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Mean Variance: HJB

Continuous Time Mean Variance Asset Allocation
Suppose an investor saves for retirement by contributing to a
pension account at a rate π per year.

She can divide her wealth W in the pension account into

A fraction p invested in a risky asset S which follows

dS = (r + ξσ)S dt + σS dZ1

dZ1 = increment of a Wiener process

ξ = the market price of risk

σ = volatility

A fraction (1− p) in a riskless asset B which follows

dB

dt
= rB

The process followed by W = B + S is

dW = (r + pξσ)W dt + π dt + pσW dZ1.
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Mean Variance: HJB

Optimal Strategy

Define

p(W , t) = dynamic fraction invested in the risky asset

WT = terminal wealth

Let

E
p(·)
t,w [·] = E [·|W (t) = w ] with p(s,W (s)), s ≥ t

being the strategy along path W (s), s ≥ t

Var
p(·)
t,w [·] = Var[·|W (t) = w ] Variance under strategy p(·)

along path W (s), s ≥ t

So that

Var
p(·)
t,w [WT ] = E

p(·)
t,w [(WT )2]−

(
E
p(·)
t,w [WT ]

)2
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Mean Variance: HJB

Minimum Variance: Standard Formulation

The objective is to determine the strategy p(·) such that

J(w , t) = sup
p(s≥t,W (s))

{
Ep
t,w [WT ]− λVarpt,w [WT ]

}
,

λ = Lagrange multiplier (1)

Solving (1) for various λ traces out a curve in the expected value,
standard deviation plane.
• Let p∗t (s,w), s ≥ t be the optimal policy for (1).
Then p∗t+∆t(s,w), s ≥ t + ∆t is the optimal policy for

J(W (t + ∆t), t + ∆t) =

sup
p(s≥t+∆t,W (s))

{
Ep
t+∆t,W (t+∆t)[WT ]− λVarpt+∆t,W (t+∆t)[WT ]

}
.
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Mean Variance: HJB

Pre-Commitment Policy

However, in general

p∗t (s,W (s)) 6= p∗t+∆t(s,W (s)) ; s ≥ t + ∆t , (2)

↪→ Optimal policy is not time-consistent.
The strategy which solves problem (1) has been called the
pre-commitment policy (Basak,Chabakauri: 2010; Bjork et al:
2010)

Much discussion on the economic meaning of such strategies.

Possible to formulate a time-consistent version of
mean-variance.

Or other strategies: mean quadratic variation

Different applications may require different strategies.

We focus on pre-commitment solution today, with a brief
discussion of alternative strategies
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Mean Variance: HJB

Pre-Commitment

Problem:

Since the pre-commitment strategy is not time consistent,
there is no natural dynamic programming principle

We would like to formulate this problem as the solution of an
HJB equation.

How are we going to do this?

Solution:

Go back to first principles
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Mean Variance: HJB

Minimum Variance: Basic Principle

Equivalent formulation: determine the strategy p(·) such that

min Var
p(·)
t=0,w [WT ] = E

p(·)
t=0,w [(WT )2]− d2

subject to

{
E
p(·)
t=0,w [WT ] = d

p(·) ∈ P
P = set of admissible controls

Given an expected return d = E
p(·)
t=0,w [Wt ], strategy p(·) produces

the smallest possible variance.

Varying the parameter d traces out a curve in the expected value -
standard deviation plane.
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Mean Variance: HJB

Eliminate Constraint

Original problem is convex optimization, use Lagrange multiplier γ
to eliminate constraint.

max
γ

min
p(·)∈P

E
p(·)
t=0,w

[
(WT )2 − d2 − γ(E

p(·)
t=0,w [WT ]− d)

]
. (3)

Suppose somehow we know the γ which solves (3), for fixed d .

Then the optimal strategy p∗(·) which solves (3) is given by (for
fixed γ)

min
p(·)∈P

E
p(·)
t=0,w

[(
WT −

γ(t,w , d)

2

)2]
. (4)

Note we have effectively replaced parameter d by γ in (4).
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Mean Variance: HJB

Construction of Efficient Frontier

We can alternatively regard γ as a parameter, and determine the
optimal strategy p∗(·) which solves

min
p(·)∈P

E
p(·)
t=0,w

[
(WT −

γ

2
)2

]
. (5)

Once p∗(·) is known, we can easily determine E
p∗(·)
t=0,w [WT ],

E
p∗(·)
t=0,w [(WT )2], by solving an additional linear PDE.

For given γ, this gives us (E
p∗(·)
t=0,w [WT ],Std

p∗(·)
t=0,w [WT ]), a single

point on the efficient frontier.

Repeating the above for different γ generates points on the
efficient frontier.
↪→ Efficient frontier construction reduces to repeated solves of (5).
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Mean Variance: HJB

HJB Equation: Wealth Case

Let V (w , τ) = Et=T−τ,w [(WT − γ/2)2], then standard dynamic
programming can be used to determine the HJB equation satisfied
by V (w , τ).

p∗(·) is determined from solution of HJB equation

Vτ = inf
p∈P

{
µpwVw +

(σpw )2

2
w 2Vww

}
µpw = π + w(r + pσξ)

σpw = pσw

V (w , τ = 0) = (w − γ

2
)2
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Mean Variance: HJB

Wealth to Income Ratio Case
As pointed out in (Cairns et al, 2006) it is perhaps more relevant
to consider optimizing the wealth to income ratio at retirement.
Let the risky asset follow (as before)

dS = (r + ξσ)S dt + σS dZ1

The investor’s yearly stochastic salary Y follows

dY = (r + µY )Y dt + σY0Y dZ0 + σY1Y dZ1

dZ0 is independent of dZ1

The investor contributes into the pension plan at a rate of πY .
The investor allocates a fraction p to the risky asset and (1− p) to
the riskless asset.
The total wealth W then follows

dW = (r + pξσ)W dt + pσWdZ1 + πYdt
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Mean Variance: HJB

Wealth to Income Ratio: II

Define new state variable X (t) = W (t)/Y (t), then by Ito’s
Lemma, we obtain

dX = [π + X (−µY + pσ(ξ − σY1) + σ2
Y0

+ σ2
Y1

)]dt

−σY0XdZ0 + X (pσ − σY1)dZ1

Now, we seek to find the control p(·) which solves

min Var
p(·)
t=0,X (t)=x [XT ] = E

p(·)
t=0,X (t)=x [(XT )2]− d2

subject to

{
E
p(·)
t=0,X (t)=x [WT ] = d

p(·) ∈ P
(6)
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Mean Variance: HJB

Wealth to Income Ratio: III

Following same steps as before, the optimal control which solves
the mean variance problem is also the optimal control which solves

min
p(·)∈P

E
p(·)
t=0,x

[
(XT −

γ

2
)2

]
. (7)

Let V (x , τ) = Eτ=T−t,x [(XT − γ/2)2], then usual steps determine
the HJB equation for V (x , τ)

Vτ = inf
p∈P

{
µpxVx +

1

2
(σpx )2Vxx

}
µpx = π + x(−µY + pσ(ξ1 − σY1) + σ2

Y0
+ σ2

Y1
)

(σpx )2 = x2(σ2
Y0

+ (pσ − σY1)2) (8)

V (x , τ = 0) = (x − γ

2
)2 (9)
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Mean Variance: HJB

General Form

Both these problems have the same mathematical form.

Let

z =

{
w wealth case

x wealth to income ratio case
(10)

Then, we can write both problems in the general form

Vτ = inf
p∈P
{LpV }

LpV ≡ a(z , p)Vzz + b(z , p)Vz (11)
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Mean Variance: HJB

Admissible Controls

Recall that P is the set of admissible controls.
Let D be the set of possible values of z (wealth or wealth/income)
We consider the following cases:

Case D P
Allow Bankruptcy [−∞,+∞] (−∞,+∞)

No Bankruptcy [0,∞] [0,+∞)
Bounded Control [0,∞] [0, pmax]

• Bankruptcy: trading continues even if insolvent (not realistic,
but analytic solutions available in some cases)
• No bankruptcy: also not shorting stock
• Bounded control: realistic case, i.e. pmax = 1.5 corresponds to
maximum borrowing of 50% of wealth
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Mean Variance: HJB

Boundary Conditions

Localize domain z ∈ [−∞,+∞] to z ∈ [zmin, zmax].
Assume V (z , τ) ' A(τ)z2, z ±∞.
• Substitute asymptotic form into HJB PDE, solve for a Dirichlet
condition at z = zmin, zmax.

In the No Bankruptcy/Bounded Control case, we need to apply a
boundary condition at z = 0.
• Assume pz → 0 as z → 0, ⇒ Z (t) ≥ 0
↪→ Then take limit of PDE as z → 0

Vτ = πVz ; z = 0

Numerical scheme will use boundary condition if required, or ignore
it if it is not needed (Ekstrom et al, 2009).
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Mean Variance: HJB

Admissible Controls: Allow Bankruptcy

Consider the SDE for the Wealth case:

dW = (r + pξσ)W dt + π dt + pσW dZ1.

If p is bounded as W → 0, then SDE becomes

dW ' π dt ; W → 0

⇒ W cannot be become negative

But we allow bankruptcy (W < 0) in this case

Conclusion: In the Allow Bankruptcy case, p becomes unbounded
as w , x → 0.
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Mean Variance: HJB

Positive Coefficient Discretization

Define a set of nodes (zi , τ
n), discrete solution

V n = [V n
1 ,V

n
2 , . . .]

′ , controls Pn = [pn
1 , p

n
2 , . . . ]

′

Discretize the PDE, fully implicit timestepping, central,
forward and backward differencing in z direction

Central differencing as much as possible (Wang, Forsyth:
2008)

Differencing may depend on the control pn
i at node (zi , τ

n)

V n+1
i − V n

i

∆τ
= inf

pn+1
i ∈P

{
[An+1(Pn+1)V n+1]i

}
[
An+1(Pn+1)V n+1

]
i

= αn+1
i V n+1

i−1 + βn+1
i V n+1

i+1 − (αn+1
i + βn+1

i )V n+1
i

Force positive coefficient condition

αn+1
i ≥ 0 ; βn+1

i ≥ 0
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Mean Variance: HJB

Convergence to the Viscosity Solution

Theorem (Strong Comparison)

If the control is bounded, then the HJB PDE satisfies the strong
comparison property (i.e. a unique, continuous viscosity solution
exists) (see Chaumont (2004)).

But what about the No Bankruptcy case? The control is
unbounded as z → 0.

We can formally get around this problem by rewriting the
PDE in terms of a control q = pz , which always remains
bounded (on a finite grid).

Same idea used in (Bielecki et al, 2005).

We are primarily interested in developing numerical techniques
for bounded control case (no analytic solutions, practical case)

→ We will use p as the control, more natural for this case.
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Mean Variance: HJB

Convergence to the Viscosity Solution: Bounded Control

Theorem
Provided that (a) the HJB PDE satisfies a strong comparison
result (b) fully implicit timestepping is used with a positive
coefficient discretization, then the discrete scheme converges to
the unique, continuous viscosity solution of the control problem.

Proof.
The scheme is

Unconditionally monotone

Unconditionally stable

Consistent

Hence convergence follows from the results in (Barles, Souganidis
(1991)).
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Mean Variance: HJB

Solution of Discretized Equations at Each Timestep:
Policy Iteration

Each timestep requires solution of the nonlinear set of algebraic
equations

max
P∈P

{[
I −∆τAn+1(Pn+1)

]
V n+1 − V n

}
= 0 (12)

We solve this set of equations using Policy iteration

If a positive coefficient discretization is used, Policy iteration
always converges (Forsyth and Labahn (2008)).
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Mean Variance: HJB

Bankruptcy Allowed: Wealth Case, w = 0 problem

w = 0 in PDE → Vτ = πVw → No Bankruptcy boundary
condition.
↪→ Not what we want.

Construct initial grid, no node at w = 0.

ss s ss scc c c
wnew
−1New wnew

1 New

w−1w−2 w1 w2 wmaxwmin 0

As we refine the grid

Insert new node between each pair of coarse grid nodes,
except at w = 0

Add new nodes between [w−1, 0] and [0,w1]

w → 0, p →∞, pw finite, w 6= 0
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Mean Variance: HJB

Numerical Example: Wealth Case (Unbounded Control)

r 0.03 ξ 0.33
σ 0.15 π 0.1
T 20 years W (t = 0) 1

Nodes Time Stdt=0
p∗ [WT ] E t=0

p∗ [WT ] Ratio Ratio

(W ) Steps Stdt=0
p∗ [·] E [·]

728 160 0.915441 6.92426
1456 320 0.872917 6.93442
2912 640 0.851483 6.93992 1.975 1.847
5824 1280 0.840821 6.94251 2.007 2.124

11648 2560 0.835612 6.94383 2.045 1.962

• Analytic solution: (Stdt=0
p∗ [WT ],E t=0

p∗ [WT ]) = (0.8307, 6.9454)
• Wealth can be negative, p∗ →∞, w → 0
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Mean Variance: HJB

Efficient Frontiers: Wealth Case

Allowing bankruptcy
P = (−∞,+∞)

No bankruptcy
P = [0,+∞)

bounded control
P = [0., 1.5]

(W = 1, t = 0)

std[W(t=T)] at t = 0

E
[W

(t
=

T
)]

at
t=

0

0 1 2 3 4 5
4

6

8

10

12

14

16

18

20

Allow bankruptcy

No bankruptcy

Bounded control
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Mean Variance: HJB

Wealth to Income Ratio Case

µy 0. ξ1 0.2
σ 0.2 σY 1 0.05
σY 0 0.05 π 0.1
T 20 years γ 15
P [0, 1.5] D [0,+∞)

The total wealth W follows

dW = (r + pξσ)W dt + pσWdZ1 + πYdt

The investor’s yearly salary Y follows

dY = (r + µY )Y dt + σY0Y dZ0 + σY1Y dZ1

dZ0 is independent of dZ1

We seek to maximize X (T ) = W (T )/Y (T ).
Risky asset proportion p ∈ P, x = w/y ∈ D.
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Mean Variance: HJB

Efficient Frontiers: Wealth to Income Case

No analytic
solutions available

No risk free portfolio
(due to salary risk)

std[X(t=T)] at t = 0

E
[X

(t
=

T
)]

at
t=

0

1 2 3 4

3

3.5

4

4.5

5

5.5

6

Allow bankruptcy

No bankruptcy

Bounded control
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Mean Variance: HJB

Optimal Strategy: Wealth to Income Ratio Case
• X (t = 0) = 0.5, (Stdt=0

p∗ [XT ],E t=0
p∗ [XT ]) = (1.7407, 3.9551).

As time goes on,
and if x has not
increased, the
investor takes on
more risk (agrees
with analytic
solution, wealth
case)

At any time, if
(W /Y ) is large
enough, all wealth is
switched to the risk
free asset

X = W/Y

C
on

tro
lp

0 5 100
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0.2
0.3
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Mean Variance: HJB

Alternative Strategies

Using similar methods, we can devise a numerical scheme to
determine a time consistent mean variance policy (See Wong,
Forsyth EJOR (2011)).
In addition, we can also use a mean quadratic variation policy
(Brugiere, 1996).

In the unconstrained control case, the optimal policy for time
consistent mean variance is identical to the optimal policy for
mean quadratic variation (Bjork, 2010).

In the practical case of bounded controls

All efficient frontiers are very similar

But the optimal controls are noticeably different
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Mean Variance: HJB

Wealth to Income Ratio: Bounded Control

std[X T] at t = 0

E
[X

T
]a

tt
=

0

0 1 2 3 4 5
2.5

3

3.5

4

4.5

5

Pre-commitment

Time-consistent

Mean quadratic variation
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Mean Variance: HJB

Comparison of Controls

Control at t = 0+

Stdp∗

t=0,x [X (T )] '
3.24

Efficient Frontiers
similar

Controls quite
different

X

C
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Mean Variance: HJB

Conclusions

There exists an HJB equation which has the same optimal
control as the optimal control for continuous time
mean-variance portfolio optimization (pre-commitment policy)

This HJB equation can be reliably solved, and used to
generate points on the efficient frontier

Any type of constraint can be applied to the control
Assuming a strong comparison property holds, then the
scheme will converge to the viscosity solution of the HJB PDE

Similar techniques can be used generate controls for

Time consistent mean variance
Mean quadratic variation

For bounded control case, all these strategies give similar
efficient frontiers, but controls are different

Which strategy should we choose?
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