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Motivation

Variable annuity products: sold by insurance companies to retail
investors.

These products are guarantees on investments in pension plans.

From a paper we wrote in 2002 (segregated funds are a Canadian
version of Variable Annuities)

“If one adopts the no-arbitrage perspective...in many
cases these contracts appear to be significantly
underpriced, in the sense that the current deferred fees
being charged are insufficient to establish a dynamic
hedge for providing the guarantee. This is particularly
true for cases where the underlying asset has relatively
high volatility. This finding might raise concerns at
institutions writing such contracts.” Windcliff, Forsyth,
LeRoux, Vetzal, North American Actuarial J., 6 (2002)
107-125

)
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What Happened?

As described in a Globe and Mail article (Report on Business,
December 2, 2008, “Manulife, in red, raises new equity,” ), one of
the large Canadian insurance companies, Manulife, posted a large
mark-to-market writedown to account for losses associated with
these segregated fund guarantees. From the Globe and Mail
Streetwise Blog, November 7, 2008

“Concerns that the market selloff will translate into
massive future losses at Canada’s largest insurer sent
Manulife shares reeling last month. Those concerns were
a result of Manulife's strategy of not fully hedging
products such as annuities and segregated funds, which
promise investors income no matter what markets do.”
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Why did this happen?
These products contain embedded options which allow the

investors many opportunities to optimize the value of the
guarantee.

Pricing of these products requires solution of an optimal stochastic
control problem (an HJB PDE).

@ This was beyond the technical abilities of most insurance
companies

@ Insurance companies used simplistic models which
underestimated the risk involved.

@ These models showed that there was no need to hedge these
products, (Quote from actuary: ) “Over any ten year period,
the market never goes down.”

@ Insurance company executives were able to boast of large
(apparent) profits, which then triggered rich bonus payments
to traders and executives.
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Retirement Risk Zone

Consider an investor with a retirement account, which is invested
in the stock market
Over the long run (before retirement), it does not matter if

@ the market first drops by 10% per year over several years and then
goes up by 20% per year for several years; or

@ the market first goes up by 20% per year and then drops by 10%
per year

(.9)(.9)...(1.2)(1.2)... = (1.2)(1.2)...(.9)(.9)...
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The Retirement Risk Zone Il

This is not the case once the investor retires, and begins to make
withdrawals from the retirement account
The outcomes will be very different in the cases:

@ in the first few years after retirement, the market has losses,
and the account is further depleted by withdrawals, followed
by some years of good market returns; compared to

@ a few years of good market returns, after retirement (including
withdrawals), followed by some years of losses

Losses in the early years of retirement can be devastating in the
long run! Early bad returns can cause complete depletion of the
account.
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A Typical GMWB Example

Investor pays $100 to an insurance company, which is invested in a
risky asset.

Denote amount in risky asset sub-account by W = 100.
The investor also has a virtual guarantee account A = 100.

Suppose that the contract runs for 10 years, and the guaranteed
withdrawal rate is $10 per year.
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A Typical GMWB Example Il

At the end of each year, the investor can choose to withdraw up to
$10 from the account. If $v € [0,10] is withdrawn, then

Whew = max(Wog —~,0) ; Actual investment
Apew = Aod —7 . Virtual account

This continues for 10 years. At the end of 10 years, the investor
can withdraw anything left, i.e. max(Wew, Anew)-

Note: the investor can continue to withdraw cash as long as
A >0, even if W =0 (recall that W is invested in a risky asset).
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Example: Order of Random Returns

Good Returns at Start

Time | Return (%) Balance ($) | Withdrawal ($)
1 41.65 141.65 10
2 31.12 172.62 10
3 20.15 195.39 10
4 -30.25 129.31 10
5 18.05 140.85 10
6 16.82 152.86 10
7 20.12 171.60 10
8 7.44 173.62 10
9 -40.90 96.70 10
10 -7.5 80.20 10
Total Withdrawal Amount ($) 170.20

Ten year balance if no withdrawal ($) 151.37
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Same Random Returns: Different Order

No GMWAB: poor returns at start

Time | Return (%) Balance ($) | Withdrawal ($)

1 -30.25 69.75 10

2 -40.90 35.31 10

3 16.82 29.57 10

4 7.44 21.03 10

5 41.65 15.62 10

6 20.12 6.75 6.75

7 31.12 0 0

8 18.05 0 0

9 20.15 0 0

10 -7.5 0 0
Total Withdrawal Amount ($) 56.75
Ten year balance if no withdrawal ($) 151.37
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Unlucky Order of Returns: With GMWB

GMWB Protection

Time | Return (%) Balance ($) | Withdrawal ($)

1 -30.25 69.75 10

2 -40.90 35.31 10

3 16.82 29.57 10

4 7.44 21.03 10

5 41.65 15.62 10

6 20.12 6.75 10

7 31.12 0 10

8 18.05 0 10

9 20.15 0 10

10 -7.5 0 10
Total Withdrawal Amount ($) 100
Ten year balance if no withdrawal ($) 151.37

11/40



Febpruary 25, 2010

Why is this useful?

The investor can participate in market gains, but still has a
guaranteed cash flow, in the case of market losses.

This insulates pensioners from losses in the early years of
retirement.

This protection is paid for by deducting a yearly fee o from the
amount in the risky account W each year.

The simple form of GMWB described has many variants in
practice: Guaranteed Lifetime Withdrawal Benefit (GLWB),
ratchet increase of virtual account A if no withdrawals, etc.

We will keep things simple here, and look at the basic GMWB.
Most variable annuities sold in North America have some type of

market guarantee.
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Some More Details

The investor can choose to withdraw up to the specified contract
rate G, without penalty.

Usually, a penalty (k > 0) is charged for withdrawals above G;.
Let 4 be the rate of withdrawal selected by the holder.

Then, the rate of actual cash received by the holder of the GMWB
is

A - /.3/ |f0§/}\/§GI’1
f(’y)—{ 5—k(5—G) ify> G,
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Stochastic Process

Let S denote the value of the risky asset, we assume that the risk
neutral process followed by S is

dS = rSdt+ o5dZ
r = risk free rate; o = volatility

dZ = ¢oVdt ; ¢~ N(0,1)

The risk neutral process followed by W is then (including
withdrawals dA).

dW = (r—a)Wdt+oWdZ +dA, W >0
dW = 0, ifW=0
(8%

= fee paid for guarantee ; A = guarantee account
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No-arbitrage Value

Let V(W,A,7) (r =T —t, T is contract expiry) be the
no-arbitrage value of the GMWB contract (i.e. the cost of
hedging).

At contract expiry (7 = 0) we have (payoff = withdrawal)
V(W,A,7=0) = max(W,A(1—k))

It turns out that it is optimal to withdraw at a rate 4
e 4 €[0,G], or

@ 4 = oo (instantaneously withdraw a finite amount)
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Impulse Control

Let

1
LV = 5a2W2VWW +(r—a)WVy —rV.

Since we have the option of withdrawing at a finite rate at each
point in (W, A, 1), lto's Lemma and no-arbitrage arguments give

V. — LV — 5 — AV —AV4) >0
ag?cfé](v AVw —AVa) >

Note that 4 is a finite withdrawal rate. Withdrawals only allowed if
A>0.

16
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Impulse Control Il

We also have the option of withdrawing a finite amount
instantaneously (withdrawing at an infinite rate) at each point in
(W,A,T)

V(W,A,7)— sup [V(max(W —~,0),A—~,7)+(1—r)y—c|]>0.
'YE(OvA]

where « is a finite withdrawal amount.

¢ > 0 is a fixed cost (which can be very small). This is required to
make the Impulse Control problem well-posed.

Note that this equation specifies that any amount in the remaining
guarantee account can be withdrawn instantaneously (i.e.
v € (0, A]) with a penalty.
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HJB Variational Inequality

Since it must be optimal to either withdraw at a finite rate or
withdraw a finite amount at each point, then this can all be written
compactly as a Hamilton Jacobi Bellman Variational Inequality

ine V, — LV — Y —AVw —AVa),

mm{ ,Yg[w(%r](v AViw —AVa)

V — sup [V(max(W—%O),A—%T)+(1—/{)v—c]}
’VE(O,A]

=0
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Previous Work

e Milevsky, Salisbury, (2006, Insurance: Mathematics and
Economics), pose GMWB pricing problem as a singular
control.

e Dai, Kwok, Zong, (Mathematical Finance, 2008), solve
singular control formulation using a penalty method.

@ Zakamouline (Mathematical Methods Operations Research,
2005) argues that in general one can pose singular control
problems as impulse control with negligible difference
(infinitesimal fixed cost)

o Claims that impulse control is more general

@ Chen, Forsyth (Numerische Mathematik, 2008), solve impulse
control formulation (this lecture)
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Alternative Approach: Discrete Withdrawal Times

Rather than attempt to solve the HJB Impulse Control problem
directly, let’s replace this problem by a discrete withdrawal problem

@ Assume that the holder can only withdraw at discrete
withdrawal times 7, ..., Ty, with 741 — 77 = Aty

@ Use dynamic programming idea, work backwards from
t = T(r =0), so that V(W,A,0) = max(W, A(1 — k))

@ During the interval from 7 =0 to 7 = 71 (the first withdrawal
time going backwards) we solve

1
V, -LV=0; LV= 5a2W2vWW+(r—a)WvW —rV.
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Optimum Strategy: Discrete Withdrawals

At 71, we assume that the holder withdraws the optimum amount ~

V(WA ) =

max [V (max(W —4,0), A= ~,71) + f(7)],

where now the cash flow term is

| if0<~ <G,
() _{7—/&(7—6)—c if v> G.

G = G/At,

21 /40



Febpruary 25, 2010

Discrete Withdrawals

Then, from 7'1+ to 7, we solve
V., =LV =0 ; No A dependence in LV

Then, we determine the optimum withdrawal at 75", and so on,
back down to 7 = T(t = 0) today.

This would appear to be a reasonable approximation to reality.

In fact, most real contracts allow only discrete withdrawals.
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Discrete Withdrawal: A Numerical Scheme

Define nodes in the W direction [Wo, W4, ..., W, ], and in the A
direction [Ag, A1, ..., Ajul-

Let V% = V(Wi A, 7). [V = V.
Let (L£V)]; be a discrete form of the operator LV
Away from withdrawal times, we solve
n+1
vt v,

— (L£.V)'T
A (LnV)7]
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A Numerical Scheme I

At withdrawal time 7,, we then solve the local optimization
problem at each node

V= iy FPORVT FOD)]

where 7 is an interpolation operator

IiJ('Y) vho= Vn(maX(VVi -7, O)a AJ - ’7)

+ interpolation error

We use a linear interpolant of V/"; to determine the optimum
withdrawal at each node fy,f’j.
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Numerical Scheme Il

e Away from withdrawal times, we

solve a decoupled set of 1-d PDEs. T Vo)=LV A
1/t 1
A
e At withdrawal times, we solve a A V), =L(V,) J
set of decoupled optimization Vo)=LV, An
problems. : J

W —=

Vast majority of CPU time spent solving the local optimization
problem at each node:

n+ _ (AT n iy
VI i B0V 1O

e This is embarrassingly parallel, but requires access to global data.
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Obvious Question

If we let A1, — 0, does this discrete withdrawal approximation
converge to the solution of the Impulse Control HJB equation?

If we allow discrete withdrawals every timestep, then our numerical
method is

+1
Vit max [TGI)V )] = Ar(£aV) [ =0

where the cash flow term f(v/) is

_I if0<y<G,
f) _{v—m(y—G)—c if v> G.
G = G AT

and Z is a linear interpolation operator

26
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Viscosity Solution

The HJB equation does not necessarily have differentiable
solutions.

We seek the viscosity solution of the HJB impulse control problem.

o Briefly, a viscosity solution is defined in terms of smooth test
functions.

@ These smooth test functions touch the viscosity solution at a
single point, and are always above or below the solution
elsewhere.

@ The viscosity solution is squeezed between these nearby test
functions.

@ The viscosity solution does not necessarily satisfy the PDE in
any conventional sense.
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Basic Convergence Result

Theorem (Convergence to the Viscosity Solution (Barles,
Souganidis (1993)))

Any numerical scheme which is consistent, I, stable, and
monotone, converges to the viscosity solution.

Consistent Discrete scheme applied to smooth test function
satisfies a limsup , liminf condition, as mesh, timestep — 0
(smooth test functions squeeze the solution)

Stability (/») Solution bounded in /5, as mesh, timestep — 0.

Monotonicity: What does it mean?

28 /40
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Monotonicity

Let V., Q/; be two discrete solutions to the same HJB equation.

Lemma (Discrete Arbitrage Inequality)
If \/,:'I, Q” are generated using a monotone scheme, and

0 0
Vi, J, Q > V,’J, then

and > V" . Vi, j,Vn
In other words, if the payoff Q(W,A,0) > V(W, A,0), then this

inequality must hold at all earlier times, for the discrete solution,
regardless of the timestep or meshsize.

This is a discrete version of the financial no-arbitrage condition.
(i.e. financial equivalent of mass conservation)
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Does it Converge?

We want to show that this scheme converges as A7, AA, AW
— 0 to the viscosity solution of

ind V. — LV — 5 — AV — AV4),
mm{ aé?cfé,](v AVw —AVa)

vV — sup [V(max(W - 770)7’4 - fY7T) + (1 - H)7 - C] }
7€(0,A]
=0

This seems intuitively obvious, but there are some subtle points.
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Monotonicity, Stability and Consistency

Lemma (Monotonicity and Stability)

Provided (L£,V"1) is discretized using a positive coefficient method and
linear interpolation is used when solving the local optimization problem at
each node, then the scheme is unconditionally |, stable and monotone.

Proof.
Straightforward O

Lemma (Consistency)

Provided the discrete operator (L, V™) is consistent in the classical
sense, and linear interpolation is used to solve the local optimization
problem at each node, then the numerical scheme is consistent as defined
in (Barles, Souganidis (1991)).

Proof.
Not so straightforward (liminf,lim sup form needed for boundary
conditions) O
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Convergence

Theorem (Strong Comparison Result)

The GMWRB Impulse Control problem satisfies the Strong Comparison
Result, i.e. there is a unique, continuous viscosity solution to the Impulse

Control Problem. (Seydel, 2008)

Theorem (Convergence to the Viscosity Solution)

The discrete withdrawal numerical method, with withdrawal interval
At, — 0 converges to the unique viscosity solution of the Impulse
Control problem.

Proof.
This scheme is consistent, stable, and monotone, hence converges to the
viscosity solution (Barles, Souganidis (1991)). O
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One scheme for all problems

So, we now have a single scheme which

Can be used to price GMWB contracts with finite withdrawal
intervals (the usual case in real contracts, i.e. withdrawals
only allowed once or twice a year)

We can also price GMWB contracts in the limit as the
withdrawal interval — 0

Convergence to the Impulse Control problem guaranteed
No need for different method for these two cases!

Scheme is simple and intuitive to implement — might be
actually used by practitioners.
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Examples

Recall that the investor pays no extra up-front fee for the
guarantee (only the initial premium wyp).

The insurance company deducts an annual fee o from the balance
in the sub-account W.

Problem: let V(«a, W, A, T) be the value of the GMWB contract,
for given yearly guarantee fee a.

Assume that the investor pays an initial premium wg at t =0
(r=T).

Find the no-arbitrage fee « such that V(«, wp, wp, T) = wy (we do
this by a Newton iteration).
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Data

Parameter Value
Expiry time T 10.0 years
Interest rate r .05
Maximum withdrawal rate G, 10/year
Withdrawal penalty .10
Volatility o .30
Initial Lump-sum premium wy 100
Initial guarantee account bal- 100
ance

Initial sub-account value 100
Continuous Withdrawal Yes
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The No-arbitrage Fee (t =0, A= 100)

130

120

—_
—_
o

a=0.0

o=.01
o=.02

Option Value

=
o
o

90

80,

25
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Optimal Withdrawal Strategy

100

Withdrawal of a

70 finite amount
60
< 50 Withdrawal at
40 te G,
30
20
10 Indellerminate
8 0 50 100 150 200

t = 0, fair fee charged for wy = 100.
e Indeterminate region: any withdrawal in [0, G,] is optimal (value is
unique, control is not unique).
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No-arbitrage Fee

o =.15— a = .007 (70 bps)

o =.20 — o = .014 (140 bps)
o =.30 — a =.031 (310 bps)
Current volatility of S&P ~ .25

Typical fees charged: o = .005 (50 bps) too low for current
market conditions.

Insurance companies seem to be charging fees based on
marketing considerations, not hedging costs.

Fee should be even higher if other (typical) contract options
considered
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Other Issues

Can easily use the same method if we assume underlying process is
a jump diffusion (Chen, Forsyth, SIAM J. Scientific Computing
(2007)).

Effect of discrete withdrawals, volatility, non-optimal withdrawals,
etc. (Chen, Vetzal, Forsyth, Insurance: Mathematics and
Economics (2008)).

A penalty method for singular control formulation of a GMWB
(Dai et al, Mathematical Finance (2008)), (Huang, Forsyth,
Working paper (2009)).

Impulse control for a Guaranteed Minimum Death Benefit
(Belanger, Forsyth, Labahn, Applied Mathematical Finance
(2009)).

39 /40



Febpruary 25, 2010

Summary

@ We have developed a single scheme which can be used to
price GMWB contracts with finite withdrawal intervals, and
the limiting case of infinitesimal withdrawal intervals

@ In the case of infinitesimal withdrawal intervals, we have
proven convergence to the viscosity solution of the Impulse
Control problem

@ For an infinitesimal fixed cost, solutions agree with a singular
control formulation

@ Insurance companies seem to be charging fees which are too
low to cover hedging costs. Another subprime problem?
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