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Abstract1

Dynamic mean-variance (MV) optimal strategies are inherently contrarian. Following peri-2

ods of strong equity returns, there is a tendency to de-risk the portfolio by shifting into risk-free3

investments. On the other hand, if the portfolio still has some equity exposure, the weight on4

equities will increase following stretches of poor equity returns. This is essentially due to using5

variance as a risk measure, which penalizes both upside and downside deviations relative to a6

satiation point. As an alternative, we propose a dynamic trading strategy based on an expected7

wealth (EW), expected shortfall (ES) objective function. ES is defined as the mean of the worst8

β fraction of the outcomes, hence the EW-ES objective directly targets left tail risk. We use9

stochastic control methods to determine the optimal trading strategy. Our numerical method10

allows us to impose realistic constraints: no leverage, no shorting, infrequent rebalancing. For 511

year investment horizons, this strategy generates an annualized alpha of 180 bps compared to a12

60:40 stock-bond constant weight policy. Bootstrap resampling with historical data shows that13

these results are robust to parametric model misspecification. The optimal EW-ES strategy is14

generally a momentum-type policy, in contrast to the contrarian MV optimal strategy.15

Keywords: optimal control, expected shortfall, apparent alpha, tail risk, asset allocation,16

resampled backtests17

JEL codes: G11, G2218

AMS codes: 91G, 65N06, 65N12, 35Q9319

1 Introduction20

The Sharpe ratio is a commonly used measure of investment performance. However, the Sharpe ratio21

is easy to manipulate. Any strategy which includes non-linear payoffs (e.g. a portfolio including22

options) can produce an apparent outperformance (Dybvig and Ingersoll, 1982; Lhabitant, 2000;23

Goetzmann et al., 2002). As noted by Spurgon (2001), selling off the right side of the terminal24

wealth distribution can improve the Sharpe ratio. Such a strategy is simple to implement by25

owning the underlying asset and selling out of the money calls on the asset (covered call writing).26

Of course, in a complete market options can be replicated by dynamically trading stocks and27

bonds. Consequently any portfolio containing options is equivalent to a dynamic trading strategy.28

Hence, Sharpe ratios can be maximized by using optimal stochastic control techniques, coupled with29

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca, +1 519 888 4567 ext. 44415.

bSchool of Accounting and Finance, University of Waterloo, Waterloo ON, Canada N2L 3G1,
kvetzal@uwaterloo.ca, +1 519 888 4567 ext. 46518.
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a suitable objective function. An interesting corollary to this observation is the use of stochastic30

control in fraud detection (Bernard and Vanduffel, 2014).31

Except for extremely pathological cases, a strategy which maximizes a mean-variance objective32

function will also maximize the Sharpe ratio. In the dynamic trading context, a mean-variance33

optimal strategy can be determined by minimizing a quadratic target objective function (Li and34

Ng, 2000; Zhou and Li, 2000; Vigna, 2014). In a complete market, the optimal strategy never35

exceeds the target (Cui et al., 2012; Vigna, 2014; Bauerle and Grether, 2015; Dang and Forsyth,36

2016). Consequently, even though the risk measure is symmetric (i.e. the variance), the optimal37

strategy produces a highly skewed terminal wealth distribution (Goetzmann et al., 2002; van Staden38

et al., 2021).39

A dynamic investment strategy which maximizes the Sharpe ratio also produces an apparent40

alpha (Goetzmann et al., 2002) relative to a fixed proportion strategy. However, due to the highly41

skewed distributions produced by these strategies, it is not clear that the resulting wealth distri-42

bution is actually desired by the investor, in spite of these apparently good performance metrics.43

Of course, it could be argued that variance is a poor risk measure in any case. Investors are more44

concerned with downside risk measures. Indeed, upside volatility can be considered desirable.45

As a result, in this paper, we propose using expected shortfall (ES) as the risk measure. ES is46

simply the average of the worst β fraction of outcomes, and hence is a downside tail risk measure. ES47

is basically the negative of the conditional value at risk (CVAR). Using stochastic control techniques,48

we determine the optimal investment strategies which are Pareto optimal, with reward given by49

expected terminal wealth (EW), and risk measured by ES. For medium-term investments (i.e. 2-550

years) the optimal EW-ES strategy generates a significant annualized alpha compared to constant51

weight policies. The optimal controls are determined using a parametric model of stock and bond52

processes, calibrated to 93 years of historical data. We verify that these strategies are robust to53

parametric model uncertainty, by testing the strategies on bootstrapped resampled historical data.54

It is interesting to observe that the Sharpe ratio maximizing dynamic strategy (or equivalently55

quadratic shortfall minimizing) is fundamentally contrarian. Under this policy, when stocks increase56

in value, they are sold, and assets shifted to bonds. When stocks decrease in value, stocks are bought,57

and bond holdings reduced. However, we see the completely opposite policy in Pareto optimal EW-58

ES strategies. The optimal EW-ES policy has more of a momentum character: when stocks go59

up in value, stock holdings are increased. When stocks go down in value, stocks are sold, and60

assets shifted to bonds. This is simply a consequence of the ES penalty; when the investor’s wealth61

is reduced, increasing the bond fraction protects against further moves to the downside. In fact,62

this strategy provides a mathematical rationale for the trader’s maxim “Cut your losses, ride your63

gains”.64

Since the Sharpe ratio maximizing and EW-ES optimal strategies have fundamentally different65

investment policies, and hence different terminal wealth distributions, each approach may appeal66

to different investors, at different stages in their investment lifecyles. However, for medium-term67

investors having wealth-preservation as a high priority, EW-ES strategies are worth considering.68

We note that both the EW-ES and Sharpe ratio maximizing strategies are pre-commitment69

polices, which are not formally time consistent. However, this is really just a matter of interpretation,70

since for both strategies there is an equivalent induced objective function which generates the71

same controls, yet is time consistent (Strub et al., 2019). Hence, in both cases, these policies are72

implementable (Forsyth, 2020a). In addition, as noted by Bernard and Vanduffel (2014), if the EW-73

ES strategy is realized in an investment product sold to a retail investor then the optimal policy74

from the investor’s point of view is in fact of pre-commitment type, since the retail client does not75

herself trade in the underlying assets during the lifetime of the contract.76

In the case of an investment product sold to a retail investor, we can envision that the investor77
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repeatedly buys the product for 2 − 5 year terms. Our results show that over a 5-year term, this78

product generates an alpha of 180 bps per year compared to a 60:40 stock-bond portfolio. Even for a79

2-year investment horizon, the EW-ES strategy generates an alpha of 120 bps per year compared to80

a 60:40 stock-bond portfolio. This product would be appealing to investors who want to outperform81

a typical constant weight strategy, but who are also concerned with worst case tail risk over 2 − 582

year periods.83

To begin, in Section 2, we review the known results for Sharpe ratio maximizing strategies,84

and define the alpha of these strategies relative to fixed weight policies. We also provide some85

illustrative results, documenting the performance of these strategies. We subsequently proceed to86

formally define the EW-ES problem, describe our algorithm for determination of the optimal control,87

define the appropriate alpha, and discuss the numerical results.88

2 Background: Maximizing Sharpe Ratios and Defining Alpha89

Let r be the risk-free return, and T be the investment horizon. Wt is the wealth of a portfolio at90

time t. The continuously compounded Sharpe ratio is then defined as91

S =
E[WT ]−W0e

rT

std [WT ]
, (2.1)

where E[·] and std [·] respectively denote expectation and standard deviation. Note that S is defined92

in terms of the terminal wealth and standard deviation at time T (Lhabitant, 2000; Goetzmann93

et al., 2002; Bernard and Vanduffel, 2014), in contrast to the instantaneous Sharpe ratio, which is94

defined in terms of averaging short period returns. Dynamic trading strategies will have different95

equity exposure over different short-term periods, and so averaging short period returns is not a96

meaningful metric.97

Consider a market containing a stock index and a risk-free bond. Let the amount invested in
the stock index be St, and the amount in the risk-free bond be Bt. We assume that

dSt
St

= µ dt+ σ dZ

dBt
Bt

= r dt , (2.2)

where µ is the stock drift rate, σ is the volatility, and dZ is the increment of a Wiener process. Let
p be the fraction of the total portfolio Wt invested in the stock. Assuming continuous rebalancing,
then the process for Wt is

dWt

Wt
= p

dSt
St

+ (1− p)dBt
Bt

= (r + p(µ− r)) dt+ pσdZ . (2.3)

Given an initial investment W0 at t = 0, with terminal wealth WT , we can pose the problem of98

determining the optimal control p(Wt, t), t ∈ [0,T ] in terms of a mean-variance objective. Defining99

a scalarization parameter κ > 0, the mean-variance problem can be formulated as100

sup
p(·)

E[WT ]− κVar[WT ] . (2.4)

Varying κ in equation (2.4) traces out the efficient frontier. Problem (2.4) cannot be solved di-101

rectly using dynamic programming. From (Zhou and Li, 2000; Li and Ng, 2000), we learn that we102
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can determine the control p(·) which maximizes objective function (2.4) by solving the alternative103

problem104

inf
p(·)

E[(W ∗ −WT )2] , (2.5)

where we trace out the efficient frontier by varying W ∗. Note that Problem 2.5 can be solved using105

dynamic programming.1106

The optimal control for Problem 2.5 is given by (Zhou and Li, 2000; Li and Ng, 2000; Vigna,
2014)

p =
ξ

σWt

(
W ∗e−r(T−t) −Wt

)
where ξ =

µ− r
σ

. (2.6)

Let W opt
T denote the terminal wealth under strategy (2.6). The efficient frontier is then given by

(Zhou and Li, 2000; Li and Ng, 2000)

E[W opt
T ] = W0e

rT +

(
eξ

2T − 1

)1/2√
Var(W opt

T )

= W0e
rT +

(
eξ

2T − 1

)1/2

std(W opt
T ) . (2.7)

where Var [·] denotes variance.107

Recall that varying W ∗ will move us along the efficient frontier. Since equation (2.7) is a108

monotone increasing function of variance, for a fixed value of E[W opt
T ] the strategy which minimizes109

Var(W opt
T ) also minimizes std(W opt

T ). Consequently, from equations (2.1) and (2.7), the optimal110

Sharpe ratio is111

Sopt =

(
eξ

2T − 1

)1/2

. (2.8)

On the other hand, suppose we rebalance to a constant weight, i.e. p = const. in equation (2.3).
Let W p

T denote the terminal wealth under a constant weight strategy p. Then we have

E[W p
T ] = W0e

(p(µ−r)+r)T

std [W p
T ] = E[W p

T ]

(
e(σp)

2T − 1

)1/2

, (2.9)

with Sharpe ratio

Sp =
1− e−p(µ−r)T(
e(σp)2T − 1

)1/2

' ξ
√
T =

(µ− r)
√
T

σ
; T → 0 or p→ 0 . (2.10)

Note that the continuously compounded Sharpe ratio is a function of p in general, and approaches112

the instantaneous Sharpe ratio only in the limit as T → 0 or p→ 0.113

1In Vigna (2014), it is shown that Wt < W ∗,∀t under the optimal control.
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Let114

E[W opt ,p
T ] = W0e

rT +

(
eξ

2T − 1

)1/2

std(W p
T ) . (2.11)

This can be interpreted as follows. Given a constant weight strategy with equity fraction p,115

which generates std(W p
T ), E[W opt ,p

T ] is the expected terminal wealth under control (2.6) which has116

the same the standard deviation std(W p
T ) (this follows from equation (2.7)).117

A convenient way to compare these strategies is through the apparent annualized α, which we118

define as119

αp =
log(E[W opt,p

T ])− log(E[W p
T ])

T
. (2.12)

This is the extra annualized expected return generated by strategy (2.6) compared to the constant120

weight strategy with equity fraction p, given that both strategies have the same risk, as measured121

by standard deviation. Consistent with Goetzmann et al. (2002), we call αp the apparent alpha,122

since there is no stock-picking skill involved here, merely use of a dynamic control.123

Before proceeding to some illustrative numerical examples, we note that the MV optimal strategy124

with control (2.6) does not restrict the equity weight p in any way, permitting unlimited leverage125

and short-selling. As a result, the strategy is typically very aggressive, with heavy use of leverage126

early on. However, a rigorous solution of Problem 2.4 with no-shorting and no-leverage constraints127

requires numerical solution of a Hamilton-Jacobi-Bellman (HJB) equation (Wang and Forsyth,128

2010). It is more instructive for our purposes to approximate the constrained control using the129

approach in Vigna (2014). We constrain the unconstrained control so that there is no-shorting and130

no-leverage, by letting p∗ be the unconstrained solution to (2.6) and setting131

p = max(0.0,min(p∗,1.0)) . (2.13)

In the following, we will refer to the strategy that uses this constrained approach as the Clipped132

MV Optimal strategy, in contrast to the unconstrained MV Optimal strategy (2.6).133

We conclude this section with a couple of comments about options trading and pre-commitment134

and time consistency. With regard to options, we note that any portfolio that uses covered call135

writing (or equivalently, cash-secured put writing) can be replicated by continuous trading in a136

portfolio which has a risk-free bond and the underlying stock that satisfies the no-shorting, no-137

leverage constraints as in the Clipped MV Optimal strategy (see Appendix A). More generally, in138

the complete market case dynamic trading in the bond and stock is equivalent to using options in the139

trading strategy. Hence, even if options are not directly included in, for example, the MV Optimal140

strategy (2.6), this is clearly equivalent to the use of derivatives. As a result, we can think of any141

financial product based on a dynamic trading strateyg as a structured product. In the presence of142

constraints, the market may be incomplete. However, with some abuse of common terminology, we143

will still refer to such packaged investment vehicles as structured products, even in an incomplete144

market.145

With respect to pre-commitment and time consistency, we make the following two observations:146

Remark 2.1 (Pre-commitment policy). Strategy (2.6) is the pre-commitment solution, which is not147

formally time consistent. However, consider the case of a retail investor, who purchases a financial148

product from a financial institution. The investor does not trade herself in the assets underlying149

the product during the life of the contract. Hence, the performance of the product is evaluated in150

terms of the initial and final wealth. Consequently, as noted in Bernard and Vanduffel (2014), the151

pre-commitment policy is appropriate in this case.152
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Remark 2.2 (Pre-commitment strategies equivalence to induced time consistent strategy). The153

control (2.6) is formally the pre-commitment policy. However, the time zero strategy based on154

the pre-commitment policy solution of Problem 2.4 is identical to the strategy for an induced time155

consistent policy, and hence it is implementable.2 The induced time consistent strategy in this case156

is a target based shortfall, Problem 2.5, with a fixed value of W ∗ ∀t > 0. The concept of induced time157

consistent strategies is discussed in Strub et al. (2019). The relationship between pre-commitment158

and implementable target-based schemes in the mean-variance context is discussed in Vigna (2014;159

2022) and Menoncin and Vigna (2017).160

2.1 Numerical Examples161

We use data from the Center for Research in Security Prices (CRSP) on a monthly basis over162

the 1926:1-2019:12 period.3 Our base case tests use the CRSP 30 day T-bill for the bond asset163

and the CRSP value-weighted total return index for the stock asset. This latter index includes all164

distributions for all domestic stocks trading on major U.S. exchanges. All of these various indexes165

are in nominal terms, so we adjust them for inflation by using the U.S. CPI index (also obtained166

from CRSP). Since we are considering a multi-year investment horizon, it is important to use real167

(i.e. inflation-adjusted) returns.168

With constant parameters, specification (2.2) assumes geometric Brownian motion with drift169

µ and volatility σ for the stock index, and a constant risk-free rate r. Table 2.1 gives maximum170

likelihood estimates for µ and σ, as well as the long-run sample average value of the 30 day T-bill171

rate which we take as a proxy for r. This table also summarizes our investment scenario, with initial172

wealth W0 = 1000, an investment horizon of T = 5 years, and monthly rebalancing.173

Stochastic Model Parameters Investment Scenario

µ .0822 W0 1000
σ .1842 T 5 years
r .0044 Rebalancing Monthly

Table 2.1: Investment scenario and estimated annualized parameters for processes (2.2), based on
inflation-adjusted value-weighted CRSP index and 30 day T-bills. Sample period 1926:1 to 2019:12.

The illustrative examples both here and in subsequent sections of the paper are based on two174

different simulation procedures. The first, which we call the synthetic market, uses standard Monte175

Carlo simulation techniques for asset returns, assuming that the model is correctly specified (i.e.176

in this case, we simulate geometric Brownian motion for stock index returns with µ = .0822 and177

σ = .1842, and we set the risk-free rate r to the constant value of .0044). The second simulation178

procedure, which we refer to as the historical market, relies on the stationary block bookstrap179

method (Politis and Romano, 1994; Politis and White, 2004; Patton et al., 2009; Dichtl et al., 2016).180

In particular, we use monthly resampled returns from the historical data set, with data drawn with181

replacements in blocks of various sizes simultaneously for the stock and bond indexes. Sampling the182

data in blocks incorporates potential serial correlation in the real return data. The blocksizes are183

2An implementable strategy has the property that the investor has no incentive to deviate from the strategy
computed at time zero at later times (Forsyth, 2020a).

3More specifically, results presented here were calculated based on data from Historical Indexes, ©2020 Center for
Research in Security Prices (CRSP), the University of Chicago Booth School of Business. Wharton Research Data
Services was used in preparing this article. This service and the data available thereon constitute valuable intellectual
property and trade secrets of WRDS and/or its third-party suppliers.
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(a) Efficient frontiers. (b) Annualized α.

Figure 2.1: Comparison of constant weight and MV optimal strategies in the synthetic market with
640,000 paths and parameters from Table 2.1.

randomly drawn, based on an expected blocksize parameter b̂ = 1/v where the block size follows184

a geometric distribution with Prob(b = k) = (1− v)k−1v. Enough blocks are then pasted together185

to construct simulated paths over the investment horizon of T = 5 years. The optimal value of b̂186

can be estimated using an algorithm from Patton et al. (2009). However, applying this algorithm187

separately to the real stock index and 30-day T-bill series results in quite different estimates: about188

3 months for the former, and 50 months for the latter. If we take the average estimate from the189

two series, we get about two years. However, we provide results for a range of expected blocksizes190

as a check on the robustness of the historical market results. We emphasize that these historical191

market simulations make no assumptions about the stochastic processes governing bond and stock192

index returns.4193

Figure 2.1 shows synthetic market results for constant weight strategies (with p ∈ [0,1]), along194

with MV Optimal and Clipped MV Optimal strategies, with 640,000 paths and monthly rebalancing.195

Panel (a) plots the efficient frontiers, i.e. E[WT ] vs. std [WT ]. Given that the risk-free rate is196

assumed to be non-stochastic, it is possible to achieve a standard deviation of zero by investing197

entirely in the risk-free asset. The Clipped MV Optimal strategy is clearly constrained to match198

the constant weight strategy for constant equity weights of both p = 0 and p = 1, but it offers some199

outperformance compared to the constant weight strategy using intermediate values of p. The MV200

Optimal strategy provides strong outperformance, particularly for high levels of risk as measured201

by standard deviation. Panel (b) plots the annualized alpha (2.12) in bps for the MV Optimal and202

Clipped MV Optimal strategies, relative to constant weight strategies. The MV Optimal strategy203

gives very high apparent alpha (over 300 bps) as the constant equity weight approaches 1, but204

this unconstrained strategy is arguably quite unrealistic, having no limit whatsoever on leverage.205

In contrast, the Clipped MV Optimal strategy gives a maximum apparent alpha of about 80 bps206

relative to a constant weight strategy with p ≈ 0.6, but as noted above the constraints imposed207

imply that the Clipped MV Optimal strategy cannot offer any outperformance compared to using208

a constant weight of p = 1.5209

4Detailed pseudo-code for block bootstrap resampling can be found in Forsyth and Vetzal (2019).
5The results provided in Figure 2.1 are based on monthly rebalancing and 640,000 paths, but the actual control for

the MV Optimal strategy (2.6) assumes continuous rebalancing. Obviously, in practice rebalancing must be discrete.
Additional simulations were run increasing the number of paths by a factor of 4 and increasing the rebalancing
frequency to 10 times per month. The expected value of terminal wealth and its standard deviation in all cases
changed by less than 1% from the values given in Figure 2.1(a). Somewhat larger changes (up to almost 5%) were
observed for the apparent alphas in Figure 2.1(b), in cases where there was a significant equity weight.
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(a) MV Optimal strategy. (b) Clipped MV Optimal strategy.

Figure 2.2: Heatmaps of optimal equity weights based on parameters from Table 2.1 withW ∗ = 1736.

The MV Optimal control (2.6) depends on time only through the present value factor e−r(T−t).210

Since we are working in real terms and the long run real interest rate r at .0044 is not much above211

zero, the control strategy at any point in time should depend almost entirely on the level of real212

wealth then. This is seen in Figure 2.2, which provides heatmaps indicating the optimal fraction213

invested in equities at various wealth levels over the 5-year investment horizon for the MV Optimal214

and Clipped MV Optimal strategies.6 The contrarian behavior of these strategies alluded to above215

is clear from both panels of Figure 2.2, as the portfolio has reduced equity exposure for high levels216

of real wealth, which would follow from strong prior market returns. Conversely, the strategies217

increase equity exposure at low real wealth, which would result from poor previous returns. The218

two panels are plotted with different color scales to highlight the extremely aggressive nature of219

the MV Optimal strategy. At the initial level W0 = 1000 the equity weight is about 1.60, and this220

would increase to more than 4 if real wealth were to decline by about 40%.7221

Further insight into the properties of both MV optimal strategies can be gleaned from examining222

the evolution of the densities of real wealth over time, as shown in Figure 2.3. These plots use the223

same W ∗ of 1763 with 640,000 paths and monthly rebalancing, although the densities are plotted224

on a quarterly basis. In addition to the densities, both plots show a single vertical black line at225

W0 = 1000, as well as three colored vertical lines, which mark the 5th, 50th, and 95th percentiles of226

the distribution at each point in time shown. Since we are rebalancing discretely, there is a non-zero227

probability of exceeding W ∗. Both strategies have a large left skew. This is particularly true for228

the MV Optimal strategy in panel (a). In contrast, the Clipped MV Optimal strategy in panel (b)229

cuts off part of the extreme left tail.230

We next consider historical market simulations. Recall that this entails resampling from the231

actual observed data, rather than a Monte Carlo simulation of the assumed stochastic model. We232

again use 640,000 paths, and start by considering an expected blocksize of 60 months. Figure 2.4233

is analogous to Figure 2.1 above, showing efficient frontiers and apparent alpha. In this case, there234

are some non-Pareto optimal points which have been removed for plotting purposes. For example,235

the frontier for the constant weight strategy in panel (a) bends back, with higher std [WT ] and lower236

E[WT ] if we consider weights closer to zero. Unlike the synthetic market with a constant interest237

rate where risk could be pushed all the way to zero, that is impossible here since the interest rate238

6Here we specify W ∗ = 1736, a value which results in the Clipped MV Optimal strategy having std [WT ] that is
approximately equal to that produced by a constant weight strategy with p = 0.6.

7Note that control (2.6) implies that leverage is unbounded as Wt → 0+.
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(a) MV Optimal strategy. (b) Clipped MV Optimal strategy.

Figure 2.3: Densities of real wealth over time based on data from Table 2.1 with W ∗ = 1736,
640,000 simulated synthetic market paths, and monthly rebalancing. Densities plotted quarterly. The
black vertical line indicates the initial real wealth W0 = 1000. The colored vertical lines in each density
represent the 5th, 50th, and 95th percentiles of the distribution.

(a) Efficient frontiers. (b) Annualized α.

Figure 2.4: Comparison of constant weight and MV optimal strategies in the historical market with
640,000 paths, expected blocksize of 60 months, and parameters from Table 2.1. Non-Pareto optimal
points removed for each strategy.

is stochastic. Panel (b) shows the expected alpha of zero for the Clipped MV Optimal strategy239

relative to the constant weight strategy with p = 1, and a corresponding significant alpha for the240

unconstrained MV Optimal strategy. However, this is much reduced from the level found in Fig-241

ure 2.1(b). Panel (b) also indicates high alpha for the Clipped MV Optimal strategy compared242

to constant weight strategies that are heavily invested in bonds, but from panel (a) this is largely243

because the constant weight strategy performs poorly in these cases. As might be expected, the244

performance of the two MV Optimal strategies is worse under the conditions of these historical mar-245

ket tests, relative to the synthetic market which uses return data based on the geometric Brownian246

motion model that is assumed when deriving the control strategy.247

These conclusions are reinforced by Figure 2.5, which repeats the exercise but this time draws248

the historical data using an expected blocksize of 24 months. This is an even more stringent test,249

since there can be many paths with very large changes in interest rates. For example, a period250

of sampling from the early 1980s when interest rates were very high may be followed on the same251

simulated path by a stretch of sampling from the 2010s when interest rates were quite low. While252

this type of situation could happen with the larger expected blocksize of 60 months considered253
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(a) Efficient frontiers. (b) Annualized α.

Figure 2.5: Comparison of constant weight and MV optimal strategies in the historical market with
640,000 paths, expected blocksize of 24 months, and parameters from Table 2.1. Non-Pareto optimal
points removed for each strategy.

(a) MV Optimal strategy. (b) Clipped MV Optimal strategy.

Figure 2.6: Densities of real wealth over time based on data from Table 2.1 with W ∗ = 1736,
640,000 simulated historical market paths, expected blocksize of 60 months, and monthly rebalancing.
Densities plotted quarterly. The black vertical line indicates the initial real wealth W0 = 1000. The
colored vertical lines in each density represent the 5th, 50th, and 95th percentiles of the distribution.

above, it is much more likely here with the shorter expected blocksize. Compared to Figure 2.4,254

we observe even worse performance, especially for the MV Optimal strategy. In fact, here the MV255

Optimal strategy is worse than the Clipped MV Optimal strategy, except for cases with very high256

std [WT ]. We conjecture that this is because the aggressive nature of the MV Optimal strategy257

makes it more sensitive to model mis-specification.258

Finally, in Figure 2.6 we show the evolution of the density of real wealth over time for the MV259

strategies, in the historical market with an expected blocksize of 60 months. While there are obvious260

general similarities with the corresponding Figure 2.3 in the synthetic market, we can observe that261

the real wealth densities are not as smooth here, and the chance of achieving higher real final wealth262

is increased. This is because the strategy of de-risking is still based on the assumption of constant263

interest rates, but here rates are stochastic (i.e. there are cases where the de-risked portfolio earns264

higher than expected returns, leading to higher final wealth).265
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2.2 Deficiencies of MV (Sharpe Ratio) Criteria266

The apparent alpha generated by an MV optimal strategy comes from skewing the terminal wealth267

distribution. The right side of the distribution is cut-off (eliminating very large gains), and at the268

same time, an increase in left tail risk occurs (Lhabitant, 2000; Goetzmann et al., 2002; Forsyth269

and Vetzal, 2017a;b; 2019). As shown above in the synthetic market Figure 2.3, the left tail risk is270

somewhat reduced when constraints are imposed. This can also be seen as a natural consequence of271

the contrarian flavor of the strategy, which increases the weight in stocks when wealth decreases, and272

decreases the weight in stocks when wealth increases, i.e. buy when the market goes down, sell when273

the market goes up (see Figure 2.2). This implies that the investor is fully invested in bonds after274

stocks do well, and will not participate in further gains. On the other hand, the investor increases275

holdings in stocks when stocks perform poorly. This means that poor results can be expected if the276

market trends downward over the entire investment horizon. In this case (downward trending stocks277

in [0,T ]) control (2.6) will generate a worse result than a constant weight strategy, which keeps at278

least some proportion of wealth always invested in bonds. The opposite is true at large values of279

wealth. In this case, an MV optimal strategy is always fully invested in bonds, while the constant280

weight strategy has some investment in stocks, and can participate in further equity market gains.281

In summary, we can see that a major problem with dynamic MV (Sharpe ratio maximizing)282

strategies is that variance is a symmetric risk measure, which penalizes both the upside as well as283

the downside. An easy way to improve Sharpe ratios is to sell off the upside, which trivially reduces284

variance. On the other hand, somewhat counterintuitively, Sharpe ratio maximizing strategies also285

increase left tail risk, compared to a benchmark constant weight strategy.8 This motivates us to286

consider below strategies that rely on a downside risk measure. In addition, the results above show287

the potential importance of imposing constraints: the MV Optimal strategy uses large amounts288

of leverage, which is unrealistic. However, below we specify constraints directly as part of the289

optimization problem, rather than being imposed afterwards in an ad hoc manner, as in (2.13).290

3 Mean-Expected Shortfall Strategies291

Based on our analysis of dynamic MV strategies, it seems clear that an asymmetric risk measure292

might be more useful than variance. If we directly target an asymmetric risk measure in the objective293

function, this will shape the distribution of the terminal wealth in a way which corresponds to our294

intuitive concept of risk (i.e. downside not upside).295

Let g(WT ) be the probability density function of terminal wealth WT at t = T , and let296 ∫ W ∗β

−∞
g(WT ) dWT = β, (3.1)

so that Prob[WT > W ∗β ] = 1− β. We can interpret W ∗β as the Value at Risk (VAR) at level β. The297

Expected Shortfall (ES) at level β is then298

ESβ =

∫W ∗β
−∞WT g(WT ) dWT

β
, (3.2)

which is the mean of the worst β fraction of outcomes. Typically, β ∈ {.01, .05}. Note that the299

definition of ES in equation (3.2) uses the probability density of the final wealth distribution, not300

8Note that in some cases an asset allocation strategy based on objective function (2.4) may be desirable based on
the CDF of the final wealth distribution (see, e.g. Forsyth and Vetzal, 2019). However, this is best understood in
terms of objective function (2.5), rather than Sharpe ratio maximization.
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the density of loss. Hence, in our case a larger value of ES (i.e. a larger value of average worst301

case terminal wealth) is desired.9 It will be convenient to use the equivalent definition of ESβ from302

Rockafellar and Uryasev (2000):303

ESβ = sup
W ∗

E

[
W ∗ +

min(WT −W ∗,0)

β

]
. (3.3)

As a measure of reward, we will simply use expected wealth E[WT ], denoted by EW. Since304

ESβ and EW are conflicting measures, we find Pareto optimal strategies by using a scalarization305

parameter κ > 0 and then maximizing the objective function306

ESβ + κEW . (3.4)

Varying κ traces out an efficient frontier in the (EW,ES) plane.307

We will determine optimal strategies which are discretely rebalanced with no-shorting and no-308

leverage constraints. We next outline our assumptions concerning the stochastic processes of the309

underlying investments and some notational conventions.310

4 Investment Market311

We assume that the investor has access to two funds: a broad market stock index fund and a312

constant maturity bond index fund. The investment horizon is T . Let St and Bt respectively313

denote the real amounts invested in the stock index and the bond index respectively. In general,314

these amounts will depend on the investor’s strategy as well as changes in the real unit prices of315

the assets. In the absence of an investor determined control (i.e. cash injections or rebalancing), all316

changes in St and Bt result from changes in asset prices.317

We model the stock index as following a jump diffusion process. Let St− = S(t− ε), ε→ 0+, i.e.318

t− is the instant of time before t, and let ξs be a random jump multiplier. When a jump occurs,319

St = ξsSt− . We assume that log(ξs) follows a double exponential distribution (Kou, 2002; Kou and320

Wang, 2004). The probability of an upward jump is psu, while 1 − psu is the chance of a downward321

jump. The density function for y = log(ξs) is322

fs(y) = psuη
s
1e
−ηs1y1y≥0 + (1− psu)ηs2e

ηs2y1y<0. (4.1)

Define323

κsξ = E[ξs − 1] =
psuη

s
1

ηs1 − 1
+

(1− psuηs2
ηs2 + 1

− 1. (4.2)

In the absence of control,324

dSt
St−

=
(
µs − λsξκsξ

)
dt+ σs dZs + d

 πst∑
i=1

(ξsi − 1)

 , (4.3)

where µs is the (uncompensated) drift rate, σs is the diffusive volatility, Zs is a Brownian motion, πst325

is a Poisson process with positive intensity parameter λsξ, and ξ
s
i are i.i.d. positive random variables326

having distribution (4.1). Moreover, ξsi , π
s
t , and Zs are assumed to all be mutually independent.327

In addition, we directly model the returns of the constant maturity bond index as a stochastic328

process, following MacMinn et al. (2014) and Lin et al. (2015). As in MacMinn et al. (2014), we329

9The negative of ES is often called Conditional Value at Risk (CVAR).
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assume that the constant maturity bond index follows a jump diffusion process, similar in form330

to the process assumed above for the stock index. In particular, Bt− = B(t − ε), ε → 0+. In the331

absence of control, Bt evolves as332

dBt
Bt−

=
(
µb − λbξκbξ + µbc1{Bt−<0}

)
dt+ σb dZb + d

 πbt∑
i=1

(ξbi − 1)

 , (4.4)

where the terms in equation (4.4) are defined analogously to equation (4.3). In particular, πbt is a333

Poisson process with positive intensity parameter λbξ, and ξ
b
i has distribution334

f b(y = log ξb) = pbuη
b
1e
−ηb1y1y≥0 + (1− pbu)ηb2e

ηb2y1y<0, (4.5)

and κbξ = E[ξb − 1]. ξbi , π
b
t , and Zb are assumed to all be mutually independent. The term335

µbc1{Bt−<0} in equation (4.4) represents an additional cost of borrowing (Bt < 0), i.e. a spread336

between borrowing and lending rates. We assume that the diffusive components of St and Bt are337

correlated, i.e. dZs · dZb = ρsb dt. However, the jump process terms for these two indexes are338

assumed to be mutually independent.10
339

By using jump processes and random interest rates, we have generalized the environment con-340

sidered in Section 2. In principle, equations (4.3) and (4.4) could be extended further to include341

stochastic volatility. However, Ma and Forsyth (2016) have shown that stochastic volatility is unim-342

portant if the time horizon of the investment is larger than the mean reversion time of the volatility343

process. Based on historical data, the half-life of a volatility shock is 1-2 months (Ma and Forsyth,344

2016). That said, we will conduct tests below similarly to Section 2.1: we will determine the opti-345

mal controls using the parametric model based on equations (4.3) and (4.4), and then apply these346

controls both in the synthetic market (i.e. with Monte Carlo simulations of the same parametric347

model) and in the historical market, i.e. using resampled historical data, which is devoid of any348

specific assumptions about the underlying stochastic processes.349

We define the investor’s total wealth at time t as Wt ≡ St + Bt. We generally impose the350

constraints that (assuming solvency) shorting stock and using leverage (i.e. borrowing) are not351

allowed, However, in some of our examples we will allow limited use of leverage. In such cases, we352

assume that the cost of borrowing is the return of the constant maturity bond index plus the spread353

component µbc.354

5 Notational Conventions355

We specify a set of discrete rebalancing times T356

T = {t0 = 0 < t1 < t2 < . . . < tM = T} (5.1)

where it is assumed that ti − ti−1 = ∆t = T/M is constant for simplicity. To reduce subscripts,357

we will sometimes use the notation St ≡ S(t), Bt ≡ B(t) and Wt ≡ W (t). More specifically, let358

the inception time of the investment be t0 = 0. At each time ti, i = 0, 1, . . . ,M − 1, the investor359

rebalances the portfolio. At tM = T , the portfolio is liquidated.360

Given a time dependent function f(t), we will use the shorthand notation f(t+i ) ≡ lim
ε→→0+

f(ti+ε)361

and f(t−i ) ≡ lim
ε→0+

f(ti − ε).362

10See Forsyth (2020b) for a discussion of the evidence for stock and bond price jump independence.
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We assume no taxes are triggered on rebalancing.11 We also assume that transaction costs are363

small enough to be ignored in our analysis. This is not unreasonable as we assume discrete and364

relatively infrequent rebalancing, and we can also imagine that the investor holds units of a large365

pooled contract. In addition, the basic underlying investments are assumed to be broad stock and366

bond index ETFs, which are very liquid. This then implies that the condition367

W (t+i ) = W (t−i ) (5.2)

holds.12
368

The multi-dimensional controlled underlying process is denoted X(t) = (S (t) , B (t)), with t ∈369

[0,T ]. The realized state of the system is x = (s,b). Let the rebalancing control pi(·) be the fraction370

invested in the stock index at rebalancing date ti, i.e.371

pi
(
X(t−i )

)
= p

(
X(t−i ),ti

)
=

S(t+i )

S(t+i ) +B(t+i )
. (5.3)

The controls depend on the state of the investment portfolio before the rebalancing occurs, i.e.
pi(·) = p

(
X(t−i ),ti)

)
= p

(
X−i , ti

)
, ti ∈ T , the set of rebalancing times. We determine the optimal

strategies amongst all strategies with constant wealth (before and after rebalancing), so that

pi(·) = p(W (t+i ), ti)

W (t+i ) = S(t−i ) +B(t−i )

S(t+i ) = S+
i = pi(W

+
i )W+

i

B(t+i ) = B+
i = (1− pi(W+

i ))W+
i . (5.4)

Let Z represent the set of admissible values of the control pi(·). An admissible control P ∈ A,372

where A is the admissible control set, can be written as373

P = {pi(·) ∈ Z : i = 0, . . . ,M − 1}. (5.5)

No-shorting and no-leverage constraints are imposed by specifying374

Z = [0,1]. (5.6)

Finally, we define Pn ≡ Ptn ⊂ P as the tail of the set of controls in [tn, tn+1, . . . , tM−1], i.e.375

Pn = {pn(·), . . . , pM−1(·)}. (5.7)

6 Problem Definition376

We now specify the EW-ES problem which was discussed informally in Section 3. Since expected377

wealth (EW) and expected shortfall (ES) are conflicting measures, we use a scalarization technique378

to find the Pareto points for this multi-objective optimization problem. For a given scalarization379

parameter κ > 0, we seek the control P0 that maximizes380

ESβ(X−0 , t
−
0 ) + κEW(X−0 , t

−
0 ) . (6.1)

11If the contract is held in a tax-advantaged savings account, then no taxes are paid on rebalancing. In addition,
in Canada rebalancing can occur without triggering taxes in a corporate class mutual fund. In the US, ETFs can
defer taxes on rebalancing through the use of heartbeat trades (Moussawi et al., 2022).

12Transaction costs can be incorporated with increased computational cost. In addition, large liquid ETFs have
very low transaction costs, which have little effect with infrequent trading (van Staden et al., 2018).

14



More precisely, we define the pre-commitment EW-ES problem (PCEE t0(κ)) problem in terms of
the value function J(s,b,t−0 ), where we use the definition of ESβ from equation (3.3).

(PCEE t0 (κ)) : J
(
s,b, t−0

)
= sup
P0∈A

sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

β
min(WT −W ∗, 0) + κWT∣∣∣∣X(t−0 ) = (s,b)

]}
(6.2)

subject to



(St, Bt) follow processes (4.3) and (4.4); t /∈ T
W+
` = S−` +B−` ; X+

` = (S+
` , B

+
` )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

p`(·) ∈ Z(W+
` ,t`)

` = 0, . . . ,M ; t` ∈ T

. (6.3)

Interchange the sup sup 13 in equation (6.2), so that value function J
(
s,b, t−0

)
can be written as381

382

J
(
s,b, t−0

)
= sup

W ∗
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

β
min(WT −W ∗, 0) + κWT

∣∣∣∣X(t−0 ) = (s,b)

]}
. (6.4)

Appendix B notes that the control determined from the pre-commitment policy (6.4) at time383

zero is identical to the control determined from a time consistent linear shortfall policy. However, as384

discussed in Section 2, the pre-commitment strategy is appropriate for a financial product purchased385

by a retail customer, and we will not discuss the induced time consistent policy further. We use the386

method described in Forsyth (2020a) to solve Problem 6.2. For the convenience of the reader, we387

provide a brief description of this method in Appendix C.388

7 Parameter Estimates and Investment Scenario389

We estimate the parameters for the double exponential jump diffusion processes (4.3) and (4.4)390

using the data described in Section 2.1. Recall that this is monthly data from 1926 to 2019 for391

inflation-adjusted returns for the CRSP value-weighted total return and 30-day US T-bill indexes.392

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and Forsyth, 2016).393

Table 7.1 shows the results of calibrating the models to the historical data. The correlation ρsb is394

computed by removing any returns which occur at times corresponding to jumps in either series,395

and then using the sample covariance. Further discussion of the validity of assuming that the stock396

and bond jumps are independent is given in Forsyth (2020b).397

Table 7.2 shows our base case investment scenario. We consider T = 5 years, with an initial398

investment of 1000. Rebalancing occurs discretely, on a quarterly basis. Our default constraints399

(see equation (5.5)) are Z = [0,1], i.e. no shorting and no-leverage. This clearly implies that no400

trading occurs under insolvency, which can only occur if there is a jump to zero for both assets. In401

Table 7.2 we have set the borrowing spread µbc = .02. There is no borrowing in our base case, but402

we do allow leverage in some of our later examples.403

13Let F = sup(a,b)∈A×B f(a,b), then ∀ε > 0, ∃(a∗,b∗) ∈ A × B, s.t. f(a∗,b∗) > F − ε. Then F ≥
supa∈A supb∈B f(a,b) ≥ supb∈b f(a

∗, b) ≥ f(a∗,b∗) > F − ε. Hence, ε → 0 implies supa∈A supb∈B f(a,b) = F .
Similarly supb∈B supa∈A f(a,b) = F .
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CRSP µs σs λs us ηs1 ηs2 ρsb

0.0877 0.1459 0.3191 0.2333 4.3608 5.504 0.08228

30-day T-bill µb σb λb ub ηb1 ηb2 ρsb

0.0045 0.0130 0.5106 0.3958 65.85 57.75 0.08228

Table 7.1: Estimated annualized parameters for double exponential jump diffusion model. Value-
weighted CRSP index, 30 day US T-bill index deflated by the CPI. Sample period 1926:1 to 2019:12.

Investment horizon T (years) 5.0
Equity market index CRSP Cap-weighted index (real)
Bond index 30-day T-bill (US) (real)
Initial portfolio value W0 1000
Rebalancing times t = 0, 0.25, 0.5, . . . , 4.5, 4.75
Equity fraction range Z ∈ [0,1]
Borrowing spread µbc 0.02
Rebalancing interval (years) 0.25
Market parameters See Table 7.1

Table 7.2: Input data for examples.

8 EW-ES alpha404

Suppose we have a set of points (E[W opt
T ],ESoptβ ) on the efficient frontier, determined using the405

optimal policy from Problem 6.2. In addition, we also compute points (E[W p
T ], ESpβ) with a constant406

weight strategy p where p is the (constant) fraction in equities, reset at each discrete rebalancing407

date. We can write the efficient EW-ES frontier, determined by solving Problem 6.3, as a function408

F (·), i.e.409

E[W opt
T ] = F (ESoptβ ) . (8.1)

For each value of p, we then determine410

E[W opt,p
T ] = F (ESpβ) , (8.2)

which is the expected wealth from the optimal strategy having the same risk (measured by ES) as411

the constant weight strategy with weight p. The annualized alpha for this value of p is then412

αp =
log(E[W opt,p

T ])− log(E[W p
T ])

T
. (8.3)

Remark 8.1 (Optimal Efficient Frontier). In practice, we compute the efficient frontier function413

F (ESoptβ ) at a finite number of points, and approximate the efficient frontier function F (·) by linear414

interpolation.415

9 Base Case: Synthetic Market416

We compute and store the control determined by solving Problem 6.3 in the synthetic market using417

the parameters from Table 7.1 for the investment scenario given in Table 7.2. We then use the418
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Figure 9.1: Scenario from Table 7.2, synthetic market. Optimal strategy determined by solving
Problem 6.3 in the synthetic market, with parameters in Table 7.1. Control stored and then used to
compute the final results with 2.56× 106 Monte Carlo simulations.

stored control in Monte Carlo simulations to generate summary statistics. Figure 9.1(a) shows the419

EW-ES frontiers for the optimal strategy (6.3) and for the constant weight strategy. 14 as a function420

of EW. Figure 9.1(b) shows the annualized alpha compared with the benchmark constant weight421

strategy, based on equation (8.3). The annualized alpha reaches a maximum of about 180 bps, when422

compared to a benchmark 60:40 stock bond portfolio.423

Figure 9.2 shows the probability density of the internal rate of return for the optimal strategy in424

the synthetic market, for κ = 1.0. We also specify W ∗ = 788, which results in an ES approximately425

equal to that of a constant weight strategy with p = 0.6. Note the rapid decrease in the density426

near the 5th percentile and the long right tail. We can see that this density protects the downside427

(in terms of ES) and maximizes EW through the right skew.428

Figure 9.3 compares the cumulative distribution functions (CDFs) for the optimal EW-ES strat-429

egy (κ = 1.0 and W ∗ = 786) and a constant weight strategy with p = 0.6. Both strategies have430

approximately the same ES(5%). The rapid decrease in the CDF for the optimal EW-ES strategy431

(near W = 800) results in the same tail risk as for the constant proportion strategy. The EW-ES432

policy then gives up some performance between final wealth values in the range [800,1260]. However,433

the EW-ES strategy then gains in performance for WT > 1260. This results in a larger expected434

final wealth value for the same tail risk. Note that there is no magic bullet in terms of strategies.435

If we constrain both strategies to have same left tail risk, then the EW-ES policy gives up some436

performance in the probability ranges from [0.05,0.55], in order to generate superior performance437

in the upper 45% of the outcomes. In other words, ignoring the left tail behavior (which is roughly438

the same), then the EW-ES strategy has slightly worse performance in 50% of the outcomes, which439

is counterbalanced by a large outperformance in 45% of the outcomes. This is essentially the oppo-440

site strategy compared to the multi-period pre-commitment Sharpe ratio maximizing (or quadratic441

shortfall) policy (Forsyth and Vetzal, 2017a;b; 2019). To emphasize this, Figure 9.4 provides an-442

other comparison of the constant weight (panel (a)) and EW-ES strategies (panel (b), showing the443

14Detailed tables containing the results used to generate Figure 9.1 are provided in Appendix E. Note that here
expected terminal wealth as a function of ES is downward-sloping because higher ES represents lower risk. This is in
contrast to cases like Figure 2.1(a) where risk (measured by standard deviation) was increasing along the horizontal
axis.
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Figure 9.2: Density of internal rate of return (IRR). Scenario from Table 7.2, synthetic market.
Optimal strategy determined by solving Problem 6.3 with κ = 1.0 and W ∗ = 788 in the synthetic
market, with parameters in Table 7.1. Control stored and then used to compute the final results with
6.4× 105 Monte Carlo simulations. The IRR has a mean of .0724 and a median of .0396.

densities of real wealth over time. Both strategies have approximately the same ES, but the EW-ES444

strategy has a large right skew. This is in stark contrast to the large left skew seen for the MV445

Optimal and Clipped MV Optimal strategies in Figure 2.3.446

Figure 9.5 shows the percentiles of the fraction invested in stocks over time and the percentiles of447

total wealth for the EW-ES strategy. The median fraction invested in stocks is quite high, between448

.80−.90, but there is a large gap between the median and 5th percentile, indicating that the strategy449

reacts very strongly to decreasing wealth, as shown in Figure 9.6 which provides a heatmap of the450

optimal controls. Initially, with W0 = 1000 at t = 0 the equity weight is about 0.85. If the portfolio451

does well, the fraction in stocks remains high. However, if the portfolio performs poorly, the fraction452

in stocks is rapidly reduced. Further poor returns will result in a large fraction in bonds (in the453

blue zone of the heatmap) so as to protect the ES. Conversely, if stocks do well, the strategy will454

increase the allocation to stocks. Hence this is a momentum-type policy. However, if the portfolio455

suffers a very large sudden loss (basically jumping down through the blue zone in Figure 9.6), the456

strategy will once again increase the stock position. This can be seen as a last ditch attempt to457

recover, by taking a large equity position and hoping for strong returns. Similar behavior happens458

in the case of very poor investment returns for the MV Optimal strategy, as seen in Figure 2.2. On459

the whole, the momentum type of strategy shown in Figure 9.6 displays a much more varied pattern460

across both real wealth and time compared to the contrarian MV Optimal strategy in Figure 2.2.461

10 Historical market462

We next present historical market results. Recall that the procedure used here is to determine the463

optimal controls based on an assumed parametric model (in this case the double exponential jump464

diffusion processes (4.3) and (4.4)), and then apply the controls to resampled historical return data465

as described above in Section 2.1.466

Figure 10.1 shows the efficient EW-ES frontiers and the apparent alpha for the bootstrapped467

historical market. The results are shown for various expected blocksizes (Blk) in years.15 We468

15Appendix F provides detailed tables of the results used to generate Figure 10.1. To save space, we only provide
the results for the case with an expected blocksize of 5 years.
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Figure 9.3: Cumulative distribution functions of terminal real wealth for the optimal EW-ES (κ =
1.0,W ∗ = 786) strategy compared to a constant weight strategy (p = 0.6). Both strategies have
approximately the same ES ∈ (696,698). Scenario from Table 7.2, synthetic market. Optimal strategy
determined by solving Problem 6.3 in the synthetic market, with parameters in Table 7.1. Control
stored and then used to compute the final results with 2.56× 106 Monte Carlo simulations.

(a) Constant weight strategy, p = 0.6. (b) EW-ES strategy, κ = 1, W ∗ = 786.

Figure 9.4: Densities of real wealth over time for constant weight (p = 0.6) and EW-ES (κ = 1,
W ∗ = 786) strategies. Investment scenario from Table 7.2. 640,000 simulated synthetic market paths
with quarterly rebalancing. Densities plotted quarterly. The black vertical line indicates the initial
real wealth W0 = 1000. The colored vertical lines in each density represent the 5th, 50th, and 95th
percentiles of the distribution.
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Figure 9.6: Heatmap of fraction in stocks. Scenario from Table 7.2. Optimal strategy determined by
solving Problem 6.3 with κ = 1.0 and W ∗ = 786 in the synthetic market, with parameters in Table 7.1.
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Figure 10.1: Optimal strategy determined by solving Problem 6.3 in the synthetic market, parameters
in Table 7.1. Control stored and then tested in bootstrapped historical market. Non-Pareto points
eliminated. Expected blocksize (Blk, years) used in the bootstrap resampling method also shown.

also show the synthetic market results as well for comparison. Figure 10.1(a) indicates that the469

control computed using the parametric model (synthetic market) performs quite well in the historical470

market, except for large values of ES. This indicates that the optimal controls are fairly robust to471

parametric model misspecification, over a wide range of interesting values of ES (i.e. ES in the range472

650− 850). The results are also fairly insensitive to the choice of expected blocksize.473

On the other hand, the apparent alpha based on the synthetic market control, tested in the474

historical market, is generally superior to the synthetic market controls tested in the synthetic475

market, especially for the interesting constant weight benchmark portfolios for p in the range 0.4−476

0.6. However, while Figure 10.1(a) shows very little sensitivity to expected blocksize, Figure 10.1(b)477

is sensitive to blocksize. This is because the constant weight strategies are much more sensitive to the478

blocksize in the resampling algorithm compared to the EW-ES strategies, suggesting that constant479

weight strategies are less robust than EW-ES strategies.480

The apparent alpha in Figure 10.1(b) is surprisingly large for small values of constant p for the481

benchmark portfolio. This results from the very poor performance of constant weight portfolios for482

small equity weights in the historical market.16 This can be verified by examining the case with483

p = 0.0 in Table F.2, which has an ES of about 764. In other words, short term T-bills have an484

expected loss in the worst 5% of cases of about 25% in real terms over five years. This is due to485

negative real short term interest rates in times of inflation.486

Figure 10.2 depicts the evolution of the densities of real wealth over time in the historical market487

with an expected blocksize of 5 years, for both the constant weight (p = 0.6) and EW-ES strategies.488

The patterns observed here are quite similar to those seen above in Figure 9.4 in the synthetic489

market, although the results here are clearly not as smooth. The main features of the EW-ES490

strategy are preserved quite well in the historical market, as there is clear downside protection and491

a strong right skew indicating upside potential.492

16Recall that we noted similar behavior for the Clipped MV Optimal strategy in Figure 2.4.
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(a) Constant weight strategy, p = 0.6. (b) EW-ES strategy, κ = 1, W ∗ = 786.

Figure 10.2: Densities of real wealth over time for constant weight (p = 0.6) and EW-ES (κ = 1,
W ∗ = 786) strategies. Investment scenario from Table 7.2. 640,000 simulated historical market paths
with expected blocksize 60 months and quarterly rebalancing. Densities plotted quarterly. The black
vertical line indicates the initial real wealth W0 = 1000. The colored vertical lines in each density
represent the 5th, 50th, and 95th percentiles of the distribution.

11 Alternative Investment Scenarios493

In this section we expore the effects of some departures from the base case assumptions presented494

in Table 7.2. We first study the rebalancing frequency and the potential use of leverage, and then495

turn to a shorter investment horizon. We concentrate here exclusively on the synthetic market.496

11.1 Rebalancing Frequency and Leverage497

Figure 11.1(a) shows the effect of changing the rebalancing frequency on the efficient frontiers (op-498

timal strategy, synthetic market). There is very little discernable effect of changing the rebalancing499

frequency from one month to six months.500

Recall from Appendix A that continuous trading in the stock and bond with no leverage can501

replicate a covered call strategy. Since it appears from Figure 11.1(a) that the effect of the rebal-502

ancing frequency is small, this suggests that our discretely rebalanced portolio can approximate a503

covered call strategy.504

However, there may be other strategies which use options that allow the investor to use leverage505

with limited downside. Formally, these other option strategies would require continuous trading.506

However, we can approximate the effect of other strategies which include options by allowing the507

use of leverage.508

Figure 11.1(b) shows the results for allowing leverage, both with and without a borrowing509

spread.17 For values of ES > 750, which is arguably the region of interest, the gain in using leverage510

is quite small. Figure 11.1(b) suggests that allowing the use of leverage is not very important for511

such values of ES. Hence there is no particular advantage to taking direct positions in options as512

compared to dynamic trading, unless the value of ES considered is quite small (i.e. the investor513

wants a very risky strategy).514

17We enforce the constraint that trading ceases if insolvency occurs, and debt accumulates at the borrowing rate.
However, the probability of this occurring over five years is very small.
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Figure 11.1: Synthetic market, optimal strategy, effect of rebalancing frequency and use of leverage.
Lmax is the maximum value of p allowed. Optimal strategy determined by solving Problem 6.3 in the
synthetic market, parameters in Table 7.1.
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Figure 11.2: Scenario in Table 7.2, synthetic market. Optimal strategy determined by solving Prob-
lem 6.3 in the synthetic market, parameters in Table 7.1, with the exception that T = 2.0 years, and
the portfolio is rebalanced monthly. Control stored and then used to compute the final results with
6.4× 105 Monte Carlo simulations.

11.2 Two Year Time Horizon515

It is also interesting to examine the effect of a shorter investment horizon. Up to now, we have been516

using T = 5.0 years. Figure 11.2 shows the results for the efficient EW-ES frontier and the apparent517

alpha for T = 2.0 years in the synthetic market with monthly rebalancing. It is interesting to see518

that even for this comparatively short time period, the apparent annualized alpha is roughly 120519

bps, compared to a constant weight strategy with p = 0.6. This compares with a maximum alpha520

of about 180 bps for the T = 5 years case.521

Figure 11.3 shows the heatmap of the optimal controls (fraction in stocks) for the T = 2 years522

case with κ = 2.25. In contrast to the 5-year horizon case in Figure 9.6, here it can be seen that if523

stocks drop in value very early on, the optimal strategy is to quickly shift out of stocks into bonds.524

The optimal strategy (T = 2 years) is to heavily invest in bonds when the total wealth approaches525

W ∗ = 828.526
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Figure 11.3: Heat map of fraction in stocks, scenario in Table 7.2, parameters from Table 7.1. Here
T = 2.0 years, monthly rebalancingm κ = 2.25, W ∗ = 828, ES(5%) = 745, E[WT ] = 1140. Compare
with Figure 9.6 (T = 5 years).

12 Discussion527

Sharpe ratio maximizing strategies exploit the symmetry of the standard deviation risk measure by528

selling off large gains. In some circumstances, such as saving for retirement in a DC savings account,529

multi-period Sharpe ratio maximization can in fact be useful. However, this is due to the fact that530

multi-period Sharpe ratio maximizing strategies are equivalent to an induced time consistent target531

based quadratic shortfall minimization (Vigna, 2014). It is this property, rather than Sharpe ratio532

maximization per se, which is desirable for DC plan investments.533

In order to align the objective function more precisely with an investor’s intuitive concept of risk,534

we propose using an asymmetric risk measure that is based on expected shortfall (ES). Although this535

strategy is formally a pre-commitment policy, we argue that the lack of time consistency in this case536

does not cause conceptual difficulties. We can think of this strategy as part of a packaged product537

sold to a retail customer who does not trade in the underlying securities during the lifetime of the538

contract. This packaged product is essentially a black box to the retail customer, who evaluates539

success or failure of this policy based on the initial investment and final value.540

The optimal policy is based on determining the expected wealth, expected shortfall (EW-ES)541

frontiers. This strategy cuts off the left tail of the distribution (protecting worst case wealth out-542

comes), with a skewed right tail, which maximizes EW. This strategy might be regarded as having543

some of the features of value investing, where preservation of capital is given the highest priority.544

However, in this case, capital is preserved by dynamic trading rather than stock picking.545

Note that Sharpe ratio maximizing strategies have a contrarian flavor. They can be summarized546

as “buy stocks and sell bonds when stocks go down, sell stocks and buy bonds when stocks go up.”547

The EW-ES policy is essentially the opposite, sell stocks and buy bonds when stocks go down; buy548

stocks and sell bonds when stocks go up: ”cut your losses, ride your gains”. This is essentially a549

momentum type of strategy.550

A negative feature with this EW-ES strategy (which it shares with the constant proportion551

portfolio insurance strategy (CPPI) (Black and Jones, 1987)) is the possibility of cashing out, i.e.552

if stocks drop early in the investment process, the portfolio will move to largely bond holdings,553

with little possibility of recovery. This strategy will be particularly ineffective in the case of a large554

market drop, followed by a rapid recovery, such as the recent pandemic market crash and recovery.555

This is, however, a very unusual return sequence based on U.S. market history.556
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13 Conclusion557

We have reviewed the known results concerning dynamic strategies which maximize the Sharpe558

ratio. These strategies essentially reduce risk by selling off the right tail of the distribution. While559

this approach may be desirable in some circumstances (e.g. when saving for retirement where a560

target-based strategy can be used to generate cash flows to replace employment income (Forsyth561

and Vetzal, 2019)), this may not be a suitable approach for all investors.562

Denoting the expected terminal wealth by EW, and the expected shortfall by ES (ES is the mean563

of the worst β fraction of outcomes), we propose an objective function based on EW-ES criteria.564

Measuring risk by ES (expected shortfall) fundamentally means that the investor is concerned with565

the left tail risk. This amounts to preserving a desired minimum value of terminal wealth, with high566

probability. We determine the optimal EW-ES dynamic trading strategy using optimal stochastic567

control techniques, based on a parametric model for stock and bond processes, fit to historical data.568

We impose realistic constraints on the trading strategy: no-leverage, no-shorting, and infrequent569

rebalancing.570

We define the alpha of this investment strategy relative to a benchmark by using ES as the571

measure of risk. We focus on medium-term investments (i.e. 2-5 years), where wealth preservation572

can be regarded as of high importance. Compared to a 60:40 stock-bond constant weight strategy,573

the optimal EW-ES policy gives an annualized alpha of about 180 bps over a 5-year investment574

horizon.575

We emphasize again that optimal EW-ES strategies are fundamentally different compared to576

Sharpe ratio maximizing strategies. Optimal Sharpe ratio strategies are contrarian: increase the577

weight in stocks when stocks do poorly and decrease the weight in stocks when stocks to do well.578

EW-ES optimal strategies do the opposite: decrease the weight in stocks when stocks perform poorly,579

increase the weight in stocks when stocks do well. This policy protects the left tail, while taking580

advantage of the large possible gains emanating from the right tail of the distribution. Finally, it is581

worth noting that bootstrap resampling tests using historical data show that the optimal EW-ES582

policy is fairly robust to parametric model misspecification.583
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Appendices589

A Replication of Covered Call and Cash-Secured Put Writing590

This appendix outlines the assumptions required to ensure that dynamic trading in stocks and risk-591

less bonds can replicate covered call and cash-secured put writing, which are two popular approaches592

to generating apparent alpha (Lhabitant, 2000; Goetzmann et al., 2002; Ungar and Moran, 2009).593
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Assumption A.1. Let V (S,t) be the price of a call or put option, with S being the unit price of594

the stock. 18 We make the following assumptions:595

(i) Trading in the stock with price S(t) and the riskless bond B(t) occur continuously, with no596

market frictions.597

(ii) Call and put option prices are convex.598

(iii) Call and put options can be perfectly replicated by the portfolio of α(S,t) units stock and an599

amount B(S,t) in the riskless bond which pays an interest rate of r, so that the total value of600

the replicating portfolio is601

V (S,t) = αS +B (A.1)

with α = VS. At points where VS does not exist (which can only occur at a countable number602

of points), we take the appropriate left or right limits.603

(iv) VS satisfies the bounds

0 ≤ VS ≤ 1 Call
−1 ≤ VS ≤ 0 Put

(v) The value of a call option at S = 0 is zero. The value of a European put at S = 0 is Ke−r(T−t),604

where K is the strike, and T is the expiry time. The value of an American put at S = 0 is K.605

Some discussion concerning the conditions under which assumptions (i)-(iv) hold is given in606

Bergman et al. (1996). Suffice to say, all these assumptions are met in a Black-Scholes market, as607

used for the background example in Section 2.608

Proposition A.1. Under Assumptions A.1, covered call writing and cash-secured put writing can609

be replicated by a portfolio consisting of the underlying asset and riskless bond with non-negative610

amounts in both stock and bond, i.e. the portfolio satisfies the no-shorting, no leverage condition611

0 ≤ p ≤ 1 where p is the fraction of the portfolio wealth held in the risky asset.612

Proof. We consider first the case of a stock which does not pay dividends.613

(a) Covered Call: Consider a covered call long one unit of stock, short one call option and long614

the option premium. By definition S ≥ 0. At t = 0, the covered call portfolio Πcc is615

Πcc(S,0) = S −
short call︷ ︸︸ ︷
V (S,0) +

cash premium︷︸︸︷
V0

V0 = V (S,0) . (A.2)

Replace V (S,0) by the replicating portfolio

V (S,0) = α(S,0)S +B(S,0)

α(S,0) = VS(S,0), (A.3)

where the amount in the riskless bond is616

B(S,0) = V (S,0)− VS(S,0)S. (A.4)
18With an abuse of notation, in this appendix S and B are the unit prices of the stock and bond respectively, not

the amounts invested in them.
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Then equation (A.2) becomes617

Πcc(S,0) = S − (α(S,0)S +B(S,0)) + V0 . (A.5)

In general for t > 0 we have

Πcc(S,t) = S − α(S,t)S −B(S,t) + V0e
rt (A.6)

B(S,t) = V (S,t)− α(S,t)S , (A.7)

where r is the continuously compounded risk-free rate, and so618

Πcc(S,t) =

stock position︷ ︸︸ ︷
S(1− α) +

cash︷ ︸︸ ︷
V0e

rt −B(S,t) . (A.8)

Consider the line in the (V,S) plane619

α(S∗,t)S + C , (A.9)

where the constant C is determined from620

α(S∗,t)S∗ + C = V (S∗,t) . (A.10)

The line (A.9) is then tangent to the option value V (S,t) at S = S∗. Since V is convex, it lies at or621

above its tangent line everywhere, including at S = 0 where V (0,t) = 0, which implies that C ≤ 0.622

Since this is true for any S∗, then (−B(S,t)) = α(S,t)S − V (S,t) ≥ 0. For a call 0 ≤ α ≤ 1, so from623

equation (A.8) the stock position is also non-negative.624

(b) Cash-Secured Put: Now consider writing a cash-secured put with strike K. If the put625

is European-style, the writer is long Ke−rT in cash, short one put option, and long the option626

premium. By put-call parity and the results from (a), the cash-secured put also has non-negative627

positions in both the cash and stock.628

If the put is American-style, the writer deposits K with the broker. At t = 0, the cash-secured
put portfolio Πcp(S,t) is

Πcp(S,0) = K −
short put︷ ︸︸ ︷
V (S,0) +

cash premium︷︸︸︷
V0

V0 = V (S,0) . (A.11)

Replace V (S,0) by the replicating portfolio

V (S,0) = α(S,0)S +B(S,0)

α(S,0) = VS(S,0) , (A.12)

where the amount in the riskless bond is629

B(S,0) = V (S,0)− VS(S,0)S . (A.13)

Then equation (A.11) becomes630

Πcp(S,0) = K − (α(S,0)S +B(S,0)) + V0 (A.14)

In general, for t > 0 we have

Πcp = Kert − α(S,t)S −B(S,t) + V0e
rt (A.15)

B(S,t) = V (S,t)− α(S,t)S , (A.16)
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or631

Πcp =

stock position︷ ︸︸ ︷
−αS +

cash︷ ︸︸ ︷
V0e

rt +Kert −B(S,t) . (A.17)

Consider the line in the (V,S) plane632

α(S∗,t)S + C , (A.18)

where the constant C is determined by633

α(S∗,t)S∗ + C = V (S∗,t) , (A.19)

so that (A.18) is tangent to V (S,t) at S = S∗.634

Since V is convex, it lies at or above its tangent line everywhere, including at S = 0 where635

V (0,t) = K, which implies that C ≤ K. Hence V (S∗,t) − α(S∗,t)S∗ = B(S∗,t) = C ≤ K. This is636

true for any S∗, so that (Kert − B(S,t)) ≥ 0. Since −1 ≤ α ≤ 0 for a put, the stock position is637

non-negative.638

(c) Dividends: Now consider the case of a covered call written on a stock which pays a non-639

proportional dividend of min(D,S) at t = td. Let t−d be the instant before td. Then640

Πcc(S−,t−d ) =

stock position︷ ︸︸ ︷
S−(1− α−) −

cash︷ ︸︸ ︷
B(S−,t−d ) + V0e

rt , (A.20)

where by the arguments in (a) above the stock position is non-negative and −B(S−, t−d ) =641

−B− ≥ 0. At t+d , after the dividend is paid, the new stock and cash positions are642

(stock position)+ = (S− −min(S−,D))(1− α−)

(cash position)+ = −B− + min(S−, D)(1− α−) (A.21)

From (a) above, (1 − α−) ≥ 0 and −B− ≥ 0, so both positions are nonnegative after the643

dividend is paid. After rebalancing the replicating portfolio after the dividend payment, the stock644

and bond positions remain non-negative.19 The cash-secured put case can also be proven using645

similar arguments.646

B Induced Time Consistent Policy647

Noting that the inner supremum in equation (6.4) is a continuous function of W ∗, define648

W∗(s,b) = arg max
W ∗

{
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

β
min(WT −W ∗, 0) + κWT

∣∣∣∣X(t−0 ) = (s,b)

]}
. (B.1)

We refer the reader to Forsyth (2020a) for an extensive discussion concerning pre-commitment and649

time consistent ES strategies. We summarize the relevant results from that research here. Denote650

the investor’s initial wealth at t0 by W−0 . Then we have the following result:651

Proposition B.1 (Pre-commitment strategy equivalence to a time consistent policy for an alterna-
tive objective function). The pre-commitment EW-ES strategy P∗ determined by solving J(0,W0,t

−
0 )

19Since V (S−, t) = V (S− −min(D,S−),t+), then VS(S−, t) = VS(S
+,t+) and we don’t actually need to rebalance

across the dividend date.
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(with W∗(0,W−0 ) from equation (B.1)) is the time consistent strategy for the equivalent problem
TCEQ (with fixed W∗(0,W−0 )), with value function J̃(s,b,t) defined by

TCEQtn (κβ) : J̃
(
s,b, t−n

)
= sup
Pn∈A

{
EX

+
n ,t

+
n

Pn

[
min(WT −W∗(0,W−0 ),0) + (κβ)WT∣∣∣∣X(t−n ) = (s,b)

]}
. (B.2)

Proof. This follows similar steps as in Forsyth (2020a), proof of Proposition 6.2.652

Remark B.1 (An Implementable Strategy). Given an initial level of wealth W−0 at t0, the optimal653

control for the pre-commitment problem (6.2) is the same optimal control for the time consistent654

problem (TCEQtn (κβ)) (B.2), ∀t > 0. Hence we can regard problem (TCEQtn (κβ)) as the EW-655

ES induced time consistent strategy. The induced strategy is implementable, in the sense that the656

investor has no incentive to deviate from the strategy computed at time zero at later times (Forsyth,657

2020a).658

C Algorithm for EW-ES Strategy659

We use the method described in Forsyth (2020a) to solve Problem 6.2. We give a brief description660

of this technique below. We write equation (6.4) as661

J
(
s,b,t−0

)
= supW ∗V (s,b,0−) , (C.1)

where the auxiliary function V (s,b,t) is defined as

V (s,b,W ∗,t−n ) = sup
Pn∈An

{
EX

+
n ,t

+
n

Pn

[
W ∗ +

1

β
min((WT −W ∗),0) + κWT

∣∣∣∣X(t−n ) = (s,b)

]}
.

(C.2)

subject to



(St,Bt) follow processes (4.3) and (4.4); t /∈ T
W+
` = S−` +B−` ; X+

` = (S+
` , B

+
` )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

p`(·) ∈ Z
` = n, . . . ,M ; t` ∈ T

. (C.3)

We have now decomposed the original problem (6.2) into two steps662

• Given an initial cash value ofW0, and a fixed value ofW ∗, we solve problem (C.2) to determine663

V (0,W0,W
∗,0−).664

• Then, we solve the original problem (6.2) by maximizing over W ∗665

J(0,W0, 0
−) = sup

W ∗
V (0,W0,W

∗,0−) . (C.4)
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C.1 Solution of Problem C.2666

We solve Problem C.2 by dynamic programming. Set667

V (s,b,W ∗,T+) = W ∗ +
min((s+ b−W ∗), 0)

β
+ κ(s+ b) . (C.5)

For t ∈ (t+M−1, t
−
M ), we solve the PIDE

Vt +
(σs)2s2

2
Vss + (µs − λsξγsξ )sVs + λsξ

∫ +∞

−∞
V (eys, b, t)f s(y) dy +

(σb)2b2

2
Vbb

+ (µb + µbc1{b<0} − λbξγbξ)bVb + λbξ

∫ +∞

−∞
V (s, eyb, t)f b(y) dy − (λsξ + λbξ)V + ρsbσ

sσbsbVsb = 0.

(C.6)

At rebalancing time tM−1, we determine the optimal control pM−1(w = s+ b,W ∗) from668

pM−1(w,W
∗) = arg max

p′∈Z
V (wp′, w(1− p′),W ∗, t+M−1), (C.7)

so that669

V (s,b,W ∗,t−M−1) = V (wpM−1(w,W
∗), w(1− pM−1(w,W ∗)),t+M−1) . (C.8)

Working backwards, we continue in this way until we reach t0.670

C.2 Numerical Techniques671

We localize the infinite domain to (s,b) ∈ [smin, smax]× [bmin, bmax], and discretize [bmin,bmax] using672

an equally spaced log b grid with nb nodes. Similarly, we discretize [smin, smax] on an equally spaced673

log s grid with ns nodes. For the case where we allow leverage, we also define a reflected grid with674

b < 0. We use the Fourier method in (Forsyth and Labahn, 2019) to solve PIDE (C.6). Localization675

errors are minimized using the domain extension method in (Forsyth and Labahn, 2019).676

At rebalancing dates, we solve the optimization problem (C.7) by discretizing p(·) and using677

exhaustive search. Finally, the optimization problem (C.1) is solved using a one-dimensional opti-678

mization technique. Note that each evaluation of the objective function requires solution of problem679

(C.2) with a fixed value of W ∗.680

We compute and store the optimal controls from solving Problem 6.2 using the parametric model681

of the stock and bond processes. We then use the stored controls in Monte Carlo simulations to682

generate statistical results. As a robustness check, we also use the stored controls and simulate683

results using bootstrap resampling of historical data.684

D Convergence Test685

Table D.1 shows a detailed convergence test for the base case problem given in Table 7.2. As686

expected, we can see that the value function converges at a rate between first and second order.687

The ES and EW values, which are derived quantities, converge a bit more erratically. Note that688

there is good agreement between the algorithm in Section C and the Monte Carlo validation. We689

remind the reader that the controls (the fraction in stocks) are determined using the method in690

Section C. These controls are then used in the Monte Carlo simulations.691
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Algorithm in Section C Monte Carlo

Grid ES (5%) E[WT ] Value Function ES (5%) E[WT ]

512× 512 672.62 1457.68 2130.3 682.06 1450.78

1024× 1024 695.15 1437.64 2132.8 698.66 1436.31

2048× 2048 696.59 1437.95 2134.5 697.56 1437.73

4096× 4096 698.41 1436.72 2135.1 698.68 1436.65

Table D.1: Convergence test for scenario in Table 7.2 with parameters in Table 7.1. The Monte
Carlo method used 2.56 × 106 simulations. κ = 1.0, α = .05. Grid refers to the grid used in the
Algorithm in Section C: nx × nb, where nx is the number of nodes in the log s direction and nb is the
number of nodes in the log b direction.

E Detailed Efficient Frontiers: Synthetic Market692

Tables E.1 and E.2 give the detailed results used to construct Figure 9.1(a).693

κ ES (5%) E[WT ] Median[WT ]

0.1 940.60 1069.19 1051.51
0.25 936.23 1090.89 1056.85
0.4 925.85 1120.77 1063.53
0.6 883.094 1202.04 1083.39
0.7 838.84 1268.85 1107.31
0.8 781.29 1344.45 1146.52
0.9 739.88 1392.98 1179.12
1.0 697.56 1437.73 1222.12
1.2 646.41 1484.39 1291.43
1.5 614.92 1508.10 1347.72
2.0 586.16 1524.96 1381.78
3.0 553.23 1538.65 1399.09
10.0 500.08 1550.05 1405.02
∞ 489.00 1550.71 1405.15

Table E.1: Synthetic market results for optimal strategies, assuming the scenario given in Table 7.2.
Control determined by solving Problem 6.3. Stock index: real capitalization weighted CRSP stocks;
bond index: 30-day T-bills. Parameters from Table 7.1. Units: thousands of dollars. Statistics based
on 2.56× 106 Monte Carlo simulation runs.

F Detailed Efficient Frontiers: Historical Market694

Tables F.1-F.2 give the detailed results used to generate Figure 10.1. We show only the case where695

the expected blocksize is 5 years.696
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Constant weight p ES (5%) E[WT ] Median[WT ]

0.0 917.26 1022.76 1023.45
0.1 929.03 1066.65 1063.48
.20 895.80 1112.34 1103.31
.30 849.32 1159.87 1143.32
.35 824.46 1184.35 1163.24
.40 799.09 1209.33 1183.09
.45 773.44 1234.81 1202.82
.50 747.62 1260.79 1222.33
.55 721.71 1287.29 1241.68
.60 695.77 1314.33 1260.89
.65 669.84 1341.90 1279.88
.70 643.93 1370.02 1298.64
.80 592.19 1427.94 1335.30
.90 540.58 1488.19 1370.95
1.0 489.00 1550.71 1405.15

Table E.2: Synthetic market results for constant weight strategies. Stock index: real capitalization
weighted CRSP stocks; bond index: 30-day T-bills. Parameters from Table 7.1. Units: thousands of
dollars. Statistics based on 2.56× 106 Monte Carlo simulation runs.

κ ES (5%) E[WT ] Median[WT ]

0.1 846.10 1085.38 1052.49
0.25 855.16 1101.88 1062.07
0.4 866.53 1124.61 1075.61
0.6 865.83 1189.97 1115.54
0.7 848.92 1247.14 1150.09
0.8 816.59 1313.73 1198.20
0.9 791.41 1356.67 1237.18
1.0 762.13 1394.46 1284.53
1.2 722.44 1432.22 1357.37
1.5 695.87 1450.28 1410.98
2.0 669.71 1463.51 1437.64
3.0 631.84 1476.97 1448.58
10.0 571.11 1494.62 1452.69

Table F.1: Historical market results for optimal strategies, assuming the scenario given in Table 7.2.
Control determined by solving Problem 6.3. Stock index: real capitalization weighted CRSP stocks;
bond index: 30-day T-bills. Scenario Table 7.1. Units: thousands of dollars. Statistics based on 106

bootstrapped simulations. Expected blocksize of 5 years.
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