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Abstract

Convertible bonds can be difficult to value, given their hybrid nature of containing elements of both debt and eqg-
uity. Further complications arise due to the frequent presence of additional options such as callability and puttability,
and contractual complexities such as trigger prices and “soft call” provisions, in which the ability of the issuing firm
to exercise its option to call is dependent upon the history of its stock price.

This paper explores the valuation of convertible bonds subject to credit risk using an approach based on the
numerical solution of linear complementarity problems. We argue that many of the existing models, such as that of
Tsiveriotis and Fernandes (1998), are unsatisfactory in that they do not explicitly specify what happens in the event of
a default by the issuing firm. We show that this can lead to internal inconsistencies, such as cases where a call by the
issuer just before expiry renders the convertible value independent of the credit risk of the issuer, or situations where
the implied hedging strategy may not be self-financing. By contrast, we present a general and consistent framework
for valuing convertible bonds assuming a Poisson default process. This framework allows various models for stock
price behaviour, recovery, and action by holders of the bonds in the event of a default.

We also present a detailed description of our numerical algorithm, which uses a partially implicit method to decou-
ple the system of linear complementarity problems at each timestep. Numerical examples illustrating the convergence
properties of the algorithm are provided.
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1 Introduction

The market for convertible bonds has been expanding rapidly. In the U.S., over $105 billion of new convertibles
were issued in 2001, as compared with just over $60 billion in 2000. As of early in 2002, there were about $270
billion of convertibles outstanding, more than double the level of five years previously, and the global market for
convertibles exceeded $500 billion.> Moreover, in the past couple of decades there has been considerable innovation
in the contractual features of convertibles. Examples include liquid yield option notes (McConnell and Schwartz,
1986), mandatory convertibles (Arzac, 1997), “death spiral” convertibles (Hillion and Vermaelen, 2001), and cross-
currency convertibles (Yigitbasioglu, 2001). It is now common for convertibles to feature exotic and complicated
features, such as trigger prices and “soft call” provisions. These preclude the issuer from exercising its call option
unless the firm’s stock price is either above some specified level, has remained above a level for a specified period of
time (e.g. 30 days), or has been above a level for some specified fraction of time (e.g. 20 out of the last 30 days).

The modern academic literature on the valuation of convertibles began with the papers of Ingersoll (1977) and
Brennan and Schwartz (1977, 1980). These authors build on the “structural” approach for valuing risky non-convertible
debt (e.g. Merton, 1974; Black and Cox, 1976; Longstaff and Schwartz, 1995). In this approach, the basic underlying
state variable is the value of the issuing firm. The firm’s debt and equity are claims contingent on the firm’s value, and
options on its debt and equity are compound options on this variable. In general terms, default occurs when the firm’s
value becomes sufficiently low that it is unable to meet its financial obligations.? An overview of this type of model is
provided in Nyborg (1996). While in principle this is an attractive framework, it is subject to the same criticisms that
have been applied to the valuation of risky debt by Jarrow and Turnbull (1995). In particular, because the value of the
firm is not a traded asset, parameter estimation is difficult. Also, any other liabilities which are more senior than the
convertible must be simultaneously valued.

To circumvent these problems, some authors have proposed models of convertible bonds where the basic under-
lying factor is the issuing firm’s stock price (augmented in some cases with additional random variables such as an
interest rate). As thisis a traded asset, parameter estimation is simplified (compared to the structural approach). More-
over, there is no need to estimate the values of all other more senior claims. An early example of this approach is
McConnell and Schwartz (1986). The basic problem here is that the model ignores the possibility of bankruptcy.
McConnell and Schwartz address this in an ad hoc manner by simply using a risky discount rate rather than the risk
free rate in their valuation equation. More recent papers which similarly include a risky discount rate in a somewhat
arbitrary fashion are those of Cheung and Nelken (1994) and Ho and Pfeffer (1996).

An additional complication which arises in the case of a convertible bond (as opposed to risky debt) is that different
components of the instrument are subject to different default risks. This is noted by Tsiveriotis and Fernandes (1998),
who argue that “the equity upside has zero default risk since the issuer can always deliver its own stock [whereas]
coupon and principal payments and any put provisions ...depend on the issuer’s timely access to the required cash
amounts, and thus introduce credit risk” (p. 95). To handle this, Tsiveriotis and Fernandes propose splitting convertible
bonds into two components: a “cash-only” part, which is subject to credit risk, and an equity part, which is not. This
leads to a pair of coupled partial differential equations that can be solved to value convertibles. A simple description
of this model in the binomial context may be found in Hull (2003). Yigitbasioglu (2001) extends this framework by
adding an interest rate factor and, in the case of cross-currency convertibles, a foreign exchange risk factor.

Recently, an alternative to the structural approach has emerged. This is known as the “reduced-form” approach. It
is based on developments in the literature on the pricing of risky debt (see, e.g. Jarrow and Turnbull, 1995; Duffie and
Singleton, 1999; Madan and Unal, 2000). In contrast to the structural approach, in this setting default is exogenous,
the “consequence of a single jump loss event that drives the equity value to zero and requires cash outlays that cannot
be externally financed” (Madan and Unal, 2000, p. 44). The probability of default over the next short time interval
is determined by a specified hazard rate. When default occurs, some portion of the bond (either its market value
immediately prior to default, or its par value, or the market value of a default-free bond with the same terms) is
assumed to be recovered. Authors who have used this approach in the convertible bond context include Davis and
Lischka (1999), Takahashi et al. (2001), Hung and Wang (2002), and Andersen and Buffum (2003). As in models
such as that of Tsiveriotis and Fernandes (1998), the basic underlying state variable is the firm’s stock price (though
some of the authors of these papers also consider additional factors such as stochastic interest rates or hazard rates).

1See A. Schultz, “In These Convertibles, a Smoother Route to Stocks”, The New York Times, April 7, 2002.

2There are some variations across these models in terms of the precise specification of default. For example, Merton (1974) considers zero-
coupon debt and assumes that default occurs if the value of the firm is lower than the face value of the debt at its maturity. On the other hand,
Longstaff and Schwartz (1995) assume that default occurs when the firm value first reaches a specified default level, much like a barrier option.



While this approach is quite appealing, the assumption that the stock price instantly jumps to zero in the event
of a default is highly questionable. While it may be a reasonable approximation in some circumstances, it is clearly
not in others. For instance, Clark and Weinstein (1983) report that shares in firms filing for bankruptcy in the U.S.
had average cumulative abnormal returns of -65% during the three years prior to a bankruptcy announcement, and
had abnormal returns of about -30% around the announcement. Beneish and Press (1995) find average cumulative
abnormal returns of -62% for the three hundred trading days prior to a Chapter 11 filing, and a drop of 30% upon the
filing announcement. The corresponding figures for a debt service default are -39% leading up to the announcement
and -10% at the announcement. This clearly indicates that the assumption of an instantaneous jump to zero is extreme.
In most cases, default is better characterized as involving a gradual erosion of the stock price prior to the event,
followed by a significant (but much less than 100%) decline upon the announcement, even in the most severe case of
a bankruptcy filing.

However, as we shall see below, in some models it is at least implicitly assumed that a default has no impact on
the firm’s stock price. This may also be viewed as unsatisfactory. To address this, we propose a model where the
firm’s stock price drops by a specified percentage (between 0% and 100%) upon a default. This effectively extends
the reduced-form approach which, in the case of risky debt, specifies a fractional loss in market value for a bond, to
the case of convertibles by similarly specifying a fractional decline in the issuing firm’s stock price.

The main contributions of this work are as follows.

e We provide a general single factor framework for valuing risky convertible bonds, assuming a Poisson type
default process.

e We consider precisely what happens on default, assuming optimal action by the holder of the convertible. Our
framework permits a wide variety of assumptions concerning the behaviour of the stock of the issuing company
on default, and also allows various assumptions concerning recovery on default.

e We demonstrate that the widely used convertible bond model of Tsiveriotis and Fernandes (1998) is internally
inconsistent.

e We develop numerical methods for determining prices and hedge parameters for convertible bonds under the
framework developed here.

The outline of the article is as follows. Section 2 outlines the convertible bond valuation problem in the absence
of credit risk. Section 3 reviews credit risk in the case of a simple coupon bearing bond. Section 4 presents our
framework for convertible bonds, which is valid for any assumed recovery process. Section 5 then describes some
aspects of previous models, with particular emphasis on why the Tsiveriotis and Fernandes (1998) model has some
undesirable features. We provide some examples of numerical results in Section 6, and in Section 7, we present
some Monte Carlo hedging simulations. These simulations reinforce our contention that the Tsiveriotis and Fernandes
(1998) model is inconsistent. Appendix A describes our numerical methods. In some cases a system of coupled linear
complementarity problems must be solved. We discuss various numerical approaches for timestepping so that the
problems become decoupled. Section 8 presents conclusions.

Since our main interest in this article is the modelling of default risk, we will restrict attention to models where
the interest rate is assumed to be a known function of time, and the stock price is stochastic. We can easily extend
the models in this paper to handle the case where either or both of the risk free rate and the hazard rate are stochastic.
However, this would detract us from our prime goal of determining how to incorporate the hazard rate into a basic
convertible pricing model. We also note that practitioners often regard a convertible bond primarily as an equity
instrument, where the main risk factor is the stock price, and the random nature of the risk free rate is of second order
importance.® For ease of exposition, we also ignore various contractual complications such as call notice periods, soft
call provisions, trigger prices, dilution, etc.

3This is consistent with the results of Brennan and Schwartz (1980), who conclude that “for a reasonable range of interest rates the errors from
the [non-stochastic] interest rate model are likely to be slight” (p. 926).



2 ConvertibleBonds: No Credit Risk

We begin by reviewing the valuation of convertible bonds under the assumption that there is no default risk. We
assume that interest rates are known functions of time, and that the stock price is stochastic. We assume that

dS = pSdt + aSdz, (2.1)

where S is the stock price, [ is its drift rate, o is its volatility, and dz is the increment of a Wiener process. Following
the usual arguments, the no-arbitrage value V (S,t) of any claim contingenton S is given by

2
Vi + (%SZV$+ (r(t)—q)SVs— r(t)V) =0, (2.2)
where r(t) is the known interest rate and q is the dividend rate.
We assume that a convertible bond has the following contractual features:
o A continuous (time-dependent) put provision (with an exercise price of Bp).

e A continuous (time-dependent) conversion provision. At any time, the bond can be converted to k shares.

e A continuous (time-dependent) call provision. At any time, the issuer can call the bond for price B¢ > Bp.
However, the holder can convert the bond if it is called.

Note that option features which are only exercisable at certain times (rather than continuously) can easily be handled
by simply enforcing the relevant constraints at those times.
Let

2
LV = Vg — (%SZV$+ (r(t) —q)SVs— r(t)V) : (2.3)
We will consider the points in the solution domain where kS > B and kS < B separately:

e B¢ > KS. In this case, we can write the convertible bond pricing problem as a linear complementarity problem

LV =0 LV >0 LV <0
((V —max(Bp,KS)) > 0) \Y ((V —max(Bp,KS)) = O) V ((V —max(Bp, KS)) > 0) (2.4)
(V—-B¢) <0 (V—-B¢) <0 (V-B¢)=0

where the notation (x = 0) v (y = 0) v (z= 0) is to be interpreted as at least one of x=0, y =0, z= 0 holds at
each point in the solution domain.

e B¢ <KS. In this case, the convertible value is simply
V =kS (2.5)
since the holder would choose to convert immediately.

Equation (2.4) is a precise mathematical formulation of the following intuition. The value of the convertible bond is
given by the solutionto LV = 0, subject to the constraints

V > max(Bp, KS)
V < max(Bg, KS). (2.6)

More specifically, either we are in the continuation region where £V = 0 and neither the call constraint nor the put
constraint are binding (left side term in (2.4)), or the put constraint is binding (middle term in (2.4)), or the call
constraint is binding (right side term in (2.4)).
As far as boundary conditions are concerned, we merely alter the operator LV at S=0and as S — . At S=0,
LV becomes
LV = —M—r(t)V); S—0, 2.7



while as S — o0 we assume that the unconstrained solution is linear in S
LV =Vss; S— o, (2.8)
The terminal condition is given by
V (S,t =T) = max(F,kS), (2.9)

where F is the face value of the bond.

Equation (2.4) has been derived by many authors (though not using the precise linear complementarity formula-
tion). However, in practice, corporate bonds are not risk free. To highlight the modelling issues, we will consider a
simplified model of risky corporate debt in the next section.

3 A Risky Bond

To motivate our discussion of credit risk, consider the valuation of a simple coupon bearing bond which has been
issued by a corporation having a hon-zero default risk. The ideas are quite similar to some of those presented in Duffie
and Singleton (1999). However, we rely only on simple hedging arguments, and we assume that the risk free rate is a
known deterministic function. For ease of exposition, we will assume here (and generally throughout this article) that
default risk is diversifiable, so that real world and risk neutral default probabilities will be equal.* With this is mind,
let the probability of default in the time period t to t + dt, conditional on no-default in [0, t], be p(S,t)dt, where p(S,t)
is a deterministic hazard rate.
Let B(S,t) denote the price of a risky corporate bond. Construct the standard hedging portfolio

Mn=B-ps. (3.1

In the absence of default, if we choose 3 = Bsg, the usual arguments give

0282
di = [Bt + TB$] dt+o(dt), (3.2)
where o(dt) denotes terms that go to zero faster than dt. Assume that:

e The probability of defaultint — t +dt is pdt.

e The value of the bond immediately after default is RX where 0 < R < 1 is the recovery factor. It is possible
to make various assumptions about X. For example, for coupon bearing bonds, it is often assumed that X is
the face value. For zero coupon bonds, X can be the accreted value of the issue price, or we could assume that
X = B, the pre-default value.

e The stock price S is unchanged on default.

Then equation (3.2) becomes

0252
dn = (1— pdt) [Bt ¥ TB$] dt — pdt(B—RX) +o(dt)

0252
— [Bt + TBSS] dt — pdt(B — RX) + o(dt). (3.3)

The assumption that default risk is diversifiable implies
E(dM) = r(t)M dt, (3.4)

where E is the expectation operator. Combining (3.3) and (3.4) gives

028?
B: + r(t)SBs—l— TB$— (r(t) + p)B+ pRX =0. (35)

40f course, in practice this is not the case (see, for instance, the discussion in Chapter 26 of Hull, 2003). More complex economic equilibrium
arguments can be made, but these lead to pricing equations of the same form as we obtain here, albeit with risk-adjusted parameters.




Note that if p = p(t), and we assume that X = B, then the solution to equation (3.5) for a zero coupon bond with face
value F payableatt =T is

B=Fexp [—/tT(r(u)+p(u)(1—R))du (3.6)

which corresponds to the intuitive idea of a spread s = p(1—R).%
We can change the above assumptions about the stock price in the event of default. If we assume that the stock
price S jumps to zero in the case of default, then equation (3.3) becomes

202
dn = (1— pdt) [Bt + %Bgs] dt — pdt(B—RX — BS) + o(dt)
0252
_ [Bt+TB$] dt — pdt(B— RX — BS) + o(dt). 3.7)

Following the same steps as above with 3 = Bs, we obtain

ZSZ
B+ (r(t) +P)SBs-+ ——Bss— (r(t) + p)B -+ pRX = 0. (38)

Note that in this case p appears in the drift term as well as in the discounting term. Even in this relatively simple
case of a risky corporate bond, different assumptions about the behavior of the stock price in the event of default will
change our valuation. While this is perhaps an obvious point, it is worth remembering that in some popular existing
models for convertible bonds no explicit assumptions are made regarding what happens to the stock price upon default.

4 Convertible Bonds With Credit Risk: The Hedge M odel

We now consider adding credit risk to the convertible bond model described in Section 2, using the approach discussed
in Section 3 for incorporating credit risk. We follow the same general line of reasoning described in Ayache et al.
(2002). Let the value of the convertible bond be denoted by V (S,t). To avoid complications at this stage, we assume
that there are no put or call features and that conversion is only allowed at the terminal time or in the event of default.
Let St be the stock price immediately after default, and S~ be the stock price right before default. We will assume
that

st =s7(1-n), (4.1)

where 0 < n < 1. We will refer to the case where n = 1 as the “total default” case (the stock price jumps to zero), and
we will call the case where n = 0 the “partial default” case (the issuing firm defaults but the stock price does not jump
anywhere).

As usual, we construct the hedging portfolio

M=V —pS. (4.2)

If there was no credit risk, i.e. p =0, then choosing B = Vs and applying standard arguments gives
0°s?
dn = [Vt + TV$] dt+o(dt). (4.3)
Now, consider the case where the hazard rate p is nonzero. We make the following assumptions:
e Upon default, the stock price jumps according to equation (4.1).
e Upon default, the convertible bond holders have the option of receiving

(a) the amount RX, where 0 < R < 1 is the recovery factor (as in the case of a simple risky bond, there are
several possible assumptions that can be made about X (e.g. face value, pre-default value of bond portion
of the convertible, etc.), but for now, we will not make any specific assumptions), or:

5This is analogous to the results of Duffie and Singleton (1999) in the stochastic interest rate context.



(b) shares worth kS(1—n).

Under these assumptions, the change in value of the hedging portfolio duringt — t+dt is

drf = (1-pdt) [Vt + ?Vss] dt — pdt(V —BSn)) + pdtmax(kS(1 —n),RX) + o(dt)

2g2
= [Vt + %VSS] dt — pdt(V —VsSn) + pdtmax(kS(1—n),RX) + o(dt). (4.9)

Assuming the expected return on the portfolio is given by equation (3.4) and equating this with the expectation of
equation (4.4), we obtain

2g2
riv —Svgl dt= [Vt + %Vss] dt — p[V —VsSn] dt + p[max(kS(1—n),RX)] dt+o(dt). (4.5)
This implies
0282
Vi + (r(t) + pn)SVs+ TVSS_ (r(t)+ p)V + pmax(kS(1—n),RX) = 0. (4.6)

Note that r(t) + pn appears in the drift term and r(t) 4+ p appears in the discounting term in equation (4.6). In
the case that R = 0, n = 1, which is the total default model with no recovery, the final result is especially simple:
we simply solve the full convertible bond problem (2.4), with r(t) replaced by r(t) + p. There is no need to solve an
additional equation. This has been noted by Takahashi et al. (2001) and Andersen and Buffum (2003).

Defining

g2
MV = -V — <?SZVSS+ (r(t)+pn—q)SVs— (r(t) + p)V> ) 4.7

we can write equation (4.6) for the case where the stock pays a proportional dividend g as
MV — pmax(kS(1—n),RX) =0. (4.8)

We are now in a position to consider the complete problem for convertible bonds with risky debt. We can generalize
problem (2.4), using equation (4.8):
[ ] BC > KS
MV — pmax(kS(1—n),RX)=0
(V —max(Bp,kS)) >0
(V—B) <0
MV — pmax(kS(1—n),RX) >0
\Y (V —max(Bp,kS)) =0
(V—B) <0
MV — pmax(kS(1—n),R
\Y (V —max(Bp, KS) >
(V-B¢)=0

X) <0
0 (4.9)

[ ] BC S KS
V = KS. (4.10)

Although equations (4.9)-(4.10) appear formidable, the basic concept is easy to understand. The value of the
convertible bond is given by
MV — pmax(kS(1—n),RX) =0, (4.11)
subject to the constraints
V > max(Bp, KS)
V < max(Bg, KS). (4.12)
Again, as with equation (2.4), equation (4.9) simply says that either we are in the continuation region or one of the two
constraints (call or put) is binding. In the following, we will refer to the basic model (4.9)-(4.10) as the hedge model,

since this model is based on hedging the Brownian motion risk, in conjunction with precise assumptions about what
occurs on default.



4.1 Recovery Under TheHedge Model

If we recover RX on default, and X is simply the face value of the convertible, or perhaps the discounted cash flows of
an equivalent corporate bond (with the same face value), then X can be computed independently of the value of V and
so V can be calculated using equations (4.9)-(4.10). Note that in this case there is only a single equation to solve for
the value of the convertible V.

However, this decoupling does not occur if we assume that X represents the bond component of the convertible.
In this case, the bond component value should be affected by put/call provisions, which are applied to the convertible
bond as a whole. Under this recovery model, we need to solve another equation for the bond component B, which
must be coupled to the total value V.

We emphasize here that this complication only arises for specific assumptions about what happens on default. In
particular, if R = 0, then equations (4.9)-(4.10) are independent of X.

4.2 HedgeMode: Recover Fraction of Bond Component

Assume that the total convertible bond value is given by equations (4.9)-(4.10). We will make the assumption that
upon default, we recover RB, where B is the pre-default bond component of the convertible. We will now devise a
splitting of the convertible bond into two components, such that V = B + C, where B is the bond component and C
is the equity component. The bond component, in the case where there are no put/call provisions, should satisfy an
equation similar to equation (3.8).

We emphasize here that this splitting is required only if we assume that upon default the holder recovers RB, with B
being the bond component of the convertible, and C, the equity component, is simply V — B. There are many possible
ways to split the convertible into two components such thatV = B + C. However, we will determine the splitting such
that B can be reasonably (e.g. ina bankruptcy court) taken to be the bond portion of the convertible, to which the holder
is entitled to receive a portion RB on default. The actual specification of what is recovered on default is a controversial
issue. We include this case in detail since it serves as a representative example to show that our framework can be used
to model a wide variety of assumptions. In the case that B, = —oo (i.e. there is no put provision), the bond component
should satisfy equation (3.8), with initial condition B = F, and X = B. Under this circumstance, B is simply the value
of risky debt with face value F.

Consequently, in the case where the holder recovers RB on default, we propose the following decomposition for
the hedge model

(C— (max(B¢,kS)—B)) <0
(C—(KS—B)>0
MC— S(1-n)—RB,0)<0
V( pcmixrg;x((sc,gg)—s = )

(MC— pmax(kS(1—n)—RB,0) = O)

MC — pmax(kS(1—n)—RB,0) >0
v ( Coxs B : (4.13)
MB—RpB =0
B—Bc<0 |v (MBI;_R%B§()> v (MBB__EF’BEO) (4.14)
B—(Bp—C) >0 - —orT

Adding together equations (4.13)-(4.14), and recalling that V = B+ C, it is easy to see that equations (4.9)-(4.10) are
satisfied. We informally rewrite equations (4.13) as

MC— pmax(kS(1—n)—RB,0) =0, (4.15)
subject to the constraints

B +C < max(Bc, KS)
B+C>kS. (4.16)



Similarly, we can also rewrite equations (4.14) as

MB—RpB =0, (4.17)
subject to the constraints
B < Bc
B+C > Bp. (4.18)

Note that the constraints (4.16)-(4.18) embody only the fact that B4+-C =V, thatV has constraints, and the requirement
that B < Bc. No other assumptions are made regarding the behaviour of the individual B and C components.
We can write the payoff of the convertible as

V(S,T) =F +max(kS—F,0), (4.19)
which suggests terminal conditions of
C(S,T) = max(kS—F,0)
B(S,T)=F (4.20)

Consider the case of a zero coupon bond where p = p(t), B < B¢, Bp = 0. In this case, the solution for B is

B =Fexp [—/tT(r(u)+p(u)(1—R))du : 4.21)

independent of S. We emphasize that we have made specific assumptions about what is recovered on default in this
section. However, the framework (4.9)-(4.10) can accommodate many other assumptions.

4.3 TheHedgeMode: Some Special Cases

If we assume that n = O (i.e. the partial default case where the stock price does not jump if a default occurs), the
recovery rate R = 0, and the bond is continuously convertible, then equations (4.13)-(4.14) become

MV +p(V —KS) =0 (4.22)

in the continuation region. This has a simple intuitive interpretation. The convertible is discounted at the risk free rate
plus spread whenV > kS and at the risk free rate when V ~ kS, with smooth interpolation between these values. Equa-
tion (4.22) was suggested in Ayache (2001). Note that in this case, we need only solve a single linear complementarity
problem for the total convertible value V.

Making the assumptions that n = 1 (i.e. the total default case where the stock price jumps to zero upon default)
and that the recovery rate R = 0, equations (4.13)-(4.14) reduce to

MV =0 (4.23)

in the continuation region, which agrees with Takahashi et al. (2001). In this case, there is no need to split the
convertible bond into equity and bond components. If the recovery rate is non-zero, our model is slightly different
from that in Takahashi et al.. There it is assumed that upon default the holder recovers RV, compared to model (4.13)-
(4.14) where the holder recovers RB. Consequently, for nonzero R, approach (4.13)-(4.14) requires the solution of the
coupled set of linear complementarity problems, while the assumption in Takahashi et al. requires only the solution of
a single linear complementarity problem. Since the total convertible bond value V includes a fixed income component
and an option component, it seems more reasonable to us that in the event of total default (the assumption made in
Takahashi et al. (2001)), the option component is by definition worthless and only a fraction of the bond component
can be recovered. The total default case also appears to be similar to the model suggested in Davis and Lischka (1999).
A similar total default model is also suggested in Andersen and Buffum (2003), for the case R =0,n = 1.

As an aside, it is worth observing that if we assume that the stock price of a firm jumps to zero on default, then we
can use the above arguments to deduce the PDE satisfied by vanilla puts and calls on the issuer’s equity. If the price of
an option is denoted by U (S, t), then U is given by the solution to

22

s
Uit (r+p)SUs+ > Uss— (r+p)U + pU(0,1) =0. (4.24)

This suggests that information about the hazard rate is contained in the market prices of vanilla options.



5 Comparison With PreviousWork

There have been various attempts to value convertibles by splitting the total value of a convertible into bond and equity
components, and then valuing each component separately. An early effort along these lines is described in a research
note published in 1994 by Goldman Sachs. In this article, the probability of conversion is estimated, and the discount
rate is a weighted average of the risk free rate and the risk free rate plus spread, where the weighting factor is the
probability of conversion.

More recently, the model described in Tsiveriotis and Fernandes (1998) has become popular. In the following,
we will refer to it as the TF model. This model is outlined in the latest edition of Hull’s standard text, and has been
adopted by several software vendors. We will discuss this model in some detail.

51 TheTF Model

The basic idea of the TF model is that the equity component of the convertible should be discounted at the risk-free
rate (as in any other contingent claim), and the bond component should be discounted at a risky rate. This leads to the
following equation for the convertible value V

2
Vt—|—%SZV55—|—(rg—q)SVS—r(V—B)—(r—|—s)B:0 (5.1)
subject to the constraints

V > max(Bp, KS)
V < max(Bg, KS). (5.2)

In equation (5.1), rg is the growth rate of the stock, s is the spread, and B is the bond component of the convertible.
Following the description of this model in Hull (2003), we will assume here that the “growth rate of the stock” is the
risk free rate, i.e. rg = r. The bond component satisfies
0°s?
Bt+rSBS+TB$—(r—|—5)B:O. (5.3
Comparing equations (3.5) and (5.3), setting X = B, and assuming that s and p are constant, we can see that the spread
can be interpreted as s = p(1 —R).

Although not stated in Tsiveriotis and Fernandes (1998), we deduce that the model described therein is a partial
default model (stock price does not jump upon default) since the equity part of the convertible is discounted at the risk
free rate. Of course, we can extend their model to handle other assumptions about the behaviour of the stock price
upon default, while keeping the same decomposition into bond and equity components.

We can write the equation satisfied by the total convertible value V in the TF model as the following linear com-
plementarity problem

e B.>KS
LV +p(1-R)B=0 LV +p(1-R)B>0 LV +p(1-R)BLO
((V —max(Bp,KS)) > 0) \Y ((V —max(Bp,KS)) = O) \Y ((V —max(Bp, KS)) > 0) (5.4)
(V—Bc) <0 (V—=B¢) <0 (V—Bc)=0
e Bc<KS
V =KS. (5.5)

It is convenient to describe the decomposition of the total convertible price as V = B+ C, where B is the bond
component, and C is the equity component. In general, we can express the solution for {V,B,C} in terms of a coupled
set of equations. Assuming that equations (5.4)-(5.5) are also being solved for V, then we can specify {B,C}. In the
TF model, the following decomposition is suggested:



convertible bond 7

z asset-or-nothing call

digital bond

b o i S
FIGURE 1: Illustration of the TF method for decomposing a convertible bond into a digital bond plus an asset-or-nothing
call.
[ ] Bp > KS
LC=0; LB+p(l-R)B=0 ifV #BpandV # B¢
B:Bp; C=0 ifV:Bp
B=0; C=Bc if V=B (5.6)

LC=0; LB+p(l-R)B=0 if V # max(kS,Bc)
C =max(kS,B¢); B=0 if V.= max(kS,Bg). (5.7)

It is easy to verify that the sum of equations (5.6)-(5.7) gives equations (5.4)-(5.5), noting thatV = B +C.
The terminal conditions for the TF decomposition are

C(S,t=T)=H(kS—F)(max(kS—F,0) +F)

B(S,t=T)=H(F —«kS)F, (5.8)
where
1 ifx>0
Hx) = {o if x < 0. (5.9)

However, the splitting in equations (5.6)-(5.7) does not seem to be based on theoretical arguments which require
specifying precisely what happens in the case of default. Tsiveriotis and Fernandes (1998) provide no discussion of
the actual events in the case of default, and how this would affect the hedging portfolio. There is no clear statement in
their paper as to what happens to the stock price in the event of default.

Figure 1 illustrates the decomposition of the convertible bond using equation (5.8). Note that the convertible bond
payoff is split into two discontinuous components, a digital bond and an asset-or-nothing call. The splitting occurs at
the conversion boundary. This can be expected to cause some difficulties for a numerical scheme, as we have to solve
for a problem with a discontinuity which moves over time (as the conversion boundary moves).
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5.2 TF Splitting: Call Just Before Expiry

We now turn to discussing some inconsistencies in the TF model. As a first example, consider a case where there are
no put provisions, there are no coupons, K = 1, conversion is allowed only at the terminal time (or at the call time),
and the bond can only be called the instant before maturity, att = T—. The call price B =F —¢,£ >0, e K 1.

Suppose that the bond is called att = T ~. From equations (5.7) and (5.8), we conclude that we end up effectively
solving the original problem with the altered payoffatt =T~

LV +pB=0

V(S,T7) = max(S,F —¢)

LB+ pB=0

B(S,T7)=0. (5.10)

Note that the condition on B at t = T~ is due to the boundary condition (5.7). Now, since the solution of equation
(5.10) for B (with B = 0 initially) is B = 0 for all t < T ~, the equation for the convertible bond is simply

LV =0
V (S, T7) = max(S,F —¢). (5.11)

In other words, there is no effect of the hazard rate in this case. This peculiar situation comes about because the TF
model requires that the bond value be zero if V = B, even if the effect of the call on the total convertible bond value at
the instant of the call is infinitesimally small. This result indicates that calling the bond the instant before expiry with
Bc = F — € makes the convertible bond value independent of the credit risk of the issuer, which is clearly inappropriate.

5.3 Hedging

As a second example of an inconsistency in the TF framework, we consider what happens if we attempt to dynamically
hedge the convertible bond. Since there are two sources of risk (Brownian risk and default risk), we expect that we
will need to hedge with the underlying stock and another contingent claim, which we denote by I. This second claim
could be, for instance, another bond issued by the same firm. Given the presence of this second hedging instrument,
in this context we will drop the assumption that default risk is diversifiable. Thus, in the following Adt is the actual
probability of default during [t,t+ dt], whereas pdt is its risk-adjusted value.

Consider the hedging portfolio

N=V-pS—BI1+A (5.12)
where A is the cash component, which has value A= —(V — S— B'l). Assume a real world process of the form
dS = (L+An)Sdt + 0Sdz — nSdq (5.13)

where |l is the drift rate and the Poisson default process

_ )1 with probability A dt
9= Y0 with probability 1 — Adt °

Suppose we choose
Vs—B'ls— B = 0. (5.14)

Using 1t6’s Lemma, we obtain (from equations (5.12) and (5.14))

2c2 2c2
df = £V$+Vt—[5' <%|$+|t>] dt

2
+(BS+PB'1—V)rdt
+ [ change in M on default ] dg. (5.15)

We have implicitly assumed in equation (5.15) that the second contingent claim | defaults at precisely the same time
as the convertible V.

To avoid tedious algebra, we will assume that the recovery rate of the bond component R = 0. If the contingent
claims are not called, put, converted, or defaulted in [t,t+ dt], then

11



e hedge model (from equation (4.6))

0252
Vit ——Vss= —[(r+pn)SVs— (r+p)V + pkS(1 —n)]
0°s? ,
h+=——Vss = — [(r+ pn)Sls— (r+p)I + pK'S(1—n)]

e TF model (from equation (5.1))

282

Vi + GTV$ — _[rSVs—rV — pB]
282

o+ Vs = — [rSls—r1 — p'].

(5.16)

(5.17)

Note that k' is the number of shares that a holder of the second claim | would receive in the event of a default, and B’

is the bond component of I. We assume that in all cases (noting that B =Vs— 'ls)

[ change in M on default] = kS(1—n) —BS(1—n) —B'k'S(1—n) — (V — B'l — BS)
= KS(L—N) + (Vs—B'ls)Sn — FK'S(1—n) —V +Bl.
Consequently, for both the hedge model and the TF model, we obtain (from equations (5.15) and (5.18))
2q2 2q2
dn = %V$—|—Vt - B'(%@ﬁ )| dt
+ [(Vs— Bl|s)s—|— BI| —V] rdt
+[kS(1—n) + (Vs—PB'ls)Sn — B'K'S(1—n) -V +P'l] dg

For the hedge model, using equation (5.16) in equation (5.19) gives

df = —pdt[SVsn—V +kS(1—n)—P'(nSls— 1+ K'S(1—n))]
+dg [KS(1—n)+ (Vs— Blg)SN — BK'S(1—n) =V +Bl]
—pdt[SVsn —V +KS(1—n) —B'nSls— 1 +K'S(1—n)]
+dq [KS(1—n)+VsSn =V +B'l —1sSn —K'(1—n)S] .
Choosing
o= SVsn—V +kS(1—n)
nSls—1+k'(1-n)S
and substituting equation (5.21) into equation (5.20) gives

dn =0,

so that the hedging portfolio is risk free and self-financing under the real world measure.
On the other hand, in the case of the TF model, substituting equation (5.17) into equation (5.19) gives

dr = pdt(B—P'B')+dq [KS(1—n) +VsSn =V +B' (1 - IsSn —K'(1—n)S)] .
If we choose ' as in equation (5.21), and substitute in equation (5.23), we obtain
df = [B—p'B'] pdt.
This means that the hedging portfolio is no longer self-financing. Another possibility is to require

E[dn] =

12

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)



Using equations (5.14), (5.23), and (5.25) gives

g = —MKSL—n)+VsSn —V) — pB
~ AI—1sSn—K/(1—n)S) —pB' °

(5.26)

Note that in this case B' depends in general on A. With this choice of B, the variance in the hedging portfolio in
[t,t+dt]is
Var [dM] = E [(dM)?] (5.27)

which in general is nonzero, so that the hedging portfolio is not risk free.

Consequently, the hedge model can be used to generate a self-financing hedging zero risk portfolio under the real
probability measure. In contrast, the TF model will not generate a hedging portfolio which is both risk free and self-
financing. This is simply because in the hedge model we have specified what happens on default, so that the PDE is
consistent with the default model.

6 Numerical Examples

A detailed description of the numerical algorithms is provided in Appendix A. In this section, we provide some
convergence tests of the numerical methods for some simple and easily reproducible cases, as well as some more
realistic examples.

In order to be precise about the way put and call provisions are handled, we will describe the method used to cal-
culate the effects of accrued interest and the coupon payments in some detail. The payoff condition for the convertible
bondis(att=T)

V (S, T) = max(kS, F + Kjagt), (6.1)

where Kjag is the last coupon payment. Let t be the current time in the forward direction, tp, the time of the previous
coupon payment, and tn be the time of the next pending coupon payment, i.e. t, <t <tn. Then, define the accrued
interest on the pending coupon payment as

t—tp
th—tp

Accl(t) =K, (6.2)

where Kp, is the coupon payment at t = tj,.
The dirty call price B¢ and the dirty put price By, which are used in equations (4.13)-(4.14) and equations (5.6)-
(5.7), are given by

Be(t) = BY (t) + Accl(t)
Bp(t) = B (t) + Accl(t), (6.3)
where BS and B are the clean prices.

Let t* be the forward time the instant after a coupon payment, and t;~ be the forward time the instant before a
coupon payment. If K; is the coupon payment at t = t;, then the discrete coupon payments are handled by setting

V(S,ti_) = V(S,ti+) + K|
B(S,t7) =B(S, ) +K
C(s,t7) = C(S,ti+), (6.4)

where V is the total convertible value and B is the bond component. The coupon payments are modelled in the same
way for both the TF and the hedge models.

The data used for the numerical examples is given in Table 1, which is similar to the data used in Tsiveriotis and
Fernandes (1998) (except that some data, such as the volatility of the stock price, was not provided in that paper).
We will confine these numerical examples to the two limiting assumptions of total default (n = 1.0) or partial default
(n = 0.0) (see equation (4.1)).

Table 2 demonstrates the convergence of the numerical methods for both models. It is interesting to note that
the hedge model partial and total default models appear to give solutions correct to $.01 with coarse grids/timesteps,
while considerably finer grids/timesteps are required to achieve this level of accuracy for the TF model. This reflects
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TaBLE 1: Data for numerical example. Partial and total default cases defined by equation (4.1).

T 5 years
Clean call price 110inyears2—5
Oinyears0—2
Clean put price 105 at 3 years
r .05
p .02
o .20
Conversion ratio 1.0
Recovery factor R 0.0
Face value of bond 100
Coupon dates .5,1.0,15,...,5.0
Coupon payments 4.0
Total default n=1.0
Partial default n=20.0

Nodes | Timesteps | Hedge Model Hedge Model TF
(Partial Default) | (Total Default)
200 200 124.9158 122.7341 124.0025
400 400 124.9175 122.7333 123.9916
800 800 124.9178 122.7325 123.9821
1600 1600 124.9178 122.7319 123.9754
3200 3200 124.9178 122.7316 123.9714

TABLE 2: Comparison of hedge (partial and total default) and TF models. Value att = 0,S = 100. Data given in
Table 1. For the TF model, partially implicit application of constraints. Total default (n = 1.0) and partial default
(n = 0.0) defined in equation (4.1).

our earlier comment (at the end of Section 5.1) that the bond component of the TF model effectively involves a time
dependent knock-out barrier, which is difficult to solve accurately. Note that the partial default hedge model gives a
price which is about $1.00 higher than the TF price. In contrast, the total default hedge model is about $1.00 less than
the TF price.

The results in Table 2 should be contrasted with the results in Table 3, where the hazard rate p is set to zero. In
this case, the value of the convertible bond is about $2.00 more than for the TF model, and about $1.00 more than for
the partial default hedge model.

In Appendix A.1, a technique is suggested which decouples the coupled PDEs for B and C for the TF model. In
contrast to the methods in Tsiveriotis and Fernandes (1998), we include an extra implicit step at each timestep. Table 4
shows the convergence of the TF model, where the last fully implicit solution of the total bond value in equations
(A.12)-(A.14) is included/omitted. In this case, we can compare the results in Table 4 to those in Table 2. We observe

TABLE 3: Value of convertible bond att = 0,S = 100. Data given in Table 1, except that the hazard rate p = 0. In this

Nodes | Timesteps | Value (p = 0)
200 200 125.9500
400 400 125.9523
800 800 125.9528

1600 1600 125.9529
3200 3200 125.9529

case, both the TF and the hedge models give the same result.
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Nodes | Timesteps TF (Table 2) TF
(partially implicit constraints) | (explicit constraints)
200 200 124.00249 124.09519
400 400 123.99160 124.05384
800 800 123.98210 124.02508
1600 1600 123.97538 124.00798
3200 3200 123.97141 123.99433
6400 6400 123.97050 123.98531

TABLE 4: TF model value att = 0,S = 100. Data given in Table 1. Comparison of partially implicit constraints (use
equations (A.12)-(A.14)) and explicit application of constraints (omit equations (A.12)-(A.14)).
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FIGURE 2: Convertible bond values att = 0, showing the results for no default, the TF model, and the hedge (partial
default (n = 0.0) and total default (n = 1.0) models. (see equation (4.1)). Data as in Table 1.

that the extra implicit solve (equations (A.12)-(A.14)) does indeed speed up convergence as the grid is refined and the
timestep size is reduced.

Figure 2 provides a plot for the cases of no default, the TF model, and the two hedge models (partial and total
default). For high enough levels of the underlying stock price, the bond will be converted and all of the models
converge to the same value. Similarly, although it is not shown in the figure, as S — 0 all of the models (except for
the no default case) converge to the same value as the valuation equation becomes an ordinary differential equation
which is independent of n (though not of p). Between these two extremes, the graph reflects the behavior shown in
Table 2, with the hedge partial default value above the TF model which is in turn above the hedge total default value.
The figure also shows the additional intuitive feature not documented in the table that the case of no default yields
higher values than any of the models with default.

It is interesting to see the behavior of the TF bond component and the TF total convertible value an instant before
t = 3years. Recall from Table 1 the bond is puttable at t = 3, and there is a pending coupon payment as well. Figure 3
shows the discontinuous behaviour of the bond component near the put price for the TF model. Since V = B+C, the
call component also has a discontinuity.

Figure 4 shows results for the total default hedge model with different recovery factors R (equation (4.9)). We
also show the case with no default risk (p = 0) for comparison. Note the rather curious fact that for the admittedly
unrealistic case of R = 100%, the value of the convertible bond is above the value with no default risk. This can be
explained with reference to the hedging portfolio (4.2). Note that the portfolio is long the bond and short the stock. If
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FIGURE 3: TF model, total and non-equity (bond) component at t = 3 years, just before coupon payment and put
provision. Data as in Table 1.
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FIGURE 4: Total default hedge model with different recovery rates. Data as in Table 1.
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FIGURE 5: Total default hedge model with constant hazard rate and non-constant hazard rate with different exponents
in equation (6.5). So = 100, po = .02; other data as in Table 1.

there is a default, and the recovery factor is high, the hedger obtains a windfall profit, since there is a gain on the short
position, and a very small loss on the bond position.

The previous examples used a constant hazard rate (as specified in Table 1). However, it is more realistic to model
the hazard rate as increasing as the stock price decreases. A parsimonious model of the hazard rate is given by

P(S) = po <S§0>q (6.5)

where po is the estimated hazard rate at S = Sp. In Muromachi (1999), a function of the form of equation (6.5) was
observed to be a reasonable fit to bonds rated BB+ and below in the Japanese market. Typical values for a are in the
range from -1.2 to -2.0 (Muromachi, 1999).

In Figure 5 we compare the value of the total default hedge model for constant p(S) as well as for p(S) given by
equation (6.5). The data are as in Table 1, except that for the non-constant p(S) cases, we use equation (6.5) with
po = .02, So = 100. Figures 6 and 7 show the corresponding delta and gamma values.

7 Risk Neutral Hedging Simulations

We can gain further insight into the difference between the TF model and the hedge model by considering the hedging
performance of these models, but in a risk neutral setting (in contrast to the real world measure considered above in
Section 5.3).
Consider the hedging portfolio
Mot =V —BS+A, (7.1)

where the total portfolio My also includes the amount in the risk free bank account which is required to finance the
portfolio. Note that A = S —V in cash. Let dG be the gain in the portfolio if no default occurs, and dL be the losses
due to default, in the interval [t,t+ dt]. By definition

dMigt —dG —dL =0.
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FIGURE6: Delta for the total default hedge models with constant hazard rate and non-constant hazard rate with different
exponents in equation (6.5). So = 100, po = .02; other data as in Table 1.
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FIGURE 7: Gamma for the total default hedge models with constant hazard rate and non-constant hazard rate with
different exponents in equation (6.5). So = 100, po = .02; other data as in Table 1.
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Assume that no default has occurred in [0, t], and that no default occurs in [t,t+ dt], then for f = Vs we obtain
dMiet —dG =0

= [vt+%2v$] dt+ [BS — V] rdt — dG + o(dt). (7.2)

Equation (7.2) holds for both the TF and the hedge models.
For simplicity in the following, we will assume that the recovery rate R = 0. With the further assumption that the
convertible bond is not called, put, converted or defaulted in [t,t+ dt], it follows that

e hedge model (from equation (4.6))

0252
Vit ——Vss = —[(r+pn)SVs— (r+p)V + pkS(1 —n)]. (7.3)

e TF model (from equation (5.1))
Vi + TV$ = —[rSVs—rV — pB]. (7.4)

If p=0, then equations (7.2), (7.3), and (7.4) give dG = 0. This is to be expected, since setting 3 = Vs eliminates
the Brownian risk. However, if p # 0, then the expected gain in value of the portfolio assuming no default in [t,t 4 dt]
is

o hedge model (from equations (7.2) and (7.3))
dG = [-pnSVs+ pV — pkS(1—n)] dt. (7.5)
e TF model (from equations (7.2) and (7.4))
dG = pBdt. (7.6)

Let E[dG(t)] be the expected value of the excess amount in the portfolio if no default occurs in [t,t+ dt]. Then, given
that the probability of no default occurring in [t,t+ dt] is 1 — pdt, it follows that

e hedge model (from equation (7.5))
E[dG] = [-pnSVs+ pV — pkS(1—n)] dt + o(dt). (7.7)
e TF model (from equation (7.6))
E[dG] = pBdt+ o(dt). (7.8)

In the risk neutral measure, expected gains in value of the hedging portfolio must compensate for expected losses due
to default. Let S be the value of S at time t on the i-th realized path of the underlying stock price process. Let X(St,t)
be the probability of no default in [0,t], along path S}. Then, the discounted value of the expected no-default gain is

e hedge model (from equation (7.7))
T
E[Gla=Ecgs | X(SLt)e™™ [~pniSVs+ pV — prS(L—n)]g (7.9)
e TF model (from equation (7.8))

T .
E[Gla=Ecgs [ X(SL:t)e ™" [pBlg dt (7.10)
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Now consider the losses due to default. Given
Mot =V —BS+A (7.11)

where A = (BS—V) in cash, assume that no default has occurred in [0, ], but that default occurs in [t,t+ dt]. Conse-
quently, on default we have (assuming R = 0, and that conversion is possible)

V - KS(1-n)
S—=S(1-n)
A=A (7.12)
Thus
dMtot = Mafter — Mpefore
= Mafter
=KS(1—n)+VsSn -V, (7.13)
which gives
dL=kS(1—n)+VsSn—V. (7.14)
Now, default occurs in [t,t+ dt] with probability pdt, so that the expected discounted losses due to default are
T
E[L]g = E<S->/0 X(Skt)e~"p[KS(1 — ) +VsSn Vg dt. (7.15)
Equation (7.15) is valid for both the hedge and the TF models. Moreover, from equations (7.9) and (7.15) we have
E[G]q+E[L]lg=0 (7.16)

for the hedge model. In other words, the expected no-default gains exactly offset the expected default losses for a delta
hedged portfolio under the hedge model. Of course, the Brownian motion risk is identically zero along all paths for
this model as well. However, from equations (7.10) and (7.15), we see that in general equation (7.16) may not hold
for the TF model.

We can verify these results using Monte Carlo simulations. First, we compute and store the discrete PDE linear
complementarity solutions for both the TF and the hedge models. The discrete values of V and Vg are stored at each
grid point and timestep. We also store flags to indicate whether the convertible bond has been called, put or converted
at every grid node and discrete time tj. We then compute a realized path S, assuming a process of the form (5.13),
but in a risk neutral setting (i.e. with p replaced by r and A by its risk neutral counterpart p). At each discrete time
t; = jAt, S=S(t;), we carry out the following steps:

o If the convertible has been called, converted or put, then the simulation along this path ends.

e A random draw is made to determine if default occurs in [t,t+ dt]. If default occurs, increment the losses using
equation (7.14). The simulation ends.

o If the convertible bond is not called, put, converted or defaulted, we can compute the gain from equation (7.9)
for the hedge model, or from equation (7.10) for the TF model.

o Repeat for S(tj+1) untiltj=T.

We then repeat the above for many realized paths to obtain an estimate of equations (7.9), (7.10), and (7.15).

The Monte Carlo hedging simulations were carried out using the data in Table 1 except that we use the variable
hazard rate (6.5), with pg = .02, Sp= 100, a = —1.2. Various values of n will be used. Figure 8 shows a convergence
study of the hedging simulation for n = 1.0. The expected discounted net value is shown

E[Net] = E[G]q + E[L]q. (7.17)

Each timestep of the PDE solution was divided into five substeps for the Monte Carlo simulation. Based on the results
in Figure 8, it appears that using a PDE solution with 400 nodes and timesteps, and 2 x 108 Monte Carlo trials is
accurate to within a cent.

Table 5 shows that to within the accuracy of the Monte Carlo simulations, the hedge model has expected gains
(no-default) which exactly compensate for expected losses due to default. In general, this is not true for the TF model,
except for a particular choice for the stock jump parameter n.
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FIGURE 8: Convergence test for hedging in the risk neutral measure. Expected net value from equation (7.17). Data
given in Table 1, but with variable hazard rate (6.5), with po = .02,Sg = 100,00 = —1.2, N = 1.

n | Expected | Expected | Expected
Gain Loss Net
Hedge Model
0.0 | 1.19521 | -1.19575 | -0.00054
0.5 | 2.42083 | -2.42162 | -0.00079
1.0 | 3.38514 | -3.37966 | 0.00548
TF Model
0.0 | 2.32902 | -1.11340 | 1.21562
0.5 | 2.32902 | -2.29152 | 0.03750
1.0 | 2.32902 | -3.46964 | -1.14062

TABLE 5: Hedging simulations. Data given in Table 1, with variable hazard rate (6.5), but with pg = .02,Sg = 100,0 =
—1.2,n = 1. 400 nodes and timesteps in the PDE solve, 2 x 108 Monte Carlo trials.
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8 Conclusions

Even in the simple case where the single risk factor is the stock price (interest rates being deterministic), there have
been several models proposed for default risk involving convertible bonds. In order to value convertible bonds with
credit risk, it is necessary to specify precisely what happens to the components of the hedging portfolio in the event of
a default.

In this work, we consider a continuum of possibilities for the value of the stock price after default. Various
assumptions can also be made about what is recovered on default. Two special cases which we have examined in
detail are:

o Partial default: the stock price is unchanged upon default. The holder of the convertible bond can elect to

(a) receive a recovery factor times the bond component value, or
(b) convert the bond to shares.

o Total default: the stock price jumps to zero upon default. The equity component of the convertible bond is, by
definition, zero. A fraction of the bond value of the convertible is recovered.

In the case of total default with a recovery factor of zero, this model agrees with that in Takahashi et al. (2001). In
this situation, there is no need to split the convertible bond into equity and bond components. In the case of non-zero
recovery, our model is slightly different from that in Takahashi et al. (2001). This would appear to be due to a different
definition of the term recovery factor.

In the partial default case, the model developed in this work uses a different splitting (i.e. bond and equity compo-
nents) than that used in Tsiveriotis and Fernandes (1998). We have presented several arguments as to why we think
their model is somewhat inconsistent. Both the TF model and the model developed here hedge the Brownian risk.
However, in the risk neutral measure, the model developed in this paper ensures that the expected value of the net
gains and losses due to default is zero. This is not the case for the TF model. Monte Carlo simulations (in a risk
neutral setting) demonstrate that the net gain/loss of the TF model due to defaults is significant. It is also possible
(using an additional contingent claim) to construct a hedging portfolio which is self-financing and eliminates risk for
the hedge model, under a real world default process. This is not possible for the TF model. The impact of model
assumptions on real world hedging is also presented.

It is possible to make other assumptions about the behavior of the stock price on default. As well, there may be
limits on conversion rights on default, and other assumptions can be made about recovery on default.

The convertible pricing equation is developed by following the following steps

e The usual hedging portfolio is constructed.
e A Poisson default process is specified.
e Specific assumptions are made about the behaviour of the stock price on default, and recovery after default.

It is then straightforward to derive a risk-neutral pricing equation. There are no ad-hoc decisions required about which
part of the convertible is discounted at the risky rate, and which part is discounted at the risky rate. We emphasize that
the framework developed here can accommodate many different assumptions.

Convertible bond pricing generally results in a complex coupled system of linear complementarity problems. We
have used a partially implicit method to decouple the system of linear complementarity problems at each timestep. The
final value of the convertible bond is computed by solving a full linear complementarity problem (but with explicitly
computed source terms), which gives good convergence as the mesh and timestep are reduced, and also results in
smooth delta and gamma values.

It is clear that the value of a convertible bond depends on the precise behavior assumed when the issuer goes into
default. Given any particular assumption, it is straightforward to model these effects in the framework presented in this
paper. A decision concerning which assumptions are appropriate requires an extensive empirical study for different
classes of corporate debt.
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A Numerical Method

Define Tt =T —t, so that the operator LV becomes

2
LV =V — (%szvser (r(t) —q)SVs— r(t)V) : (A1)
and 5
MV =V — (%SZV$+ (r(t)+pn—q)SVs— (r(t) + p)V) . (A.2)
It is also convenient to define 5
HV = <%szv$+ (r(t) - q)SVS> , (A3)
and
o?
P = <?S Vss+ (r(t) + pn —q)SVs> , (A.4)
so that equation (A.1) can be written
LV =V — (HV —r(t)V), (A.5)
and equation (A.2) becomes
MV =Vi—(PV —(r(t)+p)V). (A.6)

The terms #V and PV are discretized using standard methods (see Zvan et al., 2001; Forsyth and Vetzal, 2001,
2002). Let ;" =V(S;,1"), and denote the discrete form of HV at (S;,1") by (#V)]', and the discrete form of MV
by (M V). In the following, for ease of exposition, we will describe the timestepping method for a fully implicit dis-
cretization of equation (A.1). In actual practice, we use Crank-Nicolson timestepping with the modification suggested
in Rannacher (1984) to handle non-smooth initial conditions (which generally occur at each coupon payment). The
reader should have no difficulty generalizing the equations to the Crank-Nicolson or BDF (Becker, 1998) case. We
also suppress the dependence of r on time for notational convenience.

Al TheTF Modd: Numerical Method

In this section, we describe a method which can be used to solve equations (5.6)-(5.7). We denote the total value
of the convertible bond computed using explicit constraints by VE. A corrected total convertible value, obtained by
applying estimates for the constraints in implicit fashion, is denoted by V'!. Given initial values of (VE)", (v!)" and
B[, the timestepping proceeds as follows. First, the value of Bi”Jrl is estimated, ignoring any constraints. We denote
this estimate by (B*)M:

(B*)r*! 8P

At

This value of (B*)" is then used to compute (V &)™ from

= (B )~ (r+ ) (B (AT)

(VE)i”‘i'ZT_ (VEyn _ (ﬂVE)in+l— (rVE)in+l— (pB*)in+1‘ (A.8)

Then, we check the minimum value constraints:
Fori=1,...,
Bin+l — (B*)in+l
If (Bp > KS) then
If (VE)M™?! < Bp) then
(B)*t=Bp; (VE)™* =Bp
Endif
Else
If (VE)M! < kS) then
(B)M™1=0.0; (VE)"!=«ks
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Endif

Endif
Endfor
Next, the maximum value constraints are applied:
Fori=1,...,

If ((VE)ML > max(Bc,kS)) then
(B)M™=0; (VE)™?!=max(Bc,kS)
Endif
Endfor
In principle, we could simply go on to the next timestep at this point using Bi”+l and (VE)M™1. However, we have
found that convergence (as the timestep size is reduced) is enhanced and the delta and gamma values are smoother if
we add the following steps. Let

n+1
I

n+1 n
Q)= (W) — (V) (V) (BT, »9)
Then if B¢ > KS, (V'))i”+l is determined by solving the discrete linear complementary problem
(Qvl)n+l -0
(V™1 —max(Bp,kS)) >0 (A.10)
(V)™ —Bc)) <0
(Qvl)n+l Z 0
v | (V)™ —max(Bp,kS)) =0 (A.11)
(VhH™-Bg) <0
(Qvl)n+l S 0
v | (V™1 —max(Bp,kS)) >0, (A.12)

((Vl)n+l_ Bc) -0
while if B¢ < kS, we apply the Dirichlet conditions
(VhM+t =ks;. (A.13)

A penalty method (Forsyth and Vetzal, 2002) is used to solve the discrete complementarity problem (A.12). Finally,
we set

(VE)n+l — (Vl)n+l
B! = min(BM+E, (V). (A.14)

The above algorithm essentially decouples the system of linear complementarity problems for B and V by applying
the constraints in a partially explicit fashion. However, we apply the constraints as implicitly as possible, without
having to solve the fully coupled linear complementarity problem. Consequently, we can only expect first order
convergence (in the timestep size At), even if Crank-Nicolson timestepping is used. However, this approach makes it
comparatively straightforward to experiment with different convertible bond models. As well, it is unlikely that the
overhead of the fully coupled approach will result in lower computational cost compared to the decoupled method
above (at least for practical convergence tolerances).

A.2 TheHedgeMode: Numerical Method

In this section, we describe the numerical method used to solve discrete forms of (4.9)-(4.10) and (4.13)-(4.14). Given
initial values of C" and BI", and the total value V;"™*1, the timestepping proceeds as follows. First, the value of B["** is
estimated, ignoring any constraints. We denote this estimate by (B*)i”“:

(B — By

A = (PBY) = (r+ p)i (B + (pRBY). (A.15)
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Then, C™1 is estimated, also ignoring constraints. We denote this estimate by (C*)i”“:

e)t-cr _

L = (#O)*— ((r-+ p)CT)* + pmax(kS(1 - n) ~R(B"){*,0). (A16)

Then, we check the minimum value constraints
Fori=1,...,
B! = min(Bg, (B*)™*) // overriding maximum constraint
Cin+l — (C*)in+l
If (Bp > KS;) then
B = max(B[*1, B, — C*Y)
Else
CM! = max(kS; — B, MYy
Endif
Endfor
Then, the maximum value constraints are applied:
Fori=1,...,
CcM! = min(CM?, max(kS;, Bc) — B
Endfor
In principle, we could simply continue on to the next timestep, setting Vin+l = Bin+l +Ci”+l. However, as for the
case of TF splitting, convergence is enhanced if we carry out the following additional steps. Let

n+l_\/n
(TV)iT= (VTV) — (V)= (14 PV pmax(kS(1-n), (RB)™Y) . (A7)

Then Vi”Jrl (the total convertible value) is determined by solving the discrete linear complementary problem
(‘T\/)rH'l:O (7\/')”“20 (‘T\/I)n+l§0
(V)™ —max(Bp,kS)) >0 | v | (V™! —max(Bp,kS)) =0 | v | (V™1 —max(Bp,kS)) >0 (A.18)
(V)™ —Bc) <0 (VML —Bc) <0 (V1 _Bg) =0
if Bc > KS, while if B¢ < kS we apply the Dirichlet conditions
V™1 =S, (A.19)
As with the TF case, a penalty method is used to solve the discrete complementarity problem (A.12). Finally, we set
Bin+l — min(Bin+l’Vin+l)
citt=ymt g, (A.20)

which ensures that
vt = gt (A.21)
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