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Overview
Temperature X (relative to preindustrial) follows arithmetic Brownian
motion (dZ = increment of a Wiener process)

dX (t) = η(t)

[
X̄ (S , t)− X (t)

]
dt + σdZ

mean reversion level X̄ (S , t) depends on carbon stock S

Global carbon stock S follows1

dS(t)

dt
= E1 + E2 + (S̄ − S(t))ρ(X ,S , t)

Ep = carbon emission of player p , p = 1, 2

S̄ = preindustrial carbon stock

ρ(X ,S , t) = removal rate (1)

Benefits (including negative effects of temperature damage) flowing to

player p : πp(E1,E2,X ,S , t)

1Current estimates are 1/ρ = 100 years, decaying to 1/ρ = 3000 years in
100 years. 1/η today is about 50 years. X̄ ' 1.9 today (above pre-industrial).
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Controls

Discrete decision times

T = {t0 = 0 < t1 < ...tm... < tM = T}

At tm ∈ T , player p chooses emission level e+p

e+p (E1,E2,X ,S , tm) = emission level of player p = 1, 2

emission level applies t ∈ (tm, tm+1)

Admissible sets Zp are discrete Zp ∈ {0, 3, 7, 10} Gt/year.2

Define control set

K =
{

(e+1 , e
+
2 )t0=0, (e+1 , e

+
2 )t1=1, ... , (e

+
1 , e

+
2 )tM=T

}
2US currently emits ' 2 Gt/year. Total world ' 10 Gt/year.
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Value functions

πp(E1,E2,X ,S , t) = net benefits (including damages) of emissions

EK [·] = Expectation under control K

r = discount rate

V (0, 0,X (T ),S(T ),T ) = stream of future benefits (decarbonized world)

Vp(e1, e2, x , s, t) = EK

[∫ T

t′=t

e−rt
′
πp(E1(t ′),E2(t ′),X (t ′),S(t ′)) dt ′

+e−r(T−t)V (0, 0,X (T ),S(T ),T )

∣∣∣E1(t) = e1,E2(t) = e2,X (t) = x , S(t) = s

]
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Dynamic Programming
Define (tm = decision time)

t+m = tm + ε ; t−m = tm − ε ; ε→ 0+

Advance solution backward in time t−m+1 → t+m

∂Vp

∂t
+ πp(e1, e2, x , s, t) + LVp = 0, p = 1, 2

LVp ≡
(σ)2

2

∂2Vp

∂x2
+ η(X̄ − x)

∂Vp

∂x

+ [(e1 + e2)ρ(S̄ − s)]
∂Vp

∂s
− rVp

Two continuous state variables (s, x) (carbon stock,
temperature)

Two discrete state variables (e1, e2) (emissions)

State of player p depends on ( e1, e2,︸ ︷︷ ︸
both controls

s, x , t)
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Solution of linear PDE in (t−m+1, t
+
m)

Discretize in x (temperature) direction

Use positive coefficient discretization, fully implicit
timestepping

Discretize in s (carbon stock) direction

Use semi-Lagrangian timestepping
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Optimal controls

At tm, players choose optimal controls e+p (·); p = 1, 2
Dynamic programming implies

V1(e−1 , e
−
2 , s, x , t

−
m) = V1(e+1 (·), e+2 (·), s, x , t+m) ,

V2(e−1 , e
−
2 , s, x , t

−
m) = V2(e+1 (·), e+2 (·), s, x , t+m)

e+p (·) = e+p (e−1 , e
−
2 , s, x , t

−
m)

Note:

(s, x) do not change in (t−m , t
+
m)

Applying controls causes state change

(e−1 , e
−
2 )→ (e+1 , e

+
2 ) ; (t−m → t+m)

Both value functions effected by both controls.
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Stackelberg Game

Conceptually, player 1 goes first, followed immediately by player 2

Definition 1 (Response function of player 2)

The best response function of player 2, R2(ω1; e−1 , e
−
2 , s, x , tm) is

defined to be the best response of player 2 to a control ω1 of
player 1.

R2(ω1; e−1 , e
−
2 , s, x , tm) = argmax

e′2

V2( ω1︸︷︷︸
player1
control

, e ′2, s, x , t
+
m) (2)

Remark 1 (Tie breaking)

We break ties by (i) staying at the current emission level if
possible, or (ii) choosing the lowest emission level. Rule (i) has
priority over rule (ii). The notation R2(·; e−1 , e

−
2 , ·) shows

dependence on the states (e−1 , e
−
2 ) due to the tie breaking rule.
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Response function of player 1

Similarly, we define the best response function of player 1.

Definition 2 (Response function of player 1)

The best response function of player 1, R1(ω2; e−1 , e
−
2 , s, x , tm) is

defined to be the best response of player 1 to a control ω2 of
player 2.

R1(ω2; e−1 , e
−
2 , s, x , tm) = argmax

e′1

V1(e ′1, ω2︸︷︷︸
player2
control

, s, x , t+m). (3)

To avoid notational clutter, fix (e−1 , e
−
2 , s, x , tm)

R1( ω2︸︷︷︸
player2
control

) ≡ R1(ω2; e−1 , e
−
2 , s, x , tm) ; R2( ω1︸︷︷︸

player1
control

) ≡ R2(ω1; e−1 , e
−
2 , s, x , tm)
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Stackelberg Game II

Definition 3 (Stackelberg Game: Player 1 first)

The optimal controls (e+1 , e
+
2 ) assuming player 1 goes first are

given by

e+1 = argmax
ω′
1

V1(ω′1,R2(ω′1), s, x , t+m)

e+2 = R2(e+1 ) . (4)

Definition 4 (Nash Equilibrium3 )
Given the best response sets R2(ω1), R1(ω2) defined in Equations (2)-(3),
then the pair (e+1 , e

+
2 ) is a Nash equilibrium point if and only if

e+1 = R1(e+2 ) ; e+2 = R2(e+1 ) . (5)

3In our numerical tests, we find that a Nash equilibrium does not always
exist
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Leader-Leader (Trumpian) Game

Each player assumes that they are the leader in a Stackelberg
game

→ This, of course, cannot be true

The Trumpian controls are determined from4 5

e+1 = argmax
ω′
1

V1(ω′1,R2(ω′1), s, x , t+m)

e+2 = argmax
ω′
2

V2(R1(ω′2), ω′2, s, x , t
+
m) . (6)

4Each player assumes (i) that they get to go first and (ii) that the other
player will reply with their best response function.

5Usual tie breaking rules.
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Interleave Game

Decision times t2i ; i = 0, 1, . . . 6

e
(2i)+
1 = optimal control for player 1 ,

e
(2i)+
2 = e

(2i)−
2 ; player 2 control fixed . (7)

At times t2i+1; i = 0, 1, . . .7

e
(2i+1)+
1 = e

(2i+1)−
1 ; player 1 control fixed ,

e
(2i+1)+
2 = optimal control for player 2 (8)

Usual tie breaking rules
6Player one chooses control at ti , i even.
7Player two chooses control at ti , i odd.
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Limit of Interleave Game

• Fix player 1 times t2i , i = 0, 1, . . ..
• Move player 2 times t2i+1, i = 0, 1, . . ..

t
2i

t
2i+1 t

2(i+1)

t
2i
     ; i=0,1,...;  Player 1

t
2i+1

  ; i=0,1,...;  Player 2

Stackelberg 
Player 1 first

Stackelberg
Player 2 first
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Social Planner

Social planner maximizes total welfare

(e+1 , e
+
2 ) = argmax

ω1
ω2

{
V1(ω1, ω2, s, x , t

+
m) + V2(ω1, ω2, s, x , t

+
m)

}
.

Break ties

(i) Minimize |V1(e+1 , e
+
2 , s, x , t

+
m)− V2(e+1 , e

+
2 , s, x , t

+
m)|

(ii) Choose the lowest emission level

Rule (i) has priority over Rule(ii)

Gives the most equal distribution of welfare amongst players.
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Numerical Examples

We will assume two players

Players are identical, with identical damage/benefit functions

Players are symmetric

→ Differences in results for player 1,2 will only be determined by
the type of game

We show utilities at t = 0 for a range of temperatures, and
carbon stock

Decision intervals: 2 years; T = 150 years.

Current temperature: 1 deg C (above pre-industrial). Current
carbon stock: 900 Gt.
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Base Case: Stackelberg vs. Social Planner

8
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Utilities versus carbon stock and temperature for base Stackelberg game and
social planner, time = 0, state variables E1 = 10, E2 = 10. Temperature is in
degrees C above preindustrial levels.

•Total utility social planner > total utility game.
•Follower worse off than leader

8Nash equilibria exist at about 65% of nodes, averaged over time and space.
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Trumpian Game

• Recall that players are symmetric

• Trump controls are also symmetric
↪→ Player 1 and player 2 have same utilities

Total utility smaller than base (Stackelberg) game.

Player 1 (former leader in Stackelberg game) now much worse
off.

Player 2 (former follower in Stackelberg game) almost same

When faced with Trump

⇒ Play Trump
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Interleaved Game
Decisions made every two years

Each individual player makes decisions every 4 years

Player 1 chooses emission level at time zero

Player 2 sticks with initial emission level for first two years.

Total utilities

Total utility higher than Trump or base (Stackelberg) game

Individual player utilities

Player 2 (Interleave follower) chooses e2 = 10 at t = 0

Player 2 utility very close to Player 1
Player 2 better off than Stackelberg (flwr), Player 1 worse off
than Stackelberg (leader)

Player 2 (Interleave follower) chooses e2 = 0 at t = 0

→ Both players better off than Stackelberg
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Conclusions

If you have to react immediately to the other player’s emission
levels

↪→ You might as well play Trump: very little advantage to being a
Stackelberg follower9

↪→ And you have the satisfaction of causing damage to the other
player

You are better off playing an Interleave game if possible

↪→ Some choices of initial emission levels make both players better
off (compared with Stackelberg)

↪→ Stackelberg follower is always better off playing Interleave
(assuming decision time intervals same)

Of course, it is better if everyone cooperates

9When faced with Trump, play Trump
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