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Introduction

Washington Post, May, 2004

”They have stumbled onto a killer app for the financial

needs of today’s boomers. It’s called a GMWB. The deal

is that for a half-percentage point per year, you can invest

with a guarantee that your entire principal will be returned

to you, provided you do not withdraw at a rate greater

than 7% annually.”
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Introduction

The Retirement Risk Zone
Consider an investor with a retirement account, which is

invested in the stock market

Over the long run (before retirement), it does not matter if

• the market first drops by 10% per year over several years and then goes
up by 20% per year for several years; or

• the market first goes up by 20% per year and then drops by 10% per
year

(.9)(.9)...(1.2)(1.2)... = (1.2)(1.2)...(.9)(.9)...

Atlanta: October 16 2



Introduction

The Retirement Risk Zone II
This is not the case once the investor retires, and begins to

make withdrawals from the retirement account

The outcomes will be very different in the cases:

• in the first few years after retirement, the market has losses, and the
account is further depleted by withdrawals, followed by some years of
good market returns; compared to

• a few years of good market returns, after retirement (including
withdrawals), followed by some years of losses

Losses in the early years of retirement can be devastating in

the long run! Early bad returns can cause complete depletion

of the account.
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Introduction

A Typical GMWB Example

Investor pays $100 to an insurance company, which is invested

in a risky asset.

Denote amount in risky asset sub-account by W = 100.

The investor also has a virtual guarantee account A = 100.

Suppose that the contract runs for 10 years, and the guaranteed

withdrawal rate is $10 per year.

Atlanta: October 16 4



Introduction

A Typical GMWB Example II
At the end of each year, the investor can choose to withdraw

up to $10 from the account. If $γ ∈ [0, 10] is withdrawn, then

Wnew = max(Wold − γ, 0) ; Actual investment

Anew = Aold − γ ; V irtual account

This continues for 10 years. At the end of 10 years, the investor

can withdraw anything left, i.e. max(Wnew, Anew).

Note: the investor can continue to withdraw cash as long as

A > 0, even if W = 0 (recall that W is invested in a risky

asset).
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Introduction

Example: Order of Random Returns
Good Returns at Start

Time Return (%) W Balance ($) Withdrawal ($)
1 41.65 141.65 10
2 31.12 172.62 10
3 20.15 195.39 10
4 -30.25 129.31 10
5 18.05 140.85 10
6 16.82 152.86 10
7 20.12 171.60 10
8 7.44 173.62 10
9 -40.90 96.70 10
10 -7.5 80.20 10

Total Withdrawal Amount ($) 170.20
Ten year balance if no withdrawal ($) 151.37
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Introduction

Same Random Returns: Different Order
No GMWB

Time Return (%) W Balance ($) Withdrawal ($)
1 -30.25 69.75 10
2 -40.90 35.31 10
3 16.82 29.57 10
4 7.44 21.03 10
5 41.65 15.62 10
6 20.12 6.75 6.75
7 31.12 0 0
8 18.05 0 0
9 20.15 0 0
10 -7.5 0 0

Total Withdrawal Amount ($) 56.75
Ten year balance if no withdrawal ($) 151.37
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Introduction

Unlucky Order of Returns: With GMWB
GMWB Protection

Time Return (%) W Balance ($) Withdrawal ($)
1 -30.25 69.75 10
2 -40.90 35.31 10
3 16.82 29.57 10
4 7.44 21.03 10
5 41.65 15.62 10
6 20.12 6.75 10
7 31.12 0 10
8 18.05 0 10
9 20.15 0 10
10 -7.5 0 10

Total Withdrawal Amount ($) 100
Ten year balance if no withdrawal ($) 151.37
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Introduction

Why is this useful

The investor can participate in market gains, but still has a

guaranteed cash flow, in the case of market losses

This insulates pensioners from losses in the early years of

retirement.

This protection is paid for by deducting a yearly fee α from the

amount in the risky account W each year.

In 2007, 43% of all variable annuities sold in the US included

a GMWB type option (including lifetime benefit).

Atlanta: October 16 9



Introduction

Some More Details

The investor can choose to withdraw up to the specified

contract rate Gr without penalty.

Usually, a penalty (κ > 0) is charged for withdrawals above Gr

Let γ̂ be the rate of withdrawal selected by the holder.

Then, the rate of actual cash received by the holder of the

GMWB is

f̂(γ̂) =
{

γ̂ if 0 ≤ γ̂ ≤ Gr,

γ̂ − κ(γ̂ −Gr) if γ̂ > Gr.

Atlanta: October 16 10



Formulation

Stochastic Process
Let S denote the value of the risky asset, we assume that the risk neutral
process followed by S is

dS = rSdt + σSdZ

r = risk free rate; σ = volatility

dZ = φ
√

dt ; φ ∼ N (0, 1)

The risk neutral process followed by W is then (including withdrawals dA).

dW = (r − α)Wdt + σWdZ + dA, if W > 0

dW = 0, if W = 0

α = fee paid for guarantee ; A = guarantee account
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No-arbitrage value

No-arbitrage Value
Let V (W,A, τ) (τ = T − t, T is contract expiry) be the

no-arbitrage value of the GMWB contract (i.e. the cost of

hedging).

At contract expiry (τ = 0) we have (payoff = withdrawal)

V (W,A, τ = 0) = max(W,A(1− κ))

It turns out that it is optimal to withdraw at a rate γ̂

• γ̂ ∈ [0, Gr], or

• γ̂ = ∞ (instantaneously withdraw a finite amount)
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Impulse Control

Impulse Control

Let

LV =
1
2
σ2W 2VWW + (r − α)WVW − rV.

Since we have the option of withdrawing at a finite rate at each point in
(W,A, τ), Ito’s Lemma and no-arbitrage arguments give

Vτ − LV − max
γ̂∈[0,Gr]

(
γ̂ − γ̂VW − γ̂VA

)
≥ 0

Note that γ̂ is a finite withdrawal rate. Withdrawals only allowed if A > 0.
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Impulse Control

Impulse Control II

We also have the option of withdrawing a finite amount instantaneously
(withdrawing at an infinite rate) at each point in (W,A, τ)

V (W,A, τ)− sup
γ∈(0,A]

[
V (max(W − γ, 0), A− γ, τ) + (1− κ)γ − c

]
≥ 0 .

where γ is a finite withdrawal amount. Note that c > 0 is a fixed cost
(which can be very small).
• V (max(W − γ, 0), A− γ, τ) is the contract value after a withdrawal.
• (1− κ)γ − c is the cash received by the holder.

Note that this equation specifies that any amount in the remaining guarantee
account can be withdrawn instantaneously.
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HJB Equation

HJB Variational Inequality

Since it must be optimal to either withdraw at a finite rate

(including zero) or withdraw a finite amount at each point,

then this can all be written compactly as a Hamilton Jacobi

Bellman Variational Inequality

min
{

Vτ − LV − max
γ̂∈[0,Gr]

(
γ̂ − γ̂VW − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (max(W − γ, 0), A− γ, τ) + (1− κ)γ − c

]}
= 0
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HJB Equation

Previous Work on Pricing GMWBs
These papers use no-arbitrage approach, and handle optimal withdrawal.

• Milevsky, Salisbury (Insurance: Math. Econ., 2006)

– Formulated as a singular control problem
– No details about computation

• Bauer, Kling, Russ ( Working paper, 2006)

– Apply optimal control at discrete withdrawal times
– Analytic solution between discrete withdrawal times. Uses Green’s

function integration.

• Dai, Kwok, Zong (to appear, Math. Finance)

– Singular control formulation, solved numerically using a penalty
method.
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A Simpler Problem

Discrete Withdrawal Time Approximation

Rather than attempt to solve the HJB Impulse Control problem directly,
let’s replace this problem by a discrete withdrawal problem

• Assume that the holder can only withdraw at discrete withdrawal times
τ1, ..., τN , with τi+1 − τi = ∆tw

• Use dynamic programming idea, work backwards from t = T (τ = 0), so
that V (W,A, 0) = max(W,A(1− κ))

• During the interval from τ = 0 to τ = τ1 (the first withdrawal time going
backwards) we solve

Vτ − LV = 0 ; LV =
1
2
σ2W 2VWW + (r − α)WVW − rV.
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Discrete Withdrawal Problem

Optimum Strategy: Discrete Withdrawals
At τ1, we assume that the holder withdraws the optimum

amount γ

V (W,A, τ+
1 ) =

max
γ∈[0,A]

[
V

(
max(W − γ, 0), A− γ, τ1

)
+ f(γ)

]
,

where now the cash flow term is

f(γ) =
{

γ if 0 ≤ γ ≤ G,

γ − κ(γ −G)− c if γ > G.

G = Gr∆tw (G = contract amount in ∆tw)
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Discrete Withdrawal Problem

Discrete Withdrawals

Then, from τ+
1 to τ2, we solve

Vτ − LV = 0 ; No A dependence in LV

Then, we determine the optimum withdrawal at τ+
2 , and so on,

back down to τ = T (t = 0) today.

This would appear to be a reasonable approximation to reality.

In fact, most real contracts allow only discrete withdrawals.
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Numerical Method

Discrete Withdrawal: A Numerical Scheme

Define nodes in the W direction [W0,W1, . . . ,Wimax], and in

the A direction [A0, A1, . . . , Ajmax].

Let V (Wi, Aj, τ
n) = V n

i,j.

Let (LhV )n
i,j be a discrete form of the operator LV .

Away from withdrawal times, we solve

V n+1
i,j − V n

i,j

∆τ
= (LhV )n+1

i,j

Atlanta: October 16 20



Numerical Method

A Numerical Scheme II

At withdrawal time τn, we then solve the optimization problem

V n+
i,j = max

γn
i,j∈[0,Aj]

[
Ii,j(γn

i,j)V
n + f

(
γn

i,j

)]
,

where I is a linear interpolation operator

• we use a linear interpolant of V n
i,j to determine the optimum

withdrawal at each node γn
i,j.
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Numerical Method

Numerical Scheme III

W

A

Aj-1

Aj

Aj+1

(Vj-1)τ = L (V j-1)

(Vj)τ = L (V j )

(Vj+1)τ = L (V j+1)

Away from withdrawal

times, We solve a

decoupled set of 1-

d PDEs.

At withdrawal times,

we solve a set

of decoupled optimization

problems.
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Question

Obvious Question

If we let ∆τw → 0, does this discrete withdrawal approximation

converge to the solution of the Impulse Control HJB equation?

Solutions of HJB equations not smooth in general.

What does it mean to solve a differential equation where the

solution is not differentiable?

We need to look for the viscosity solution of the Impulse Control

HJB equation.
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Viscosity Solution

Viscosity Solution

Briefly, a viscosity solution is defined in terms of smooth test

functions.

These smooth test functions touch the viscosity solution at

a single point, and are always above or below the solution

elsewhere.

The viscosity solution is squeezed between these nearby test

functions.

The viscosity solution does not necessarily satisfy the PDE in

any conventional sense.
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Convergence

Basic Result
Theorem 1 (Convergence to the Viscosity Solution

(Barles, Souganidis (1993))). Any numerical scheme which
is consistent, l∞ stable, and monotone, converges to the
viscosity solution.

Consistent Discrete scheme applied to smooth test function

converges to HJB equation as mesh, timestep → 0 (smooth

test functions squeeze the solution)

Stability (l∞) Solution bounded in l∞ as mesh, timestep→ 0.
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Monotone Scheme

Monotonicity: What does it mean?

Let V n
i,j, Qn

i,j be two discrete solutions to the same HJB

equation.

Lemma 1 (Discrete Arbitrage Inequality). If V n
i,j, Q

n
i,j are

generated using a monotone scheme, and ∀i, j, Q0
i,j ≥ V 0

i,j,
then

Qn
i,j ≥ V n

i,j ; ∀i, j;∀n

In other words, if the payoff Q(W,A, 0) ≥ V (W,A, 0), then

this inequality must hold at all earlier times, for the discrete

solution, regardless of the timestep or meshsize.
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Numerical Scheme

Convergence: Basic Idea

If we allow discrete withdrawals every timestep, then our numerical method
is

V n+1
i,j − max

γn
i,j∈[0,Aj]

[
Ii,j(γn

i,j)V
n + f

(
γn

i,j

)]
−∆τ

(
LhV

)n+1

i,j
= 0 .

where the cash flow term f
(
γn

i,j

)
is

f(γ) =
{

γ if 0 ≤ γ ≤ G,
γ − κ(γ −G)− c if γ > G.

G = Gr∆τ

and I is a linear interpolation operator
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Numerical Scheme

Does it Converge?

We want to show that this scheme converges as ∆τ , ∆A, ∆W

→ 0 to the viscosity solution of

min
{

Vτ − LV − max
γ̂∈[0,Gr]

(
γ̂ − γ̂VW − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (max(W − γ, 0), A− γ, τ) + (1− κ)γ − c

]}
= 0

This seems intuitively obvious, but takes some work.
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Convergence

Convergence
Theorem 2 (Strong Comparison Result). The GMWB Impulse Control
problem satisfies the Strong Comparison Result, i.e. there is a unique,
continuous viscosity solution to the Impulse Control Problem. (Seydel,
2008)

Theorem 3 (Convergence to the Viscosity Solution). The discrete
withdrawal numerical method, with withdrawal interval ∆tw → 0
converges to the unique viscosity solution of the Impulse Control problem.

Proof . This scheme is consistent, stable, and monotone, hence converges

to the viscosity solution. (I will spare you the details). 2
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Convergence

Convergence

So, we now have a single scheme which

• Can be used to price GMWB contracts with finite withdrawal

intervals (the usual case in real contracts, i.e. withdrawals

only allowed once or twice a year)

• We can also price GMWB contracts in the limit as the

withdrawal interval → 0

→ Convergence to the Impulse Control problem guaranteed

• No need for different method for these two cases!
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The Real Problem

Examples
Recall that the investor pays no extra up-front fee for the

guarantee (only the initial premium w0).

The insurance company deducts an annual fee α from the

balance in the sub-account W .

Problem: let V (α, W,A, τ) be the value of the GMWB

contract, for given yearly guarantee fee α.

Assume that the investor pays an initial premium w0 at t = 0
(τ = T ).

Find the no-arbitrage fee α such that V (α, w0, w0, T ) = w0

(we do this by a Newton iteration).
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Example

Examples

Parameter Value

Expiry time T 10.0 years

Interest rate r .05

Maximum withdrawal rate Gr 10/year

Withdrawal penalty κ .10

Volatility σ .30

Initial Lump-sum premium w0 100

Initial guarantee account balance 100

Initial sub-account value 100

Continuous Withdrawal Yes
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Example

The No-arbitrage Fee (t = 0, A = 100)
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Example

Optimal Withdrawal Strategy

t = 0, fair fee charged for w0 = 100. Indeterminate region: appears to

converge to optimal withdrawal rate γ̂ = 0 ?
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Example

Indeterminate Region?

In the continuous withdrawal region, we have

Vτ = LV + max
γ̂∈[0,Gr]

[
γ̂(1− VW − VA)

]
(1)

In the indeterminate region, we observe that (mesh, timestep → 0)[
1− VW (Wi, Aj,∆τ)− VA(Wi, Aj,∆τ)

]
i,j

→ 0−

If (1− VW − VA) → 0, then any withdrawal rate in [0, Gr] is optimal.

Control may not be unique (but value is unique).
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Example

No-arbitrage Fee (Varying Volatility)

σ = .15 σ = .20 σ = .30
Fee (bps) 70 139 313

• Current volatility of S&P '??

• Typical fees charged: 50 bps, too low for current market

conditions.

• Insurance companies seem to be charging fees based on

marketing considerations, not hedging costs.

• Fee should be even higher if other (typical) contract options

considered
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Discrete Withdrawal

Discrete vs. Continuous Withdrawal

Most contracts allow only withdrawals at discrete times (i.e.

twice a year). What is the effect of allowing only discrete

withdrawals?

T = 10, Gr = 10/year Fee (bps)

Withdrawal Frequency 1 2 ∞
(number per year)

σ = .20 129 133 139

σ = .30 293 302 313

Allowing two withdrawals/year → same fee to within 10 bps as

continuous withdrawal (much cheaper computation).
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Jump Process

Alternative Model: Jump Process for Asset S

dS

S
= (r − λκ)dt + σdZ + (J − 1)dq

σ = volatility, κ = EQ[J − 1],

dZ = increment of a Wiener process,

dq =

{
0 with probability 1− λdt

1 with probability λdt,

λ = mean arrival rate of Poisson jumps; S → JS.

→ Impulse control problem with a Partial Integro Differential Equation

(PIDE)
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PIDE

Jump Process for Underlying Asset S

Assume jump size log-normally distributed. Jump parameters

from Andersen, Andreasen(2000), calibrated to S&P500.

T = 10, Gr = 10/year Fee (bps)

σ = .15 (no jump) 70

σ = .15 + jumps 310

• If we have normal markets with σ = .15 and occasional large

drops (jumps).

↪→ No-arbitrage fee increases substantially!

• Better model for long-term guarantees?
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Consumer Behaviour

Suboptimal Withdrawal

“Your model assumes optimal withdrawals. Consumers never

act optimally.”

• Let Ud(W,A, τ) be the guarantee value obtained by always

withdrawing at the contract rate (the default strategy for a

passive consumer).

• Let Uo(W,A, τ) be the value obtained from the optimal

strategy.

• We price the guarantee by assuming that the consumer

will not bother to optimally withdraw, unless it is sufficiently

worthwhile to do so.
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Consumer Behaviour

Suboptimal Withdrawal II

Let V (W,A, τ) be the value of the guarantee (Uo = optimal;

Ud = default).

If Uo(W,A, τ)− Ud(W,A, τ) ≥ βW0 Then

V (W,A, τ) = Uo(W,A, τ)

Else

V (W,A, τ) = Ud(W,A, τ)

βW0 is a fraction β of the initial investment W0.
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Consumer Behaviour

Suboptimal Withdrawal Results

• If β = 0 → always withdraw optimally.

• If β = ∞→ (always withdraw at default rate).

β = ∞
↪→ No-arbitrage fee about 50% of optimal withdrawal fee.

More reasonable assumption: β = .05, i.e. investors will

withdraw optimally if it increases the value of the guarantee by

.05W0.

↪→ No-arbitrage fee about 75% of optimal withdrawal fee.
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Issues

Other Modelling Issues

• Fee splitting: management fee for underlying mutual fund,

trailer fee for sales agents, separate from fee for guarantee

• Time dependent surrender charges

• Sub-optimal withdrawals

• Reset features

• Chen, Vetzal, Forsyth (2008) Insurance: Mathematics and

Economics

• Chen, Forsyth (2008) Numerische Mathematik
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Conclusions

Conclusions
• We have developed a single scheme which can be used to price GMWB

contracts with finite withdrawal intervals, and the limiting case of
infinitesimal withdrawal intervals

• In case of infinitesimal withdrawal intervals, we have proven convergence
to the viscosity solution of the Impulse Control problem

• Insurance companies seem to be charging fees which are too low to cover
hedging costs.
↪→ Similar story for Segregated Funds in Canada (2000)
↪→ Comment from actuary in 2001, “ We take a long term view: hedging
Segregated Fund guarantees is unnecessary.”
↪→ In 2002, regulators required insurance companies selling Segregated
Funds in Canada to have large reserve requirements, or put in place a
hedging strategy.
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