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Abstract. Implicit methods for Hamilton-Jacobi-Bellman (HJB) partial differential equations4

give rise to highly nonlinear discretized algebraic equations. The classic policy iteration approach5

may not be efficient in many circumstances. In this article, we derive sufficient conditions to ensure6

convergence of a combined fixed point-policy iteration scheme for solution of the discretized equations.7
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1. Introduction. A number of financial pricing problems are naturally modeled15

in terms of solving nonlinear partial differential equations (PDEs). This is often the16

case for problems which arise in the context of optimal stochastic control [25, 28,17

29], in which case the nonlinear PDEs are typically Hamilton Jacobi Bellman (HJB)18

equations. As examples we mention natural gas storage [33], insurance products19

[26, 6, 14], asset allocation [34, 15], and optimal trade execution [1].20

Solutions to nonlinear HJB equations are not necessarily unique and one must21

take care to provide numerical procedures which ensure convergence to the viscosity22

solution [5, 4]. In order to ensure both numerical stability and convergence, implicit23

methods can be chosen over explicit methods. Implicit methods result in a nonlinear24

system of algebraic equations at each timestep. Solving these nonlinear equations is25

often the computational bottleneck.26

One popular approach for solving the nonlinear equations resulting from a fully27

implicit discretization of HJB equations is based on the idea of policy iteration [21, 7,28

25, 18, 8]. Policy iteration proceeds by solving a linear system at every step and then29

finding the control which gives the best local solution. Policy iteration is particularly30

effective when the linear system is sparse or well structured and hence easy to solve.31

It has been known for some time that policy iteration can be viewed as a form32

of Newton iteration [30, 32, 8]. An alternative approach, known as value iteration,33

can be seen to be a type of nonlinear relaxation [25]. In this paper, we consider a34

combination of both methods.35

Although our our main focus here is on financial applications, where we solve36

systems of nonlinear algebraic equatons arising after discretization of HJB equations,37

the final algebraic problem is similar to that arising in infinite horizon Markovian38

Dynamic Programming problems (MDP). Hence many of the results we derive here39
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can be applied to MDPs coming from non-financial applications [25]. In addition,40

HJB equations also arise naturally in optimal stochastic control problems [27].41

Financial options are typically modeled as functions of risky assets, with the42

assets following a stochastic process. However it is well known that a stochastic43

process having constant volatility is inconsistent with market data. Jump diffusion44

and regime switching are two important approaches, both of which are considered to45

better model observed risky asset stochastic processes [20, 13]. However these are46

precisely cases where the use of policy iteration has efficiency issues. For example,47

when the underlying stochastic process is a jump diffusion then the policy iteration48

matrix would be dense [16] and hence the use of a direct solution of each linear system49

is prohibitive in terms of cost. Difficulties also arise when the underlying stochastic50

process is modeled using regime switching. In this case the associated linear system at51

each iteration is sparse but the sparsity pattern has lost its structure. Using a direct52

solution method (even with a good ordering technique) turns out to be no longer53

efficient.54

The main goal of this paper is to present an efficient scheme for solving the55

nonlinear discretized equations which arise from fully implicit discretization of HJB56

equations. We present a fixed point policy iteration scheme for solving the nonlinear57

discretized equations which arise from fully implicit discretization of HJB equations.58

We show that our approach converges and that the method is considerably more59

efficient than making use of full policy iteration. In order to validate our approach60

we show how this fixed point policy iteration can be used in two specific examples61

from financial applications. The first example is a singular control formulation of62

a Guaranteed Minimum Withdrawal Benefit (GMWB) [22], where the underlying63

risky asset follows a jump diffusion process [13]. The second example is based on an64

American option written on an asset which follows a regime switching process [24].65

The main results of this paper are66

• We derive sufficient conditions which ensure convergence of the fixed point-67

policy iteration scheme. These conditions are very natural, if we use a mono-68

tone discretization to ensure convergence to the viscosity solution.69

• We verify that the conditions required for convergence are satisfied for the70

GMWB and regime switching examples.71

• We observe that in some formulations of the control problem [8], the nonlinear72

optimization objective function admits an arbitrary scaling factor. We derive73

sufficient conditions for the convergence of the fixed point-policy iteration74

which impose bounds on this scaling factor.75

• We include numerical experiments which demonstrate that the fixed point-76

policy iteration is more efficient than various alternative algorithms.77

We emphasize here that our analysis is based on a very general framework. Al-78

though the numerical examples used in this paper have a finite control set, our analysis79

applies as well to cases where the admissible set of controls is infinite. For example,80

we do not require that the discretized equations be continuous functions of the control81

(see [37] for a situation where this occurs). As such our results can be applied to a82

wide variety of discretized HJB equations.83

The proof of the convergence of the fixed point scheme for American options84

under jump diffusion in [16] is a special case of the more general result obtained here.85

The approach in this paper is also simpler than the method used in [12]. In addition,86

we do not rely on a special choice for the initial iterate as in [30].87
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2. Methods for Solving Algebraic Equations. In [18] a number of problems88

in financial modeling were presented in a general form as nonlinear HJB problems.89

These problems were then solved by implicitly discretizing the associated PDE and90

then solving the resulting discrete algebraic equations. For the applications addressed91

in [18] an efficient method for solving the associated algebraic systems made use of92

a (Newton-like) policy iteration scheme. However, in some cases policy iteration has93

significant efficiency drawbacks. In particular this happens when the risky assets94

follow a stochastic process which includes a Poisson jump process. In this section we95

describe a new procedure, called fixed point policy iteration which provides a method96

for overcoming these computational bottlenecks.97

2.1. Preliminaries. The algebraic equations in [18] can be represented in the98

form99

sup
Q∈Z

{
−A(Q)V + C(Q)

}
= 0 , (2.1)

with A a N ×N matrix, V, C vectors of length N , and Q an indexed set of N controls,100

where each Ql ∈ Z. Z is the set of admissible controls. Here we assume that101

Assumption 2.1.102

(a) The set of admissible controls Z is compact.103

(b) The matrices and vectors have the property that [A(Q)]`,m and [C(Q)]` depend104

only on Q`.105

Assumptions (a) and (b) are typically satisfied for discretized HJB equations.106

In general, we do not want to assume that the objective function107

F (Q,V ) = −A(Q)V + C(Q) (2.2)

is a continuous function of the control Q. For example, in order to ensure monotonicity108

when discretizing HJB equations, one often uses central/upstream differencing, with109

central differencing used as much as possible [37], which results in a discontinuous110

objective function. In order to handle the case where F (Q,V ) is a discontinuous111

function of Q, we make use of its upper semi-continuous envelope. If the ith row of112

F (Q,V ) is given by113

[F (Q,V )]i = −
∑
j

Ai,j(Qi)Vj + Ci(Qi) (2.3)

then the upper semi-continuous envelope F̄ (Q,V ) for fixed V is given by (∀Qi ∈ Z),114 [
F̄ (Q,V )

]
i

= lim sup
q→Qi

q∈N(Qi)

{
−
∑
j

Ai,j(q)Vj + Ci(q)
}
≡ −

∑
j

A∗i,j(Qi, V )Vj + C∗i (Qi, V ) ,

(2.4)

where N(Qi) is a closed neighbourhood of Qi (but containing Qi). For a fixed V , the115

upper semi-continuous envelope effects only the coefficients A and C. As an example,116

if Qi contains a single control, with Z a compact subset of R, then117

−
∑
j

A∗i,j(Qi, V )Vj + C∗i (Qi, V ) ≡ max


lim
q→Q+

i

−
∑
j

Ai,j(q)Vj + Ci(q)

lim
q→Q−i

−
∑
j

Ai,j(q)Vj + Ci(q)

−
∑
j Ai,j(Qi)Vj + Ci(Qi)

.(2.5)
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Note that since Z is compact then A and C are related to A∗ and C∗ by118

sup
Q∈Z

{
−A(Q)V + C(Q)

}
= max

Q∈Z

{
−A∗(Q,V )V + C∗(Q,V )

}
. (2.6)

As such equation (2.1) is interpreted as119

A∗(Q̂, V )V = C∗(Q̂, V )

with Q̂` = arg max
Q∈Z

[
−A∗(Q,V )V + C∗(Q,V )

]
`

. (2.7)

Remark 2.1 (Z a finite set). If the set of admissible controls is a finite set, then120

trivially A∗(Q,V ) = A(Q) and C∗(Q,V ) = C(Q).121

The following will be needed in the next section.122

Lemma 2.1. Suppose QY ∈ arg maxQ∈Z{−A∗(Q,Y )Y + C∗(Q,Y )}. Then for123

any control Q̂ and vector Ŷ we have124

−A∗(QY , Y )Y + C∗(QY , Y ) ≥ −A∗(Q̂, Ŷ )Y + C∗(Q̂, Ŷ ). (2.8)

125

Proof. The result follows from (2.6) coupled with the inequalities126

−A∗(QY , Y )Y + C∗(QY , Y ) = sup
Q∈Z

{
−A(Q)Y + C(Q)

}
≥ lim sup

Q→Q̂
Q∈N(Q̂)

{
−A(Q)Y + C(Q)

}

≥ −A∗(Q̂, Ŷ )Y + C∗(Q̂, Ŷ )

for a given Q̂ and Ŷ . Here N(Q̂) is a closed neighbourhood of Q̂.127

2.2. Policy Iteration. Policy iteration is a well known iterative method for128

solution of problems of type (2.7) [21, 7]. Let V k denote the kth estimate for V129

(starting at V 0). The policy iteration approach for solution of equation (2.7) is given130

in Algorithm 2.1.131

Algorithm 2.1 Policy Iteration

V 0 = Initial solution vector of size N ; given scale > 0, tolerance > 0
for k = 0, 1, 2, . . . until converge do

Qk` = arg max
Q∈Z

{
−A∗(Q,V k)V k + C∗(Q,V k)

}
`

Solve the linear system
A∗(Qk, V k)V k+1 = C∗(Qk, V k)

if k ≥ 0 and

(
max
`

|V k+1
` − V k` |

max
[
scale, |V k+1

` |
] < tolerance

)
then

break from the iteration
end if

end for

The term scale in Algorithm 2.1 is used to ensure that unrealistic levels of accu-132

racy are not required when the value is very small.133

There are several possibilities for solving the linear system in the policy iteration134

method. For example, if A∗ is sparse, then direct or iterative methods (such as135

preconditioned GMRES [31]) can be used.136
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2.3. Splitting Methods. It is not always the case that one can easily solve the137

policy iteration matrix A∗(Qk, V k). To this end, we form the splitting A∗ = A∗−B∗,138

so that our algebraic equations will now be written as139

(A∗(Q,V ) − B∗(Q,V )) V = C∗(Q,V )

with Q` = arg max
Q∈Z

[
−
(
A∗(Q,V )− B∗(Q,V )

)
V + C∗(Q,V )

]
`

. (2.9)

We assume that this splitting is such that any linear system having A∗(Q,V ) as its140

coefficient matrix is easy to solve.141

2.4. Simple Iteration. Using the above notation, then at each step of full policy142

iteration, we solve143 (
A∗(Qk, V k)− B∗(Qk, V k)

)
V k+1 = C∗(Qk, V k) . (2.10)

However, as discussed above, it may be very costly to solve equation (2.10). An144

obvious alternative is to use an iterative method. If (V k+1)m is the mth estimate for145

V k+1, then simple iteration for solution of linear system (2.10) is146

A∗(Qk, V k)
(
V k+1

)m+1
= B∗(Qk, V k)

(
V k+1

)m
+ C∗(Qk, V k) . (2.11)

2.5. Fixed Point-Policy Iteration. Instead of solving the linear system to147

convergence using simple iteration, it is natural to ask whether it suffices to use only148

a single simple iteration at each nonlinear iterate. In this case we replace Policy149

Iteration with what we refer to as Fixed Point-Policy Iteration.150

Algorithm 2.2 Fixed Point-Policy Iteration

V 0 = Initial solution vector of size N
for k = 0, 1, 2, . . . until converge do

Qk` = arg max
Q∈Z

[
−A∗(Q,V k)V k + B∗(Q,V k)V k + C∗(Q,V k)

]
`

Solve the linear system
[A∗(Qk, V k)]V k+1 = B∗(Qk, V k)V k + C∗(Qk, V k)

if converged then
break from the iteration

end if
end for

The above method requires only the solution of the sparse matrix A∗(Qk, V k)151

and a matrix-vector multiply B∗(Qk, V k)V k at each nonlinear iteration.152

3. Convergence of the Fixed Point-Policy Iteration. In [16], the conver-153

gence of an iterative scheme for a penalty formulation for American options under154

a jump diffusion process was proven. This same idea was generalized for other HJB155

problems in [12]. While it is possible to use this approach to prove convergence of156

scheme (2.2), these proofs are algebraically complex. In the following, we will present157

a simpler and more general method which proves convergence of Algorithm (2.2).158

In order to ensure convergence of our scheme we need to make some basic as-159

sumptions which hold for the applications that are of interest.160

Condition 3.1. The matrices A∗(Q,V ),B∗(Q,V ) and vector C∗(Q,V ) satisfy:161
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(i) The matrices A∗(Q,V ) and A∗(Q,V )− B∗(Q,V ) are M matrices.162

(ii) The matrices A∗(Q,V ),B∗(Q,V ), the vector C∗(Q,V ), and ‖(A∗)−1(Q,V )‖∞163

are bounded, independent of Q,V .164

(iii) There is a constant C1 < 1 such that165

‖ A∗(Qk, V k)−1 · B∗(Qk−1, V k−1) ‖∞ ≤ C1

and ‖ A∗(Qk, V k)−1 · B∗(Qk, V k) ‖∞ ≤ C1. (3.1)

Remark 3.1. We remind the reader that a matrix A∗ is an M matrix if the166

offdiagonals are nonpositive, A∗ is nonsingular, and (A∗)−1 ≥ 0. A sufficient condi-167

tion for a matrix to be an M matrix is that the offdiagonals are nonpositive, and each168

rowsum is strictly positive [35]. We will use this result in the following.169

Remark 3.2. In order to ensure convergence, the discretizations of our financial170

problems as in (2.7) need to be monotone, consistent and `∞ stable. This requires171

a positive coefficient discretization resulting in the M matrices of (i) and bounded172

matrices A∗(Q,V ), B∗(Q,V ) and vector C∗(Q,V ).173

Before proving the main result of this section, it will be helpful to note the fol-174

lowing Proposition and Lemmas.175

Proposition 3.1 (Convergent Sequence). Given a bounded infinite sequence176

(vn), such that177

vk+1 ≥ vk − αβk , (3.2)

where α is a constant independent of k and |β| < 1, then the sequence converges.178

Proof. This is a simple case of a result found in [8]. Property (3.2) implies that179

for any q > p we have180

vp ≤ vq +

q−1∑
k=p

αβk . (3.3)

Let s = lim inf vn. Then for any ε > 0 and any q the definition of lim inf implies that181

there exists q∗ > q such that vq∗ < s+ ε and so182

vp < s+ ε+

q∗−1∑
k=p

αβk ≤ s+ ε+

∞∑
k=p

αβk . (3.4)

Hence vp ≤ s+
∑∞
k=p αβ

k, and so183

lim sup
p

vp ≤ s+ lim
N→∞

∞∑
k=N

αβk = s = lim inf
p

vp . (3.5)

Since vp is bounded from above, we obtain convergence to a finite value.184

Lemma 3.2 (Bounded Iterates). Let matrices A∗(Q,V ),B∗(Q,V ) and the vector185

C∗(Q,V ) satisfy Condition 3.1. Then ‖V k‖∞ is bounded independent of k.186

Proof. From Algorithm 2.2 we have187

‖V k+1‖∞ ≤ ‖A∗(Qk, V k)−1B∗(Qk, V k)‖∞‖V k‖∞ + ‖A∗(Qk, V k)−1C∗(Qk, V k)‖∞
≤ C1‖V k‖∞ + C2

(3.6)
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for some constant C2 independent of k. Iterating equation (3.6) gives188

‖V k+1‖∞ ≤ Ck+1
1 ‖V 0‖∞ + C2

k∑
i=0

Ci1 ≤ ‖V 0‖∞ +
C2

1− C1
, (3.7)

which follows since C1 < 1.189

Lemma 3.3 (Uniqueness of Solution). Assume the set of controls satisfy Assump-190

tion 2.1 and that A∗(Q,V ), B∗(Q,V ), and C∗(Q,V ) satisfy Condition (3.1). If the191

iterative scheme (2.2) converges, then it converges to the unique solution of equation192

(2.9).193

Proof. Note first that simple manipulation of method (2.2) gives194

A∗(Qk, V k)(V k+1 − V k) = −A∗(Qk, V k)V k + B∗(Qk, V k)V k + C∗(Qk, V k)

= sup
Q∈Z

{
−A(Q)V k + B(Q)V k + C(Q)

}
. (3.8)

Suppose now that limk→∞ V k = V∞ . Then limk→∞A∗(Qk, V k)(V k+1 − V k) = 0195

since A∗(Q,V ) is bounded. Consequently196

0 = lim
k→∞

sup
Q∈Z

{
−A(Q)V k + B(Q)V k + C(Q)

}
= sup
Q∈Z

{
−A(Q)V∞ + B(Q)V∞ + C(Q)

}
,

since sup(·) is a continuous function of V k. Thus V∞ solves equation (2.9).197

As for uniqueness, suppose there are two solutions X, Y , such that198

A∗(QX , X)X = C∗(QX , X) ; QX ∈ arg max
Q∈Z

{
−A∗(Q,X)X + C(Q,X)

}

A∗(QY , Y )Y = C∗(QY , Y ) ; QY ∈ arg max
Q∈Z

{
−A∗(Q,Y )Y + C∗(Q,Y )

}
.

The above two equations, along with Lemma 2.1, give199

A∗(QX , X)(X − Y ) = −A∗(QX , X)Y + C∗(QX , X)−
[
−A∗(QY , Y )Y + C∗(QY , Y )

]
≤ 0.

This implies A∗(QX , X)(X − Y ) ≤ 0. Since A∗(QX , X) is an M matrix, X − Y ≤ 0.200

Interchanging X and Y also gives (Y −X) ≤ 0, and hence X = Y .201

Remark 3.3. Similar uniqueness results (assuming continuous A(Q)) are given202

in, for example [8, 25].203

Theorem 3.4 (Convergence of Scheme). If the matrices A∗(Q,V ),B∗(Q,V ) and204

vector C∗(Q,V ) satisfy Condition 3.1, then the scheme (2.2) converges to the unique205

solution of equation (2.9), for any initial iterate V k.206

Proof. Algorithm 2.2 can be written as207

A∗(Qk, V k)(V k+1 − V k) = B∗(Qk−1, V k−1)(V k − V k−1)

−A∗(Qk, V k)V k + B∗(Qk, V k)V k + C∗(Qk, V k)

−
[
−A∗(Qk−1, V k−1)V k + B∗(Qk−1, V k−1)V k

+C∗(Qk−1, V k−1)
]

= B∗(Qk−1, V k−1)(V k − V k−1)

− A∗(Qk, V k)V k + C∗(Qk, V k)

−
[
−A∗(Qk−1, V k−1)V k + C∗(Qk−1, V k−1)

]
≥ B∗(Qk−1, V k−1)(V k − V k−1) (3.9)
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where the last inequality follows from Lemma 2.1. Equations (3.9) combined with the208

fact that A∗(Qk, V k) is an M matrix then implies209

V k+1 − V k ≥
[
A∗(Qk, V k)−1B∗(Qk−1, V k−1)

]
(V k − V k−1) . (3.10)

From Condition 3.1210

‖A∗(Qk, V k)−1B∗(Qk−1, V k−1)‖∞ ≤ C1 < 1 (3.11)

and so we have211

(V k+1 − V k) ≥ −Ck1 ‖V 1 − V 0‖∞ e (3.12)

where e = [1, 1, ..., 1]′. Let C3 = ‖V 1 − V 0‖∞. Then, in component form we have212

[V k+1]` ≥ [V k]` − Ck1C3 . (3.13)

From Lemma 3.2, the sequence V k+1
i is bounded, hence the iteration converges from213

Proposition 3.1. In the limit, the iteration converges to the unique solution of equation214

(2.9) from Lemma 3.3.215

Remark 3.4 (Monotone Convergence). We can eliminate condition (3.11) if216

we require that (V 1 − V 0) ≥ 0, and B(Q) ≥ 0, since then the iteration will generate217

a monotone non-decreasing sequence from equation (3.10). Tests in [16] show that218

enforcing monotone convergence using a special choice for the first iterate converges219

more slowly than using the natural choice of the solution from the previous step. In220

addition, numerical experiments indicate that floating point errors are amplified if221

condition (3.11) is violated, and hence the sequence V k may not be non-decreasing222

even if (V 1 − V 0) ≥ 0.223

Remark 3.5 (Previous Work). Various forms of modified policy iteration have224

been suggested in the context of infinite horizon Markov chain problems [25]. How-225

ever, convergence results in [30] require that the initial iterate be selected so as to226

enforce monotone convergence (as in Remark 3.4). Moreover, we do not require that227

A(Q),B(Q), C(Q) be continuous functions of the control Q [37].228

229

Condition 3.1 requires bounding a matrix norm of the form230

‖A−1B‖∞ = maxy 6=0
‖A−1By‖∞
‖y‖∞

= maxy 6=0
‖x‖∞
‖y‖∞

where Ax = By (3.14)

with A an M matrix. The following will be useful in this regard.231

Proposition 3.5. Suppose Ax = By with A a strictly diagonally dominant M232

matrix and B ≥ 0. Then for any ` such that |x`| = ‖x‖∞ we have233

(
∑
u

A`,u)‖x‖∞ ≤ (
∑
u

B`,u)‖y‖∞. (3.15)

234

Proof. Since Ax = By we have235

A`,`x` = −
∑
u6=`

A`,uxu +
∑
u

B`,uyu. (3.16)
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Taking absolute values on both sides and using the fact that A`,u is non-positive236

whenever u 6= ` we have that237

A`,`|x`| ≤ −(
∑
u 6=`

A`,u)‖x‖∞ + (
∑
u

B`,u)‖y‖∞. (3.17)

The result follows since |x`| = ‖x‖∞.238

4. Guaranteed Minimum Withdrawal Benefit: Jump Diffusion. In this,239

and the following, sections we give two examples from computational finance: the240

Guaranteed Minimum Withdrawal Benefit (GMWB) insurance contract and, in ad-241

dition, an American option pricing problem.242

4.1. Singular Control Formulation of the GMWB Problem. A variable243

annuity policy is a financial contract between a policyholder and an insurance com-244

pany which promises a stream of cash flows. For a given initial lump sum payment an245

insurance company creates an investor risky asset account and guarantees a stream of246

cashflows. The latter payments come from a second, virtual, guarantee account. The247

payments are variable, depending on the performance of the risky asset account, with248

some lower bound. Often these variable annuities have guaranteed minimum with-249

drawal benefits (GMWBs) which allow the policy holder to cumulatively withdraw at250

least the total amount originally invested. The control parameter in this case is the251

withdrawal rate.252

We extend the singular control formulation for pricing GMWBs in [14] by assum-253

ing that the investor’s risky asset account W follows a finite activity jump diffusion254

process (in the risk neutral measure). Thus we have255

dW = (r − η − λρ)Wdt+ σWdZ + (ξ − 1)Wdq + dA, if W > 0 (4.1)

dW = 0, if W = 0, (4.2)

where Z is a Brownian motion, and q is a compound Poisson process comprising a256

pure Poisson process with intensity λ, and ξ an i.i.d. variable representing the jump257

size of W . The processes Z, q, ξ are assumed to be independent. A is the investor’s258

virtual guarantee withdrawal account. In the above r is the risk free rate, σ is the259

volatility and η the fee charged for the guarantee. Informally,260

dq =

{
0 with probability 1− λdt
1 with probability λdt

. (4.3)

We assume that ξ follows a log-normal distribution p(ξ) given by261

p(ξ) =
1√

2πζξ
exp
(
− (log(ξ)− ν)2

2ζ2
)
, (4.4)

with parameters ζ and ν, ρ = E[ξ − 1], where E[·] is the expectation, and E[ξ] =262

exp(ν + ζ2/2) given the distribution function p(ξ) in (4.4).263

For the investor’s virtual guarantee account A, let γ ≡ γ(t) denote the withdrawal264

rate at time t with γ ∈ [0,∞). Here an infinite withdrawal rate corresponds to an265

instantaneous withdrawal of a finite amount. The policy guarantees that the sum of266

withdrawals throughout the policy’s life is equal to the premium paid up front, which267

is denoted by ω0. As a result, we have A(0) = ω0, and268

A(t) = ω0 −
∫ t

0

γ(u)du, A(t) ≥ 0 . (4.5)
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We assume that we are dealing with a GMWB having a cap on the maximum269

allowed withdrawal rate without penalty. If G is the contractual withdrawal rate and270

κ < 1 is the proportional penalty charge applied on the portion of the withdrawal271

exceeding G then the net withdrawal rate f(γ) received by the policy holder is272

f(γ) =

{
γ 0 ≤ γ ≤ G,
G+ (1− κ)(γ −G) γ > G .

(4.6)

Define τ = T − t where t is the forward time, and T is the expiry time of the273

contract and set V = V (W,A, τ) to be the no arbitrage value of the guarantee.274

Generalizing the formulation in [26, 14, 22] to the case with stochastic process (4.1),275

the value of the guarantee is given from the solution to the following singular control276

problem277

min

[
Vτ − LV − λJ V −Gmax(FV, 0) , κ−FV

]
= 0 . (4.7)

Here the operators L,F ,J are defined as278

LV =
σ2

2
W 2DWWV + (r − η − λρ)WDWV − (r + λ)V

FV = 1− VW − VA = 1−DWV −DAV

J V =

∫ ∞
0

V (ξW,A, τ)p(ξ) dξ (4.8)

while DA, DW and DWW denote the usual partial derivative operators. Problem (4.7)279

is solved on the computational domain280

(W,A, τ) ∈ [0,Wmax)× [0, ω0]× [0, T ] . (4.9)

At expiry time τ = 0, the value of the contract is281

V (W,A, τ = 0) = max

[
W, (1− κ)A

]
. (4.10)

Other boundary conditions are282

min

[
Vτ − rV −Gmax(1− VA, 0), κ− (1− VA)

]
= 0 ; W = 0 ,

V (Wmax, A, τ) = e−ητWmax ; W = Wmax ,

VWW → 0 ; W →Wmax ,

Vτ = LV − λJ V ; A = 0 . (4.11)

No boundary condition is required at A = ω0. For details concerning the derivation283

of equation (4.7), we refer readers to [26, 10, 11, 14, 22].284

As discussed in [14, 22], we can reformulate problem (4.7) in penalized form as285

V ετ = LV ε + λJ V ε + max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ϕGFV ε + ψ

(
(FV ε − κ)

ε
+ κG

)]
.(4.12)

The basic idea of the penalty method is to discretize equation (4.12), and let ε → 0286

as the mesh and timesteps tend to zero. In the case of no jumps (λ = 0), then it is287
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shown in [22] that this will converge to the viscosity solution of equation (4.7) as the288

mesh and timesteps vanish.289

Note that we are working here in an incomplete market, so that the equivalent290

martingale pricing measure is not in general unique. As in [3], in practice the param-291

eters of equation (4.12) are obtained by calibration to traded prices of options. This292

means that the parameters of (4.12) correspond to those from the market’s pricing293

measure.294

4.2. Discretization of the GMWB Problem. In order to solve the singular295

control problem from the last subsection we discretize our problem over a finite grid296

in the W × A plane. Define a set of nodes in the W direction {W1,W2, ...,Wimax
}297

and in the A direction {A1, A2, ..., Ajmax
}. Denote the nth timestep by τn = n∆τ298

and let V ni,j be the approximate solution of equation (4.12) at (Wi, Aj , τ
n). Let299

Lh,J h,Fh, Dh
W , D

h
A be the discrete forms of the operators L,J ,F , DW , DA, respec-300

tively. We discretize equation (4.12) using fully implicit timestepping and central,301

forward and backward differencing so that the positive coefficient condition is satis-302

fied [37, 18, 22]. For efficiency, central differencing is used as much as possible [37].303

The final discretized equations then become304

V n+1
i,j −∆τLhV n+1

i,j + ϕn+1
i,j G[Dh

AV
n+1
i,j +Dh

WV
n+1
i,j ]∆τ +

ψn+1
i,j

ε
[Dh

AV
n+1
i,j +Dh

WV
n+1
i,j ]∆τ

= ϕn+1
i,j G∆τ + ψn+1

i,j ∆τ [
1− κ
ε

+ κG] + λ∆τ [J hV n+1]i,j + V ni,j ,

(4.13)

where305

{ϕn+1
i,j , ψn+1

i,j } ∈ arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

{
ϕ G[1−Dh

AV
n+1
i,j −Dh

WV
n+1
i,j ]

+ψ

[
1−Dh

AV
n+1
i,j −Dh

WV
n+1
i,j − κ

ε
+ κG

]}
. (4.14)

As discussed in [22], ε = C4∆τ , where C4 is a constant. The boundary conditions in306

this case translate into the discrete equations307

Vimax,j = e−ητ
n

Wmax. (4.15)

The integral term J V is discretized via transformation into a correlation integral308

combined with a use of the midpoint rule as described in detail in [17].309

4.3. Associated General Linear Form. Let N = imax × jmax be the size of310

the grid and set311

V n = [V n1,1, ..., V
n
imax,1, . . . , V

n
1,jmax

, ..., V nimax,jmax
]′. (4.16)

We can represent the linear relationships given in equation (4.13) in matrix form as312

follows. Define square N ×N matrices A,B and a vector C of size N by313

[A(ϕk` , ψ
k
` )U ]` = [AkU ]` = U` −∆τLhU` + ϕk`G[Dh

AU` +Dh
WU`]∆τ

+
ψk`
ε

[Dh
AU` +Dh

WU`]∆τ[
B(ϕk` , ψ

k
` )U

]
`

= [BkU ]` = λ∆τ [J hU ]`

C(ϕk` , ψk` )` = Ck` = ϕk`G∆τ + ψk`
[ (1− κ)

ε
+ κG

]
∆τ + V n` (4.17)
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with controls314

{ϕk` , ψk` } ∈ arg max
ϕ`∈{0,1},ψ`∈{0,1}

ϕ`ψ`=0

[
−A(ϕ`, ψ`)U

k + B(ϕ`, ψ`)U
k + C(ϕ`, ψ`)

]
`

. (4.18)

If we write U and Q as315

U = [U1,1, ..., Uimax,1, . . . , U1,jmax
, ..., Uimax,jmax

]′

Q = [q1,1, ..., qimax,1, . . . , q1,jmax
, ..., qimax,jmax

]′ (4.19)

with qi,j coming from the set316 {
(ϕ,ψ) | ϕ ∈ {0, 1}, ψ ∈ {0, 1}, ϕψ = 0

}
, (4.20)

then the discretized equations (4.13) become317

sup
Q∈Z

{
−A(Q)V n+1 + B(Q)V n+1 + C(Q)

}
= 0 . (4.21)

Remark 4.1. Notice that any vector index 1 ≤ ` ≤ N corresponds to a grid node318

(i, j) via319

` = i+ (j − 1)imax with 1 ≤ i ≤ imax and 1 ≤ j ≤ jmax. (4.22)

320

Recall that in order to ensure convergence to the viscosity solution of equation321

(4.7), the discretization must be monotone, consistent and l∞ stable [5]. A posi-322

tive coefficient discretization guarantees monotonicity [18]. The positive coefficient323

condition can be defined in terms of the matrices A,B as follows.324

Definition 4.1 (Positive Coefficent Condition). A positive coefficient discretiza-325

tion generates matrices A,B having the properties326 (
A− B

)
`,m

{
> 0 ` = m

≤ 0 ` 6= m

327

Remark 4.2. The discretization of the jump term J V (4.8) as in [17] results328

in a dense matrix B. However the method of discretization used in that paper implies329

that vector product BV n can be computed efficiently in O(N logN) operations using330

an FFT.331

Proposition 4.2. Suppose a positive coefficient discretization (see Definition332

4.1) is used and the jump operator J h is discretized using the method in [17]. Then333

(a) B(Qk) ≥ 0,334

(b) Suppose row ` corresponds to grid node (i, j) as in (4.22). Then the `th row335

sums for A(Qk) and B(Qk) are336

Row Sum ` ( A(Qk) ) =


1 + (r + λ)∆τ 1 < i < i∗

1 + r∆τ i = 1; i = i∗, ..., imax − 1

1 i = imax

Row Sum ` ( B(Qk) ) ≤

{
λ∆τ 1 < i < i∗

0 otherwise
(4.23)

Here linear behavior of the solution is assumed for i ≥ i∗ [17],337
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(c) The matrices A(Q)−B(Q) and A(Q) in equation (4.21) are strictly diagonally338

dominant M matrices.339

Proof. The construction of B(Qk) using the discretization of J V as detailed in340

[17] implies that341 ∑
µ

[J h]`,µ ≤ 1 and [J h]`,µ ≥ 0. (4.24)

This holds since p(ξ) in (4.8) is a probability density function. When the grid node342

(i, j) satisfies i > i∗ then the `th row of B(Qk) is identically zero. This gives (a) and343

the second part of (b).344

In order to prove the remaining part of (b) we note that the row sum is the345

same as [A(Qk)e]` with e = [1, ..., 1]′. Since Dh
WW 1 = Dh

W 1 = Dh
A1 = 0 we see that346

Lh1 = −(r+ λ). Thus [A(Qk)e]` = 1 + (r+ λ)∆τ for 1 < i < i∗. A similar argument347

shows that [A(Qk)e]` = 1 + r∆τ for i = 1; i∗ ≤ i < imax. When i = imax then the348

corresponding row is just the `th identity row (since it is just a boundary assignment)349

and hence its row sum is just unity. (c) follows since the off-diagonals of A(Q)−B(Q)350

and A(Q) are non-positive (since the discretization is monotone [18]) and from (b),351

the row sums are strictly positive.352

Remark 4.3 (Efficient Implementation). It is interesting to observe that in order353

to ensure a positive coefficient discretization, the Dh
A operator in equation (4.13) is354

always backward differenced. As a result, the solution for V n+1
i,j for fixed j depends355

only on V n+1
i,j−1. An efficient implementation using this idea is described precisely in356

[22].357

5. Regime Switching: American Options. A second method for extending358

Geometric Brownian Motion (GBM) is by use of a regime switching model. Regime359

switching models have been applied to insurance [20], electricity markets [19, 36],360

natural gas [2] and optimal forestry management [9].361

This is considered to better model observed risky asset stochastic processes [20],362

particularly for options having a longer time frame. It also has the useful property of363

being computationally inexpensive when compared to a full stochastic volatility jump364

diffusion model. In this section we also show that our methods can be used with both365

fully implicit or Crank-Nicolson timestepping.366

5.1. Modeling American Options under Regime Switching Processes.367

Let σj , j = 1, ...,K be a finite set of discrete volatilities for our model. Shifts between368

these states are controlled by a continuous Markov chain. Under the risk neutral369

measure, the stochastic process for the underlying asset S in regime j is370

dS = (r − ρj) S dt+ σj S dZ +

K∑
k=1

(ξjk − 1) S dXjk (5.1)

where Z is a Brownian motion, and X is a continuous K state Markov chain371

dXjk =

{
1 with probability λjk dt+ δjk
0 with probability 1− λjk dt− δjk

. (5.2)

ξjk are assumed to be non-random. It is understood that there can only be one372

transition over any infinitesimal time interval, and that Z and X are independent. It373
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is also assumed that λjk ≥ 0, j 6= k. When a transition from j → k occurs, then the374

asset price jumps S → ξjkS. In addition, we define375

λjj = −
K∑
k=1
k 6=j

λjk ; ρj =

K∑
k=1
k 6=j

λjk(ξjk − 1) ; λj =

K∑
k=1
k 6=j

λjk . (5.3)

For notational completeness, ξjj = 1.376

Let Vj(S, τ) be the no arbitrage value of our contingent claim in regime j where377

as usual we have τ = T − t so we are working backwards in time. Define the following378

differential operators379

LjVj =
σ2
jS

2

2
DSSVj + (r − ρj)SDSVj − (r + λj)Vj

JjV =

K∑
k=1
k 6=j

λjk
λj

Vk(ξjkS, τ) . (5.4)

The price of an American option in regime j is then given by [23]380

min

[
Vj,τ − LjVj − λjJjV, Vj − V ∗

]
, (5.5)

where V ∗ is the payoff. The risk neutral transition densities λjk are not unique. In381

practice, we calibrate the parameters in equation (5.5) to market data, consistent with382

the market’s pricing measure.383

5.2. Regime Switching: Direct Control Approach. We can formulate the384

equation (5.5) as a control problem, as in [8], where we introduce a scaling paramater385

Ω > 0386

max
φ∈{0,1}

[
Ω φ(V ∗ − Vj)− (1− φ)(Vj,τ − LjVj − λjJjV )

]
= 0 , (5.6)

Equation (5.6) is discretized on the computational domain (S, τ) ∈ [0, Smax] ×387

[0, T ]. No boundary condition is required at S = 0 while at S = Smax, a Dirichlet388

condition is imposed (in this paper we use the payoff). The payoff condition is389

V (S, τ = 0) = V ∗(S) . (5.7)

We truncate any jumps which would require data outside the computational domain.390

The resulting error is small in regions of interest if Smax is sufficiently large [23].391

5.2.1. Discretization of the Regime Switching Direct Control Formu-392

lation. Define a set of nodes {S1, S1, ..., Simax}, and denote the nth timestep by393

τn = n∆τ . Let V ni,j be the approximate solution of equation (5.6) at (Si, τ
n), regime394

j and define vectors V n as in equation (4.16), that is,395

V n = [V n1,1, ..., V
n
imax,1, . . . , V

n
1,K , ..., V

n
imax,K ]′. (5.8)

Let Lhj ,J hj be the discrete form of the operators Lj ,Jj . As usual we use central,396

forward and backward differencing to ensure a positive coefficient discretization [18],397
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with central differencing as much as possible. Linear interpolation is used to discretize398

J hj ,399

[J hj V n]i,j =

K∑
k=1
k 6=j

λjk
λj

Ihi,j,kV
n (5.9)

where Ihi,j,kV
n ' Vk(min(Smax, ξjkSi), τ

n), and400

Ihi,j,kV
n = wV nα,k + (1− w)V nα+1,k , w ∈ [0, 1] . (5.10)

Using fully implicit (θ = 1) or Crank Nicolson (θ = 1/2) timestepping, the discrete401

form of equation (5.6) is then402

(1− φn+1
i,j )

(
V n+1
i,j − ∆τθLhj V n+1

i,j

)
+ Ω φn+1

i,j ∆τV n+1
i,j

= (1− φn+1
i,j )V ni,j + Ω φn+1

i,j ∆τV ∗i + (1− φn+1
i,j )λj∆τθ[J hj V n+1]i,j

+(1− φn+1
i,j )(1− θ)

[
∆τLhj V ni,j + λj∆τ [J hj V n]i,j

]
(5.11)

where403

{φn+1
i,j } ∈ arg max

φ∈{0,1}

{
Ω φ(V ∗i − V n+1

i,j )− (1− φ)

(
V n+1
i,j − V ni,j

∆τ

− θ
(
Lhj V n+1

i,j + λj [J hj V n+1]i,j
)
− (1− θ)

(
Lhj V ni,j + λj [J hj V n]i,j

))}
(5.12)

and our discretization is fully implicit (θ = 1) or Crank Nicolson (θ = 1/2).404

5.2.2. General Form of the Direct Control Regime Switching Model.405

Define vectors U as in equation (4.16) and let matrices A,B and vector C be defined406

as407

[A(φk` )U ]` = [AkU ]` = (1− φk` )

(
U` −∆τθLhjU`

)
+ φk`Ω ∆τU`[

B(φk` )U
]
`

= [BkU ]` = (1− φk` )λj∆τθ[J hj V n+1]`

C(φk` ) = Ck` = (1− φk` )V n` + φk`Ω ∆τV ∗i

+(1− φk` )(1− θ)
[
∆τLhj V n` + λj∆τ [J hj V n]`

]
. (5.13)

where as before the index ` corresponds to the grid node (i, j). Define a vector of408

controls Q as in equation (4.19), with q` = φ`, with admissible controls Z409

Z` =
{
φ | φ ∈ {0, 1}

}
. (5.14)

The final discretized equations are then in the general form410

sup
Q∈Z

{
−A(Q)V n+1 + B(Q)V n+1 + C(Q)

}
= 0 . (5.15)

The positive coefficient condition then results in the following:411

Proposition 5.1. Suppose the discretization (5.11) satisfies the positive coeffi-412

cient condition (see Definition 4.1), and linear interpolation is used in equation (5.9).413

Then414
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(a) B(Q) ≥ 0,415

(b) Suppose row ` corresponds to grid node (i, j). Then the `th row sums for416

A(Qk) and B(Qk) are417

Row Sum ` ( A(Qk) ) =

{
(1− φk` )

(
1 + θ(r + λj)∆τ

)
+ φk`Ω ∆τ i < imax

1 i = imax

Row Sum ` ( B(Qk) ) =

{
(1− φk` )λj∆τθ i < imax

0 i = imax

, (5.16)

(c) The matrices A(Q)−B(Q) and A(Q) in equation (5.15) are strictly diagonally418

dominant M matrices.419

Proof. In this case part (a) follows from the representation (5.10) since here420

λjk, λj and the coefficients of Ihijk are nonnegative for all i, j, k (since w ∈ [0, 1]).421

The row sum of A(Qk) also follows as in Proposition 4.2 since again one can see422

using the operator form that Lhj 1 = −(r + λj) for all j. Thus if e = [1, ..., 1]′ then423

[A(Qk)e]` = (1−φk` )(1+θ(r+λj)∆τ)+φk`Ω∆τ for i < imax. The row sum of B(Qk) is424

computed using the fact that the representation (5.10) always sums to unity since this425

adds the coefficients coming from Lagrange interpolation. The case when i = imax is426

a consequence of the Dirichlet boundary condition at this node. As in Proposition427

4.2, part (c) follows from the use of a positive coefficient discretization, since from (b)428

the row sums of (A(Q)− B(Q)) and A(Q) are strictly positive and the off-diagonals429

are non-positive.430

6. Verification of Condition 3.1. In this section we show that the previous431

two problems all satisfy Condition 3.1 (with perhaps a suitable scaling) and hence432

the fixed point policy iteration scheme converges. For our examples, Z is a finite set,433

hence from Remark 2.1, we have that A∗ = A, B∗ = B, and C∗ = C. Hence we need434

only verify that Condition 3.1 is valid if we replace A∗(Q,V ), B∗(Q,V ), and C∗(Q,V ),435

by A(Q), B(Q), and C(Q).436

In all cases we need only verify Condition 3.1 (iii) since the property of being437

strictly diagonally dominant M matrices has been verified in Propositions 4.2, and438

5.1. A, B, and C are clearly bounded for any finite grid size.439

Lemma 6.1. If the discretization for the GMWB problem satisfies the conditions440

required for Proposition 4.2, then this discretization satisfies Condition 3.1.441

Proof. For this problem, B(Qk) is independent of Qk, hence we need only show442

that443

‖A(Qk)−1B(Qk)‖∞ ≤ C1 (6.1)

for some constant C1 < 1. If444

A(Qk)x = B(Qk)y (6.2)

then, for the GMWB problem, Proposition 3.5 combined with Proposition 4.2 implies445

that446

‖x‖∞
‖y‖∞

≤ λ∆τ

1 + (r + λ)∆τ
, (6.3)

so that C1 < 1 as required. To prove that ‖A(Q)−1‖∞ is bounded independent of Q,447

we repeat the above argument setting B to the identity matrix.448
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Lemma 6.2. If the discretization of the American option under regime switching,449

using the direct control method in Section 5.2, satisfies the preconditions for Proposi-450

tion 5.1, and Ω > maxj λjθ, then this discretization satisfies Condition 3.1.451

Proof. Suppose452

A(Qk)x = B(Qk)y (6.4)

and that |x`| = ‖x‖∞ with index ` corresponding to node (i, j). If i < imax and453

φ` = 0, then Proposition 3.5 and Proposition 5.1 implies that454

‖x‖∞
‖y‖∞

≤ θλj∆τ

1 + θ(r + λj)∆τ
. (6.5)

Otherwise when i = imax or φ` = 1 then ‖B(Qk)‖∞ = 0 and so ‖x‖∞ = 0. In either455

case bound (6.5) holds giving a constant C1 < 1 satisfying ‖A(Qk)−1B(Qk)‖∞ ≤ C1.456

Suppose now that457

A(Qk)x = B(Qk−1)y (6.6)

and that |x`| = ‖x‖∞ with index ` corresponding to grid node (i, j). If i < imax,458

φk−1` = 0 and φk` = 1 then459

‖x‖∞
‖y‖∞

≤ θλj
Ω
. (6.7)

But Ω is an arbitrary scaling of the equation (5.6). Hence we can choose460

Ω > max
j
λjθ , (6.8)

in which case ‖x‖∞‖y‖∞ ≤ C1 with C1 < 1. In all other cases, C1 < 1 unconditionally.461

Repeating the above argument setting B to the identity shows that ‖A−1(Q)‖∞ is462

bounded independent of Q.463

Remark 6.1 (Scaling Factor: equation (5.6)). At first glance, it appears unnat-464

ural to introduce an arbitrary scaling factor in equation (5.6), only to have it be used465

to satisfy Condition (6.7). However, if φk−1` = 0, φk` = 1, then the units of row ` of466

Ak and row ` of Bk are not the same. Hence we can violate or satisfy conditions (6.7)467

simply by rescaling the time units. However, choosing a scaling factor which satisfies468

conditions (6.7) means that this same scaling factor must be used in the optimization469

step (5.12) in Algorithm 2.2. Consequently, choosing different scaling factors will470

result, in general, in different choices for φk` at each iteration.471

7. Numerical Examples. In this section, several numerical examples are pre-472

sented using both the fixed point-policy iteration scheme in (2.2) and the full policy473

iteration scheme in algorithm (2.1). The results show that the fixed point-policy it-474

eration scheme requires significantly smaller computational cost compared to the full475

policy scheme.476

7.1. GMWB. The contract parameters from the problem in [11] are given in477

Table 7.1. Table 7.2 gives the mesh size and timestep parameters. In the localized478

computational domain, we set Wmax = 1000ω0. The penalty parameter is set to479

ε = ∆τ10−2/ω0 [22].480
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Parameter Value
Expiry time T 10.0 years
Interest rate r 0.05
Maximum no penalty withdrawal rate G 10/year
Withdrawal penalty κ 0.10
Initial lump-sum premium ω0 100
Initial guarantee account balance A(0) 100
Initial personal annuity account balance W (0) 100
Jump diffusion parameters (ζ, ν, λ) (.45, -.9, .1 )

Table 7.1: A sample GMWB contract parameters used in the numerical experi-
ments

Refine Level W Nodes A Nodes Time steps
1 125 111 120
2 249 221 240
3 497 441 480
4 993 881 960
5 1985 1761 1920

Table 7.2: Grid and timestep data for convergence experiments. At each refine-
ment, new fine grid nodes are introduced between each two coarse grid nodes, and
the timesteps are halved.

Table 7.3 presents the fair insurance fee η charged by the insurance company481

computed by solving the equation V (η;W = ω0, A = ω0, τ = T ) = ω0 [22]. Newton482

iteration is used to solve this equation with the convergence tolerance483

|ηk+1 − ηk|
max(ηk+1, ηk)

< 10−8 , (7.1)

where ηk is the k′th iterate.484

Our actual implementation of the nonlinear iteration (2.2) takes advantage of the485

structure of this problem as described in Remark 4.3. Using fully implicit timestep-486

ping, Table 7.4 presents the convergence results for the GMWB value with respect to487

two volatility values, assuming the no-arbitrage insurance fee is imposed. We com-488

pared the fixed point-policy (2.2) and full policy iteration scheme (2.1). A simple489

iteration (2.11) method was used to solve the policy iteration matrix. The nonlinear490

convergence tolerance for the policy and fixed point-policy iteration is given by491

max
`

|V̂ k+1
` − V̂ k` |

max(scale, |V̂ k+1
` |)

< 10−8 . (7.2)

A relative update tolerance of 10−8 was also used for the simple iteration (2.11).492

These two schemes show no difference in computed values to seven digits. However493

the fixed point-policy scheme requires less than half the iterations that is required by494
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Refine σ = 0.2 σ = 0.3
Level Fair Fee Ratio Fair Fee Ratio

1 0.034427 N/A 0.046890 N/A
2 0.032854 N/A 0.045789 N/A
3 0.032439 3.79 0.045536 4.34
4 0.032329 3.78 0.045471 3.91
5 0.032297 3.37 0.045452 3.35

Table 7.3: Convergence study for the fair insurance fee η value with jump diffu-
sions. Contract parameters are given in Table 7.1. Ratio is the ratio of successive
changes in the solution as the mesh is refined.

Refine Value Total Itns/Step Outer Itns/Step Ratio
Level Fixed Pt Policy Full Policy Full Policy

σ = 0.2, η = 0.032297
1 100.6090 4.67 10.16 3.88 N/A
2 100.1775 4.57 9.32 3.92 N/A
3 100.0471 4.33 9.08 3.98 3.31
4 100.0108 4.21 8.64 4.02 3.59
5 99.9999 4.08 8.04 4.05 3.32

σ = 0.3, η = 0.045452
1 100.3375 4.91 10.94 4.18 N/A
2 100.0842 4.84 10.19 4.32 N/A
3 100.0213 4.64 9.89 4.38 4.03
4 100.0049 4.65 9.47 4.45 3.83
5 100.0000 4.44 8.81 4.42 3.34

Table 7.4: Iteration and convergence experiments for the GMWB guarantee value
at t = 0 and W = A = ω0 = 100 using the fixed point-policy and full policy schemes.
Contract parameters are given in Table 7.1. Total Itns/step refers to the average
number of iterations per timestep to solve the equation. Outer Itns/Step refers to
the average number of outer iterations in the full policy iteration scheme. Ratio is
the ratio of successive changes in the solution as the mesh/timesteps are refined.
Since the fair insurance fee is imposed, the numerical solution should converge to
V alue = ω0 = 100. All methods used the same number of timesteps. Fully implicit
timestepping is used.

the full policy iteration. The computational cost for these methods is dominated by495

the FFTs required to carry out the dense matrix-vector multiply, hence the CPU time496

is proportional to the number of iterations.497

Table 7.4 also shows that the number of outer iterations that full policy iteration498

requires. The convergence ratio refers to the ratio of successive changes in the solution499

as the mesh and timesteps are reduced by two. This ratio indicates that better than500

linear convergence is obtained due to the maximal use of central differencing as much501

as possible for the VW term [37, 22]502

7.2. Regime Switching. In this section, we will consider a numerical exam-503

ple for the regime switching, American option example described in Section 5. We504
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Expiry Time .50 Strike K 100
Payoff put Risk free rate r .02
Exercise American Scaling Parameter 106/∆τ

Table 7.5: Data for the regime switching, American problem.

Refinement S Nodes Timesteps Unknowns
0 51 37 153
1 101 74 303
2 201 145 603
3 401 287 1203
4 801 571 2403
5 1601 1139 4803
6 3201 2273 6603

Table 7.6: Grid/timestep data for convergence study, regime switching example.
On each grid refinement, new fine grids are inserted between each two coarse grid
nodes, and the timestep control parameter is halved.

consider a case with three regimes 1, 2, 3. The transition probability array λ, jump505

amplitudes ξ and volatilities σ are given in equation (7.3). Other data are given in506

Table 7.5.507

λ =

 −3.5613 .2405 3.3208
1.1279 −1.2008 0.0729
2.9882 0.2025 −3.1907

 ; ξ =

 1.0 0.9095 1.0279
1.2502 1.0 1.6512
0.9693 0.7732 1.0

 ;σ =

 .2
.15
.30


(7.3)

508

Table 7.6 shows the grid and timestep data used for a convergence study for this509

problem. At each grid refinement, new fine grid nodes are added between each coarse510

grid node, and the timestep control parameter is halved. Crank Nicolson variable511

timestepping is used.512

Recall that we introduced a scaling factor Ω in equation (5.12). A natural choice513

for a scaling factor is Ω = C/(∆τ), where C is a dimensionless constant selected so514

as to satisfy equation (6.8). In the examples in this section, the coarse grid timestep515

is such that condition (6.8) is satisfied for C ≥ 1.516

Table 7.7 shows that the number of iterations per step for the Direct Control517

method (for fine grids) is sensitive to the choice of scaling factor. All methods gave518

the same computed values to eight digits. Table 7.7 also indicates that method is519

approximately second order.520

We compared fixed point policy iteration with some other approaches. Policy521

iteration (2.1) was used, and the sparse matrix (A − B) was solved using a direct522

method, based on minimum degree ordering for ((A − B) + (A − B)′). The conver-523

gence tolerance for the policy iteration is given in equation (7.2). Table 7.8 shows524

several other possible methods. A GMRES iterative solver, using a level zero ILU525

preconditioner [31], was used to solve the (A−B) matrix, in conjunction with the full526

policy iteration (2.1). In addition, full policy iteration was also used with the (A−B)527

matrix solved using a simple iteration (2.11). A convergence tolerance based on a528
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Refinement Ω = 10 Ω = 1/(∆τ) Ω = 106/(∆τ) Value Ratio
0 5.60 5.60 5.60 6.8261328
1 4.84 4.84 4.84 6.8292905
2 4.33 4.33 4.33 6.8300983 3.9
3 3.96 3.86 3.82 6.8303228 3.6
4 4.22 3.90 3.61 6.8303765 4.2
5 4.32 3.79 3.12 6.8303906 3.8
6 5.1 4.29 3.0 6.8303941 4.1

Table 7.7: Number of fixed point-policy iterations per timestep. All methods used
the same total number of timesteps. Crank Nicolson timestepping used. American
option, fixed point-policy iteration, value at t = 0, S = 100, regime 1. Ratio is the
ratio of successive changes as the mesh/timesteps are refined.

Linear Solution Outer Iterations Inner Iterations CPU time
Method per step per step (Normalized)

Full Policy Iteration (2.1)
Direct (Min degree) 2.39 NA 54.3

GMRES (ILU(0))[31] 2.39 4.64 15.0
Simple Iteration (2.11) 2.39 4.89 1.3

Fixed Point Policy Iteration (2.2)
Direct 3.12 NA 1.0

Table 7.8: Comparison of full policy iteration (2.1) using a direct solve, full pol-
icy iteration with an iterative solution (GMRES), full policy iteration with simple
iteration (2.11), and fixed point-policy iteration (2.2), refinement level 5. Regime
switching, American option, penalty formulation. All methods used the same num-
ber of timesteps. Crank Nicolson timestepping used.

relative update condition (< 10−8) for the inner iteration was used in both cases. We529

compared these methods with the fixed point-policy iteration scheme (2.2). Table 7.8530

shows that fixed point-policy iteration requires the least CPU time.531

8. Conclusion. We have developed a fixed point-policy iteration scheme for532

solving discretized HJB equations. This method is particularly useful if the risky533

asset (in a financial application) follows a jump diffusion or regime switching process.534

We have determined sufficient conditions which ensure that this iteration scheme535

converges. In the penalty formulation case, these conditions are typically satisfied if a536

monotone discretization method is used, which is normally required in order to ensure537

convergence to the viscosity solution.538

In the case that the discrete equations are solved using the approach in [8], con-539

vergence of the fixed point policy iteration can only be guaranteed if the discretized540

optimization problem satisfies a scaling condition. It is always possible to select a541

scaling parameter which satisfies this condition. It is interesting to observe that, for542

the direct control approach [8], the convergence rate is sensitive to the scaling of the543

nonlinear equations. This does not appear to have been observed previously, and544

merits further study.545

Our numerical tests show that the fixed point-policy iteration method is more546
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efficient than a variety of alternative strategies. We have used a very general approach547

to prove the convergence of the fixed point-policy iteration. In the case where the548

admissible set of controls is infinite, we do not require that the discretized equations549

at each node be a continuous function of the control (this may arise if we use central550

differencing as much as possible for monotone schemes). We also do not require a551

special choice for the initial iterate. Hence, the fixed point-policy iteration scheme552

can be applied to a wide variety of discretized HJB equations.553
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