆t
(B.14)
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where Cq is a constant independent of ∆t.

Equation (B.14) suggests that the error can become unbounded if (for example) q � 1. However, this

is an overestimate of the error. Note that equation (3.7) has all positive coefficients which sum to e 	 r∆t .

Consequently

min � UN
j � k � � 0 � U0

0 � 0 � 0 � (B.15)

In the case of a fixed Asian strike put (with exercise price E), we have

max � UN
j � k � � E � U0

0 � 0 
 E � (B.16)

For a fixed strike Asian call (with exercise price E), we note that the value of U n
j � k can be maximized at each

step by choosing

An � 1
k � � j � k � � max

�
Sn � 1

j � 1 � A
k
n �

An � 1
k 	 � j � k � � max

�
Sn � 1

j 	 1 � A
k
n �

k � � j � k � � max � k � j
�

1 �
k 	 � j � k � � max � k � j � 1 � � (B.17)

Therefore U n
j � k 
 Bn

j � k, where Bn
j � k is given by

� Bn
j � k � � e 	 r∆t � p �

Bn � 1
j � 1 �max � k � j � 1 � � � � 1 � p �

�
Bn � 1

j 	 1 �max � k � j 	 1 � � � (B.18)

for n � N � � 1 ��������� 0 with BN
j � k � max � 0 � AN

k
� E � . This is simply the binomial expression for a fixed strike

lookback call. Consequently we have

0 
 U0
0 � 0 
 B � E � (B.19)

where B � E � � E for a fixed strike put, and is the value of a fixed strike lookback call when bounding the

computed price for a fixed strike Asian call. The above arguments can be repeated for the case of floating

strike Asian options, with the upper bounds given in terms of the corresponding floating strike lookbacks.

Thus, equation (B.14) is more precisely stated as�� E0
�� I 
 min � B � E � � NCq

� 1 � e 	 ρ∆Z � q � (B.20)

where B � E � is independent of ∆t. This means that the error never becomes unbounded, but is of size B � E �
in the worst case (which may be very large, of course).
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C Effect of Interpolation Errors as A � ∞.

In this appendix, we make a more precise argument that the effect of interpolation errors for large A becomes

small at t � 0. This means that a bound of the form (B.13) is correct, if we allow A � � ∞ as n � ∞ in equation

(B.12).

We will also assume that

����
∂V n

j � A �
∂A

���� 
 M1

�����
∂2V n

j � A �
∂A2

����� 
 M2 (C.1)

for any n � j, where M1 and M2 are constants independent of ∆t. Note that in some cases, the formal derivative

may not exist at certain points, in which case we take � ∂Vn � 1
j � 1 � A �
∂A � and � ∂2V n � 1

j � 1 � A �
∂A2 � to be defined as the maximum

of left and right limits near these points.

Taking into account equations (C.1) instead of equations (B.9), then our starting point is a modified form

of equation (B.10)

�� En
j � k �� I 
 e 	 r∆t � p

�
αn � 1

k �f loor � j � k �
���� En � 1

j � 1 � k �f loor � j � k �
����
I � � 1 � αn � 1

k �f loor � j � k � � ��� En � 1
j � 1 � k �ceil � j � k �

���
I �

� � 1 � p �
�

αn � 1
k 	f loor � j � k �

���� En � 1
j 	 1 � k 	f loor � j � k �

����
I � � 1 � αn � 1

k 	f loor � j � k � � ��� En � 1
j 	 1 � k 	ceil � j � k �

���
I � �

�
e 	 r∆t � Mq

�
An � 1

k �ceil � j � k � � q � 1 � e 	 ρ∆Z � q � � (C.2)

We can bound the interpolation error term in equation (C.2) by noting that (from equations (3.5-3.6))

An � 1
k �ceil � j � k � 
 max

�
Sn � 1

j � 1 � A
n
k �

An � 1
k 	ceil � j � k � 
 max

�
Sn � 1

j 	 1 � A
n
k � � (C.3)

Equations (C.2) and (C.3) then give

�� En
j � k �� I 
 e 	 r∆t � p

�
αn � 1

k �f loor � j � k �
���� En � 1

j � 1 � k �f loor � j � k �
����
I � � 1 � αn � 1

k �f loor � j � k � � ��� En � 1
j � 1 � k �ceil � j � k �

���
I �

� � 1 � p �
�

αn � 1
k 	f loor � j � k �

���� En � 1
j 	 1 � k 	f loor � j � k �

����
I � � 1 � αn � 1

k 	f loor � j � k � � ��� En � 1
j 	 1 � k 	ceil � j � k �

���
I � �

�
e 	 r∆t � Mq

�
max

�
Sn � 1

j � 1 � A
n
k � � q � 1 � e 	 ρ∆Z � q � � (C.4)
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Since equation (C.4) is linear, we can consider
��� E0

0 � 0 ���
I

to be

�� E0
0 � 0 �� 


N 	 2

∑
N � � 0

�� E0
0 � 0 � N � � �� I (C.5)

where
�
En

j � k � N � � � I
is the error propagated to node � j � k � at timestep n due to an interpolation error occurring

during the transition from N � � 1 � N � , assuming no other interpolation errors occur during transitions

from N � � N � � 1 � N � � 1 � N � � 2 ��������� 1
� 0. Clearly

�
En

j � k � N � � � I � 0 for n � N � . Note that the upper

bound in the sum in equation (C.5) is N � 2 since there is no interpolation error at n � N.

Consequently, we have (from equation (C.4))

��� EN �
j � k � N � �

���
I 
 e 	 r∆t � Mq

�
max

�
SN � � 1

j � 1 � A
N �
k � � q � 1 � e 	 ρ∆Z � q �


 � 1 � e 	 ρ∆Z � q
Mq

� � SN � � 1
j � 1 � q � �

AN �
k
� � q � � (C.6)

We can rewrite equation (C.6) as

��� EN �
j � k � N � �

���
I 
 Mq

� 1 � e 	 ρ∆Z � q � � EN �
j � k � N � � � A

� �
EN �

j � k � N � � � S � (C.7)

with �
EN �

j � k � N � � � A

� �
AN �

k � q

�
EN �

j � k � N � � � S

� �
SN � � 1

j � 1 � q

� (C.8)

For n � N � we can define

�� En
j � k � N � � �� I � Mq

� 1 � e 	 ρ∆Z � q � � En
j � k � N � � �

A

� � En
j � k � N � � �

S � (C.9)

where
�
En

j � k � N � � � κ
, κ � S � A, satisfy the recursions

� En
j � k � N � � �

κ 
 e 	 r∆t

�
p � αn � 1

k �f loor � j � k � � En � 1
j � 1 � k �f loor � j � k � � N � � �

κ

�

� 1 � αn � 1
k �f loor � j � k � � �

En � 1
j � 1 � k �ceil � j � k � � N � � � κ �

� � 1 � p � � αn � 1
k 	f loor � j � k � � En � 1

j 	 1 � k 	f loor � j � k � � N � � �
κ

�

� 1 � αn � 1
k 	f loor � j � k � � �

En � 1
j 	 1 � k 	ceil � j � k � � N � � � κ ��� � (C.10)
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Since
�
En

j � k � N � � � S
is independent of k, it follows from equation (C.10) that

� En
j � k � N � � �

S
� e 	 r∆t � p �

En � 1
j � 1 � k � N � � � S

� � 1 � p �
�
En � 1

j 	 1 � k � N � � � S � (C.11)

for n � N � � 1 ������� � 0. This is precisely the binomial tree expression for the European call option with payoff

(at T � � N � ∆t) �
Seσ & ∆t � q � Sq as ∆t � 0 � (C.12)

Let the value of this option
�
E0

0 � 0 � N � � � S
be bounded by C � N � � S.

�
E0

0 � 0 � N � � � A
can be bounded by noting

that the payoff is Aq, so that
�
En

j � k � N � � � A
� n � N � ) is maximized at each timestep by selecting (in equation

(C.10))

An � 1
k � � j � k � � An � 1

k �ceil � j � k � � An � 1
k �f loor � j � k � � max � Sn � 1

j � 1 � A
k
n
�

An � 1
k 	 � j � k � � An � 1

k 	ceil � j � k � � An � 1
k 	f loor � j � k � � max � Sn � 1

j 	 1 � A
k
n
�

k � � j � k � � max � k � j
�

1 �
k 	 � j � k � � max � k � j � 1 � � (C.13)

This is simply an algebraic statement of the fact that the price of a fixed strike lookback call is always greater

than the price of a fixed strike Asian call (with the same strike). With definition (C.13) in equation (C.10)

we obtain

� En
j � k � N � � �

A

 e 	 r∆t � p �

En � 1
j � 1 �max � k � j � 1 � � N � � � A

� � 1 � p �
�
En � 1

j 	 1 �max � k � j 	 1 � � N � � � A �
for n � N � � 1 ������� � 0. The right hand side of inequality (C) is precisely the binomial tree expression for a

lookback call with payoff Aq at T � � N � ∆t, where A is maximum value attained by the asset (as defined in

equation (C.13)). Let
�
E0

0 � 0 � N � � � A
be bounded by some constant C � N � � A. Let

max
N � � � C � N � � A � � � C � N � � S � � 
 K

N � � N � 1 ; N � ∞

N � T � ∆t (C.14)

where K is independent of ∆t. Then, from equations (C.5) and and (C.9) we have

�� E0
0 � 0 �� I 
 NKDq

� 1 � e 	 ρ∆Z � q
(C.15)

or

� E0
0 � 0 � I � O � N � 1 � e 	 ρ∆Z � q �

� (C.16)
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In equation (C.16) we replace N � T � ∆t to obtain

�� E0
�� I 
 NCq

� 1 � e 	 ρ∆Z � q �
TCq

�
ρσ � ∆t � q

∆t
(C.17)

where Cq is a constant independent of ∆t. This estimate has the same form as that in equation (B.13), which

was obtained by a more intuitive argument.

D Effect of Non-Smooth Payoff

In this appendix, we consider the effect of a non-smooth payoff on the propagation of the interpolation error.

The numerical evidence in Tables 3 and 4 indicate that this does not cause any significant problems. This

appendix provides a heuristic argument as to why this is the case.

For brevity, we shall consider only a single representative example: the modified Hull and White method

with linear interpolation. We do not consider the FSG method as this was shown to have a non-convergent

error bound in Section 4 under the more generous assumption of a smooth payoff function. Arguments

similar to that used for analysis of the FSG method result in the following analogue of equation (B.12) for

the propagation of the interpolation error:�
En � I 
 e 	 r∆t

� �� En � 1
�� I � � M2

� A � � 2 � � 1 � e 	 C∆t � 2 � � (D.1)

where
�����
∂2V n

j � A �
∂A2

����� 
 M2 � (D.2)

Now, consider a fixed strike Asian call option, with payoff

payoff � max � A � E � 0 � � (D.3)

Note that no interpolation error is incurred in making the transition t �N � t 	N , since the exact payoff is

available (equation (D.3)). Now, during the time interval t � � t 	N � t
�
N 	 1 � the exact solution to the discretely

observed Asian option problem satisfies

Vt
� σ2S2

2
VSS
�

rSVS
� rV � 0 � (D.4)

Note that the jump conditions (2.4) imply that

V � S � A � t 	N � � V � S � A
� S � A

N
�

1 � t
�
N � � (D.5)

Let � V 	 � SS be the diffusion term in equation (D.4) evaluated before the discrete observation at t � tN . If we

36



write this in terms of V � (the value after the observation at t � tN), we obtain

� V 	 � SS
� � V � � S � A � S � A

N
�

1 � t
�
N
� �

SS

� V �SS
� 2

N
�

1
V �AS
� 1

� N � 1 � 2 V �AA � (D.6)

This means that there is a diffusion in the A direction during the step t �N � t �N 	 1 with effective volatility

(noting that N � O � � ∆t � 	 1 � )

σeff
� σ

N
�

1
� σ∆t � (D.7)

Now, from equation (D.3), we have that at t � t �N the value of the option is independent of S. Therefore,

during the first interval ∆t, we can regard the behavior of VAA as given approximately by the value of gamma

for a vanilla option which is a function of A only, with payoff (D.3). From the usual expression for gamma

(Wilmott, 1998), we then have

� VAA � 
 D

σeff � T � t
(D.8)

where D is a constant independent of ∆t. Note that this unbounded behavior occurs only at A � E . At the

end of the first timestep � T � t � � ∆t, we then have (from equations (D.7-D.8))

� VAA � 
 D

σ � ∆t � 3 � 2 � (D.9)

Continuing this heuristic argument for subsequent discrete observations, we obtain the bound

� VAA � 
 D

σ � T � t � 3 � 2 � (D.10)

We emphasize at this point that equation (D.10) is probably exceedingly pessimistic.

Before proceeding further, we will simplify equation (D.1) (assuming ∆t � 0) to�
En � I 
 �� En � 1

�� I �
M2 � A � � 2C2 � ∆t � 2 � (D.11)

Now, replacing M2 in equation (D.11) by the expression (D.10) gives�
En � I 
 �� En � 1

�� I � � A � � 2C2 � ∆t � 2 D

σ � � N � � n � 1 � � ∆t � 3 � 2

� �� En � 1
�� I � D2 � ∆t

� � N � � n � 1 � � � 3 � 2
(D.12)

where D2 is a constant independent of ∆t. However, this is overly pessimistic: since the error using linear
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interpolation can be no worse than the error for nearest neighbor interpolation, equation (D.12) must be

modified to give �
En � I 
 �� En � 1

�� I �
min

�
D2 � ∆t

� � N � � n � 1 � � � 3 � 2 � M1∆t � � (D.13)

It then follows from equation (D.13) that�� E0
�� I 


n � N 	 1

∑
n � 0

min

�
D2 � ∆t

� � N � n � � 3 � 2 � M1∆t �
� i � N

∑
i � 1

min

�
D2 � ∆t

� i � 3 � 2 � M1∆t � � (D.14)

We can break up the sum on the right hand side of equation (D.14) from i � 0 ������� � N p and from i �
N p � 1 ������� � N � 1, where N p is selected so that the size of the two error terms (nearest neighbor and linear

interpolation) are of the same order. This yields

n � N

∑
i � 1

min

�
D2 � ∆t

� i � 3 � 2 � M1∆t � � i � N p

∑
i � 1

M1∆t
� i � N

∑
i � N p � 1

� ∆t
D2

i3 � 2

� O � � ∆t � 1 	 p � � O
�
� ∆t � p � 2 � 1 � 2 � � (D.15)

where we have used the fact that ∆t � O � 1 � N � . Now, the two terms on the right hand side of equation (D.15)

will be of the same order if p � 1 � 3, which (from equations (D.14-D.15)) means that�� E0
�� I 
 O � ∆t � 2 � 3

� (D.16)

Note that the analysis in the main body of the paper, which assumes that VAA is always bounded, results in

the expression (5.3). In the case of linear interpolation this gives�� E0
�� I � O � ∆t � � (D.17)

The numerical experiments indicate that equation (D.17) appears to be the correct asymptotic form

for the error for the modified Hull and White method with linear interpolation (see Table 3). This is not

surprising, since the argument used to derive equation (D.16) assumes worst case scenarios, and hence is

not very sharp. For example, VAA is bounded except at the single point A � E . We have also ignored

any additional smoothing due to diffusion in the S direction. Nevertheless, it is interesting to note that the

assumption of unbounded behavior for VAA, as in equation (D.10), as t � T , still results in convergence for

the modified Hull and White method using linear interpolation, albeit at a reduced rate. It is an interesting

topic of further research to obtain a sharp bound for the interpolation error, taking into account the non-

smooth payoff (D.3). We expect this sharp bound will be closer to equation (D.17) than equation (D.16).
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