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Mean Variance: HJB

Objective of this talk

We develop numerical methods for solving HJB PDEs for

Pre-commitment mean-variance
Time consistent mean-variance
Mean-quadratic variation

We can apply arbitrary constraints to the optimal policy

Example: investor who seeks to maximize wealth/income ratio
at retirement

With realistic constraints (no bankruptcy, maximum leverage
ratio)

All efficient frontiers are very similar
But optimal policies are very different
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Mean Variance: HJB

Defined Contribution Pension Plan Wealth Accumulation
We consider an investor who seeks to maximize the ratio of
accumulated wealth to their annual salary at retirement (Cairns et
al, 2006).
Investor can allocate wealth to risky asset S which follows

dS = (r + ξσ)S dt + σS dZ1

r = risk free rate ; dZ1 = increment of a Wiener process

σ = volatility ; ξ = market price of risk

Or to a risk-free asset B which follows

dB

dt
= rB

The investor’s yearly stochastic salary Y follows

dY = (r + µY )Y dt + σY0Y dZ0 + σY1Y dZ1

dZ0 is independent of dZ1
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Mean Variance: HJB

Wealth to Income Ratio: II

The investor contributes into the pension plan account at a rate of
πY per year.

The investor allocates a fraction p to the risky asset S and (1− p)
to the riskless asset B.
The total wealth W = S + B then follows

dW = (r + pξσ)W dt + pσWdZ1 + πYdt

Define new state variable X (t) = W (t)/Y (t)

Then by Ito’s Lemma, we obtain

dX = [π + X (−µY + pσ(ξ − σY1) + σ2
Y0

+ σ2
Y1

)]dt

−σY0XdZ0 + X (pσ − σY1)dZ1
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Mean Variance: HJB

Optimal Strategy

Define

p(X , t) = dynamic fraction invested in the risky asset

XT = terminal wealth to income ratio

Let

E
p(·)
t,x [·] = E [·|X (t) = x ] with p(s,X (s)), s ≥ t

being the strategy along path X (s), s ≥ t

Var
p(·)
t,x [·] = Var[·|X (t) = x ] Variance under strategy p(·)

along path X (s), s ≥ t
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Mean Variance: HJB

Mean Variance Optimization

Now, we seek to find the control p(·) which solves 1

sup
p(·)∈P

{
E
p(·)
t,x [XT ]︸ ︷︷ ︸
Reward

−λVar
p(·)
t,x [XT ]︸ ︷︷ ︸
Risk

}
,

P is the set of admissible controls (1)

Solving the above problem for λ ∈ [0,∞) traces out the efficient
frontier.

1Using a scalarization method to determine the Pareto optimal points
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Mean Variance: HJB

LQ Embedding (Zhou and Li (2000), Li and Ng (2000))

Equivalent formulation: for fixed λ, if p∗(·) maximizes

sup
p(·)∈P

{
E
p(·)
t,x [XT ]︸ ︷︷ ︸
Reward

−λVar
p(·)
t,x [XT ]︸ ︷︷ ︸
Risk

}
,

P is the set of admissible controls (2)

then there exists a γ = γ(t, x ,E [XT ]) such that p∗(·) minimizes 2

inf
p(·)∈P

E
p(·)
t,x

[(
XT −

γ

2

)2]
. (3)

↪→ Equation (3) can be solved using dynamic programming.

2Strictly speaking, since some values of γ may not represent points on the
original frontier, we need to use the algorithm in Tse, Forsyth, Li (2012) to
remove these points.
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Mean Variance: HJB

Wealth to Income Ratio: III

Let V (x , τ) = E
p(·)
τ=T−t,x [(XT − γ/2)2], then usual steps determine

the HJB equation for V (x , τ)

Vτ = inf
p∈P

{
µpxVx +

1

2
(σpx )2Vxx

}
µpx = π + x(−µY + pσ(ξ1 − σY1) + σ2

Y0
+ σ2

Y1
)

(σpx )2 = x2(σ2
Y0

+ (pσ − σY1)2)

V (x , τ = 0) = (x − γ

2
)2

We can easily develop numerical methods for solving this HJB
equation, for arbitrary constraints on the control.

We can guarantee convergence to the viscosity solution
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Mean Variance: HJB

Pre-Commitment Policy: Not Time Consistent
But

p∗t (s,X (s)) 6= p∗t+∆t(s,X (s)) ; s ≥ t + ∆t ,

p∗t = Optimal Policy as seen at time t

p∗t+∆t = Optimal Policy as seen at time t + ∆t

The strategy which solves problem (2) has been called the
pre-commitment policy (Basak,Chabakauri: 2010; Bjork et al:
2010)

Much discussion on the economic meaning of such strategies.

However, there are economic situations where
pre-commitment is the correct strategy

Optimal trade execution
Asset liability management (if I have time, I will relate a
personal story about this)

Different applications may require different strategies.
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Mean Variance: HJB

If you don’t like pre-commitment: How about Mean
Quadratic Variation?

Formally, the quadratic variation risk measure is defined as

Riskt = E

[∫ T

t

(
dX (t ′)

)2

]
X = wealth to income ratio

This is the quadratic variation of the X (t) = W (t)/Y (t) process.

This measures risk in terms of the average variability of wealth (in
units of yearly income) along the entire trading path.

This problem is naturally time consistent.

10 / 21



Mean Variance: HJB

Mean Quadratic Variation
Find optimal strategy p(·) which maximizes (for fixed λ)

sup
p(·)∈P

{
E
p(·)
x ,t

[
BT

]︸ ︷︷ ︸
Reward

−λE
p(·)
x ,t

[∫ T

t

(
dX (t ′)

)2
]

︸ ︷︷ ︸
Risk

}

(4)

Originally suggested as a risk measure by Brugierre (1996).

Industry standard approach to optimal trade execution uses
quadratic variation as the risk measure.3

One can easily derive the HJB equation for the optimal control
p∗(·) for Mean Quadratic variation optimal strategies

Varying λ will trace out a curve in the expected value, quadratic
variation plane

3Although this is not widely known. They think it’s a good approximation
to variance (Almgren and Chriss (2001))
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Mean Variance: HJB

Time consistent mean-variance

Another alternative to pre-commitment: maximize (for fixed λ)

sup
p(·)∈P

{
Ep
t,x [XT ]︸ ︷︷ ︸
Reward

−λVar vt,x [XT ]︸ ︷︷ ︸
Risk

}
,

P is the set of admissible controls (5)

But we require that controls are time consistent

p∗t (s,X (s)) = p∗t+∆t(s,X (s)) ; s ≥ t + ∆t , (6)

Suggested by (Basak,Chabakauri: 2010; Bjork et al: 2010).

Can devise numerical method for solving this problem (EJOR:
Wang, Forsyth (2011))
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Mean Variance: HJB

Time Consistent Mean Variance

sup
p(·)∈P

{
E
p(·)
t,x [XT ]︸ ︷︷ ︸
Reward

−λVar
p(·)
t,x [XT ]︸ ︷︷ ︸
Risk

}
,

p∗t (s,X (s)) = p∗t+∆t(s,X (s)) ; s ≥ t + ∆t (7)

But:

Why assume λ = const.?

Is this Pareto optimal in any sense?

if λ = λ(X ) ⇒ strange results

In the unconstrained control case

→ For the case of nonstochastic salary, the optimal policy for
time consistent mean variance is identical to the optimal policy
for mean quadratic variation (closed form solution available)

13 / 21



Mean Variance: HJB

Admissible Controls

Recall that P is the set of admissible controls.
Let D be the set of possible values of x (wealth/income)
We consider the following cases:

Case D P
Allow Bankruptcy [−∞,+∞] (−∞,+∞)

No Bankruptcy [0,∞] [0,+∞)
Bounded Control [0,∞] [0, pmax]

• Bankruptcy: trading continues even if insolvent (not realistic)
• No bankruptcy: also not shorting stock
• Bounded control: realistic case, i.e. pmax = 1.5 corresponds to
maximum borrowing of 50% of net wealth
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Mean Variance: HJB

Convergence to the Viscosity Solution: Mean Variance
Pre-commitment case; Finite Difference Method

Theorem
Provided that (a) the HJB PDE satisfies a strong comparison
result (b) fully implicit timestepping is used with a positive
coefficient discretization, then the discrete scheme converges to
the unique, continuous viscosity solution of the control problem.

Proof.
The scheme is

Unconditionally monotone

Unconditionally stable

Consistent in the viscosity sense

Hence convergence follows from the results in (Barles, Souganidis
(1991)).

15 / 21



Mean Variance: HJB

Wealth to Income Ratio Case

µy 0. ξ1 0.2
σ 0.2 σY 1 0.05
σY 0 0.05 π 0.1
T 20 years
P [0, 1.5] D [0,+∞)

The total wealth W follows

dW = (r + pξσ)W dt + pσWdZ1 + πYdt

The investor’s yearly salary Y follows

dY = (r + µY )Y dt + σY0Y dZ0 + σY1Y dZ1

dZ0 is independent of dZ1

We seek to maximize X (T ) = W (T )/Y (T ).
Risky asset proportion p ∈ P, x = w/y ∈ D.
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Mean Variance: HJB

Efficient Frontiers: Pre-commitment mean variance

No analytic
solutions available

No risk free portfolio
(due to salary risk)

X (t = 0) = .5

std[X(t=T)] at t = 0

E
[X

(t
=

T
)]

at
t=

0

1 2 3 4
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3.5

4

4.5

5

5.5

6

Allow bankruptcy

No bankruptcy

Bounded control
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Mean Variance: HJB

Optimal Strategy: Pre-commitment mean variance
• X (t = 0) = 0.5, (Stdp∗

t=0[XT ],E p∗

t=0[XT ]) = (1.7407, 3.9551).

As time goes on,
and if x has not
increased, the
investor takes on
more risk (agrees
with analytic
solution,
non-stochastic
salary case)

At any time, if
(W /Y ) is large
enough, all wealth is
switched to the risk
free asset

X = W/Y
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Mean Variance: HJB

Efficient Frontiers, Bounded Control: comparison of
strategies

std[X T] at t = 0

E
[X

T
]a

tt
=

0
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Mean Variance: HJB

Comparison of Controls

(X (t = 0) = 0.5

Control at t = 0+

Stdp∗

t=0,x [X (T )] '
3.24

Efficient Frontiers
similar

Controls quite
different
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Mean Variance: HJB

Conclusions
There exists an HJB equation which generates the optimal
control for continuous time mean-variance portfolio
optimization (pre-commitment policy)
This HJB equation can be reliably solved, and used to
generate points on the efficient frontier

Any type of constraint can be applied to the control
Assuming a strong comparison property holds, then the
scheme will converge to the viscosity solution of the HJB PDE

Similar techniques can be used to generate controls for
Time consistent mean variance
Mean quadratic variation

For bounded control case, all these strategies give similar
efficient frontiers, but controls are different
Which strategy should we choose?

Sometimes, pre-commitment is optimal (college fund for my
son)
Can extend numerical PDE method to Better than mean
variance (Cui, Li, Wang, Zhu, 2012) strategy (jump diffusion)
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