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Abstract5

An implicit partial differential equation (PDE) method is used to determine the cost of hedg-6

ing for a Guaranteed Lifelong Withdrawal Benefit (GLWB) variable annuity contract. In the7

basic setting, the underlying risky asset is assumed to evolve according to geometric Brownian8

motion, but this is generalized to the case of a Markov regime switching process. A similarity9

transformation is used to reduce a pricing problem with K regimes to the solution of K cou-10

pled one dimensional PDEs, resulting in a considerable gain in computational efficiency. The11

methodology developed is flexible in the sense that it can calculate the cost of hedging for a va-12

riety of different withdrawal strategies by investors. Cases considered here include both optimal13

withdrawal strategies (i.e. strategies which generate the highest possible cost of hedging for the14

insurer) and sub-optimal withdrawal strategies in which the policy holder’s decisions depend on15

the moneyness of the embedded options. Numerical results are presented which demonstrate16

the sensitivity of the cost of hedging (given the withdrawal specification) to various economic17

and contractual assumptions.18

Keywords: Optimal control, GLWB pricing, PDE approach, regime switching, no-arbitrage,19

withdrawal strategies20

JEL Classification G2221

Acknowledgements22

This work was supported by Tata Consulting Services, the Natural Sciences and Engineer-23

ing Research Council of Canada, and the Social Sciences and Humanities Research Council of24

Canada.25

1 Introduction26

Over the past few decades there has been a general trend away from defined benefit pension plans.27

One result of this development has been an increased focus on financial contracts which are designed28

to assist investors with managing their pre-retirement savings and post-retirement spending plans.29

Variable annuities (VAs) are a prominent example. In contrast to traditional fixed annuities which30

provide a minimum specified rate of interest, VAs provide investors with additional flexibility in31

terms of how their contributions are invested (e.g. a choice among mutual funds). The term32
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“variable” refers to the fact that the returns can vary according to the investment choices made. In33

the U.S., VAs offer a tax-deferral advantage because taxes are not paid until income is withdrawn.134

Although VAs have been offered for many years, the market for them exhibited dramatic growth35

beginning in the 1990s: according to Chopra et al. (2009), the annual rate of growth in the U.S.36

VA market during that decade was 21%, and the level of total assets reached almost USD 1 trillion37

by 2001. While the decline of traditional defined benefit pension plans was a contributing factor,38

another reason was that VA contracts began to incorporate several additional features which made39

them more attractive to investors. As noted by Bauer et al. (2008), these features can be divided40

into two broad types: guaranteed minimum death benefits (GMDBs) and guaranteed minimum41

living benefits (GMLBs). GMDBs provide a payout at least equal to the original amount invested42

(or this amount grossed up by a guaranteed minimum rate of return) if a policy holder dies. These43

provisions first became widely adopted in VA contracts in the 1990s. There are several types of44

GMLBs: guaranteed minimum accumulation benefits and guaranteed minimum income benefits45

both give investors a guaranteed asset level at some specified future time, the former in a lump46

sum amount and the latter in the form of an annuity. Guaranteed minimum withdrawal benefits47

(GMWBs) allow investors to withdraw funds each period (e.g. year) from their VA accounts up to48

specified limits, regardless of the investment performance of the accounts.2 A variation of GMWBs49

known as guaranteed lifelong withdrawal benefits (GLWBs) permits such withdrawals as long as the50

investor remains alive. These various GMLB features were widely introduced to the U.S. market51

in the early 2000s. The size of assets in U.S. VA accounts grew to about USD 1.5 trillion by the52

end of 2007 (Chopra et al., 2009). In addition to the U.S., similar VA-type contracts have been53

marketed to investors in many other countries, including Japan, the U.K., Germany, Italy, France,54

and Canada. Further information about the historical development of the VA market and the types55

of contracts available can be found in Bauer et al. (2008) and Chopra et al. (2009).56

The onset of the financial crisis in the latter half of 2007 resulted in dismal equity returns,57

sustained low interest rates, and high market volatility. Many of the options embedded into VA58

contracts became quite valuable, and insurers were faced with the prospect of having to make59

large payments in order to meet the terms of these written options. Some insurers were not60

effectively hedged, and large losses resulted (Kling et al., 2011). Subsequently, VA sales have61

generally declined, in part because insurers have reduced offerings, raised fees, and attempted to62

buy existing investors out of their contracts (Tracer and Pak, 2012). MetLife took a USD 1.6 billion63

impairment charge related to its annuity business in the third quarter of 2012 (Tracer and Pak,64

2012), and some firms have tried to sell off their annuity business units (Nelson, 2013).365

An unfortunate aspect of this is that in principle it makes sense for relatively sophisticated66

financial institutions to offer risk management services for retail clients. However, this is subject to67

the caveat that the institutions themselves need to adopt effective hedging strategies to offset the68

risk exposures resulting from selling these types of contracts. Many insurers did attempt to hedge69

the risks. According to a report cited by Chopra et al. (2009), hedging programs saved the industry70

about $40 billion in September-October 2008, offsetting almost 90% of the industry’s increase in71

liability valuations during that period. However, the hedging programs which were adopted were72

clearly not entirely successful and so there is definite scope for research as to how they might be73

improved.74

1The deferral advantage is offset somewhat by having withdrawals taxed at ordinary income rates rather than
capital gains rates.

2Investors can withdraw funds in excess of the specified limits, but are typically charged penalties to do so.
3Even so, as a reflection of earlier sales and recent stronger equity market performance, total assets in U.S. VA

contracts reached an all-time high of around USD 1.7 trillion at the end of the first quarter of 2013 (Insured Retirement
Institute, 2013).
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This article contributes to the literature by developing a simple and computationally efficient75

framework to evaluate the cost of hedging these types of contracts. Of course, the cost of hedging76

depends on the issuer’s hedging strategy, so it is worth discussing this in more detail here. As a77

point of comparison, consider the standard approach for valuing an American put option on some78

underlying asset. The fundamental idea is to determine the initial cost of a dynamic self-financing79

replicating portfolio which is designed to provide an amount at least equal to the payoff of the80

contract, on the assumption that the purchaser of the contract adopts an exercise strategy that81

maximizes the monetary value of the contract. If the purchaser follows any other exercise strategy,82

the contract writer will be left with a surplus. The initial cost of establishing this hedging strategy83

is the no-arbitrage price of the contract—if the contract were to trade for a different price than this84

portfolio, then arbitrage profits could be made in principle by exploiting this price difference. This85

is not a pure arbitrage argument, in the sense that it is subject to modelling assumptions about the86

value of the underlying asset and parameters such as volatility. The VA setting differs in two key87

respects. First, the option premium is not paid up as an up-front instalment, but rather is deducted88

over time as a proportional fee applied to the value of the assets in the investor’s account. Second,89

it is important to allow for alternative possible assumptions regarding the investor’s option exercise90

strategy. This is because an investor may follow what appears to be a sub-optimal strategy that does91

not maximize the monetary value of the embedded option. This could be for idiosyncratic reasons92

such as liquidity needs or tax circumstances.4 We use the term “cost of hedging” to refer to the fair93

hedging fee to be deducted that finances a dynamic replicating portfolio for the options embedded94

in the contract under the assumption of a particular exercise strategy. The replicating portfolio is95

managed so as to provide sufficient funds to meet any future payouts that arise from writing the96

contracts, at least under the model considered. This is distinguished from the “no-arbitrage fee” by97

the possibility of alternative exercise behaviour. Our terminology is intended to remind the reader98

of this generalization: the no-arbitrage fee would be a special case under the assumption that the99

investor’s strategy is to maximize the monetary value of the options embedded in the contract.100

Of course, as with the no-arbitrage value of standard option contracts, the cost of hedging for VA101

contracts is still subject to modelling assumptions about the value of the underlying asset over102

time. We also emphasize that the cost of hedging calculated under the assumption that investors103

act to maximize the value of the options that they hold does offer an important benchmark in that104

it is a worse case scenario for the contract writer—again, under the particular model assumed for105

the value of the underlying asset.106

In this article, we will focus exclusively on GLWBs. Our approach can easily be adapted to107

the simpler case of GMWBs with a fixed maturity date, but recent concerns over longevity risk108

(i.e. retirees outliving their savings) imply that GLWBs may be of greater significance.5 These109

contracts are typically initiated by making a single lump sum payment to an insurance company.110

This payment is then invested in risky assets, usually a mutual fund. The benefit base, or guarantee111

account balance, is initially set to the amount of the lump sum payment. The holder of the contract112

is entitled to withdraw a fixed fraction of the benefit base each period (e.g. year) for life, even if113

the actual investment in the risky asset declines to zero. Upon the death of the contract holder, his114

or her estate receives the remaining amount in the risky asset account. Typically, these contracts115

have ratchet provisions (a.k.a. “step-ups”), which periodically increase the benefit base if the risky116

asset investment has increased to a value larger than the guarantee account value. In addition,117

4Prepayment options in mortgages offer a useful analogy. While these options may be exercised for the monetary
advantage of being able to re-finance a home at a lower prevailing interest rate, they could also be exercised for a
variety of other reasons such as a transfer of employment, a divorce, or a simple desire to move to a larger house.

5In addition, since GLWBs can last for much longer than GMWBs, it is more important to develop efficient
valuation methods for GLWBs.
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the benefit base may also be increased if the contract holder does not withdraw in a given year.118

This is known as a bonus or roll-up. Finally, the contract holder may withdraw more than the119

contractually specified amount, including complete surrender of the contact, upon payment of a120

penalty. Complete surrender here means that the contract holder withdraws the entire amount121

remaining in the investment account, and the contract terminates. In most cases, the penalty for122

full or partial surrender declines to zero after five to seven years. As noted above, investors are123

charged a proportional fee from their risky asset accounts to pay for these features.124

The valuation and hedging of the various provisions embedded into VA contracts is a challenging125

exercise as the options involved are long term, path-dependent, and complex. Investors can be126

modelled as facing a non-trivial optimal stochastic impulse control problem when determining127

their withdrawal strategies in GMWB/GLWB contracts. In general, the prior literature on these128

contracts has taken one of two alternative approaches: (i) focusing primarily on the investor’s129

optimization problem in the context of a relatively simple specification such as geometric Brownian130

motion (GBM) for the stochastic evolution of the underlying investment; or (ii) concentrating on131

a richer stochastic specification incorporating features such as random volatility and/or random132

interest rates, while assuming that the investor follows a simple pre-specified strategy, typically133

involving always withdrawing the contractually specified amount each period (i.e. the maximum134

withdrawal that can be made without paying a penalty), no matter what happens to the value135

of the investment account. As an early example of the former approach, Milevsky and Salisbury136

(2006) value GMWB contracts under GBM and two extreme cases of policy holder behaviour:137

withdrawal of the contractually specified amount at all times in all circumstances or maximizing138

the economic value of the embedded options. Numerical PDE techniques are used to solve the139

valuation problems. The fair hedging fee for the contract is shown to increase substantially if140

investors are assumed to act to maximize the value of their embedded options rather than to141

passively withdraw the contract amount. Dai et al. (2008) model the GMWB pricing problem142

as a singular stochastic control problem in the GBM setting and provide an efficient numerical143

PDE approach for solving the problem. Illustrative calculations show dramatic differences in the144

fair hedging fee as parameters such as the allowed withdrawal amount, the penalty for excess145

withdrawals, and volatility are changed. Chen et al. (2008) provide a detailed study of the effects146

of various parameters on the fair fees for hedging GMWBs, showing that in addition to assumed147

levels for volatility and the risk-free rate, the fact (often ignored in the literature) that the total148

fees charged to investors is split between fees made available for hedging purposes and fees paid for149

managing the underlying mutual funds can have large effects. Most of the results reported are for150

the case of GBM, but an extension to a jump-diffusion setting is also considered and shown to have151

a potentially significant impact on the fair hedging fee. In addition, Chen et al. (2008) also explore152

an alternative assumption about policy holder behaviour based on an idea put forth by Ho et al.153

(2005). Under this scenario, the contract holder is assumed to withdraw the contract amount unless154

the embedded options are sufficiently deep-into-the-money, in which case the assumption is that155

the holder will act “optimally” to capture the option value. Again, the implied fair hedging fees are156

quite sensitive to this behavioural specification. In Bauer et al. (2008), a very general framework157

is developed for pricing a wide variety of VA contracts. The numerical cases considered are all in158

the GBM context. In contrast to the papers cited above which rely on various types of numerical159

PDE approaches, Bauer et al. (2008) use Monte Carlo methods for some policy holder behaviour160

assumptions and a combination of Monte Carlo methods and a numerical integration technique to161

determine the optimal strategy. However, the approaches considered are quite inefficient compared162

to the PDE-based alternatives, at least in the simple GBM setting. The general framework of163

Bauer et al. is applied to the specific case of GLWBs by Holz et al. (2012). A variety of contractual164

features are considered, as well as some alternative assumptions about policy holder behaviour. The165
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stochastic setting is GBM, and Monte Carlo methods are used. Again, the same general conclusion166

emerges as with several other studies: the fair hedging fee for the contract is extremely sensitive167

to assumptions about behaviour, the risk-free rate, volatility, and contractual provisions. Piscopo168

(2010) assumes GBM and uses a Monte Carlo method to estimate fair hedging fees for GLWBs for169

two cases of policy holder behaviour: always withdraw the contract amount each period, or do so170

except if the value of the account less any penalty is less than the present value of the future benefits,171

in which case completely withdraw all funds. Illustrative calculations show that the estimated fair172

hedging fee under the latter strategy is close to double that for the former. Piscopo and Haberman173

(2011) assume GBM and a base case strategy of always withdrawing the contract amount every174

period. Monte Carlo methods are used to show the effects of a variety of contractual provisions175

such as step-ups and roll-ups, assuming that the policy holder follows a strategy such as making176

no withdrawals for a specified number of years. In addition, an extension to stochastic mortality177

risk is considered. Yang and Dai (2013) develop a tree-based method for analyzing GMWB type178

contracts in the GBM context. Yang and Dai emphasize and demonstrate the importance of various179

contractual provisions, but they do not provide results for cases where investors are assumed to180

optimize discretionary withdrawals. Huang and Kwok (2013) carry out a theoretical analysis in the181

GBM setting of withdrawal strategies assuming the worst case for the contract provider (i.e. the182

policy which maximizes the value of the guarantee).183

As noted above, the second general type of approach involves using more complex models for the184

value of the underlying fund, but specifying simpler strategic behaviour on the part of policy holders.185

For example, Shah and Bertsimas (2008) use Monte Carlo and numerical integration methods to186

estimate the fair hedging fees for GLWB contracts assuming that investors always withdraw the187

contractually specified amount from their accounts. Three specifications are considered: GBM,188

GBM with stochastic interest rates, and a generalization with both stochastic interest rates and189

stochastic volatility. Incorporating random interest rates and volatility results in somewhat higher190

fees compared to GBM.6 Similarly, Kling et al. (2011) consider a stochastic volatility model, using191

Monte Carlo methods but assuming non-optimal behaviour by policy holders. Kling et al. conclude192

that while stochastic volatility does not matter too much for pricing GLWBs, it can have a significant193

effect on hedging strategies and risk exposures. Bacinello et al. (2011) consider a variety of VA194

embedded options in a setting with stochastic interest rates and stochastic volatility. Most of the195

results presented are for GMDBs or other specifications which do not provide for early withdrawals196

at the discretion of the policy holder. When considering contracts which do allow for these features,197

the assumptions regarding investor behaviour are basically the same as those of Piscopo (2010):198

always withdraw the contract amount, or completely surrender the policy. Monte Carlo methods199

are used to estimate hedging costs for contracts without discretionary withdrawal features and to200

estimate contract values given assumed fee levels otherwise. Standard conclusions apply regarding201

the sensitivity of fee levels (or contract values) to contractual specifications and financial market202

parameters. Peng et al. (2012) augment the standard GBM specification with stochastic interest203

rates. Under the assumption of deterministic withdrawals, they derive analytic upper and lower204

bounds for the fair values of GMWB contracts. Donelly et al. (2014) explore the valuation of205

guaranteed withdrawal benefits under stochastic interest rates and stochastic volatility. A PDE-206

based numerical scheme is used, and allowing for randomness of both interest rates and volatility is207

shown to have potentially large effects. However, the investor is simply assumed to always withdraw208

the contract amount.209

6Shah and Bertsimas (2008) actually underestimate the fair hedging fees for all specifications because they assume
that the fees are paid separately by investors rather than being deducted from the GLWB account itself. The
reduction in the account value makes the embedded guarantee features on the original investment more valuable,
implying higher hedging costs.
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The departures from the simple GBM context cited thus far all involve having volatility and/or210

the risk-free rate follow a distinct diffusion process. A simpler alternative is to combine GBM211

with Markov regime switching. This results in a parsimonious representation that in principle can212

account for random changes in volatility and interest rates (Hardy, 2001). In the context of pricing213

standard options, such models are discussed in sources such as Naik (1993), Bollen (1998), Duan214

et al. (2002), Yuen and Yang (2009), and Shen et al. (2013). In the specific case of VAs and other215

equity-linked insurance contracts, regime switching models have been suggested by Siu (2005), Lin216

et al. (2009), Bélanger et al. (2009), Yuen and Yang (2010), Ngai and Sherris (2011), Jin et al.217

(2011), and Uzelac and Szimayer (2014). However, most of these papers do not consider any form218

of withdrawal benefits.7219

The papers cited above illustrate the general tradeoff between the underlying stochastic model220

and the assumed strategies followed by investors. Making models more realistic by allowing depar-221

tures from GBM such as stochastic volatility and/or interest rates is clearly desirable for these long222

term contracts. At the same time, it is also important to be able to consider a variety of possible223

assumptions about investor behaviour. The intrinsic difficulty of determining optimal behaviour224

in a model with stochastic volatility and interest rates has led the authors of previous papers to225

emphasize one or the other of these model features. In this paper, we use an implicit PDE ap-226

proach to value GLWB guarantees. We initially consider the GBM setting, but then generalize to a227

Markov regime switching framework. This allows us to analyze a variety of assumptions regarding228

the withdrawal strategies of investors in a setting which permits a simple specification of stochastic229

volatility and interest rates. Our implicit method contrasts with lattice or tree-based methods230

(e.g. Yuen and Yang, 2010; Yang and Dai, 2013), which are essentially explicit difference schemes.231

Such explicit approaches are characterized by well-known time step size limitations due to stability232

considerations. These restrictions are particularly costly in the case of long term contracts such as233

GLWBs.234

If we consider a modelling scenario with K regimes, then the use of a similarity transformation235

reduces the computational problem to solving a system of K coupled one-dimensional PDEs. This236

makes the computational cost of pricing GLWB contracts very modest, and far more efficient than237

Monte Carlo based alternatives. In order to determine the fair hedging fee, we use Newton iteration238

combined with a sequence of refined grids. In most cases, just a single Newton iteration is required239

on the finest grid.240

From a financial perspective, option valuation in regime switching models is complicated by241

the fact that standard Black-Scholes arguments which rely on hedging written options using a242

replicating portfolio consisting of the underlying asset and a risk-free asset are inapplicable due to243

the extra risk associated with a potential change in regime—the market is incomplete. This implies244

that the martingale measure is not unique, and additional criteria are needed to pin down the245

measure to be used from pricing. This can be done in a variety of ways. One possibility is to use246

the Esscher transform, which can be justified on economic grounds in the context of a representative247

agent model with power utility. This was first suggested in the regime switching setting by Elliott248

et al. (2005), and applied to the context of VAs and other equity-linked insurance contracts in249

papers such as Siu (2005) and Lin et al. (2009). As an alternative, we consider an expanded set250

of hedging instruments. Examples could include other derivative contracts on the underlying or251

bonds of various maturities. As pointed out by Naik (1993) in a model with two regimes, one252

additional hedging instrument is needed beyond the underlying asset and the risk-free asset. More253

7Bélanger et al. (2009) analyze GMDB contracts which permit partial early withdrawals assuming investors act
so as to maximize the value of this option. Ngai and Sherris (2011) primarily focus on longevity risk, but do consider
GLWBs in cases where policy holders are assumed to withdraw at the contract rate or to completely surrender their
contracts.
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generally, if there are K regimes, a total of K + 1 hedging instruments can be used to construct254

the replicating portfolio. If two of the instruments are the risk-free asset and the underlying asset,255

then K − 1 additional contracts such as traded options are required.256

Based on this set of hedging instruments, we develop a general method for determining the257

cost of hedging GLWB contracts without making any specific assumptions about the withdrawal258

strategy of the contract holder. We use a dynamic programming approach (i.e. we solve the PDE259

backwards in time), which allows us to explore various withdrawal strategies. As illustrations, we260

consider two examples:261

1. Taking the point of view of the worst case for the hedger, we assume that the contract holder262

follows an optimal withdrawal strategy. We use the term “optimal” here in the sense of263

the discussion above: the optimal withdrawal strategy maximizes the monetary value of the264

guarantee. We also allow the contract holder to surrender the contract when it is optimal to265

do so, again in the sense of maximizing the monetary gain from the contract.266

2. We use the model discussed in Ho et al. (2005) which assumes that investors will withdraw267

at the contractually specified rate unless it is significantly advantageous for them to deviate268

from this strategy.8269

We emphasize, however, that these two cases are merely illustrative: our method can value GLWB270

contracts under a wide variety of withdrawal strategies. Of course, given assumptions about pa-271

rameter values (e.g. volatility), no alternative strategy can lead to a higher cost of hedging for the272

insurer than the “optimal” one. In this sense, the costs calculated here under the first scenario273

above are a worst-case upper bound for the insurer.274

We use the terms “fair hedging fee” and “cost of hedging” interchangeably to refer to the fee275

which is required to maintain a replicating portfolio. A description of this replicating portfolio is276

given in the derivations of our valuation equations which are provided in Appendices A and B (see277

also Chen et al. 2008 and Bélanger et al. 2009).278

The main contributions of this paper are as follows:279

• We formulate the task of determining the worst case hedging cost as an optimal stochastic280

impulse control problem. In the context of a regime switching model, we derive a coupled281

system of PDEs and optimal control decisions across withdrawal dates that can be used in one282

of two ways. First, given an assumed fee, the solution of the system provides the value of the283

GLWB contract. Second, by numerically searching across alternative fees, the fair hedging284

fee can be determined as that which makes the initial value of the contract equal to the lump285

sum invested. Since the PDEs in the coupled system are one-dimensional, the model can be286

implemented in a way that is far more efficient than Monte Carlo based approaches that are287

common in the literature.288

• We present numerical examples demonstrating the convergence of this method, and the sen-289

sitivity of the fair hedging fee to various modelling parameters.290

• We consider two specific withdrawal assumptions: the worst case for the hedger (optimal291

withdrawal) and withdrawals depending on the moneyness of the guarantee (Ho et al., 2005;292

Knoller et al., 2013). However, we emphasize that our procedure can be adapted to other293

withdrawal specifications.294

8Knoller et al. (2013) conduct an empirical investigation of the behaviour of Japanese VA policy holders. They
find that the moneyness of the embedded options is the single most important factor in explaining exercise decisions
by policy holders, lending support to the model of Ho et al. (2005).
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• We consider the effect of misspecification risk for the case where the hedger incorrectly assumes295

that there is only a single regime. We assume that market prices for traded options and risk-296

free bonds are generated by a regime-switching model, and calibrate the parameters of the297

single regime model to match these prices. For some parameters, the implied hedging costs298

for the single regime model are reasonably close to those for the regime switching model, but299

this is not always true. Overall, we find that a single regime model cannot be assumed to300

consistently give an effective approximation.301

Overall, the implicit PDE method developed here can be used to rapidly explore the effect302

of economic, contractual, and longevity assumptions on the fair hedging fee, under a variety of303

alternative withdrawal strategies for investors. The balance of the paper proceeds as follows.304

Section 2 develops the GLWB model in the GBM setting with just one regime. This model is305

extended to the regime switching context in Section 3. Various alternative policy holder withdrawal306

assumptions are discussed in Section 4. The numerical approach is described in Section 5. This307

is followed by Sections 6 and 7, which contain an extensive set of illustrative results and a brief308

concluding summary.309

2 Formulation: Single Regime Case310

We begin by considering the simplified case without regime switching. We assume that mortality311

risk is diversifiable across a large number of contract holders.9 Let the mortality functionM(t) be312

defined such that the fraction of the original owners of the GLWB contract who die in the interval313

[t, t+dt] isM(t)dt. The fraction of the original owners still alive at time t is denoted by R(t), with314

R(t) = 1−
∫ t

0
M(u)du. (2.1)

Time t is measured in years from the contract inception date. Typically, mortality tables are given315

in terms of integer ages {0, 1, . . . }. Specifically, let x0, y, and ω be integers with316

x0 = insured’s age at contract inception

ypx0 = probability that an x0 year old will survive the next y years

qx0+y = probability for an x0 + y year old to die in the next year

ω = age beyond which survival is impossible. (2.2)

This gives317

M(t) = ypx0qx0+y where t ∈ [y, y + 1) (2.3)

with R(t) given from equation (2.1). Note that M(t) is assumed constant for t ∈ [y, y + 1).318

Let S be the amount in the investment account (i.e. mutual fund) of any holder of the GLWB319

contract still alive at time t. Let A be the guarantee account balance. We suppose that percentage320

fees based on the value of the investment account S are charged to the policy holder at the annual321

rate αtot and withdrawn continuously from that account. These fees include mutual fund manage-322

ment fees αm and a fee charged to fund the guarantee αg, so that αtot = αg + αm. It is worth323

noting that while most existing contracts deduct fees as a fraction of the investment account, some324

insurance companies are now charging fees as a fraction of the guarantee account balance A or even325

9In the case that this assumption is not justified, then the risk-neutral value of the contract can be adjusted using
an actuarial premium principle (Gaillardetz and Lakhmiri, 2011).
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max(S,A). Although these types of alternative fee structures can be easily incorporated into our326

general approach, we will consider only fees that are proportional to the value of the investment327

account S in the remainder of this article.328

To determine the fair hedging fee for the GLWB contract, we use hedging arguments similar to329

Windcliff et al. (2001), Chen et al. (2008), and Bélanger et al. (2009). Note that we assume that330

αm is given exogenously, so that “fair hedging fee” refers only to αg. In Windcliff et al. (2001) and331

Bélanger et al. (2009), the value of the guarantee portion of the contract was determined. In this332

work, it is convenient to pose the problem in terms of the entire contract value, i.e. the total of333

the guarantee and the investor’s investment account balance. However, we build on the work in334

Windcliff et al. (2001) and Bélanger et al. (2009) by first considering the guarantee portion, and335

then using an algebraic transformation to determine the value of the entire contract.336

2.1 Impulse Controls337

We suppose that there is a set of deterministic discrete impulse control times ti , with i = 0, . . . ,M ,338

which we label event times. Normally, event times are on either an annual or quarterly basis.339

At these event times withdrawals, ratchets, and bonuses may occur. At any of these times {ti},340

the holder of the GLWB contract can give the system an impulse Ci, moving the state variables341

(St, At) to the state (S(Ci), A(Ci)) and producing cash flows f(Ci, St, At, ti).342

The set of impulse controls for this problem is then the set343

C = {{t0, C0}, {t1, C1}, . . . , {tM , CM}} . (2.4)

2.2 Evolution of Value Excluding Event Times344

We first consider the evolution of the uncontrolled state variables between event times, that is for345

t ∈ (ti, ti+1), where ti are the event times. Let the value of the guarantee portion of the contract346

be U(S,A, t). This guarantee portion is also known as the GLWB rider. Its value will incorporate347

the effects of mortality. Since for now there is just a single regime, assume that the value of the348

investment account follows the GBM process349

dS = (µ− αtot)Sdt+ σSdZ, (2.5)

where µ is the drift rate, σ is the volatility, and dZ is the increment of a Wiener process. We350

assume that the mutual fund in the investment account tracks an index Ŝ without any basis risk.351

The index follows352

dŜ = µŜdt+ σŜdZ. (2.6)

We further assume that it is not possible for the insurance company to short the mutual fund S353

for fiduciary reasons (Windcliff et al., 2001).354

As shown in Appendix A, U(S,A, t) satisfies a PDE of the form355

Ut +
σ2S2

2
USS + (r − αtot)SUS − rU −R(t)αgS = 0, (2.7)

where r is the risk-free interest rate and where the term R(t)αgS represents the stream of fees356

from the investors remaining in the guarantee at time t to the hedger. Equation (2.7) is identical357

to equation (5) in Bélanger et al. (2009), with the exception that we assume here that there is358

no GMDB. Although many contracts allow the holder to purchase both a money back GMDB359

provision and a GLWB feature, we focus exclusively on the GLWB rider in this article.360
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Consider time T = ω, when there are no longer any policy holders left alive. From the point of361

view of the hedger of the GLWB rider, the value of the guarantee is zero at this time362

U(S,A, T ) = 0. (2.8)

We emphasize that equation (2.7) is valid only at times excluding event times. The complete363

problem also requires the addition of the control decisions across the event times, which will be364

discussed in Section 2.3. It is these control decisions that add A dependence to the contract.365

The event times correspond to withdrawals made by the contract holder. If the contract holder366

never makes any withdrawals (except for death benefits), then solving equation (2.7) would lead367

to a negative contract value. This is easily understood: the contract holder is paying a fee and368

obtaining no financial benefit. Clearly, this would not be the optimal strategy for the contract369

holder.370

Now, consider the value of the entire GLWB contract V(S,A, t)371

V(S,A, t) = U(S,A, t) +R(t)S, (2.9)

which includes the rider U and the amount in the investment accounts of those remaining alive.372

Note that only the investment account is affected by the survival probability, since mortality is373

already included in the PDE for U . It is easily shown (see Appendix A) that374

Vt +
σ2S2

2
VSS + (r − αtot)SVS − rV + αmR(t)S +M(t)S = 0. (2.10)

It is convenient for computational purposes to express time in terms of “backward time” τ = T − t,375

i.e. the time remaining until none of the original contract holders is left alive. Letting V (S,A, τ =376

T − t) = V(S,A, t), equation (2.10) becomes377

Vτ =
σ2S2

2
VSS + (r − αtot)SVS − rV + αmR(t)S +M(t)S. (2.11)

From equations (2.8) and (2.9) we have378

V (S,A, τ = 0) = R(T )S = 0, (2.12)

since R(T = ω) = 0. We note that equation (2.11) is identical to equation (5) in Chen et al. (2008)379

if we set R(t) = 1 and M(t) = 0.380

2.3 Impulse Controls at Event Times381

Recall that we denote the contractually specified times where withdrawals, bonuses and ratchets382

occur as event times ti. Since we will solve the PDE backwards in time, it is convenient to denote383

τi = T − ti, and let τi + ε = τ+
i , τi− ε = τ−i , where ε > 0, ε� 1. However, many of the contractual384

features and the mortality tables are specified in terms of forward event times ti, so we will use385

ti as the argument for the contractual and actuarial parameters, while we use τi as the argument386

for the contract value V (S,A, τ). We now proceed to describe the control decisions for the various387

types of events.388

We parameterize the contract holder’s actions at event time ti by a policy parameter γi ∈ [0, 2].389

In the case of a ratchet, we denote the ratchet policy parameter by Ri ∈ {0, 1} where Ri = 0390
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denotes no ratchet and Ri = 1 denotes a ratchet event. The possible impulse controls Ci = (Ri, γi)391

at ti are then392

Ci = (0, γi) ; No ratchet

Ci = (1, 0) ; Ratchet , (2.13)

where we do not permit a ratchet and withdrawal at the same time.393

We can write the impulse control at event time ti in the general form394

V (Ci, S,A, τ+
i ) = V

(
S(Ci), A(Ci), τ−

)
+ f(Ci, S,A, ti), (2.14)

where f(Ci, S,A, ti) is the cash flow from the event.395

Ratchet Event (Ri = 1, γi = 0). If the contract specifies a ratchet (step-up) feature, then396

the value of the guarantee account A is increased if the investment account has increased. The397

guarantee account A can never decrease, unless the contract is partially or fully surrendered. Using398

our general form (2.14), at a ratchet event time τi, we then have399

Ci = (1, 0)

S(Ci) = S

A(Ci) = max(S,A)

f(Ci, S,A, ti) = 0 . (2.15)

General Withdrawal Event (Ri = 0). The contract will typically specify a withdrawal rate Gr.400

Given a time interval of ti − ti−1 between withdrawals, the contract withdrawal amount at t = ti401

is Gr(ti − ti−1)A. In the case of a withdrawal event Ci = (0, γi), where γi is the withdrawal policy402

of the contract holder.403

At this point we do not make any particular assumptions about the withdrawal strategy of404

the policy holder. In general terms, the policy holder’s actions at ti can be represented by the405

policy parameter γi, where 0 ≤ γi ≤ 2. Withdrawals of amounts less than or equal to the contract406

withdrawal amount Gr(ti − ti−1)A are represented by γi ∈ [0, 1]. Withdrawals in excess of the407

contract amount are indicated by γi ∈ (1, 2], with γi = 2 corresponding to full surrender. We next408

consider different withdrawal events, represented by different values of γi.409

Bonus Event (Ri = 0, γi = 0). If the contract holder chooses not to withdraw at t = ti, this is410

indicated by γi = 0. Let the bonus fraction be denoted by B(ti). If no bonus is possible at t = ti,411

then B(ti) = 0. To allow for a bonus, we have412

Ci = (0, 0)

S(Ci) = S

A(Ci) = A(1 +B(ti))

f(Ci, S,A, ti) = 0 . (2.16)

Withdrawal not Exceeding the Contract Amount (Ri = 0, γi ∈ (0, 1]). The case where413

γi < 1 corresponds to a partial withdrawal of the contract amount, while γi = 1 implies a full414
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withdrawal, i.e.415

Ci = (0, γi) ; γi ∈ (0, 1]

S(Ci) = max (S − γiGr(ti − ti−1)A, 0)

A(Ci) = A

f(Ci, S,A, ti) = R(ti)γiGr(ti − ti−1)A . (2.17)

Note that withdrawals of funds up to and including the contract amount are allowed each period416

even if the amount in the investment account S = 0. In addition, the usual contract specification417

states that A(γi) = A if withdrawal is not greater than the contract amount (i.e. the guarantee418

account value remains constant).419

Partial or Full Surrender (Ri = 0, γi ∈ (1, 2]). Next, consider the case of a withdrawal of an420

amount greater than the contract amount Gr(ti − ti−1)A, i.e.421

Withdrawal amount = Gr(ti − ti−1)A+ (γi − 1)S′ (1− κ(ti)) (2.18)

where S′ = max (S −Gr(ti − ti−1)A, 0) and κ(ti) ∈ [0, 1] is a penalty for withdrawal above the422

contract amount. In equation (2.18), γi = 2 represents complete surrender of the contract, while423

1 < γi < 2 represents partial surrender. Writing this in the general form (2.14), we have424

Ci = (0, γi) ; γi ∈ (1, 2]

S(Ci) = S′(2− γi)
A(Ci) = A(2− γi)

f(Ci, S,A, ti) = R(ti)
(
Gr(ti − ti−1)A+ (γi − 1)S′ (1− κ(ti))

)
. (2.19)

Contrast equation (2.19) with equation (2.17). In the case of withdrawal above the contract amount425

(i.e. partial or full surrender), the guarantee account value A is reduced proportionately for any426

withdrawal above the contract amount.427

Death Benefit Payments. Our PDE (2.11) assumes that the amount remaining in the investment428

account is paid out immediately upon the death of the contract holder. However, in order to429

compare with some previous work, we also consider the possibility that death benefits are paid out430

only at event times ti. In this case, if ti−1 ≤ t ≤ ti (i.e. τi ≤ τ ≤ τi−1), then we solve the PDE431

Vτ =
σ2S2

2
VSS + (r − αtot)SVS − rV + αmR(ti−1)S, (2.20)

between event times. Death benefits are paid at ti according to432

V death(S,A, τ+
i ) = V (S,A, τ−i ) + (R(ti−1)−R(ti))S. (2.21)

The terminal condition at T = ω is modified in this case (recall that R(T = ω) = 0) to433

V (S,A, 0) = R(tN−1)S (2.22)

where tN−1 is the penultimate event before the terminal event at T . Note that we will use equa-434

tions (2.20-2.22) in the following only for a single numerical comparison with previous work. Gen-435

erally, we will assume that death benefits are paid out continuously as in equations (2.11-2.12).436

In practice, contracts typically specify that several events occur at the same contract times ti.437

Mathematically, we can consider these events as occurring at times infinitesimally apart. A careful438

examination of the contract specification is usually required to determine the precise order of these439

events. We assume that the order of events occurring at an event time ti is (in forward time):440
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1. Death benefit payments: equation (2.21).441

2. Withdrawal, bonus, surrender: equation (2.14).442

3. Ratchet: equation (2.15).443

This order is typically seen in actual contracts. These events then occur in reverse order in back-444

wards time.445

2.4 Complete Pricing Problem446

To summarize, in the case of a single regime the complete pricing problem consists of PDE (2.11)447

with initial condition (2.12), or PDE (2.20) and initial condition (2.22), which are valid for times448

excluding event times τi. As discussed above, we have the additional event conditions (2.15-2.19).449

If equation (2.20) is used, we have the additional event (2.21). Note that PDE (2.11) has no A450

dependence. However, V = V (S,A, τ) in general since the event conditions (2.15-2.19) generate A451

dependence at event times. Note that the solution to the complete pricing problem determines the452

value of the contract, given a specified hedging fee αg. The fair hedging fee is the value of αg such453

that the initial value of the contract equals the investor’s initial contribution.454

Given a withdrawal policy specified by the policy parameter γi, then the solution of the pricing455

problem is completely specified. We emphasize here that once the γi are given, then the cost of456

hedging can be determined. The choice of the model for γi is controversial, with various alternatives457

suggested in the literature. However, our pricing methodology isolates the choice for γi. In principle,458

any reasonable method can be used to determine γi and the remainder of the pricing method would459

remain the same. We will discuss some possibilities for selecting γi below in Section 4.460

3 Extension to Regime Switching461

We now extend the arguments above to the case where there are K possible regimes of the economy.462

As noted above in Section 1, this is a relatively simple way of incorporating uncertainty about463

interest rates and volatility into option valuation. It has been particularly popular in studying464

embedded options in insurance contracts since these contracts are typically quite long-term, and465

so it is harder to justify the assumption that such parameters will remain constant throughout the466

life of the contract.467

The framework we adopt is basically the same as that originally proposed in the equity option468

valuation context by Naik (1993), and used more recently in sources such as Yuen and Yang (2009)469

and Shen et al. (2013). The set of possible regimes is K = {1, 2, . . . ,K}. Let Ki be the set of470

states excluding state i, i.e. Ki = K\{i}. The state of the economy is assumed to evolve according471

to a finite state continuous time observable Markov chain X on the complete probability space472

(Ω,F ,P), where P is the real world probability measure. Following Elliott et al. (1995), the state473

space of X is identified with a finite set of unit basis vectors {e1, . . . , eK} where ei is a K×1 vector474

with i-th component equal to unity and all other components zero. Let the rate matrix of the chain475

under P be A. Element (j, k) of this matrix is a constant transition intensity from state j to state476

k, denoted by λj→k for j, k ∈ K. Note that477

λj→k ≥ 0 if j 6= k

λj→j = −
∑
k∈Kj

λj→k.
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The time index set of the model is T = [0, T < ∞]. From the martingale representation theorem478

(Elliott et al., 1995),479

X(t) = X(0) +

∫ t

0
A′X(s)ds+M(t), t ∈ T ,

where A′ is the tranpose of A and {M(t)|t ∈ T } is an (FX ,P)-martingale, with FX =
{
FX(t)|t ∈ T

}
480

being the filtration generated by X satisifying the usual conditions of being P-complete and right-481

continuous. Denote t− as t− ε, 0 < ε� 1, and similarly s− = s− ε.482

Following Elliott et al. (1995), let 〈x, y〉 denote the inner product x′y of two column vectors x483

and y in RK and define the martingale484

mj→k(t) ≡
∫ t

0

〈
X(s−), ej

〉
e′kdM(s)

=

∫ t

0

〈
X(s−), ej

〉
e′kdX(s)−

∫ t

0

〈
X(s−), ej

〉
e′kA

′X(s−)ds

= N j→k(t)− λk→j
∫ t

0

〈
X(s−), ej

〉
ds

where N j→k(t) is the number of transitions from state j to state k up until time t. For each k ∈ K,485

let Nk(t) be the total number of transitions from other states into state k up to time t. Then486

Nk(t) =
∑
j∈Kk

N j→k(t)

=
∑
j∈Kk

mj→k(t) +
∑
j∈Kk

λk→j
∫ t

0

〈
X(s−), ej

〉
ds

Denote the (FX ,P)-martingale487

Ñk(t) =
∑
j∈Kk

mj→k(t) = Nk(t)−
∑
j∈Kk

∫ t

0

〈
X(s−), ej

〉
ds.

Letting488

λk(t) =
∑
j∈Kk

λk→j 〈X(t), ej〉 ,

we then have489

dÑk(t) = dNk(t)− λk(t−)dt, k ∈ K.

The level of the instantaneous risk-free interest rate r is assumed to vary with the state of the490

economy. Let ~r =
(
r1, r2, . . . , rK

)′
be its possible values, so that r(t) = 〈~r,X(t)〉. Between event491

times, the value of the investor’s account S is assumed to evolve according to GBM with coefficients492

that are similarly modulated by the Markov chain X. In particular, if ~ν =
(
ν1, ν2, . . . , νK

)′
denotes493

the possible values for the expected growth rate (before percentage fees represented as in the single494

regime context by αtot), the value of this parameter at time t is ν(t) = 〈~ν,X(t)〉. Similarly,495

~σ =
(
σ1, σ2, . . . , σK

)′
represents the regime-dependent values of the volatility term, which at time496

t is given by σ(t) = 〈~σ,X(t)〉. The Brownian motion term Z is assumed to be independent of497

X under P. If there is a change in state, the level of the investor’s account S is allowed to jump498

discretely but deterministically. The size of a jump depends on the state transition. In particular,499

let Ξ be a K×K matrix of parameters. Element (j, k) of this matrix, denoted by ξj→k, determines500
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the size of the jump associated with a transition from state j to state k, i.e. S(t) = ξj→kS(t−) upon501

such a transition at time t. We restrict ξj→j = 1 for each j ∈ K, so that there are no jumps in S502

in the absence of a regime switch. Let ξ(t) be the relevant row of Ξ given the state of the economy503

at time t, i.e. ξ(t) = Ξ′X(t), and denote the elements of ξ(t) by
(
ξX(t)→1, ξX(t)→2, . . . , ξX(t)→K).504

Then the value of the investor’s account between event times is modelled as evolving according to505

dS(t) =
(
ν(t−)− αtot

)
S(t−)dt+ σ(t−)S(t−)dZ(t) +

∑
k∈K

(
ξX(t−)→k − 1

)
S(t−)dÑk(t)

=

(
ν(t−)− αtot −

∑
k∈K

(
ξX(t−)→k − 1

)
λk(t−)

)
S(t−)dt+ σ(t−)S(t−)dZ(t)

+
∑
k∈K

(
ξX(t−)→k − 1

)
S(t−)dNk(t)

=
(
µ(t−)− αtot

)
S(t−)dt+ σ(t−)S(t−)dZ(t) +

∑
k∈K

(
ξX(t−)→k − 1

)
S(t−)dNk(t) (3.1)

where µ(t−) = ν(t−) −
∑

k∈K

(
ξX(t−)→k − 1

)
λk(t−). Note that the part of the instantaneous506

expected return that is due to jumps associated with all transitions out of the current regime is507

given by
∑

k∈K

(
ξX(t−)→k − 1

)
λk(t−)S(t−)dt.508

As noted above in Section 1, if we only use standard Black-Scholes arguments based on hedging509

with just the risk-free asset and the underlying asset, the market is incomplete. To address this,510

we extend the hedging argument using an expanded set of hedging instruments (details are given511

in Appendix B). To facilitate the related discussion, we rewrite equation (3.1) more compactly as512

dS =
(
µj − αtot

)
Sdt+ σjSdZ +

K∑
k=1

(
ξj→k − 1

)
SdXj→k, j ∈ K (3.2)

where µj and σj are the values of µ and σ in regime j and513

dXj→k =

{
1 if there is a transition during dt from regime j to regime k

0 otherwise
.

It is assumed that there can only be one transition during dt. Moreover,514

dXj→k =

{
1 with probability λj→kdt+ δj→k

0 with probability 1− λj→kdt− δj→k

where δj→k = 1 if j = k and is otherwise zero.515

As in Section 2, the mutual fund in the investor’s account tracks an index Ŝ which follows516

dŜ = µjŜdt+ σjŜdZ +

K∑
k=1

(
ξj→k − 1

)
ŜdXj→k, j = 1, . . . ,K, (3.3)

where terms are defined analogously to those in equation (3.2).517

Both equation (3.2) and equation (3.3) are specified under P, the real world probability measure.518

Denote risk-neutral transition intensities by λj→kQ , and define the quantity519

ρj =
∑
k∈Kj

λj→kQ

(
ξj→k − 1

)
. (3.4)
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Let Vj(S, t) denote the value of the contract in regime j.10 It is shown in Appendix B that Vj can520

be determined by solving the coupled system of PDEs521

Vjt +
(σj)2S2

2
VjSS +

(
rj − αtot − ρj

)
SVjS − r

jVj + [αmR(t) +M(t)]S+∑
k∈Kj

λj→kQ (Vk(ξj→kS, t)− Vj(S, t)) = 0 ,

for j = 1, . . . ,K. Rewriting the expression above in terms of backward time τ (i.e. using V j(S, τ =522

T − t) = Vj(S, t)), we obtain523

V j
τ =

(σj)2S2

2
V j
SS + (rj − αtot − ρj)SV j

S − r
jV j + [αmR(t) +M(t)]S

+
∑
k∈Kj

λj→kQ (V k(ξj→kS, τ)− V j(S, τ)), j = 1, . . . ,K. (3.5)

Note that equation (3.5) assumes that death benefits are paid continuously. In the case that death524

benefits are paid only at event times, then the generalization of equation (2.20) to the regime525

switching case is526

V j
τ =

(σj)2S2

2
V j
SS + (rj − αtot − ρj)SV j

S − r
jV j + αmR(ti−1)S

+
∑
k∈Kj

λj→kQ (V k(ξj→kS, τ)− V j(S, τ)), j = 1, . . . ,K. (3.6)

Without reference to market prices, the risk-neutral transition intensities λj→kQ are arbitrary527

non-negative functions, implying that the equivalent martingale pricing measure is not unique.528

However, the risk-neutral transition intensities are uniquely determined by the prices of the set529

of hedging instruments. In practice, the parameters in equation (3.5) can be calibrated to the530

observed prices of traded options. This means that the λj→kQ in equation (3.5) will correspond to531

those from the market’s pricing measure.532

Equation (3.5) holds between event times. All of the event conditions that were described above533

in Section 2.3 continue to hold in this regime switching context at the specified event times. In534

particular, the event conditions are simply applied to each individual regime.535

4 Policy Holder Withdrawal536

The pricing formulations outlined above take the policy holder’s withdrawal strategy as given. In537

general terms, our intent above was to indicate how to calculate the fair value of the contract for a538

variety of potential withdrawal strategies. Specifying a particular withdrawal strategy amounts to539

specifying a model for γi as used above in Section 2.3. We now discuss some of the possibilities.540

10In general, Vj will also depend on the guarantee account value A as well as the regime-dependent parameters rj ,
µj , and σj , but this dependence is suppressed here for convenience.

16



4.1 Worst Case Hedging541

If we take the position that the insurer should charge a price which ensures that no losses can542

occur, assuming that the claim is hedged, then the withdrawal strategy is assumed to be543

γi = arg max
γ∈[0,2]
C=(0,γ)

{
V (S(C), A(γ), τ−i ) + f(C, S,A, ti)

}

V (S,A, τ+
i ) = V (S(Ci), A(Ci), τ−i ) + f(Ci, S,A, ti) ; Ci = (0, γi) , (4.1)

with S(Ci), A(Ci) and f(Ci, S,A, ti) as given in Section 2.3. Assuming such a strategy by policy544

holders and hedging against it is obviously very conservative from the standpoint of the insurer,545

since it seeks to provide complete protection against policy holder withdrawal behaviour, given546

assumptions about parameter values such as volatilities. In other words, if investors follow this547

strategy, and if the insurer hedges continuously, the balance in the insurer’s overall hedged portfolio548

will be zero. On the other hand, if investors deviate from this strategy, then the insurer’s portfolio549

will have a positive balance.550

4.2 Suboptimal Withdrawal551

The withdrawal assumption underlying worst case hedging is often referred to as optimal withdrawal.552

This terminology is unfortunate, in that any withdrawal strategy different from strategy (4.1) is553

sub-optimal only in the sense that it does not maximize the cost of hedging. This may have little to554

do with any given policy holder’s economic circumstances. Completely rational actions for a given555

policy holder may depart from the strategy (4.1). As noted by many authors, and particularly in556

Cramer et al. (2007), this is a controversial issue.557

One possible approach that is quite simple is to assume that the contract holder will follow the558

default strategy of withdrawing at the contract rate at each event time ti unless the extra value559

obtained by withdrawing optimally is greater than FGrA(ti−ti−1). In this case, F = 0 corresponds560

to withdrawing optimally, while F = ∞ corresponds to withdrawing at the contract rate. This561

approach was suggested in Ho et al. (2005) and Chen et al. (2008). It is worth noting that this562

approach is similar in spirit to a model proposed by Stanton (1995) in the context of mortgage-563

backed securities. In that model, mortgage holders can choose to refinance their mortgages for564

interest rate reasons or other exogenous factors. Mortgage holders face a transaction cost associated565

with prepayment (which could include both monetary fees and also non-monetary factors such as566

time and effort). Because of this transaction cost, mortgage holders do not prepay “optimally”567

(in the sense of maximizing the value of their financial option), even in the absence of exogenous568

factors.569

4.3 Utility Models570

A more complicated approach would be to specify a utility model to determine the withdrawal571

strategy of the policy holder. This would entail solving a system of PDEs, even in the single regime572

case. One PDE would be used to determine the withdrawal strategy (γi), based on maximizing the573

contract holder’s utility. With this withdrawal strategy determined, the corresponding γi would574

be substituted into equation (2.14), and the contract value could then be determined by solving575

equation (2.7). Since the fee charged for hedging would influence the utility, these PDEs would576

be coupled. Of course, there are many possibilities here, with variations including the type of577

preferences, bequest motives, etc. As just one example, Moenig and Bauer (2011) consider a578
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utility-based model for withdrawal behaviour. In addition, Moenig and Bauer (2011) also propose579

a model in which policy holders maximize (risk-neutral) after tax cash flows. To the extent that580

investors have to pay some form of tax on withdrawals, this is similar to the transaction cost notion581

noted above that was developed by Stanton (1995) in the context of mortgage-backed securities.582

4.4 Summary of Withdrawal Models583

A primary motivation in Moenig and Bauer (2011) is to explain the fact the observed fees charged584

by industry seem to be significantly lower than what would be suggested by “optimal” withdrawal585

assumptions. In this context it is useful to note that any strategy different from that in equation586

(2.14) cannot produce a larger fee, and will usually result in a smaller fee. Consequently, it is587

difficult to distinguish between various models of sub-optimal behaviour, simply because any such588

model will tend to produce a fee smaller than the worst case cost of hedging.589

Hilpert et al. (2012) note that secondary markets for insurance products have been in place in590

many countries for some time, and appear to be growing. Financial third parties can potentially591

profit (through hedging strategies) from any financial instrument which is not priced using the592

worst case assumption in Section 4.1. As pointed out in Hilpert et al. (2012), this would lead to a593

general increase in fees charged by insurance companies for these products.594

As noted above, Knoller et al. (2013) carry out an empirical study of policy holder behaviour in595

the Japanese variable annuity market. Their study shows that the moneyness of the guarantee has596

the greatest explanatory power for the rate at which policy holders surrender their policies. This597

supports the simple sub-optimal withdrawal model suggested in Section 4.2. In addition, Knoller598

et al. (2013) point out that several large Canadian insurers have recently suffered large losses related599

to increased lapse (surrender) rates, indicating that the fees being charged were insufficient to hedge600

worst case lapsation.601

Consequently, in this paper we restrict attention to the worst case cost of hedging (Section602

4.1) and the simple one parameter sub-optimal model (Section 4.2). We emphasize that once603

the strategy is specified (based on any reasonable model) the cost of hedging is determined from604

equations (2.11) and (2.14), in the single regime case. We defer investigation of other models such605

as utility-based approaches to future work, since in general an additional PDE must be solved to606

determine the policy holder strategy.607

5 Numerical Method608

We now describe several aspects of the numerical approach that we use to solve our valuation609

equations.610

5.1 Localization611

The PDE (3.5) is originally posed on the domain (S,A, τ) ∈ [0,∞) × [0,∞) × [0, T ]. For com-612

putational purposes, we need to truncate this domain to (S,A, τ) ∈ [0, Smax] × [0, Amax] × [0, T ].613

Substituting S = 0 into equation (3.5), we obtain614

V j
τ = −rjV j +

∑
k∈Kj

λj→kQ

(
V k(0, τ)− V j(0, τ)

)
. (5.1)

Equation (5.1) serves as the boundary condition at S = 0. At S = Smax, we impose the linearity615

condition616

V j
SS = 0; S = Smax. (5.2)
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This is an approximation. However, the error in regions of interest can be made small if Smax is617

sufficiently large. This will be verified in numerical tests.618

No boundary condition is required at A = 0. We choose Amax = Smax, and impose an artificial619

cap on the contract of A = Amax. This means that we replace equation (2.16) by620

A(Ci) = min (A (1 +B(ti)) , Amax) (5.3)

The effect of this approximation can be made small by selecting Amax = Smax sufficiently large. At621

τ = 0, we have the obvious generalization of equation (2.12)622

V j(S,A, τ = 0) = R(T )S = 0. (5.4)

5.2 Discretization623

Between withdrawal times, we solve PDE (3.5) using second order (as much as possible) finite dif-624

ference methods in the S direction, while still retaining the positive coefficient condition (Bélanger625

et al., 2009). Crank-Nicolson timestepping is used, with Rannacher smoothing (Rannacher, 1984).626

The discretized equations are solved at each timestep using a fixed point iteration scheme (Huang627

et al., 2011, 2012).628

When determining the γi for worst-case hedging, we need to determine the withdrawal strat-629

egy (4.1). For a given level of PDE mesh refinement, we discretize the control γi ∈ [0, 2]. At630

each withdrawal date, the maxima are determined by a linear search. If data is needed at non-grid631

points, linear interpolation is used. The control grid discretization is reduced as we reduce the PDE632

mesh size, thus producing a convergent method. In fact, we observe that the worst case values for633

γi are always the discrete values {0, 1, 2}. In the case of pure GBM, it can be shown that the worst634

case controls are always γi ∈ {0, 1, 2} (Azimzadeh, 2013). This appears to also be true for regime635

switching, although we have no proof of this. We emphasize that all our numerical results do not636

make this assumption.637

5.3 Similarity Reduction638

If λj→kQ , ξj→k, and σj are independent of S, then it is easy to verify that the solution V j(S,A, τ) of639

PDE (3.5) with boundary conditions (5.4) and event conditions (2.15-2.19) has the property that640

V j(ηS, ηA, τ) = ηV j(S,A, τ) (5.5)

for any scalar η > 0. Therefore, choosing η = A∗/A we obtain641

V j(S,A, τ) =
A

A∗
V j

(
SA∗

A
,A∗, τ

)
(5.6)

which means that we need only solve for a single representative value of A = A∗. This effectively642

reduces the system of coupled two dimensional PDEs to a system of coupled one dimensional PDEs,643

resulting in a large saving in computational cost. For a problem with K regimes, the entire pricing644

problem reduces to solution of K coupled one dimensional PDEs. We observe that the similarity645

reduction (5.5) was exploited in Shah and Bertsimas (2008). Also note that the similarity reduction646

holds for PDE (3.6) in the case that death benefits are only paid at year end.647
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Refinement S,A nodes Time steps

0 68 240
1 135 480
2 269 960
3 537 1920
4 1073 3840

Table 6.1: Grid and timestep information for various levels of refinement. Normally, the simi-
larity reduction is used so that there is one A node.

5.4 Fair Hedging Fee648

At τ = T , the initial value of the guarantee level is set to the initial amount in the investment649

account A0 = S0. We can regard the solution as being parameterized by the rider fee αg, i.e.650

V (αg;S,A, τ), so that the fair hedging fee (i.e. the cost of maintaining a replicating portfolio) is651

determined by solving the equation652

V (αg;S = S0, A = S0, τ = T ) = S0. (5.7)

Equation (5.7) implies that since no up front fee is charged to enter into the contract, the fee αg653

collected must be sufficient to cover the hedging costs.654

We solve equation (5.7) by using Newton iteration, with tolerance655

|αk+1
g − αkg | < 10−8, (5.8)

with αkg being the k-th iterate. A sequence of grids is used, with the initial iterate for the finer656

grid being the converged solution from the coarse grid. Usually, only a single Newton iteration is657

required on the finest grid, which makes determination of the fair hedging fee very inexpensive.658

6 Numerical Examples659

6.1 Computational Parameters660

In the localized domain (S,A, τ) ∈ [0, Smax]× [0, Amax]× [0, T ], we set Smax = Amax = 100S0, with661

S0 = 100. Increasing Smax to Smax = 1000S0 resulted in no change to the solution to 10 digits.662

Since we use an unequally spaced grid, having a large Smax is computationally inexpensive.663

We solve the PDE on a sequence of grids. At each refinement level, we insert a new fine grid664

node between each two coarse grid nodes and halve the timestep size. The grid and timestep665

information is shown in Table 6.1.666

We use the DAV 2004R mortality table for a 65 year old German male (Base Table, first order)667

from Pasdika and Wolff (2005) to construct the mortality functions. For the convenience of the668

reader, this data is provided in Appendix C.669

In the following, we will predominantly use the model which allows for continuously paid death670

benefits, i.e. equation (3.5). We use the model which allows for death benefits only paid at event671

times, equation (3.6), for a single validation case in Section 6.2.672

6.2 Validation: Single Regime673

In order to validate our basic numerical approach, we consider the special case where the contract674

holder withdraws deterministically at the contract rate at yearly intervals. Since there is no opti-675
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Parameter Value

Volatility σ .15
Interest rate r .04
Expiry time T 57
Management fee αm 0.0
Initial payment S0 100
Mortality DAV 2004R (65 year old male)

(Pasdika and Wolff, 2005)
Mortality payments At year end
Withdrawal rate Gr .05
Bonus No
Strategy Deterministic withdrawal GrA(ti − ti−1)
Event times yearly

Table 6.2: Data used for validation example. Data from Holz et al. (2012), single regime.

mal decision making in this problem, we can independently validate the solution. Once we have676

calculated the fair hedging fee αg, we can verify that it is correct by using Monte Carlo simulation.677

We use the data suggested in Holz et al. (2012), and, in order to be comparable with that source,678

all death benefits are paid out at event times as described in Section 2.3. The stochastic process679

is a single regime GBM, with the parameters given in Table 6.2, along with contractual details.11
680

We assume that the holder deposits the initial premium S0 at t = 0, and begins withdrawing at681

t = 1 year.682

Table 6.3 shows the results for the fair hedging fee computed using a sequence of refined grids,683

using the data in Table 6.2, assuming both no ratchet and an annual ratchet (2.15). Note that684

the estimated fair hedging fee is expressed in terms of basis points (bps), i.e. hundredths of a685

per cent. Table 6.4 shows the contract value at (S,A, t) = (100, 100, 0), using αg from the finest686

grid in Table 6.3. In Table 6.4, the ratio of successive changes in the value of the contract at687

(S,A, t) = (100, 100, 0) is asymptotically approaching four, indicating quadratic convergence of688

the numerical method, as expected. The value converges to V (100, 100, 0) = 100 on the finest689

grid, consistent with Table 6.3. Both the similarity reduction (see Section 5.3) and the full two690

dimensional solution are shown for the ratchet case. Each of these methods appear to converge to691

the same value.692

As noted above, there is no optimal decision making in this case as the policy holder simply693

withdraws at the contract rate, so we can use a straightforward Monte Carlo method to value these694

contracts. We use the αg computed from the PDE method for both the ratchet and no-ratchet695

cases, and determine the value of the contract at (S = A = S0, t = 0) via a Monte Carlo simulation.696

If the fee αg determined from the PDE method is correct, the value at (S = A = S0, t = 0) should697

converge to a value of S0 = 100. Between event times, we use the exact solution for the GBM698

stochastic differential equation, and hence there is no timestepping error. Table 6.5 indicates that699

the fee obtained from the PDE solution does in fact appear to be correct.700

Table 6.3 shows that the fair hedging fee reported for the same contracts in Holz et al. (2012)701

differs significantly from our results, especially if there is an annual ratchet feature. In particular,702

our estimated fee is about 7.5 basis points lower than that reported by Holz et al. (2012) without703

11Note that the expiry time of T = 57 given in Table 6.2 (and in some subsequent tables) is based on the mortality
table provided in Appendix C.
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Refine Fair hedging fee αg (bps)
level No ratchet Annual ratchet (2.15)

0 35.634697 64.645973
1 35.530197 64.834653
2 35.511140 64.898828
3 35.506538 64.915398
4 35.505335 64.919617

Result in Holz et al. (2012) 43 80

Table 6.3: Results from validation test, data in Table 6.2. No ratchet and annual ratchet. Simi-
larity reduction, single regime. The fee is shown in basis points (bps) (hundredths of a per cent).

Similarity reduction (5.3) Full 2-d
No ratchet Annual ratchet (2.15) Annual ratchet (2.15)

Refine Contract value Ratio of Contract value Ratio of Contract value Ratio of
level changes changes Changes

0 100.012791 99.978287 100.048265
1 100.002461 99.993258 100.010246
2 100.000575 5.2 99.998351 3.0 100.003270 5.5
3 100.000119 4.2 99.999665 3.9 100.000804 2.8
4 100.000000 3.8 100.000000 3.8 100.000308 4.9

Table 6.4: Results from validation test, data in Table 6.2, no ratchet case and annual ratchet.
No ratchet case, αg = 35.505335 bps. Ratchet case, αg = 64.919617 bps. Contract value at
(S = A = S0, t = 0), single regime.

Number of No ratchet Annual ratchet (2.15)
simulations Contract value Standard error Contract value Standard error

104 100.073 1.04 100.081 .90
105 99.899 .327 99.896 .28
106 99.970 .107 99.964 .090
107 99.998 .0327 99.994 .028

Table 6.5: Monte Carlo validation. No ratchet case, αg = 35.505335 bps. Ratchet case, αg =
64.919617 bps. Contract value at (S = A = S0, t = 0), single regime.

22



a ratchet, and about 15 basis points lower with an annual ratchet. One possibility is that we have704

misinterpreted some of the contractual specifications in Holz et al. (2012), leading to some subtle705

differences in the contracts that we are considering as compared to theirs, and these discrepancies706

result in different fees. Another potential explanation is that a Monte Carlo method was used707

to determine the fee by Holz et al. (2012). This may have introduced a significant error when708

calculating the fee unless a very large number of simulations was used.12
709

6.3 An Illustration of Complex Optimal Withdrawal Strategies710

In situations where contract holders are assumed to behave optimally, it is interesting to note that711

their optimal withdrawal strategies can be quite complex.13 As an example, it has been argued that712

the optimal strategy for the holder of a GLWB contract that does not include a ratchet or bonus713

provision must be to either withdraw at the contract rate or to fully surrender (Holz et al., 2012,714

p. 315). However, it is not clear whether this is still true if there are such features. To investigate715

this, we use the single regime data in Table 6.6. At any event time, the contract holder chooses the716

optimal strategy. Although our formulation allows any withdrawal amount in the range from no717

withdrawal to complete surrender, a few numerical tests indicated that the optimal strategy was718

either withdrawal at the contract rate, complete surrender, or not to withdraw at all.719

The optimal withdrawal strategy varies over time, in part because the specified penalty for720

excess withdrawals declines. The particular case at t = 0 is shown as an illustrative example in721

Figure 6.1. For a fixed value of the guarantee level A, Figure 6.1 shows that it is optimal to722

withdraw at the contract rate if the investment account value is relatively low since the guarantee723

is in-the-money. On the other hand, if the investment account value is high, it is optimal to724

surrender the policy because the guarantee is out-of-the-money. In other words, the present value725

of withdrawing the entire balance of the investment account exceeds the value of either taking out726

the contractual amount and leaving the guarantee level unaffected or withdrawing nothing and727

having higher future guaranteed withdrawals due to the bonus feature. However, at intermediate728

values of the investment account it may be optimal to not withdraw at all (due to the bonus) or to729

withdraw at the contract rate. Note that the separators of the optimal strategy regions are straight730

lines passing through the origin. This is a consequence of the fact that the solution is homogeneous731

of degree one, as shown by equation (5.5).732

6.4 Parameter Sensitivities: Single Regime733

In Table 6.7 we specify the data for our base case. In all subsequent tests, we use level 3 grid734

refinement, which gives the fair fee for hedging correct to at least three digits.735

We start by exploring the effects of some of the contract provisions. Table 6.8 shows results736

obtained by removing various contract features. It is interesting to observe that the bonus feature737

of the contract adds no value in our base case. In contrast, the surrender and ratchet features738

together account for about one half of the base case fair hedging fee.739

We next consider the effects of the volatility parameter and the level of the risk-free interest740

rate. In agreement with many other studies cited above, Tables 6.9 and 6.10 show that the fair741

hedging fee is quite sensitive to these parameters. Due to the long term nature of the contract, it742

12Holz et al. (2012) do not provide any information regarding the number of simulations used or the precision of
their Monte Carlo estimates.

13We are using the word “optimal” here subject to the caveats mentioned above: this really means the strategy
that generates the highest cost of hedging for the insurer, not the strategy that optimizes the particular economic
circumstances of a given individual.
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Parameter Value

Volatility σ .20
Interest rate r .04
Penalty for excess withdrawal κ(t) 0 ≤ t ≤ 1: 3% , 1 < t ≤ 2: 2%,

2 < t ≤ 3: 1%, 3 < t <∞: 0%
Expiry time T 57
Management fee αm 0.0
Fair hedging fee αg 150 bps
Initial payment S0 100
Mortality DAV 2004R (65 year old male)

(Pasdika and Wolff, 2005)
Mortality payments Continuous
Withdrawal rate Gr .05 annually
Bonus (no withdrawal) .06 annually
Ratchet Every three years
Strategy Optimal
Event times yearly

Table 6.6: Data used for optimal strategy example.

Figure 6.1: Optimal withdrawal strategy at t = 0. Data in Table 6.6.
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Parameter Value

Volatility σ .15
Interest rate r .04
Penalty for excess withdrawal κ(t) 0 ≤ t ≤ 1: 5%, 1 < t ≤ 2: 4%, 2 < t ≤ 3: 3%,

3 < t ≤ 4: 2%, 4 < t ≤ 5: 1%, 5 < t <∞: 0%
Expiry time T 57
Management fee αm 0.0
Initial payment S0 100
Mortality DAV 2004R (65 year old male)

(Pasdika and Wolff, 2005)
Mortality payments Continuous
Withdrawal rate Gr .05 annually
Bonus (no withdrawal) .05 annually
Ratchet Every three years
Strategy optimal
Event times yearly

Table 6.7: Base case data.

Case Fair hedging fee (bps)

Base 70.7
No bonus 70.7
No surrender 52.4
No ratchet 63.1
No bonus, surrender, or ratchet 36.2

Table 6.8: Effect of contractual provisions: fair hedging fee αg for the data in Table 6.7, except
as noted.
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Case Fair hedging fee (bps)

Base (σ = .15) 70.7
σ = .10 27.4
σ = .20 132
σ = .25 209

Table 6.9: Effect of volatility: fair hedging fee αg for the data in Table 6.7, except as noted.

Case Fair hedging fee (bps)

Base (r = .04) 70.7
r = .02 242
r = .06 21.2

Table 6.10: Effect of risk-free rate: fair hedging fee αg for the data in Table 6.7, except as noted.

may be particularly important to allow these parameters to be stochastic (again, as suggested in743

several papers cited above). We will address this below in a regime switching example.744

GLWB riders are often marketed as an add-on to mutual funds managed by insurance companies.745

In many cases, these mutual funds already have fairly hefty management fees. Table 6.11 illustrates746

the effect of these management fees on the no-arbitrage guarantee fee. Consistent with similar747

results for GMWBs reported in Chen et al. (2008), the GLWB rider fee increases significantly as748

the underlying mutual fund management fee increases. This is easily understood. The guarantee749

applies initially to S0, and never decreases unless excess withdrawals are made. The mutual fund750

management fees act as a drag on the investment account S(t), increasing the value of the guarantee.751

This raises the following interesting observation. If an insurer wishes to provide its customers with752

the cheapest possible insurance (rather than collecting management fees for mutual funds), the753

best strategy would seem to be to provide a GLWB rider on an inexpensive exchange traded index754

fund, rather than a managed mutual fund.755

As a final example for the single regime setting, we next explore the effect of sub-optimal756

withdrawal using the approach suggested in Ho et al. (2005) and Chen et al. (2008), and described757

in Section 4.2. We assume that the holder of the contract will withdraw at the contract rate at each758

event time ti unless the extra value obtained by withdrawing optimally is greater than FGrA(ti −759

ti−1). In this case, F = 0 corresponds to withdrawing optimally, while F = ∞ corresponds to760

withdrawing at the contract rate. Table 6.12 shows that F = 0.1 results in a fee very close to761

the optimal withdrawal assumption, while F = 1.0 gives rise to a fee very close to that found762

Case Fair hedging fee (bps)

Base (αm = 0) 70.7
αm = 50 (bps) 84.7
αm = 100 (bps) 101
αm = 150 (bps) 119
αm = 200 (bps) 141

Table 6.11: Effect of management fee: fair hedging fee αg for the data in Table 6.7, except as
noted.
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Case Fair hedging fee (bps)

Base (αm = 0) 70.7
F = .05 70.4
F = .10 69.6
F = .5 57.7
F = 1.0 52.5
F =∞ 52.4

Table 6.12: Effect of sub-optimal withdrawal strategy: fair hedging fee αg for the data in Table 6.7,
except that the holder withdraws at the contract rate unless the extra value obtained by withdrawing
optimally is larger than FGrA(ti − ti−1).

for F = ∞, i.e. always withdraw at the contract rate. If it is deemed desirable to value these763

contracts using sub-optimal behaviour, F could be estimated from empirical data on withdrawals.764

Alternatively, one could use contract pricing data to infer the degree of sub-optimality that is being765

implicitly assumed by the insurer.766

6.5 Regime Switching767

As a basic initial test, the numerical method used to solve the regime switching PDE (3.5) was768

applied to value plain vanilla options. The prices found were in close agreement with those from769

analytic solutions (where available) and Fourier timestepping methods (Jackson et al., 2008). We770

refer the reader to Sohrabi (2010) for the detailed validation.771

We now consider the valuation of a GLWB under a regime switching model as described in772

Section 3. The base case contract parameters and regime switching data are given in Table 6.13.773

The regime switching parameters were obtained in O’Sullivan and Moloney (2010) by calibration774

to FTSE 100 options in January of 2007. We assume that any dividends paid out by the the775

underlying index are immediately reinvested in the index. For the purposes of computing the fair776

hedging fee, it is assumed that the process is in regime one at t = 0.777

Our base case scenario assumes that the system is initially in regime one. Table 6.14 shows778

that if the system is initially in regime two (which is the more volatile regime), the fair hedging fee779

increases substantially.780

Although the fitting exercise in O’Sullivan and Moloney (2010) used the same risk-free rate781

in both regimes, this is not necessary and probably not realistic. In fact, at least in the current782

aftermath of the financial crisis, it appears that we are in a regime characterized by low interest rates783

and high volatility. In view of the strong effect of interest rates on the value of the GLWB guarantee784

that was noted in Section 6.4, we will explore the sensitivity of the base case regime switching results785

to regime-dependent interest rates. Table 6.14 shows that adding regime dependent interest rates786

can dramatically increase the value of the guarantee. This is, of course, due to having long periods787

of low interest rates (' 19 years) interspersed with shorter periods (' 7.3 years) of high interest788

rates. We remind the reader here that the transition probabilities are risk-adjusted, so that the789

duration in each regime is under a risk-neutral setting that is obtained by calibration to market790

prices. In other words, these are not the same durations as for the objective probability measure.791

Table 6.14 also shows the effect of increasing the volatilities in each regime, which, as one might792

expect, causes a large increase in the fair hedging fee. Finally, the table also contains a comparison793

between F = 0 (optimal withdrawal) with F =∞ (withdrawal at the contract rate). For the case794

considered, optimal withdrawal strategies result in a fair hedging fee that is close to double the795

27



Parameter Value

Volatilities {σ1, σ2} {.0832, .2141}
Interest rates {r1, r2} {.0521, .0521}
Transition intensities {λ1→2

Q , λ2→1
Q } {.0525, .1364}

Jump sizes {ξ1→2, ξ2→1} {1.0, 1.0}
Initial regime (t = 0) One
Penalty for excess withdrawal κ(t) 0.0
Expiry time T 57
Management fee αm 0.01
Initial payment S0 100
Mortality DAV 2004R (65 year old male)

(Pasdika and Wolff, 2005)
Mortality payments Continuous
Withdrawal rate Gr .05 annually
Bonus (no withdrawal) .05 annually
Ratchet Every three years
Strategy Optimal
Event times yearly

Table 6.13: Data for regime switching example.

corresponding fee when withdrawals occur at the contract rate.796

While the results above show that regime switching can have a significant effect on the values of797

GLWB contracts, a question which naturally arises is whether a single regime model can provide an798

effective approximation to regime switching. For a stochastic process with K regimes, the K ×K799

generator matrix Q of the risk-neutral Markov process is given by800

[Q]ij =

{
λi→jQ i 6= j

−
∑

k 6=i λ
i→k
Q i = j

(6.1)

where λi→jQ are the risk-neutral transition intensities. Since these intensities are risk-neutral, we can801

consider that the market price of regime switch risk is embedded in these risk-neutral intensities.802

Let the interest rate in regime j be rj , and define the interest rate matrix R as the diagonal803

matrix with Rjj = rj . The price of a zero coupon bond maturing in T years is given by804

V = e(Q−R) T · 1 (6.2)

where 1 = [1, . . . ,1]′, e(Q−R) T is the matrix exponential and [V ]i is the zero coupon bond value805

assuming we are in regime i at t = 0. The effective single regime interest rate, assuming the process806

is in regime i at t = 0 is then given by807

(reff)i = − log(Vi)

T
. (6.3)

In order to determine the effective single regime volatility, we first price a T -year European808

call option (at the money) using a regime switching model. The effective single regime volatility809

is then the implied volatility which matches this price, assuming that the process is in regime i,810

and the effective interest rate is (reff)i. The results in Table 6.15 were determined using T = 10.811
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Case Fair hedging fee (bps)

Base case (Table 6.13) 31.6
Initial regime (t = 0): Two 123
r1 = .04, r2 = .06 52.1
r1 = .03, r2 = .07 85.2
r1 = .02, r2 = .08 150

σ1 = .10, σ2 = .20 38.0
σ1 = .15, σ2 = .25 86.1

F = 0 (Optimal withdrawal)

σ1 = .15, σ2 = .25 114
r1 = .04, r2 = .08

F =∞ (Withdrawal at contract rate)

σ1 = .15, σ2 = .25 65.7
r1 = .04, r2 = .08

Table 6.14: Fair hedging fee αg for the regime switching data in Table 6.13, except as noted.

Some interesting patterns are revealed in this table. First, consider just the results for the regime812

switching model. Higher volatility in a regime tends to increase the fair hedging fee for that regime.813

A lower interest rate in a given regime also causes the fee to rise for that regime. These results are814

of course consistent with what was observed earlier in the single regime context (see Tables 6.9 and815

6.10). However, at least for the parameter values used in Table 6.15, the volatility effect appears816

to be stronger. As a general rule, the initial regime with higher volatility results in a higher fair817

hedging fee than does the initial regime having a lower interest rate. The only exception to this is818

when the low (high) volatility regime has an interest rate of 2% (8%), and even then the fee is not819

that different (150 bps vs. 141 bps).820

Turning to the single regime approximation to the regime switching model, it might seem that821

the fair hedging fees for the one-factor approximation in any given regime should lie between the822

fair hedging fees across the two regimes in the switching model. The simple intuition for this is823

that the single regime presumably acts as a blend of the two regimes. However, it turns out that824

while this is the general pattern, it is not always the case. It does occur when interest rates are825

constant across the regimes, but not always when they differ, particularly when there is a relatively826

big difference between the level of the interest rate under the two regimes. Overall, it would be827

difficult to draw the conclusion that the single regime model can consistently provide an effective828

approximation to the regime switching model. There are certainly parameter values for which this829

would be the case, but there are also situations where the approximation would be quite poor.830

In summary, the use of a single regime process with blended parameters to approximate a true831

regime switching process gives unreliable estimates for the fair hedging fee. The consequences of832

this could be significant for insurers offering these contracts. As an example, consider the case833

where σ1 = 8.32%, σ2 = 21.41%, r1 = 7%, and r2 = 3%. If the economy is initially in regime 1, the834

appropriate fee for hedging under the regime-switching model is about 37 basis points, 5 basis points835

higher than the estimated fee from single regime approximation. The insurer would be exposed to836

losses here since the fees charged would not be sufficient to completely hedge the risk exposure.837

While 5 basis points may not seem to be a large difference, its effects do add up over time since it838

applies every year and these are long-term contracts. More significantly, suppose that the economy839

is initially in regime 2. According to the single regime approximation, the fee charged should be 164840
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Initial Fair Hedging Fee (bps)
σ1 σ2 r1 r2 Regime Regime Switching Single Regime Approximation

.0832 .2141 .0521 .0521 1 31.6 39.6

.0832 .2141 .0521 .0521 2 126 99.5

.0832 .2141 .04 .06 1 52.1 62.9

.0832 .2141 .04 .06 2 127 94.3

.0832 .2141 .06 .04 1 29.8 36.2

.0832 .2141 .06 .04 2 151 133

.0832 .2141 .03 .07 1 85.2 97.8

.0832 .2141 .03 .07 2 97.8 85.1

.0832 .2141 .07 .03 1 36.7 31.9

.0832 .2141 .07 .03 2 239 164

.0832 .2141 .02 .08 1 150 165

.0832 .2141 .02 .08 2 141 81.5

.0832 .2141 .08 .02 1 30.9 30.2

.0832 .2141 .08 .02 2 213 207

.15 .25 .0521 .0521 1 86.1 92.7

.15 .25 .0521 .0521 2 184 158

.10 .20 .0521 .0521 1 38 43

.10 .20 .0521 .0521 2 108 91.3

Table 6.15: Fair hedging fee. Regime switching parameters as in Table 6.13, except as noted.
Single regime approximation parameters computed as described in Section 6.5.

basis points. This is dramatically lower (75 basis points) than the appropriate fee arising from the841

regime-switching model. Such a scenario would leave the insurer with a significantly underfunded842

hedging strategy. While this is merely illustrative, it does point to the potential benefits of adopting843

a regime-switching model, as well as the need for future detailed empirical research into parameter844

estimation for such models.845

7 Conclusions846

In this article, we have developed an implicit PDE method for valuing GLWB contracts assuming847

the underlying risky asset follows a Markov regime switching process. Assuming a process with K848

regimes, use of a similarity transformation reduces this problem to solving a system of K coupled849

one dimensional PDEs. The fair hedging fee (i.e. the cost of maintaining the replicating portfolio)850

is determined using a sequence of grids, coupled with Newton iteration. The entire procedure is851

computationally inexpensive. Since the valuation framework is developed independently of the852

withdrawal strategy, the methodology can easily accommodate a variety of alternative assumptions853

about policy holder behaviour.854

The long term nature of these guarantees suggests that regime switching is a parsimonious model855

capable of modeling long term economic trends, having both stochastic volatilities and interest rates.856

Regime switching offers a much simpler approach compared to specifying volatility and/or interest857

rates as following separate diffusion processes. Another advantage of regime switching processes858

is that the model parameters are easy to interpret. A possible extension to the regime switching859

concept would be to include different mortality regimes, which could be used to model stochastic860
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mortality improvement.861

Our numerical tests indicate that regime dependent interest rate and volatility parameters have862

a large effect on the fair hedging fee, as does the assumption of optimal versus non-optimal policy863

holder withdrawal strategies. We conclude by pointing out that our method is quite flexible in that864

it can accommodate a wide variety of policy holder withdrawal strategies such as ones derived from865

utility-based models. We defer exploration of such models to future research.866

Appendices867

A Single Regime: Equation Between Event Times868

This appendix provides a derivation of the PDE for the contract value between event times in the869

case of a single regime. The value of the underlying investment account S is assumed to evolve870

according to equation (2.5). The mutual fund in the investment account is assumed to track the871

index Ŝ, which follows equation (2.6). Moreover, the fraction of the original owners of the contract872

who remain alive at time t is given by equation (2.1).873

Suppose that the writer of the guarantee forms a portfolio Π which, in addition to being short874

the guarantee, is long x units of the index Ŝ, i.e.875

Π = −U(S,A, t) + xŜ. (A.1)

Recalling that between event times dA = 0, then, by Itô’s lemma,876

dΠ = −
[
σ2S2

2
USS + (µ− αtot)SUS + Ut

]
dt− σSUSdZ + xµŜdt+ xσŜdZ +R(t)αgSdt, (A.2)

where the last term reflects fees collected from the fraction of the original holders of the contract877

who are still alive at time t that are used to fund the cost of hedging the guarantee. Setting878

x = USS/Ŝ in equation (A.2) gives879

dΠ = −
[
σ2S2

2
USS − αtotSUS + Ut

]
dt+R(t)αgSdt. (A.3)

Since the portfolio is now (locally) riskless, it must earn the risk-free interest rate r. Setting880

dΠ = rΠdt results in881

−
[
σ2S2

2
USS − αtotSUS + Ut

]
dt+R(t)αgSdt = r

[
S

Ŝ
USŜ − U

]
⇒ Ut +

σ2S2

2
USS + (r − αtot)SUS +−rU −R(t)αgS = 0. (A.4)

Now consider the value of the entire contract V(S,A, t). Again, recall that A does not change882

between event times. Then, V(S,A, t) is just the sum of the value of the guarantee and the amount883

in the investment accounts of the surviving contract holders, i.e.884

V(S,A, t) = U(S,A, t) +R(t)S. (A.5)

Since U(S,A, t) = V(S,A, t)−R(t)S,885

Ut = Vt −R′(t)S = Vt +M(t)S (from equation (2.1))

US = VS −R(t)

USS = VSS .
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Substituting these expressions into (A.4) and simplifying using αtot = αg + αm gives886

Vt +
σ2S2

2
VSS + (r − αtot)SVS − rV + [αmR(t) +M(t)]S = 0. (A.6)

B Multiple Regimes887

This appendix provides a derivation of the set of PDEs governing the value of the contract between888

event times when there are K possible regimes. The material presented here draws heavily from889

Kennedy (2007). As in Appendix A, we start by considering the value of the guarantee portion of890

the contract, denoted by U j in regime j. To simplify the notation, let θj be a vector of regime-891

dependent parameters, θj =
(
µj , σj , rj

)
.892

In general, U j depends on S, the guarantee account value A, the parameter vector θ, and time893

t, i.e. U j (S,A, θ, t). However, since we assume that withdrawals can only happen at preset discrete894

times, A only changes at these times, and dA = 0 between event times. From Itô’s lemma,895

dU = µ̄jdt+ σ̄jdZ +
∑
k∈Kj

∆U j→kdXj→k, (B.1)

where896

µ̄j = U jt +
(σj)2S2

2
U jSS +

(
µj − αtot

)
SU jS ,

σ̄j = σjSU jS ,

∆U j→k = Uk
(
ξj→kS, θk, t

)
− U j

(
S, θj , t

)
. (B.2)

Now consider a set of K hedging instruments, each of which has a value that is dependent on897

Ŝ, as well as the parameter vector θ and time. Denote the value of the n-th hedging instrument898

by Fn(Ŝ, θ, t), n = 1, . . . ,K. As shown in Kennedy (2007), if these hedging instruments form a899

nonredundant set, then it is possible to construct a perfect hedge. Note that the hedging instru-900

ments can include Ŝ as well as any nonlinear securities such as traded option contracts on Ŝ, not901

necessarily the change of state contracts suggested in Guo (2001). For example, Fn could be short902

term puts or calls with different strikes which are rolled over upon expiry. For the moment, we will903

not assume that Ŝ itself is one of these instruments. By Itô’s lemma,904

dFn = µ̂jndt+ σ̂jndZ +
∑
k∈Kj

∆F j→kn dXj→k, (B.3)

where905

µ̂jn = F jn,t +
σ2
j Ŝ

2

2
F jn,SS + µjŜF jn,S

σ̂jn = σjŜF jn,S

∆F j→kn = Fn(ξj→kŜ, θk, t)− Fn(Ŝ, θj , t). (B.4)

Note that F jn,t and F jn,S in the above denote partial derivatives of the n-th hedging instrument in906

regime j with respect to t and S respectively, while F jn,SS is the second partial derivative of the907

n-th hedging instrument in regime j with respect to S.908
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A hedging portfolio Π is formed which is short the guarantee U and which has an amount wn909

invested in the n-th hedging instrument, i.e.910

Π = −U +
K∑
n=1

wnF
j
n. (B.5)

The value of Π will evolve according to911

dΠ = −dU +

K∑
n=1

wndF
j
n +R(t)αgSdt

=

[
−µ̄j +

K∑
n=1

wnµ̂
j
n +R(t)αgS

]
dt+

[
−σ̄j +

K∑
n=1

wnσ̂
j
n

]
dZ

+
∑
k∈Kj

[
−∆U j→k +

K∑
n=1

wn∆F j→kn

]
dXj→k. (B.6)

As in equation (A.2), the term involving R(t)αgS reflects fees paid to fund the cost of the guarantee912

from the fraction of policyholders who are still alive at time t. Equation (B.6) contains two types913

of risk: diffusion risk involving dZ and regime switching risk involving dXj→k. The diffusion risk914

can be hedged away by setting915

K∑
n=1

wnσ̂
j
n = σ̄j , (B.7)

while the regime switching risk can be eliminated by setting916

K∑
n=1

wn∆F j→kn = ∆U j→k, k = 1, . . . ,K, k 6= j. (B.8)

Assuming that (B.7)-(B.8) are satisfied, then Π is (locally) risk-free, and so no-arbitrage requires917

that dΠ = rjΠdt. This implies that918

−µ̄j +

K∑
n=1

wnµ̂
j
n +R(t)αgS = rj

[
−U j +

K∑
n=1

wnF
j
n

]

⇒
K∑
n=1

wn
(
µ̂jn − rjF jn

)
= µ̄j − rjU j −R(t)αgS. (B.9)

In matrix form, we can write out equations (B.7)-(B.9) as follows:919 

σ̂j1 σ̂j2 . . . σ̂jK
∆F j→1

1 ∆F j→1
2 . . . ∆F j→1

K

∆F j→2
1 ∆F j→2

2 . . . ∆F j→2
K

...
...

. . .
...

∆F j→j−1
1 ∆F j→j−1

2 . . . ∆F j→j−1
K

∆F j→j+1
1 ∆F j→j+1

2 . . . ∆F j→j+1
K

...
...

. . .
...

∆F j→K1 ∆F j→K2 . . . ∆F j→KK

µ̂j1 − rjF
j
1 µ̂j2 − rjF

j
2 . . . µ̂jK − rjF

j
K





w1

w2
...
...
...
...
...

wK−1

wK



=



σ̄j

∆U j→1

∆U j→2

...
∆U j→j−1

∆U j→j+1

...
∆U j→K

µ̄j − rjU j −R(t)αgS


. (B.10)
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Equation (B.10) is a system of K+ 1 equations in K unknowns, w1, w2, . . . , wK , so these equations920

must be linearly dependent. Denote the i-th equation in (B.10) by bi, i = 1, . . . ,K+1, and consider921

the linear combination922

Λjb1 − λj→1
Q b2 − λj→2

Q b3 − · · · − λj→KQ bK − bK+1.

Each component of this combination must be zero for some choice of Λj , λj→k, k = 1, . . . ,K, k 6= j.923

From the right hand side of (B.10), this implies that924

Λj σ̄j −
∑
k∈Kj

λj→kQ ∆U j→k = µ̄j − rjU j −R(t)αgS.

Using (B.2), the expression above becomes925

ΛjσjSU jS −
∑
k∈Kj

λj→kQ ∆U j→k =
(σj)2S2

2
U jSS +

(
µj − αtot

)
SU jS + U jt − rjU j −R(t)αgS,

which is equivalent to926

U jt +
(σj)2S2

2
U jSS +

(
µj − αtot − Λjσj

)
SU jS − r

jU j −R(t)αgS +
∑
k∈Kj

λj→kQ ∆U j→k = 0. (B.11)

In equation (B.11), Λj is the market price of diffusion risk and the λj→kQ terms are risk-neutral927

transition intensities between regimes. Note that this equation holds regardless of whether or not928

Ŝ is one of the hedging instruments.929

Now consider the first column of the left hand side of (B.10). The same linear combination as930

above implies that931

Λj σ̂j1 −
∑
k∈Kj

λj→kQ ∆F j→k1 = µ̂j1 − r
jF j1 , (B.12)

for the first hedging instrument. If this hedging instrument is in fact Ŝ, then we can eliminate the932

Λj term, as follows. Using equation (B.4), and specifying F1 = Ŝ, we have933

µ̂j1 = µjŜ

σ̂j1 = σjŜ

∆F j→k1 =
(
ξj→k − 1

)
Ŝ.

Substituting these expressions into (B.12) gives934

ΛjσjŜ −
∑
k∈Kj

λj→kQ

(
ξj→k − 1

)
Ŝ =

(
µj − rj

)
Ŝ

⇒ µj − Λjσj = rj − ρj (B.13)

where935

ρj =
∑
k∈Kj

λj→kQ

(
ξj→k − 1

)
.
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In turn, substitution of (B.13) into (B.11) gives936

U jt +
(σj)2S2

2
U jSS +

(
rj − αtot − ρj

)
SU jS − r

jU j −R(t)αgS +
∑
k∈Kj

λj→kQ ∆U j→k = 0. (B.14)

As in the single regime case described in Appendix A, the value of the entire contract V(S,A, t) =937

U(S,A, t) +R(t)S. This implies938

U jt = Vjt −R′(t)S = Vjt +M(t)S

U jS = VjS −R(t)

U jSS = VjSS∑
k∈Kj

λj→kQ ∆U j→k =
∑
k∈Kj

λj→kQ ∆Vj→k −R(t)S
∑
k∈Kj

λj→kQ

(
ξj→k − 1

)
=
∑
k∈Kj

λj→kQ ∆Vj→k −R(t)Sρj .

Substitution of these expressions into (B.14) gives939

Vjt +
(σj)2S2

2
VjSS+

(
rj − αtot − ρj

)
SVjS−r

jVj+[αmR(t) +M(t)]S+
∑
k∈Kj

λj→kQ ∆Vj→k = 0. (B.15)

Note that equation (B.15) holds between withdrawal times for j = 1, 2, . . . ,K, i.e. it is a coupled940

system of K one-dimensional PDEs. Since ∆Vj→k = Vk(ξj→kS, θk, t)−Vj(S, θj , t), equation (B.15)941

can also be written in the form942

Vjt +
(σj)2S2

2
VjSS +

(
rj − αtot − ρj

)
SVjS − r

jVj + [αmR(t) +M(t)]S+∑
k∈Kj

λj→kQ (Vk(ξj→kS, t)− Vj(S, t)) = 0, (B.16)

where the dependence on θ in the summation has been suppressed for brevity. Finally, note that we943

must have λj→kQ ≥ 0 in order to guarantee that a nonnegative payoff always produces an nonnegative944

contract value.945

C Mortality Table: DAV 2000R946

The mortality table in Pasdika and Wolff (2005) is specified in terms of qx, which is the probability947

that a person aged x will die in the next year. We reproduce this data in Table C.1.948
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Age qx Age qx Age qx Age qx Age qx
65 0.008886 66 0.009938 67 0.011253 68 0.012687 69 0.014231
70 0.015887 71 0.017663 72 0.019598 73 0.021698 74 0.023990
75 0.026610 76 0.029533 77 0.032873 78 0.036696 79 0.041106
80 0.046239 81 0.052094 82 0.058742 83 0.066209 84 0.074583
85 0.083899 86 0.094103 87 0.105171 88 0.116929 89 0.129206
90 0.141850 91 0.154860 92 0.168157 93 0.181737 94 0.195567
95 0.209614 96 0.223854 97 0.238280 98 0.252858 99 0.267526
100 0.278816 101 0.293701 102 0.308850 103 0.324261 104 0.339936
105 0.355873 106 0.372069 107 0.388523 108 0.405229 109 0.422180
110 0.439368 111 0.456782 112 0.474411 113 0.492237 114 0.510241
115 0.528401 116 0.546689 117 0.565074 118 0.583517 119 0.601976
120 0.620400 121 1.0

Table C.1: DAV 2004R Mortality table, 65-year old German male (Pasdika and Wolff, 2005). qx
is the probability that a person aged x will die within the next year.
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