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Abstract. We analyze dynamic investment strategies for benchmark outperformance using two widely-used ob-5

jectives of practical interest to investors: (i) maximizing the information ratio (IR), and (ii) obtaining6

a favorable tracking difference (cumulative outperformance) relative to the benchmark. In the case of7

the tracking difference, we propose a simple and intuitive objective function based on the quadratic8

deviation (QD) from an elevated benchmark. In order to gain some intuition about these strategies,9

we provide closed form solutions for the controls under idealized assumptions. For more realistic10

cases, we represent the control using a Neural Network (NN) and directly solve a sampled opti-11

mization problem, which approximates the original optimal stochastic control formulation. Unlike12

the typical approach based on dynamic programming (DP), e.g. reinforcement learning, solving the13

sampled optimization with an NN as a control avoids computing conditional expectations and leads14

to an optimization problem with a small number of variables. In addition, our NN parameter size is15

independent of the number of portfolio rebalancing times. Under some assumptions, we prove that16

a traditional dynamic programming approach results in high dimensional problem, whereas directly17

solving for the control without using DP yields a low dimensional problem. Our analytical and nu-18

merical results illustrate that, compared with IR-optimal strategies with the same expected value of19

terminal wealth, the QD-optimal investment strategies result in comparatively more diversified asset20

allocations during certain periods of the investment time horizon.21
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1. Introduction. Despite the considerable professional talent attracted to the field of ac-24

tive portfolio management, where a portfolio manager (or an investment institution) brings25

their expertise to bear on actively pursuing an investment strategy with the explicit goal of26

outperforming an appropriate pre-specified benchmark ([68, 76, 4, 120, 72]), it remains a disap-27

pointing fact that the promised outperformance hardly ever seems to materialize in practice. In28

fact, underperforming their benchmarks is something professional portfolio managers achieve29

with “surprising consistency” ([52]).30

It is worth noting that many government pension plans also report performance relative to31

a benchmark of publicly traded financial assets ([21, 53]). Typically, the benchmark in these32

cases is a portfolio with a constant weight in a stock index and a bond index ([28, 90]).33
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Given these observations, it therefore comes as no surprise that despite the large existing34

literature on the subject of deriving investment strategies designed to outperform a benchmark35

(see for example [41, 89, 83, 120, 119, 118, 11, 110, 18, 19, 20, 30, 2, 91]), this remains an36

active area of research (for recent examples, see [95, 15, 79, 3, 97, 55, 106, 1]). In addition,37

machine learning techniques are also increasingly used to address the problems associated with38

attempting to track or to outperform a given benchmark (see for example [88, 93, 75, 69, 8,39

104, 70]).40

However, in surveying the literature on deriving dynamic (multi-period) investment strate-41

gies for benchmark outperformance, we observe that the objective functions and assumptions42

that are very popular in the academic literature often do not appear to align very well with43

the performance metrics used and constraints applied by investors in practice.44

The objective functions used in the literature often include the use of explicit or implied45

utility functions ([89, 83, 11, 110, 2, 3, 30, 91]), with the use of log utility (of outperformance)46

appearing to be especially popular.47

Furthermore, the objective functions are often formulated in terms of the ratio of the active48

portfolio wealth to the benchmark wealth ([89, 83, 20, 18, 2, 3, 30, 91]). Using the wealth49

ratio, often in conjunction with log utility, means that contributions to or withdrawals from50

the portfolio cannot be included in the analysis due to analytical tractability considerations.51

This is undesirable in many contexts ([46, 45, 44]).52

Another quantity enjoying significant popularity in the objective functions considered in53

the literature is the tracking error, which typically measures the standard deviation of the54

differences between the returns of the active portfolio and the returns of the benchmark (see55

for example [103, 67, 27, 25, 61]). However, many authors have criticized this metric ([65, 60,56

23, 16]).57

Finally, we note that the literature is typically concerned with obtaining closed-form so-58

lutions to the specified optimization problems, which necessarily makes idealized assumptions59

(e.g. continuous trading, unbounded leverage). Examples include [14, 89, 83, 120, 119, 118,60

11, 110, 18, 19, 20, 30, 91, 9].61

In this paper, we wish to address these considerations. In terms of objective functions,62

we limit our focus to two objectives for outperformance assessment, namely (i) the tracking63

difference and (ii) the information ratio.64

(i) Tracking difference: In contrast to the tracking error (discussed above), the tracking65

difference is simply the difference between the cumulative returns of the active port-66

folio and that of the benchmark over a fixed time horizon([24]). For this reason, the67

tracking difference is recognized in the popular investment literature as a potentially68

more relevant and important metric than the tracking error for the investor (see for69

example [114, 17, 37, 60, 96]). Its importance is also recognized by regulators such as70

European Securities and Markets Authority, who requires its disclosure ([36]).71

We will focus on a tracking difference objective function which encapsulates both risk72

and reward in a natural manner.73
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(ii) Information ratio (IR): In a dynamic (or multi-period) context, the IR is typically74

defined ([9]) as the ratio of the expectation to the standard deviation of the difference75

between the terminal wealth of the active portfolio and the terminal wealth of the76

benchmark portfolio.77

It is widely acknowledged that the IR is immensely popular in investment practice when78

measuring benchmark outperformance and for purposes of performance comparisons79

between funds ([57, 15, 64, 9]), despite concerns that it could be manipulated ([49, 50]).80

However, deriving dynamic investment strategies aimed at implicitly or explicitly max-81

imizing the IR have not received significant attention in the academic literature, with82

the exception of [9, 120, 49].83

Given these observations, our contributions in this paper are as follows:84

• We formulate the investment benchmark outperformance problem as a stochastic opti-85

mal control problem and consider the IR and the tracking difference objective functions.86

While the IR objective is standard in the literature (see for example [9]), we propose a87

novel and straightforward tracking difference objective, which involves the minimiza-88

tion of the quadratic deviation (QD) of the wealth of the active portfolio compared89

to an elevated benchmark. Our treatment allows contributions/withdrawals from the90

portfolio, which is of interest to practitioners.91

• In order to gain a theoretical understanding of the behavior of the resulting optimal92

investment strategies, we first solve the problems analytically under idealized assump-93

tions. All closed-form results associated with the QD (tracking difference) objective94

are novel. We also present closed-form comparison results regarding certain critical95

aspects of the IR- and QD-optimal investment strategies.96

• Under some assumptions, we prove that the traditional dynamic programming (DP)97

approach to these benchmark outperformance problems, assuming discrete portfolio98

rebalancing, requires the solution of a high-dimensional performance criterion (i.e. an99

approximation to a conditional expectation) in order to obtain the low dimensional100

optimal control.101

• To compute optimal dynamic investment strategies under realistic constraints, we pro-102

pose to use an NN representing control and directly solve a single sample optimization103

problem, which approximates the original stochastic optimal control problem. This104

direct approach exploits the lower dimensionality in optimal control and bypasses the105

problem of the approximation of conditional expectations associated with traditional106

DP methods. We note that this general idea was also used in [111]. However, in107

contrast with [111], we introduce time as a parameter directly in the NN, thus ensur-108

ing (under certain assumptions) that the (limiting) investment control is a continuous109

function of time, which is a desirable practical requirement. The idea of solving for110

the control directly, without using dynamic programming, has also been suggested in111

[102, 56]. Note that the approach in [56] uses the stacked NN technique as in [111]. In112

contrast, in our approach, the number of NN parameters does not increase with the113
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number of rebalancing times.114

• Our numerical approach requires sample distributions to approximate the original sto-115

chastic optimal control problem. This is, of course, trivial if we restrict attention to116

parametric stochastic models. However, practitioners often prefer to test strategies by117

directly resampling the market data ([26, 33, 105, 22, 107, 5]). This is perhaps partly118

based on the belief that the empirical distribution is the least prejudiced estimate of119

the underlying distribution. Bootstrap resampling, first proposed by [35], is a sim-120

ple but powerful technique to non-parametrically approximate sampling distributions,121

see, e.g., [98]. For illustrative purposes, here we use stationary block bootstrap re-122

sampling ([98]). Block bootstrap resampling is designed for weakly stationary series123

having serial dependence. We note that [100] and [99] suggest methods for resampling124

non-stationary time series, which we do not explore in this work. We emphasize that125

our method for solution of the optimal control is agnostic as to the particular technique126

used to augment the data. We only require a sufficiently large set of stochastic paths.127

• Comparing the results using IR- and QD-optimal investment strategies obtained nu-128

merically using bootstrap resampling, we show how the closed-form comparison re-129

sults apply qualitatively to in-sample investment results. In addition, the associated130

out-of-sample implications are often surprising. In particular, while the IR-optimal131

strategy retains a slightly higher probability of benchmark outperformance in-sample,132

the higher portfolio diversification associated with the QD-optimal strategy results in133

superior out-of-sample benchmark outperformance.134

The remainder of the paper is organized as follows. Section 2 presents the problem formulation.135

Section 3 discusses analytical results under idealized assumptions. Section 4 discusses the136

inefficiencies of using DP-based techniques to solve benchmark outperformance problems such137

as the IR and QD problems in particular. Section 5 describes the preferred numerical solution138

approach based on approximating the optimal control by an NN, which allows the solution139

of the problems under more realistic constraints (bounded leverage, discrete rebalancing).140

Section 6 provides a comparison of the numerical method with the closed form solution, using141

simulated data. In addition, results obtained from resampling of historical data are presented.142

Finally, Section 7 concludes the paper and outlines possible future work.143

2. Formulation. We start by formulating the problem of outperforming a given benchmark144

investment strategy in general terms.145

Let T > 0 denote the fixed investment time horizon/maturity of the active portfolio man-146

ager (henceforth simply referred to as the “investor”), and let time t0 ≡ 0 denote the start of147

the investment period. The investor’s controlled wealth process, with the control represent-148

ing the investor’s investment strategy, is denoted by W (t), t ∈ [t0, T ]. Similarly, given some149

benchmark investment strategy, the benchmark portfolio’s controlled wealth process is denoted150

by Ŵ (t), t ∈ [t0, T ]. For convenience, the time-t0 wealth invested in both the benchmark and151

investor portfolio is assumed to be w0 = W (t0) = Ŵ (t0) >0.152
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Assume that there are Na candidate investment assets. Let p̂i
(
t, X̂ (t)

)
denote the pro-153

portion of the benchmark wealth Ŵ (t) invested in asset i ∈ {1, .., Na} at time t ∈ [t0, T ],154

where X̂ (t) denotes the state of the system (or informally, the information) taken into155

account by the benchmark strategy for allocation decision p̂i. The vector p̂
(
t, X̂ (t)

)
=156 (

p̂i

(
t, X̂ (t)

)
: i = 1, .., Na

)
∈ RNa denotes the asset allocation of the benchmark at time157

t ∈ [t0, T ].158

Similarly, let pi (t,X (t)) denote the proportion of the investor’s wealth W (t) invested159

in asset i ∈ {1, .., Na} at time t ∈ [t0, T ], where X (t) denotes the information taken into160

account by the investor in making the asset allocation decision. As a concrete example,161

we consider the case where X (t) =
(
W (t) , Ŵ (t)

)
in Section 3„ but more general cases162

incorporating additional information in X (t) are also allowed in Section 5. The vector163

p (t,X (t)) = (pi (t,X (t)) : i = 1, .., Na) ∈ RNa denotes the asset allocation of the investor164

at time t ∈ [t0, T ].165

Define the set of rebalancing events T ⊆ [t0, T ], where we have T = [t0, T ] in the case166

of continuous rebalancing, and a strict (discrete) subset T ⊂ [t0, T ] in the case of discrete167

rebalancing. The investor and benchmark investment strategies over the time horizon [t0, T ],168

respectively, are then defined as the sets169

(2.1) P = {p (t,X (t)) , t ∈ T } , and P̂ =
{
p̂
(
t, X̂ (t)

)
, t ∈ T

}
.170

Here we implicitly assume that the investor and benchmark strategies invest in the same Na171

underlying assets, which is relevant in the case of analytical solutions (Section 3). However,172

this requirement is also relaxed in the numerical solution approach discussed in Section 5.173

We define A as the set of admissible controls, and Z as the set of admissible values of174

each vector p (t,X (t)), i.e., P ∈ A if and only if P = {p (t,X (t)) ∈ Z : t ∈ T } . Note that Z,175

and therefore by extension A, encode the investment constraints faced by the investor, such176

as leverage constraints or short-selling restrictions.177

Since the investor wishes to outperform the benchmark according to a performance metric178

adopted in practice, we introduce two investment objectives to achieve this aim in the following179

subsections. In terms of notation, let Et0,w0

P [·] denote the expectation of some quantity taken180

with respect to a given initial wealth w0 = W (t0) = Ŵ (t0) at time t0 = 0, and using control181

P ∈ A over [t0, T ]. The benchmark strategy P̂ that the investor wishes to outperform remains182

implicit in this notation. Similarly, we will use V art0,w0

P [·] and P t0,w0

P [·] to denote the variance183

and probability, respectively, calculated under the control P and initial time and wealth given184

by (t0, w0).185



6 PIETER M. VAN STADEN, PETER A. FORSYTH, YUYING LI

2.1. Information ratio: Problem IR (γ). The first investment objective involves maxi-186

mizing the information ratio (IR), which in a dynamic setting is defined as ([49, 9])187

IRt0,w0

P =
Et0,w0

P

[
W (T )− Ŵ (T )

]
Stdevt0,w0

P

[
W (T )− Ŵ (T )

] .(2.2)188

As discussed in [9], maximizing the IR (2.2) is achieved by solving the following mean-189

variance (MV) optimization problem with scalarization parameter ρ,190

(2.3) sup
P∈A

{
Et0,w0

P

[
W (T )− Ŵ (T )

]
− ρ · V art0,w0

P

[
W (T )− Ŵ (T )

]}
, ρ > 0.191

To solve (2.3), we use the embedding technique of [78, 121], which states that for any ρ > 0192

and the associated control P∗ir ∈ A maximizing (2.3), there exists a value of an embedding193

parameter γ such that P∗ir ∈ A is also optimal for the following problem1,194

(IR (γ)) : inf
P∈A

Et0,w0

P

[(
W (T )−

[
Ŵ (T ) + γ

])2]
, γ > 0.(2.4)195

Note that (2.4) is formulated here only for the range γ > 0 in order to ensure that economically196

meaningful strategies for benchmark outperformance are obtained.197

As a result of the aforementioned equivalence of (2.3) and (2.4), we will subsequently198

refer to (2.4) simply as the IR (maximization) problem, abbreviated by IR (γ). The exact199

relationship between γ in (2.4) and ρ in (2.3) is not important for the purposes of this paper,200

and it is indeed also of limited practical significance to the investor. For further clarification,201

the following remark highlights some practical aspects of our preference for formulation (2.4).202

Remark 2.1. (Time-consistency of the IR (γ)-optimal control) As elaborated in [81, 45],203

there appears to be some controversy in the literature regarding the time-consistency (or lack204

thereof) of the optimal controls associated with problems of the form (2.4). By analogy with205

dynamic MV optimization (see [10, 13]), the IR-optimal control for the embedding problem206

(2.4) is typically time-inconsistent from the perspective of the MV formulation (2.3). This207

raises practical concerns as to whether the resulting IR-optimal control is in fact feasible to208

implement as a trading strategy. However, it should be emphasized that time-consistency is209

ultimately a matter of perspective, since for a fixed value of γ in (2.4), the resulting IR (γ)-210

optimal control is in fact a time-consistent control from the perspective of the quadratic objec-211

tive (2.4), and is therefore clearly feasible as a trading strategy ([109]). As discussed in [115]212

1Formally proving the equivalence of problems (2.3) and (2.4) proceeds along the same lines as the proof
of the embedding result of [78, 121], and is therefore omitted. As shown in [29], the embedding result holds
in great generality, in that it does not require restrictions on the admissible set A or on the underlying wealth
dynamics.
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and elaborated further below, a quadratic objective such as (2.4) also allows for a straight-213

forward interpretation in terms of a “target” (in this case, Ŵ (T ) + γ). As a result, in this214

paper we always view the IR-optimal control as the time-consistent investment strategy that215

minimizes the induced objective function (2.4), and correspondingly formulate our results in216

terms of the embedding parameter γ.217

The following additional observations regarding the IR objective (2.4) are relevant to the218

subsequent results:219

(i) The investor wishing to maximize the IR effectively sets an elevated benchmark termi-220

nal wealth value, Ŵ (T ) + γ, and minimizes the (expected) quadratic deviation of the221

investor’s wealth W (T ) from this elevated target.222

(ii) In Section 3 below, we show that under some conditions, the IR problem (2.4) is223

equivalent to the more intuitive one-sided quadratic objective,224

(2.5) inf
P∈A

Et0,w0

P

[(
min

{
W (T )−

[
Ŵ (T ) + γ

]
, 0
})2]

, γ > 0,225

where only the shortfall of W (T ) below the elevated target Ŵ (T ) + γ is penalized.226

While the equivalence between (2.4) and (2.5) can only be proven analytically under227

certain assumptions, numerical results nevertheless suggest that the results using (2.4)228

and (2.5) are indistinguishable even in more general cases where the conditions for229

analytical equivalence do not hold.230

We now consider our second objective for outperforming the benchmark.231

2.2. Tracking difference: Problem QD (β). As discussed in the Introduction, the track-232

ing difference measures the cumulative performance gap between the investor’s portfolio and233

the benchmark portfolio over the time horizon [t0, T ] ([24]).234

In a dynamic setting, we propose the following straightforward objective function based on235

minimizing the quadratic deviation (QD) of the investor’s terminal wealth from the terminal236

wealth of an elevated benchmark,237

(QD (β)) : inf
P∈A

Et0,w0

P

[(
W (T )− eβT Ŵ (T )

)2]
, β > 0.(2.6)238

We will subsequently refer to problem (2.6) as the QD problem, and we make the following239

observations:240

(i) The attractiveness of the formulation (2.6) lies in its simplicity, since the objective of241

obtaining a favorable tracking difference, widely publicized as a quantity of key interest242

to investors and regulators alike ([114, 17, 37, 60, 96, 24, 36, 66]) is the central object243

of consideration.244

(ii) The parameter β in the QD problem (2.6) has a conveniently practical interpretation as245

the annual outperformance spread that the investor targets for the tracking difference246
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of the active portfolio. Assuming that the active portfolio has access to at least the247

same set of assets as the benchmark, then as β → 0, the optimal strategy is to simply248

invest in the benchmark. As β increases, we can expect that the optimal strategy will249

incur more risk, as measured by the value of the objective function, in order to achieve250

the desired outperformance.251

(iii) By formulating (2.6) in terms of wealth, not only do we respect the cumulative aspect252

of the definition of the tracking difference, but the formulation also allows for the253

treatment of contributions to and withdrawals from the portfolio without difficulty254

(see Sections 3 and 5).255

(iv) Like the IR problem (2.4), the QD problem (2.6) also formulates the outperformance256

objective in terms of an elevated benchmark terminal wealth value. However, in the257

case of the QD problem, the elevation is applied to Ŵ (T ) by the multiplicative scaling258

factor eβT , in contrast to the IR problem where the elevation is additive (i.e. by adding259

a constant γ to Ŵ (T ) in (2.4)). The investor using the QD objective therefore wishes,260

where possible, to outperform the benchmark terminal wealth by a constant factor,261

and not by a constant amount as in the case of the IR problem.262

(v) As in the case of the IR problem (see (2.5)), we show in Section 3 that under some con-263

ditions, the QD problem (2.6) also admits the equivalent, and perhaps more intuitive,264

one-sided quadratic formulation,265

(2.7) inf
P∈A

Et0,w0

P

[(
min

{
W (T )− eβT Ŵ (T ) , 0

})2]
, β > 0,266

where only underperformance relative to the elevated benchmark eβT Ŵ (T ) is penal-267

ized.268

In summary, two fundamentally different yet practical investment objectives for outperforming269

a given benchmark are considered. The following sections are devoted to explore the resulting270

investment outcomes of the IR and QD problems, using both closed-form solutions (where271

available) and numerical solutions.272

3. Analytical (closed-form) solutions. In order to gain a theoretical understanding of the273

behavior of the optimal investment strategies associated with the IR and QD objectives, we first274

solve the problems analytically under idealized assumptions. All closed-form results associated275

with the QD (tracking difference) objective, as well as selected results associated with the IR276

objective, are novel. We also present closed-form comparison results regarding certain critical277

aspects of the IR- and QD-optimal investment strategies. In our analytical solutions, we278

explicitly allow for contributions to the portfolio and jumps in the risky asset processes, both279

of which only receives limited treatment in the existing benchmark outperformance literature280

([14, 89],[83, 120, 119, 118, 11, 110, 18, 19, 20, 30, 91, 2]).281

Assumption 3.1 summarizes the assumptions required for deriving the subsequent closed-282

form results, which we emphasize are not required in the case of the numerical solutions283
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discussed in Section 5.284

Assumption 3.1. (No market frictions, continuous rebalancing) For the purposes of the285

closed-form results, we assume that trading continues in the event of insolvency. Specifically,286

trading continues even if W (t) < 0 for some t ∈ [t0, T ]. No transaction costs are applicable,287

and no investment constraints (such as leverage or short-selling restrictions) are in effect. In288

addition, the portfolios are rebalanced continuously, and cash is contributed to the investor289

and benchmark portfolios at a constant rate of q ≥ 0 per year.290

Note that the cash contributions are made to both the investor and the benchmark port-291

folios in order to ensure that a meaningful performance comparison is obtained.292

In this section, theNa underlying assets are assumed to consist of one risk-free asset andN r
a293

risky assets evolving according to specified dynamics. Let % (t,X (t)) =
(
%1 (t,X (t)) , ..., %Nr

a
(t,X (t))

)
∈294

RNr
a and %̂

(
t, X̂ (t)

)
=
(
%̂1

(
t, X̂ (t)

)
, ..., %̂Nr

a

(
t, X̂ (t)

))
∈ RNr

a denote the proportional al-295

locations of the investor and benchmark wealth, respectively, to each of the risky assets at296

time t ∈ [t0, T ]. Specifically, %i (t,X (t)) denotes the proportion of the investor’s wealth W (t)297

invested in risky asset i at time t given information X (t), while %̂i
(
t, X̂ (t)

)
denotes the298

proportion of benchmark wealth Ŵ (t) invested in risky asset i at time t given information299

X̂ (t).300

With regards to the benchmark strategy, we introduce the following assumption.301

Assumption 3.2. (Information known about the benchmark strategy) For the closed-form302

solutions of this section, we assume that the benchmark’s risky asset allocation strategy is303

an adapted feedback control of the form %̂
(
t, X̂ (t)

)
= %̂

(
t, Ŵ (t)

)
, t ∈ [t0, T ], and that the304

investor is limited to investing in the same set of underlying assets as the benchmark. We also305

assume that the investor can instantaneously observe the vector %̂
(
t, Ŵ (t)

)
at each t ∈ [t0, T ],306

so that the investor wishes to derive % (t,X (t)) = %
(
t,W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
, t ∈ [t0, T ],307

the adapted feedback control representing the fraction of the investor’s wealth W (t) invested308

in each risky asset at time t according to the investor’s strategy.309

We observe that Assumption 3.2 is reasonable in the case of the investment benchmarks310

typically considered by government pension plans (see for example [21, 53]), as well as many311

of the popular benchmarks used in the literature and in practice ([14, 63, 120, 11, 4]).. Note312

that in the numerical solutions (Section 5), the requirement that the investor invests in the313

same assets as the benchmark is relaxed.314

Combining definition (2.1) and Assumption 3.2, we therefore consider the following forms315
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of the investor and benchmark strategies in this section,316

P =

p(t,X (t)
)

=

1−
Nr
a∑

i=1

%i

(
t,X (t)

)
, %1

(
t,X (t)

)
, ..., %Nr

a

(
t,X (t)

) : t ∈ [t0, T ]

 ,317

P̂ =

p̂(t, Ŵ (t)
)

=

1−
Nr
a∑

i=1

%̂i

(
t, Ŵ (t)

)
, %̂1

(
t, Ŵ (t)

)
, ..., %̂Nr

a

(
t, Ŵ (t)

) : t ∈ [t0, T ]

 ,318

(3.1)319

where X (t) =
(
W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
. Due to the form of (3.1), we will informally320

refer to the risky asset allocations % (t,X (t)) and %̂
(
t, Ŵ (t)

)
as the investor and benchmark321

investment strategies, respectively, although the original definition (3.1) will be used in the322

numerical solutions of Section 5.323

Given Assumption 3.1, Assumption 3.2 and the form of the controls (3.1), the investor’s324

set of admissible controls can be written in terms of only the risky asset allocation vector %,325

A0 =
{
% (t, x) = % (t, w, ŵ, %̂ (t, w))|% : [t0, T ]× RN

r
a+2 → RN

r
a
}
,(3.2)326

so that the IR- and QD-problems analyzed in this section are of the following form,327

(IR (γ)) : inf
%∈A0

Et0,w0
%

[(
W (T )−

[
Ŵ (T ) + γ

])2]
, γ > 0.(3.3)328

(QD (β)) : inf
%∈A0

Et0,w0
%

[(
W (T )− eβT Ŵ (T )

)2]
, β > 0.(3.4)329

3.1. Asset and wealth dynamics. Since the closed-form solutions are based on specified330

underlying dynamics, let S0 (t) denote the unit value of the risk-free asset at time t ∈ [t0, T ],331

with dynamics given in terms of the risk-free rate r > 0 as332

dS0 (t) = rS0 (t) dt.(3.5)333

Define the risky asset value vector S (t) = (Si (t) : i = 1, ..., N r
a)>, where the ith component334

Si (t) denotes the unit value of the risky asset i at time t ∈ [t0, T ]. The superscript “>” denotes335

the transpose. We allow for any of the typical finite-activity jump-diffusion models in finance336

(see for example [85, 73]) for the dynamics of Si (t). Let Z (t) = (Zi (t) : i = 1, ..., N r
a)>337

denote a standard N r
a -dimensional Brownian motion. Let ξ = (ξi : i = 1, ..., N r

a)>, where ξi338

denotes the random variable giving the jump multiplier associated with the ith risky asset339

with corresponding probability density function (pdf) fξi (ξi). We also define340

(3.6) κ
(1)
i = E [ξi − 1] , κ

(2)
i = E

[
(ξi − 1)2

]
, i = 1, ..., N r

a ,341
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as well as κ(1) =
(
κ
(1)
i : i = 1, ..., N r

a

)>
and κ(2) =

(
κ
(2)
i : i = 1, ..., N r

a

)>
. If a jump occurs in342

the dynamics of risky asset i at time t, its value is assumed to jump from Si (t−) to Si (t) =343

ξi ·Si (t−), where, given any functional ψ (t) , t ∈ [t0, T ], we use the notation ψ (t−) and ψ (t+)344

as shorthand for the one-sided limits ψ (t−) = limε↓0 ψ (t− ε) and ψ (t+) = limε↓0 ψ (t+ ε),345

respectively. We assume that the jump components of the different risky asset processes are346

independent, so that ξ has independent components. However, while we can relax this as-347

sumption without technical difficulties (see for example [74]), this would be associated with348

the corresponding disadvantage of significantly increased notational complexity; the assump-349

tion of independence is therefore for ease of exposition.350

Let π (t) = (πi (t) : i = 1, ..., N r
a)> denote a vector of N r

a independent Poisson processes,351

with each πi (t) having the corresponding intensity λi ≥ 0, and define λ = (λi : i = 1, ..., N r
a)>.352

We assume that ξi, πj (t) and Zk (t) are mutually independent for all i, j, k ∈ {1, ..., N r
a}.353

The vector of risky asset drift coefficients under the objective (or real-world) probability354

measure is denoted by µ = (µi : i = 1, ..., N r
a)>. Let σ = (σi,j)i,j=1,...,Nr

a
∈ RNr

a×Nr
a denote the355

volatility matrix, and define356

(3.7) Σ = σσ>, Λ = diag
(
λiκ

(2)
i : i = 1, ..., N r

a

)
.357

We make the standard assumptions that µi > r, for all i, and assume that the covariance358

matrix Σ = σσ> is positive definite (see for example [12, 121]).359

The dynamics of Si (t) is therefore assumed to be of the form360

dSi (t)

Si (t−)
=
(
µi − λiκ(1)i

)
· dt+

Nr
a∑

j=1

σij · dZj (t) + d

πi(t)∑
k=1

(
ξ
(k)
i − 1

) , i = 1, ..., N r
a ,361

(3.8)362

where ξ(k)i are i.i.d. random variables with the same distribution as ξi. To lighten subsequent363

notation, define the vector dN (t) =
(∫∞

0 (ξi − 1)Ni (dt, dξi) : i = 1, ..., N r
a

)>, where Ni is the364

Poisson random measure ([92]) corresponding to the dynamics of Si (t) in (3.8). We also define365

the following combinations of parameters,366

(3.9) α =
(
µi − r − λiκ(1)i : i = 1, ..., N r

a

)>
, µ̃ = (µi − r : i = 1, ..., N r

a)> ,367

and368

η = µ̃> · (Σ + Λ)−1 · µ̃.(3.10)369

With strategies (3.1), and dynamics (3.5)-(3.8), the investor and benchmark controlled370
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wealth processes therefore have the following dynamics for t ∈ (t0, T ], respectively,371

dW (t) =
{
W
(
t−
)
·
[
r +α>% (t,X (t))

]
+ q
}
· dt+W

(
t−
)

(% (t,X (t)))> σ · dZ (t)372

+W
(
t−
)

(% (t,X (t)))> · dN (t) ,(3.11)373

dŴ (t) =
{
Ŵ
(
t−
)
·
[
r +α>%̂

(
t, Ŵ (t)

)]
+ q
}
· dt+ Ŵ

(
t−
) (
%̂
(
t, Ŵ (t)

))>
σ · dZ (t)374

+Ŵ
(
t−
) (
%̂
(
t, Ŵ (t)

))>
· dN (t) ,(3.12)375

where W (t) = Ŵ (t) = w0 and X (t) =
(
W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
, while q ≥ 0 denotes the376

constant rate per year of continuous cash injection into the portfolios (see Assumption 3.1).377

In the following subsections, we derive and compare the closed-form solutions to the IR and378

QD problems subject to Assumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12).379

3.2. Analytical solution: IR (γ) problem. We have the following verification theorem380

and corresponding Hamilton-Jacobi-Bellman (HJB) equation for the IR problem (3.3).381

Theorem 3.3. (IR problem: Verification theorem) Suppose that for all (y, t) ∈ R × [t0, T ],382

there exist functions Vir (y, t) : R× [t0, T ]→ R and u∗ir : R× [t0, T ]→ RNr
a with the following383

properties: (i) Vir and u∗ir are sufficiently smooth and solve the HJB partial integro-differential384

equation (PIDE) (3.13)-(3.14), and (ii) the function u∗ir attains the pointwise supremum in385

(3.13).386

∂Vir
∂t

+ inf
u∈RNra

[ry +α>u
]
· ∂Vir
∂y

+
1

2
u>Σu · ∂

2Vir
∂y2

−

Nr
a∑

i=1

λi

 · Vir387

+

Nr
a∑

i=1

λi

∫ ∞
0

Vir (y + ui (ξi − 1) , t) · fξi (ξi) dξi

 = 0,(3.13)388

Vir (y, T ) = (y − γ)2 .(3.14)389

Define the auxiliary process Yir (t) by390

Yir (t) := W (t)− Ŵ (t) , ∀t ∈ (t0, T ] , with Yir (t0) = y0 = 0.(3.15)391

Let the auxiliary control u (t) := u (Yir (t) , t) := u (Yir (t) , t;X (t)) be given by392

u (t) := W (t) · % (t,X (t))− Ŵ (t) · %̂
(
t, Ŵ (t)

)
, where X (t) =

(
W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
.393

(3.16)394

Let Au,0 =
{
u (t) = u (y, t;x)|u : R× [t0, T ]→ RNr

a
}
. Then under Assumption 3.1, Assump-395
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tion 3.2 and wealth dynamics (3.11)-(3.12), Vir is the value function and u∗ir is the optimal396

control for the following control problem,397

inf
u∈Au,0

Et0,y0u

[
(Yir (T )− γ)2

]
, γ > 0.(3.17)398

Proof. See Appendix A.1.399

By solving the HJB PIDE (3.13)-(3.14), the following lemma presents the IR-optimal invest-400

ment strategy.401

Lemma 3.4. (IR-optimal investment strategy) Suppose that Assumption 3.1, Assumption402

3.2 and wealth dynamics (3.11)-(3.12) are applicable. Then the optimal fraction of the in-403

vestor’s wealth invested in risky asset i ∈ {1, ..., N r
a} for problem IR (γ) in (3.3) is given by404

the ith component of the vector %∗ir (t,X∗ir (t)), where405

W ∗ir (t) · %∗ir (t,X∗ir (t)) =
[
γe−r(T−t) −

(
W ∗ir (t)− Ŵ (t)

)]
· (Σ + Λ)−1 µ̃+ Ŵ (t) · %̂

(
t, Ŵ (t)

)
,406

(3.18)407

with W ∗ir (t) denoting the investor’s wealth process (3.11) under the IR-optimal control %∗ir, and408

X∗ir (t) =
(
W ∗ir (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
. This control results in an optimal information ratio409

(2.2) of410

(3.19) IRt0,w0

%∗ir
=
(
eηT − 1

)1/2
,411

where η is given by (3.10).412

Proof. See Appendix A.1.413

It is noteworthy that the IR-optimal control %∗ir (t,X∗ir (t)) only depends on the instantaneous414

benchmark allocation %̂
(
t, Ŵ (t)

)
at time t, and not on the future or the past of the benchmark415

investment strategy. The contribution rate q does not appear in the solution (3.18), which416

follows from the fortunate cancellation of terms in the auxiliary process Yir (t). The optimal417

IR (3.19) extends the known IR results of [50] to the case of multiple risky assets containing418

jumps in their associated value dynamics. Specifically, if we consider the case of only a single419

risky asset with no jumps (i.e. setting λ1 = 0), the expression for η in (3.10) reduces to420

η = (µ1 − r)2 /σ21, so that the optimal IR (3.19) reduces to the result reported in [49, 50].421

The following lemma presents an important property of the IR-optimal strategy (3.18)422

when sufficient outperformance can be assured.423

Lemma 3.5. (IR: Matching the benchmark risky asset amounts) Given Assumption 3.1,424

Assumption 3.2 and wealth dynamics (3.11)-(3.12), suppose that at some time t ∈ (t0, T ], the425
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IR-optimal investor observes a wealth value W ∗ir
(
t
)
of426

W ∗ir
(
t
)

= γe−r(T−t) + Ŵ
(
t
)
.(3.20)427

Then for the remainder of the investment time horizon t ∈
[
t, T
]
, the IR-optimal investor428

(using strategy (3.18)) will simply match the benchmark strategy in terms of the amounts429

invested in the risky assets. In other words,430

(3.21) W ∗ir (t) · %∗ir (t,X∗ir (t)) = Ŵ (t) · %̂
(
t, Ŵ (t)

)
, ∀t ∈

[
t, T
]
.431

Proof. See Appendix A.1.432

Note that Lemma 3.5 does not imply that the investor and benchmark strategies %∗ir and %̂433

are equal, since if (3.20) is satisfied at some t ∈ (t0, T ], the results of Appendix A.1 (see (A.5))434

imply that W ∗ir (t) > Ŵ (t), ∀t ∈
[
t, T
]
.435

Lemma 3.6 below reports that condition (3.20) is never satisfied in the special case when436

there are no jumps in the risky asset processes, with the implication that equivalence of437

problems (2.4) and (2.5) can be established analytically2.438

Lemma 3.6. (IR: equivalence with only penalizing underperformance) If Assumption 3.1,439

Assumption 3.2, and wealth dynamics (3.11)-(3.12) apply with no jumps (i.e. λ = 0 ∈ RNr
a )440

in the risky asset processes (3.8), then441

W ∗ir (t) < γe−r(T−t) + Ŵ (t) , ∀t ∈ [t0, T ] .(3.22)442

As a result, in this case the IR optimization problem (2.4) is equivalent to the one-sided qua-443

dratic problem (2.5), where only the underperformance of the investor’s portfolio (compared to444

the elevated benchmark) is penalized.445

Proof. See Appendix A.1.446

If the assumptions of this section are violated, both Lemma 3.5 and the more restrictive Lemma447

3.6 provide valuable intuition for understanding the behavior of the IR-optimal investment448

strategies, which we will demonstrate in Section 6.449

The following lemma shows that if we apply the assumption of no jumps as in Lemma450

3.6, then the probability of the IR investor underperforming the benchmark admits a simple451

analytical expression. Note that we prefer formulating the result in the negative sense of452

underperformance, since it directly expresses a key quantity of concern for the active investor.453

Lemma 3.7. (IR: probability of underperformance) If Assumption 3.1, Assumption 3.2, and454

wealth dynamics (3.11)-(3.12) apply with no jumps (i.e. λ = 0 ∈ RNr
a ) in the risky asset455

processes (3.8), the probability of the IR-optimal wealth falling below the benchmark wealth at456

2The proof of Lemma 3.6 uses the results of [31], which hold only when there are no jumps in a risky
asset process. However, even in the case where there are jumps, the behavior of the optimal strategy typically
satisfies (3.22), but this can only be verified numerically.
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any t ∈ (t0, T ] is given by457

P t0,w0

%∗ir

[
W ∗ir (t) ≤ Ŵ (t)

]
= Φ

(
−3

2

√
ηt

)
, ∀t ∈ (t0, T ] ,(3.23)458

where Φ denotes the standard normal cumulative distribution function (CDF), and η is as459

defined in (3.10).460

Proof. See Appendix A.1.461

Remark 3.8 (γ independence of equation (3.23)). Note that the IR-optimal probability of462

underperformance (3.23) does not depend on the value of γ. We conjecture that this lack of463

dependence on γ is due to the assumption that trading continues if insolvent (this is commonly464

required in order to obtain closed form solutions). In the pure mean variance case, [80] prove465

the 80% rule, which states that given any expected value for final wealth, no matter how large,466

there is at least an 80% probability of reaching this target. However [116] show that this is467

entirely due to the allowance of trading if insolvent.468

3.3. Analytical solution: QD (β) problem. The closed-form solutions associated with the469

novel objective function (2.6) are now discussed. The following verification theorem reports470

the HJB equation satisfied in the case of the QD problem (3.4).471

Theorem 3.9. (QD problem: Verification theorem) Suppose that for all (y, t) ∈ R× [t0, T ],472

there exist functions Vqd (y, t) : R × [t0, T ] → R and v∗qd (y, t) : R × [t0, T ] → RNr
a with the473

following two properties. (i) Vqd and v∗qd are sufficiently smooth and solve the HJB PIDE474

(3.24)-(3.25), and (ii) the function v∗qd (y, t) attains the pointwise supremum in (3.24).475

∂Vqd
∂t

+ inf
v∈RNra

[ry + q
(

1− eβT
)

+α>v
]
·
∂Vqd
∂y

+
1

2
u>Σu ·

∂2Vqd
∂y2

−

Nr
a∑

i=1

λi

 · Vqd476

+

Nr
a∑

i=1

λi

∫ ∞
0

Vqd (y + ui (ξi − 1) , t) · fξi (ξi) dξi

 = 0,(3.24)477

Vqd (y, T ) = y2.(3.25)478

Define the auxiliary process Yqd (t) by479

Yqd (t) := W (t)− eβT Ŵ (t) , ∀t ∈ (t0, T ] , with Yqd (t0) = y0 = w0

(
1− eβT

)
.480

(3.26)481
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Let the auxiliary control v (t) := v (Yqd (t) , t) := v (Yqd (t) , t;X (t)) be given by482

v (t) := W (t) · % (t,X (t))− eβT Ŵ (t) · %̂
(
t, Ŵ (t)

)
, where X (t) i =

(
W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
.483

(3.27)484

Let Au,0 be as defined in Theorem 3.3. Then under Assumption 3.1, Assumption 3.2 and485

wealth dynamics (3.11)-(3.12), Vqd is the value function and v∗qd is the optimal control for the486

following control problem,487

inf
v∈Au,0

Et0,y0v

[
(Yqd (T ))2

]
.(3.28)488

Proof. See Appendix A.1.489

Solving the HJB PIDE (3.24)-(3.25), we obtain the QD-optimal control as reported by the fol-490

lowing lemma. As in the case of the IR-optimal control (see Lemma 3.4,) the QD-optimal con-491

trol %∗qd
(
t,X∗qd (t)

)
also only depends on the instantaneous benchmark allocation %̂

(
t, Ŵ (t)

)
492

and not on its past or future.493

Lemma 3.10. (QD-optimal control) Suppose that Assumption 3.1, Assumption 3.2 and494

wealth dynamics (3.11)-(3.12) are applicable. Then the optimal fraction of the investor’s wealth495

invested in risky asset i ∈ {1, ..., N r
a} for problem QD (β) in (3.4) is given by the ith component496

of the vector %∗qd
(
t,X∗qd (t)

)
, where497

(3.29)
W ∗qd (t)·%∗qd

(
t,X∗qd (t)

)
=
[
hβ (t)−

(
W ∗qd (t)− eβT Ŵ (t)

)]
·(Σ + Λ)−1 µ̃+eβT Ŵ (t)·%̂

(
t, Ŵ (t)

)
.498

Here, W ∗qd (t) denotes the investor’s wealth process (3.11) under the QD-optimal control %∗qd499

with X∗qd (t) =
(
W ∗qd (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
, and hβ (t) = q

r

(
eβT − 1

) (
1− e−r(T−t)

)
, t ∈500

[t0, T ] .501

Proof. See Appendix A.1.502

The following lemma shows that once sufficient outperformance can be assured, the QD-503

optimal amounts in the risky assets will agree with the corresponding benchmark amounts504

multiplied by the constant scaling factor eβT .505

Lemma 3.11. (QD: Matching the elevated benchmark risky asset amount) Given Assump-506

tion 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12), suppose that at some time t ∈507

(t0, T ], the QD-optimal investor observes a wealth value W ∗qd
(
t
)
satisfying508

W ∗qd
(
t
)

= eβT Ŵ
(
t
)

+ hβ
(
t
)
.(3.30)509

Then for the remainder of the investment time horizon t ∈
[
t, T
]
, the QD-optimal investor510
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(using strategy (3.29)) will invest the following amounts in the risky assets,511

(3.31) W ∗qd (t) · %∗qd
(
t,X∗qd (t)

)
= eβT · Ŵ (t) · %̂

(
t, Ŵ (t)

)
, ∀t ∈

[
t, T
]
.512

Proof. See Appendix A.1.513

By analogy with Lemma 3.6, the following lemma establishes some conditions under which the514

equivalence of problems (2.6) and (2.7) can be established analytically.515

Lemma 3.12. (QD: equivalence with only penalizing underperformance) If Assumption 3.1,516

Assumption 3.2, and wealth dynamics (3.11)-(3.12) apply with no jumps (i.e. λ = 0 ∈ RNr
a )517

in the risky asset processes (3.8), then518

W ∗qd (t) < hβ (t) + eβT Ŵ (t) , ∀t ∈ [t0, T ] .(3.32)519

As a result, in this case the QD optimization problem (2.6) is equivalent to the one-sided520

quadratic problem (2.7), where only the underperformance of the investor’s portfolio (compared521

to the elevated benchmark) is penalized.522

Proof. See Appendix A.1.523

As in the case of the IR problem, Lemma 3.11 and Lemma 3.12 provide intuition for the524

behavior of the QD-optimal investment strategies even if the assumptions of this section are525

relaxed.526

For the QD problem, it appears unlikely that the probability of underperforming the bench-527

mark can be established analytically for an arbitrary adapted feedback benchmark strategy528

(i.e. of the form %̂
(
t, Ŵ (t)

)
as per Assumption 3.2) as in the case of the IR problem (see529

Lemma 3.7). However, when a constant proportion benchmark %̂
(
t, Ŵ (t)

)
≡ %̂ for all t530

is used, the following lemma shows that the QD-optimal probability of underperforming the531

benchmark can be obtained analytically.532

Lemma 3.13. (QD: probability of underperformance) Suppose the following assumptions533

hold: (i) Assumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12) with no jumps534

(i.e. λ = 0 ∈ RNr
a ) in the risky asset processes (3.8); (ii) contributions are zero (q = 0),535

and (iii) the benchmark strategy is a constant proportion strategy with %̂
(
t, Ŵ (t)

)
≡ %̂ for536

t ∈ [t0, T ]. Then the probability of the QD-optimal wealth underperforming the benchmark537

wealth at any t ∈ (t0, T ] is given by538

P t0,w0

%∗qd

[
W ∗qd (t) ≤ Ŵ (t)

]
= Φ


[
1
2 %̂
>Σ%̂− µ̃>%̂− 3

2η
]√

t[
%̂>Σ%̂+ 2µ̃>%̂+ η

]1/2
 , t ∈ (t0, T ] .(3.33)539

Proof. See Appendix A.1.540

We emphasize that, in contrast to the IR-optimal probability of underperformance (see (3.23)),541
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the closed-form expression (3.33) is obtained under the assumptions of a constant proportion542

benchmark strategy and zero contributions. Under these assumptions, we observe that (3.33)543

does not depend on the targeted outperformance spread β. As in Remark 3.8, we conjecture544

that this can be explained due to the assumption of allowing trading to continue if insolvent.545

3.4. Analytical comparison results. We now present analytical comparison results that546

are general in the sense of holding regardless of the values of the parameters γ and β chosen547

for the IR (γ) and QD (β) problems, respectively. Supplementary comparison results, based548

on particular choices of γ and β such that equal expectations of terminal wealth is obtained,549

are presented in Appendix A.2.550

The following lemma compares the wealth allocation to the risky asset basket. Specifically,551

let %∗ir,i (t) and %∗qd,i (t) denote the ith components (i.e. the proportional allocations to the ith552

risky asset) of the optimal controls %∗ir (t,X∗ir (t)) and %∗qd
(
t,X∗qd (t)

)
, respectively, where we553

drop the dependence on X∗ir (t) and X∗qd (t) to lighten notation. Similarly, %̂i (t) denotes the554

benchmark allocation to the ith risky asset. The total proportional wealth allocation to the555

risky asset basket according to each strategy is therefore556

(3.34) R∗ir (t) =

Nr
a∑

i=1

%∗ir,i (t) , R∗qd (t) =

Nr
a∑

i=1

%∗qd,i (t) , R̂ (t) =

Nr
a∑

i=1

%̂i (t) .557

In the case of the simple continuous-time mean-variance control reported in [121], the558

optimal risky basket composition is independent of the state. As the following corollary shows,559

in the case of the IR and QD objectives, the optimal risky asset basket compositions do560

depend on the state of the system, but rather weakly, in the sense that certain ratios remain561

independent of the state.562

Corollary 3.14. (Constant risky asset basket ratios) Suppose that Assumption 3.1, Assump-563

tion 3.2 and wealth dynamics (3.11)-(3.12) hold. Since W ∗ir (t) ,W ∗qd (t) , Ŵ (t) and R̂ (t) repre-564

sent information known to the investor at time t, the total optimal risky asset basket allocations565

R∗ir (t) and R∗qd (t) can be determined from the following constant ratios,566

W ∗ir (t) · R∗ir (t)− Ŵ (t) · R̂ (t)[
γe−r(T−t) −

(
W ∗ir (t)− Ŵ (t)

)] =
W ∗qd (t) · R∗qd (t)− Ŵ (t) · R̂ (t)[
hβ (t)−

(
W ∗qd (t)− Ŵ (t)

)] =

Nr
a∑

k=1

[
(Σ + Λ)−1 µ̃

]
k
.567

(3.35)568

Within each risky asset basket, the optimal allocations to risky asset i ∈ {1, ..., N r
a}, %∗ir,i (t)569

and %∗qd,i (t), satisfy the following constant ratios,570

(3.36)
W ∗ (t) · %∗ir,i (t)− Ŵ (t) · %̂i (t)

W ∗ (t) · R∗ir (t)− Ŵ (t) · R̂ (t)
=
W ∗ (t) · %∗qd,i (t)− eβT Ŵ (t) · %̂i (t)

W ∗ (t) · R∗qd (t)− eβT Ŵ (t) · R̂ (t)
=

∑Nr
a

j=1 (Σ + Λ)−1ij (µj − r)∑Nr
a

k=1

[
(Σ + Λ)−1 µ̃

]
k

.571
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Proof. Note that [v]k denotes the kth component of any vector v. The results follow from572

definition (3.34), Lemma 3.4 and Lemma 3.10.573

As a result of Corollary 3.14, in our numerical experiments (Section 6) we analyze the behavior574

of the analytical solutions using only a “single” risky asset assumed to be a diversified stock575

index, since this focuses on the key aspect of the asset allocation (3.35). In particular, Corollary576

3.14 encourages the interpretation of the optimal controls as primarily determining the overall577

risky asset basket allocations R∗ir and R∗qd, since once this is known, determining individual578

allocations using (3.36) is trivial.579

Lemma 3.15 below presents a simple but interesting comparison result for the probability of580

benchmark underperformance associated with the IR- and QD-optimal investment strategies.581

Lemma 3.15. (QD vs IR: Probability of underperformance) Suppose that the assumptions582

of Lemma 3.13 hold. In addition, we assume that the benchmark strategy, which is assumed to583

be a constant proportion strategy %̂
(
t, Ŵ (t)

)
≡ %̂ =

(
%̂1, ..., %̂Nr

a

)
as per Lemma 3.13, satisfies584

the following: (i) %̂i ≥ 0 for all i ∈ {1, ..., N r
a}, and (ii) %̂i > 0 for at least one i ∈ {1, ..., N r

a}.585

Then the probability that the QD-optimal strategy underperforms the benchmark always exceeds586

the corresponding probability associated with the IR-optimal strategy, in other words587

P t0,w0

%∗qd

[
W ∗qd (t) ≤ Ŵ (t)

]
≥ P t0,w0

%∗ir

[
W ∗ir (t) ≤ Ŵ (t)

]
, ∀t ∈ [t0, T ] .(3.37)588

Proof. See Appendix A.1.589

In numerical tests, we observe that (3.37) appears to remain true provided Assumption 3.1590

holds, even if we allow for contributions (q > 0) and jumps in the risky asset processes.591

While it is an interesting result, it should be emphasized that Lemma 3.15 only considers a592

single point of a cumulative distribution function, namely P t0,w0

%∗qd

[
W ∗qd (t) /Ŵ (t) ≤ 1

]
. As the593

results of Section 6 show, this is a very unreliable basis for the practical evaluation and com-594

parison of investment strategies, especially since no mention is made of tail behavior (upside595

or downside) of the different strategies.596

We conclude this section with some final remarks on the closed-form results. We observed597

in Section 2 that the objective functions suggest that the QD investor wishes (where possible)598

to outperform the benchmark terminal wealth by a constant factor, whereas the IR investor599

hopes to achieve the benchmark terminal wealth by a constant amount irrespective of the600

underlying market scenario. The results of Lemmas 3.4, 3.6, 3.10 and 3.12 confirm that this601

intuition not only holds at time T , but also for all t < T .602

Specifically, at time t < T , the IR-optimal strategy can be interpreted as having an implicit603

wealth target of
[
γe−r(T−t) + Ŵ (t)

]
; see (3.18), (3.20) and (3.22). Similarly, ignoring contri-604

butions, the QD-optimal strategy can be interpreted as having an implicit target of eβT Ŵ (t)605

for W ∗qd (t); see (3.29), (3.30) and (3.32). By “implicit target”, we mean that in the case of606

both the IR and QD strategies, the risky asset basket exposure is increased in direct proportion607

with the extent to which the investor’s wealth is underperforming the above-mentioned target608
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values at time t. As a result, in adverse market scenarios (which of course also affects the609

benchmark), the IR strategy effectively aims to outperform the benchmark by a larger factor610

than in “typical” market scenarios due to the constant amount of specified outperformance,611

and is thus required to take on more extreme positions in the riskiest asset compared to the612

QD strategy. Similarly, early in the investment time horizon, when the investor’s wealth is613

expected to be small relative to wealth at later stages, the IR strategy is therefore expected to614

take on significantly more risk (i.e. investing more in the riskiest asset) than the QD strategy615

due to its higher relative target implied by the constant amount of outperformance.616

These statements can be made rigorous in the case of two assets under Assumption 3.1617

(see Appendix A, in particular Theorem A.3), but the numerical results in Section 6 show that618

these observations remain true in more general cases where constraints are applicable.619

4. Traditional dynamic programming: an unnecessarily high dimensional approxima-620

tion problem. If problems (2.4) or (2.6) cannot be solved analytically, for example when621

multiple investment constraints are applicable or the portfolio is rebalanced at discrete time622

intervals, then the standard numerical solution approach is to rely on dynamic programming623

(DP). For example, we could use the Q-learning algorithm, which is arguably the most popu-624

lar data-driven Reinforcement Learning (RL) algorithm (see for example [34, 94, 84, 48]) that625

fundamentally relies on the DP principle to solve (2.4) or (2.6).626

Many of the well-known concerns with using DP-based techniques, including in multi-627

asset portfolio optimization settings (see [111, 82]), follow from the fact that an approximation628

to a conditional expectation is required at each solution step. This is the essence of value629

iteration employed in RL and the Q-learning algorithm, which implies that an optimization630

problem has to be solved to determine the value function using the performance criterion631

([92]) at each portfolio rebalancing event, recursively backwards from the terminal time T .632

This can cause significant challenges with regards to the stability and convergence associated633

with the estimated value function and estimated optimal control due to the amplification of634

the estimation errors over each iteration (see for example [111, 82, 117]).635

While these challenges with DP do enjoy some recognition in the literature, in this section636

we present an additional motivation for avoiding the use of the DP principle to solve problems637

specifically of the form (2.4) or (2.6).638

4.1. Formulation requiring a numerical solution approach. We start by formulating a639

more realistic setting for the investment problems (2.4) and (2.6), which would necessitate the640

use of numerical solution techniques.641

We assume that the investor only rebalances the portfolio at each of Nrb rebalancing times642

in the investment time horizon [t0 = 0, T ], so that the set T of rebalancing times is given by643

T = { tn = n∆t|n = 0, ..., Nrb − 1} , ∆t = T/Nrb.(4.1)644

For convenience, we assume that the rebalancing times are equally spaced in (4.1), and that645

contributions to the portfolio are a priori specified and made only at rebalancing times. We646
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therefore assume a given cash contribution schedule {q (tn) : n = 0, ..., Nrb − 1}, where q (tn)647

denotes the amount of cash contributed to each portfolio (investor and benchmark portfolios)648

at tn ∈ T .649

Note that the basic aspects of the formulation remains as in Section 2, including the use of650

Na assets. In particular, the investor strategy and benchmark strategies are of the form (2.1)651

using T given by (4.1).652

We do not make assumptions about underlying dynamics, but instead simply observe that653

if Ri (tn) denotes the return on asset i ∈ {1, .., Na} over the time interval [tn, tn+1], then the654

investor and benchmark wealth dynamics are given by655

W
(
t−n+1

)
=
[
W
(
t−n
)

+ q (tn)
]
·
Na∑
i=1

pi (tn,X (tn)) · [1 +Ri (tn)] ,(4.2)656

Ŵ
(
t−n+1

)
=
[
Ŵ
(
t−n
)

+ q (tn)
]
·
Na∑
i=1

p̂i

(
tn, X̂ (tn)

)
· [1 +Ri (tn)] ,(4.3)657

where n = 0, ..., Nrb− 1 and W
(
t−0
)

= Ŵ
(
t−0
)

:= w0 > 0. The minimal form of X is assumed658

to be X (tn) =
(
W (tn) , Ŵ (tn)

)
, which is suggested by the results presented in Subsection659

4.2 below.660

Finally, we assume that the investor is subject to the investment constraints of (i) no661

shorting and (ii) no leverage. In particular, this means that we consider the sets of admissibility662

(see Section 2) for the investor strategy given by663

A = {P = {p (tn,X (tn)) : tn ∈ T }|p (tn,X (tn)) ∈ Z, ∀tn ∈ T } ,(4.4)664

where Z =

{
(y1, ..., yNa) ∈ RNa :

Na∑
i=1

yi = 1 and yi ≥ 0 for all i = 1, ..., Na

}
,(4.5)665

which also ensures that the investor’s wealth (with dynamics (4.2)) remains non-negative.666

We are therefore concerned with solving the IR and QD problems where T = Nrb ·∆t, the667

set of rebalancing times T is given by (4.1), wealth dynamics are given by (4.2) and (4.3), and668

the investor strategy P takes values in the admissible set A in (4.4).669

4.2. High-dimensional performance criterion, low-dimensional control. We now present670

an additional challenge with DP-based solution techniques. Specifically, in the Proposition 4.1671

we show that the DP approach is, in a sense, unnecessarily high-dimensional in the case672

of benchmark outperformance problems of the form (2.4) and (2.6). For concreteness and673

illustrative purposes, note that Proposition 4.1 incorporates some assumptions which are not674

required subsequently, since different DP approaches will treat the solution of the performance675

criterion (a conditional expectation) between rebalancing events in different ways. However,676

qualitatively similar observations regarding dimensionality will remain applicable.677

Proposition 4.1. (Discrete rebalancing: Dimensions of the dynamic programming solutions678
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to the IR and QD problems) Suppose the IR (γ) and QD (β) problems in (2.4) and (2.6) are679

solved using dynamic programming in the case where the portfolio is only rebalanced at the set of680

discrete rebalancing times T in (4.1). For concreteness and illustrative purposes, we make the681

following additional simplifying assumptions: (i) The Na underlying assets, representing the682

set of investable assets for both the investor and the benchmark, are risky assets with dynamics683

given by (3.8). (ii) The benchmark’s asset allocation strategy is an adapted feedback control of684

the form p̂
(
tn, X̂ (tn)

)
= p̂

(
tn, Ŵ (tn)

)
, tn ∈ T . (iii) At each rebalancing event, the investor685

can observe the benchmark asset allocation vector p̂
(
tn, Ŵ (tn)

)
.686

Then at each fixed rebalancing time tn ∈ T , regardless of the number of underlying assets687

Na, the optimal controls of problems IR (γ) and QD (β) in (2.4) and (2.6) are functions only688

of the investor’s wealth and the benchmark wealth. In other words, at each rebalancing time689

tn, the optimal investor control for each problem consists of the vectors p∗ir (tn,X
∗
ir (tn)) and690

p∗qd
(
tn,X

∗
qd (tn)

)
, tn ∈ T , respectively, where X∗ir (tn) =

(
W ∗ir (tn) , Ŵ (tn)

)
and X∗qd (tn) =691 (

W ∗qd (tn) , Ŵ (tn)
)
.692

However, in using dynamic programming to obtain the optimal controls p∗k : R(2+1) →693

RNa , k ∈ {ir, qd}, which are only two-dimensional controls at each fixed rebalancing time tn ∈694

T , the investor requires the solution of a (2Na + 1)-dimensional performance criterion J :695

R(2Na+1) → R, for each problem, between each pair of adjacent rebalancing times tn, tn+1 ∈ T .696

Proof. See Appendix A.3.697

Therefore, given the stated assumptions, Proposition 4.1 shows that the case of discrete rebal-698

ancing3, the investor needs to solve for a (2Na + 1)-dimensional performance criterion during699

each value iteration (rebalancing time step), which can be expressed as a 2-dimensional func-700

tion (corresponding to the value function if the optimal control is used) only at each rebalancing701

time tn ∈ T .702

Proposition 4.1 demonstrates that it is inefficient to solve (2.4) and (2.6) by DP, in addition703

to the aforementioned challenges resulting from error amplification. We advocate solving the704

original stochastic optimal control problems, e.g., (2.4) and (2.6), directly without DP. In705

particular, we represent control by an NN, which explicitly exploits its lower dimensionality.706

As a result, significant computational advantages follow, since the optimal control is computed707

without the need to solve for the corresponding performance criterion.708

5. Neural network (NN) solution approach. We now discuss the numerical solution of709

problems (2.4) and (2.6) using a data-driven neural network (NN) approach that does not rely710

on the DP principle, but instead solves directly for the optimal control. This approach therefore711

avoids both the dimensionality and error amplification issues outlined in the previous section.712

While our approach is broadly inspired by some of our previous work (see [81, 88, 113]), it is713

specialized in this section to problems of the form (2.4) and (2.6). A brief summary of the714

3In contrast, in the case of continuous rebalancing, the results of Section 3 show that that the investor only
requires the solution of a 2-dimensional value function at every given t ∈ [t0, T ].
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approach is provided, with more information available in Appendix C.715

Our basic task in solving problems (2.4) and (2.6) is to determine the control P (see (2.1))716

in feedback form p (t,X (t)). We assume that p(t,X) ∈ Z is a continuous function of (t,X),717

which enforces the condition that, in the limit as ∆t → 0, the approximate control remains718

a continuous function of time. We believe that this is a necessary practical constraint to any719

investment policy, since investors would surely be reluctant to follow a strategy where the asset720

allocations exhibited non-smooth behavior as a function of time if the observed information721

X(t) is a smooth function of time. Since the portfolio is rebalanced only at discrete time722

intervals, the investment strategy can be found by evaluating this continuous function at723

discrete time intervals, i.e. (tn,X (tn))→ P (tn,X (tn)) = p (tn,X (tn)) , tn ∈ T .724

Appealing to the Universal Approximation Theorem (see [32, 47, 58, 59, 77, 108]), we725

approximate the continuous control function p(t,X) by a NN F (t,X(t);θ) ≡ F (·,θ), where726

θ ∈ Rηθ is the set of NN parameters (i.e. the NN weights and biases), so that727

p(t,X(t)) ' F (t,X(t);θ) ≡ F (·,θ).(5.1)728

While we use a standard fully-connected feed-forward NN (see for example [51]), it has the729

following specific structural properties: (i) The minimal inputs (features) consists of time t,730

investor wealth W (t) and benchmark wealth Ŵ (t) after incorporating contributions. (ii) The731

number of output nodes correspond to the number of assets. (iii) A softmax activation is used732

in the output layer to ensure the NN generates outputs in Z ⊂ RNa as per (4.5). We place733

no fixed requirements on the number of hidden layers or activation functions, since these are734

typically tailored to a given portfolio optimization problem based on numerical experiments735

(see Appendix C). In the subsequent results, we use two hidden layers, each with Na+2 hidden736

nodes, and logistic sigmoid activations. The general NN structure is illustrated in Figure 5.1.737

738

Since the NN F (·,θ) generates values in Z, problems (2.4) and (2.6) are then approximated739

by the unconstrained optimization problems740

(5.2)

inf
θ∈Rηθ

Et0,w0

F (·;θ)

[(
W (T ;θ)−

[
Ŵ (T ) + γ

])2]
, and inf

θ∈Rηθ
Et0,w0

F (·;θ)

[(
W (T ;θ)− eβT Ŵ (T )

)2]
.741

From a computational point of view, the expectations Et0,w0(·) in (5.2) are approximated742

using a finite set of samples Y , which in the usual terminology (see [51]) serves as the training743

data set of the NN. Y is assumed to be of the form Y =
{
Y (j) : j = 1, ..., Nd

}
, where each Y (j)

744

represents a path of joint asset return observations Ri, i ∈ {1, .., Na} observed at each tn ∈ T .745

Our solution approach is agnostic as to the particular technique used to generate the746

training data set Y . If we restrict attention to parametric stochastic models, then Y can747

be generated trivially from Monte Carlo simulation. However, it is more straightforward,748

and perhaps more convincing for practitioners, to use historical data directly, which (due to749

sparsity of data) necessarily requires some data augmentation or generation techniques. For750
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Figure 5.1: Illustration of the structure of the NN F used to model the control (investment strategy).
The same NN is applied at all rebalancing times, with the asset allocations at a specific rebalancing time
tn obtained using the minimal features including time (tn), investor wealth W (t+n ) = W (t−n ) + q (tn)
and benchmark wealth Ŵ (t+n ) = Ŵ (t−n ) + q (tn).

illustrative purposes, we use stationary block bootstrap resampling ([98]) in the results of751

Section 6, which is popular with practitioners ([26, 33, 105, 22, 107, 5]) and designed for752

weakly stationary series having serial dependence. Note that [100] and [99] suggest methods753

for resampling non-stationary time series, which we do not explore in this paper.754

Consider a given training dataset Y , regardless how it is obtained. For a given θ ∈ Rηθ755

in (5.2) and a given training sample path Y (j) ∈ Y , we can obtain the corresponding wealth756

outcomesW (j) (T ) and Ŵ (j) (T ) calculated using (4.2)-(4.3) and (5.1). Our final computational757

problems for (5.2) can therefore be expressed as758

(5.3)

min
θ∈Rηθ

 1

Nd

Nd∑
j=1

(
W (j) (T ;θ)−

[
Ŵ (j) (T ) + γ

])2 , and min
θ∈Rηθ

 1

Nd

Nd∑
j=1

(
W (j) (T ;θ)− eβT Ŵ (j) (T )

)2 .759

The optimal NN parameter vectors for (5.3), denoted by θ∗k, k ∈ {ir, qd} respectively, can760

then be obtained using standard (unconstrained) optimization methods - see Appendix C. The761

resulting optimal investment strategies p∗k(·,X(·)) ' F (·,θ∗k), k ∈ {ir, qd} can be implemented762

on a testing data set Y test to assess the out-of-sample performance of the resulting strategies.763

While the contents of Y test is expected to differ from that of the training dataset Y , for example764

it might be based on different data generation assumptions, it is assumed to have a similar765

structure to the training dataset.766

We highlight the following important properties of this NN solution approach:767

(i) We approximate the control directly using a NN, and do not rely on DP techniques.768

In particular, the problems of the approximation of (high-dimensional) conditional769

expectations and value iteration discussed in Section 4 are avoided entirely. Note that770
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the idea of solving for the control directly, without using DP, has also been suggested771

in [102, 56].772

(ii) Time is an input into the NN, which simultaneously implies that smooth behavior of773

the control as rebalancing time interval ∆t→ 0 is automatically guaranteed, while also774

ensuring that the size of the NN parameter vector does not depend on the number of775

portfolio rebalancing events. These advantages contrasts our approach from that of for776

example [56, 111, 62].777

For further details, including ground truth results, the reader is referred to Appendix C778

6. Illustration of investment results. In this section, we illustrate the results from invest-779

ing according to the IR and QD optimal strategies, using both analytical solutions (Section780

3), as well as numerical solutions using the NN approach (Section 5).781

For illustrative purposes, we formulate a typical investment scenario where the investor782

wishes to outperform reasonable and popular benchmarks over the long term using both “stan-783

dard assets” (a broad stock market index, Treasury bills and bonds) as well as two popular784

investment “factors” from the factor investing literature (see for example [6]). The investor is785

not necessarily limited to investing in the same assets that are used by the benchmark.786

6.1. Investment scenario. Table 6.1 summarizes the general investment scenario assump-787

tions for the illustrative results. The time horizon of T = 10 years is chosen for an investor788

primarily concerned with long-run benchmark outperformance. The case of continuous rebal-789

ancing is approximated using 3,600 time steps in [0, T ], while the discrete rebalancing scenario790

assumes the annual or quarterly rebalancing of the portfolio.791

Table 6.1: Key investment scenario assumptions

Parameter Analytical solutions
(no constraints)

Numerical solutions
(with constraints)

Investment constraints None No short-selling, no leverage allowed
T 10 years 10 years
w0 120 120

Rebalancing frequency Continuous Annual rebalancing Quarterly rebalancing
Nrb (# rebalancing events) 3600 10 40

Contributions q = 12 (rate per year) q (tn) = 12, ∀n
(annual contribution)

q (tn) = 3, ∀n
(quarterly contribution)

792

Since there are many possibilities for the basis of comparison of the IR- and QD-optimal793

investment strategies, we assume that the investor aims to achieve an expected terminal wealth794

of E regardless of whether the IR or QD strategy is followed. Specifically, if the benchmark795

investment strategy results in Et0,w0

P̂

[
Ŵ (T )

]
= K, we assume the investor chooses some value796
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of β̂ > 0 in (6.1) to achieve an expected terminal wealth of E :797

(6.1) Et0,w0

PE∗ir

[
W E∗ir (T )

]
≡ Et0,w0

PE∗qd

[
W E∗qd (T )

]
:= E := eβ̂T · K = eβ̂T · Et0,w0

P̂

[
Ŵ (T )

]
.798

The desired target expectation (6.1) can be achieved by solving numerically (or in some cases,799

analytically - see Appendix A) for values of γ = γEir in the IR (γ) problem and β = βEqd in the800

QD (β) problem. Note that β̂ > 0 in (6.1) implies that we always have the strict inequality801

E > K, which is required since if E = K, then the IR- and QD-optimal strategies will be802

identical to the benchmark strategy4.803

Table 6.2 summarizes the underlying assets considered. Candidate assets for the investor804

portfolio are identified by the label “Px”, x ∈ {0, 1}, while benchmarks are identified by the805

label “BMx”, x ∈ {0, 1}. Both benchmarks portfolios are equally-weighted between stocks806

and bonds. We assume that the investor will construct portfolio P0 (Na = 2) to outperform807

benchmark BM0 (also 2 assets), and portfolio P1 (Na = 5) to outperform benchmark BM1 (3808

assets with nonzero investment).809

More information regarding the definition and historical returns data for the assets in810

Table 6.2 can be found in Appendix B.1. All data was obtained for the period from 1963:07811

to 2020:12, which includes the period of significant market volatility experienced during 2020.812

Due to the reasonably long investment time horizon (Table 6.1), we assume as in for example813

[45, 44] that the investor is primarily interested in the real (or inflation-adjusted) performance814

of the portfolio. Therefore, prior to calculations or NN training/testing data set constructions,815

all time series of returns were inflation-adjusted using data from the US Bureau of Labor816

Statistics.817

818

6.2. Illustration of analytical solutions. For the illustration of the analytical results of819

Section 3, we assume that investor portfolio P0 is constructed to outperform benchmark BM0820

as per Table 6.2, while it is sufficient to consider only Na = 2 assets (see Corollary 3.14). In821

the terminology of Section 3, T10 and Market (Table 6.2) are associated with the risk-free and822

risky assets, respectively. For the risky asset, we assume the [73] model, with more information823

on the parameters and calibration provided in Appendix B.1.824

We now compare analytical investment results on the basis of (6.1), using 106 Monte Carlo825

simulations of asset dynamics (3.5) and (3.8) with parameters as in Table B.1. Figure 6.1826

illustrates the simulated probability density functions (PDFs) associated with E = 400 (β̂ '827

2%), with results shown for both the terminal wealth (absolute performance) and the wealth828

ratio (relative performance). In Figure 6.1, the probability of benchmark underperformance is829

larger for the QD strategy (3.36%) than for the IR strategy (2.61%), which is expected as per830

4While intuitive, the fact that E = K implies PE∗ir = PE∗qd = P̂ can also be shown analytically by setting
E = K in the expressions for γEir and βEqd in Lemma A.2 in Appendix A, and then substituting the resulting
values into the optimal controls (3.18) and (3.10).
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Table 6.2: Portfolios of candidate assets considered by the investor “Px”, x ∈ {0, 1} and benchmarks
“BMx”, x ∈ {0, 1}. The tick mark “X” indicates the inclusion of the asset in the portfolio optimization
problem. The benchmark asset allocation is shown as a percentage of wealth.

Assets Investor portfolios Benchmarks
Label Asset description P0 P1 BM0 BM1

T30 30-day Treasury bill X X 50% 25%
B10 10-year Treasury bond X 25%

Market Market portfolio (broad equity market
index)

X X 50% 50%

Size Portfolio of small stocks X

Value Portfolio of value stocks X

Number of candidate assets (Na): 2 5 2 3

Lemma 3.15.831

100 200 300 400 500 600 700

Terminal wealth

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
D

F

Benchmark

IR

QD
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Figure 6.1: Analytical solutions, no constraints, investor portfolio P0, benchmark BM0: Simulated
PDFs of benchmark and investor’s target terminal wealth Ŵ (T ) and W E∗j (T ), respectively, as well
as the ratio W E∗j (T ) /Ŵ (T ), for j ∈ {ir, qd} . 106 Monte Carlo simulations, E = 400 in (6.1). The
corresponding CDFs are shown in Figure B.1 in Appendix B.

832

To illustrate the underlying analytical investment strategies, Figure 6.2(a) shows the rela-833

tively larger reliance placed by the IR strategy on the risky asset early in the investment time834

horizon, which has the effect (Figure 6.2(b)) that the IR strategy relies more heavily on trading835

in bankruptcy (allowed in this case as per Assumption 3.1) to achieve the desired benchmark836

outperformance. For both strategies, Figure 6.2(a) also illustrates that as time passes, the837

risky asset holdings of both the IR- and QD-optimal investment strategies trend closer to the838

benchmark holdings, which is (qualitatively) to be expected given the results of Lemma 3.5839

and Lemma 3.11.840

841

Note that the quantitative aspects of the relative behavior of the optimal investment strate-842
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Figure 6.2: Analytical solutions, no constraints, investor portfolio P0, benchmark BM0: 80th per-
centiles of the investment in the single risky asset pE∗j (t) and probability of insolvency as a function of
time t→ P t0,w0

pE∗j

[
W E∗j (t) ≤ 0

]
, for j ∈ {ir, qd}. 106 Monte Carlo simulations, E = 400 in (6.1).

gies observed in Figure 6.2(a) is analyzed in Appendix A (see Theorem A.3).843

6.3. Illustration of numerical solutions. We now consider the scenario of multiple invest-844

ment constraints and discrete rebalancing (see Subsection 4.1), so that the problems are solved845

using the NN approach outlined in Section 5 and Appendix C. Investment outcomes are still846

compared on the basis of (6.1), where the targeted expected value E = eβ̂TK (see (6.1)) is to847

be achieved on the neural network’s training data set Y .848

To construct both the training and testing data sets for the neural network, Y and Y test
849

respectively, we use stationary block bootstrap resampling for illustrative purposes (see dis-850

cussion in Section 5). However, we emphasize that the NN approach is agnostic as to the851

particular technique used to obtain the data.852

Table 6.3 outlines the key assumptions underlying Y and Y test, with K reporting the mean853

benchmark terminal wealth on each training data set. For data sets DS1 and DS2, the relatively854

shorter expected blocksizes used for the testing data is due to the relatively shorter historical855

time period (11 years) of source data used for out-of-sample testing. Note that all subsequent856

results were also tested using various different assumptions for expected blocksizes, and since857

qualitatively similar results were obtained (as expected based on the robustness assessments858

presented in [88, 81]), only results for the data sets as outlined in Table 6.3 are presented.859

Remark 6.1. (Rationale for training data period selections) While only for illustrative pur-860

poses, the data sets in Table 6.3 are constructed with specific goals. Data set DS0, obtained861

using simulation of specified asset dynamics, is included to illustrate the impact of discrete862

rebalancing and investment constraints on the results of Subsection 6.2. DS1 and DS2 incor-863

porate data since 1963 due to data availability constraints for investable factors. In an ideal864

scenario, including data as far back as for example 1926 would be preferable, since it would865

include a wider range of economic and geopolitical events, such as the Great Depression and866

the second World War. A possible objection to using so much historical data (even if we limit867

our attention to data since 1963) might be that the historical data might not be relevant to868
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current market conditions, and thus more recent data would be preferable. However, the last869

∼30 years exhibited a historical anomaly in that real interest rates have been declining almost870

monotonically, thus making investments in long-maturity low-risk government bonds partic-871

ularly attractive, whereas it is exceedingly unlikely that this market regime would continue872

(see for example [42]). The training data of data sets DS1 and DS2 are specifically chosen to873

include periods of high inflation such as 1963-1985, including the 1970s where economic growth874

was stagnant in conjunction with high inflation, since this data might in fact be more relevant875

to current market conditions than more recent data. Regardless of these observations, we also876

include data set DS3, which incorporates training data only dating to 1995, since this might877

reflect the perspective of an investor considering the benchmark outperformance problems in878

2010 (the start of the testing data set for DS3), and who wishes to use only the “most recent879

15 years” (1995:01 - 2009:12) of training data for investable factors after Size and Value in-880

vestments have been popularized with the publication of [39, 40]. DS3 involves more frequent881

rebalancing.882

Table 6.3: Data set combinations, labelled DSx, x ∈ {0, 1, 2}, used for training and testing the neural
network. “SBBR” refers to stationary block bootstrap resampling, with expected blocksize reported in
brackets.

Label Rebal.
freq.

Training data set Y (Nd = 106) Testing data set Y test (N test
d = 5× 105)

Source data Data set
generation

Benchmark
exp. val.

Source data Data set
generation

DS0 Continuous 106 Monte Carlo simulations of
asset dynamics (3.5), (3.8),
(B.1) with parameters as in

Table B.1

BM0:
K = 334

N/a N/a

DS1 Annually Historical data,
1963:07 - 2009:12

SBBR
(6 months)

BM1:
K = 338

Historical data,
2010:01 - 2020:12

SBBR
(3 months)

DS2 Annually Historical data,
1963:07 - 1999:12

SBBR
(6 months)

BM1:
K = 364

Historical data,
2000:01 - 2010:12

SBBR
(3 months)

DS3 Quarterly Historical data,
1995:01 - 2009:12

SBBR
(3 months)

BM1:
K = 352

Historical data,
2010:01 - 2020:12

SBBR
(3 months)

883

Table 6.4 provides the combinations of investor portfolios and benchmarks, as well as the884

targeted level of outperformance chosen for illustrative purposes. In the case of using portfolio885

P1 (5 assets) to outperform BM1 (3 assets), we use a slightly more ambitious value of β̂ ' 1.7%886

in (6.1), since the investor has more opportunities for outperformance given that factors are887

available for investment (see [113]). Note that the E values reported are different due to888

different values of K (see Table 6.3).889

890
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Table 6.4: Numerical solutions, with constraints: Target expected values for combinations of the
investor portfolios, benchmarks and data set combinations. As per Table 6.3, both the investor portfolio
and benchmark use continuous rebalancing in the case of DS0, annual rebalancing in the case of DS1
and DS2, and quarterly rebalancing in the case of DS3.

Investor To outperform benchmark:
portfolio BM0 (2 assets) BM1 (3 assets)

P0 (2 assets) DS0: E = 370 (β̂ ' 1.0%) N/a
P1 (5 assets) N/a DS1: E = 400 (β̂ ' 1.7%)

DS2: E = 430 (β̂ ' 1.7%)
DS3: E = 420 (β̂ ' 1.7%)

Table 6.5, based on using portfolio P0 to outperform benchmark BM0 on training data891

set DS0, shows the impact of applying investment constraints and discrete rebalancing to the892

results of Subsection 6.2: (i) with constraints, the QD-optimal probability of underperformance893

is now lower than the corresponding IR-optimal value, and thus the results of Lemma 3.15 no894

longer qualitatively hold; (ii) the QD-optimal strategy results in better downside performance895

than the IR strategy for both the wealth and the wealth ratio when constraints are applied.896

We note that while these results are obtained on the training data set of DS0, qualitatively897

similar training data (“in-sample”) results hold for other data sets when investment constraints898

are applied - see for example the results for DS2 in Table B.2 (Appendix B). As a result, we899

will focus on the testing (“out-of-sample”) outcomes in the subsequent results.900

Table 6.5: Effect of constraints: analytical solutions vs. numerical solutions, investor portfolio P0,
benchmark BM0. “No constraints” and “With constraints” columns are based on the assumptions for
the analytical solutions and numerical solutions, respectively, as per Table 6.1. NN trained on data
set DS0. Since no out-of-sample testing is conducted for DS0 (see Table 6.3), the “With constraints”
results are obtained on the training data set.

Quantity
No constraints: P0, E = 370 With constraints: P0, E = 370

BM0 W E∗j (T ) W E∗j (T ) /Ŵ (T ) BM0 W E∗j (T ) W E∗j (T ) /Ŵ (T )

Ŵ (T ) IR QD IR QD Ŵ (T ) IR QD IR QD

Mean 330 370 370 1.12 1.11 334 370 370 1.10 1.10
CExp 5% 208 193 191 0.90 0.90 207 172 176 0.82 0.84
5th pctile 228 244 236 1.07 1.03 227 210 214 0.91 0.94
Median 323 368 365 1.13 1.13 325 370 365 1.12 1.12

95th pctile 454 504 518 1.15 1.14 470 524 536 1.16 1.14

Prob. underp. 2.62% 3.35% 9.30% 8.55%

901

Figure 6.3 and Figure 6.4 illustrate the results for the out-of-sample (testing) data of DS1902

(annual rebalancing) and DS3 (quarterly rebalancing). The corresponding CDFs are illustrated903
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in Appendix B. While the wealth distribution of the QD strategy is possibly preferable (Figures904

6.3(a) and 6.4(a)), the wealth ratio distributions (Figures 6.3(b) and 6.4(b)) show that the QD905

strategy can result in a much more desirable outperformance profile than the IR strategy. Note906

that the potential risk of underperforming the benchmark is significantly larger out-of-sample907

than in-sample (for details, see Table B.2 where DS2 is used as an example), which is to be908

expected since with the true underlying data generating process is not known.909

From a practical perspective, the CDF plots in Appendix B.2 show that the QD strategy910

has an 80% chance of outperforming the benchmark by about 100 bps per year. We remind911

the reader that this is an out-of-sample result, and makes use of standard index investments.912
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Figure 6.3: Out-of-sample (testing) results for DS1 using annual rebalancing, numerical solutions,
with constraints, investor portfolio P1, benchmark BM1: Simulated probability density functions
(PDFs) of benchmark and investor’s target terminal wealth Ŵ (T ) and W E∗j (T ), respectively, as well
as the ratio W E∗j (T ) /Ŵ (T ), for j ∈ {ir, qd}. Note that both strategies result in E = 400 on the
training data of DS1, whereas figures show testing data results.

913

914

To explain the relative success of the QD strategy out-of-sample, Figure 6.5 illustrates the915

80th percentiles of the proportion of wealth invested in each candidate asset5 in P1 over time916

according to the IR- and QD-optimal investment strategies, on the training data set of DS1.917

We observe that the key qualitative observations regarding the analytical solutions discussed918

in Subsection 6.2 and Appendix A hold even if investment constraints are applied. Specifically,919

compared to the QD strategy, Figure 6.5 shows that the IR strategy maintains a larger stake920

in both the riskiest asset (Value) as well as the asset with the least risk (T30). In this sense,921

the IR strategy is less diversified than the QD strategy, in the sense that it takes more extreme922

positions in the assets with the most extreme risk/return trade-offs.923

924

Finally, Table 6.6 presents the performance on the (single) historical path of the QD and925

IR strategies implemented starting the month indicated by the first column and continuing926

5The zero investment in Size, as well as the large investment in Value, are to be expected given their
historical performance (see [113]).
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Figure 6.4: Out-of-sample (testing) results for DS3 using quarterly rebalancing, numerical solu-
tions, with constraints, investor portfolio P1, benchmark BM1: Simulated probability density functions
(PDFs) of benchmark and investor’s target terminal wealth Ŵ (T ) and W E∗j (T ), respectively, as well
as the ratio W E∗j (T ) /Ŵ (T ), for j ∈ {ir, qd}. Note that both strategies result in E = 420 on the
training data of DS3, whereas figures show testing data results.
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Figure 6.5: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set
DS1, E = 400: 80th percentile of the proportion of wealth invested in each asset over time on the
training data set (DS1). Zero investment in Size, thus it is omitted. Note the same scale on the y-axis,
and that the last rebalancing event is at t = T −∆t = 9 years.

until the maturity T = 10 + t0 years is reached. Note that there is significant overlap (5 years)927

between the underlying data of each pair of adjacent rows. Table 6.6 presents out-of-sample928

results, since the probability that the actual historical path appears in the training data set929

constructed using block bootstrap resampling is vanishingly small ([88]). With the exception930

of single investment time period [t0, T + t0] commencing in January 2000, the QD strategy931

consistently outperforms the IR strategy on the historical path.932

933

Table 6.6 therefore illustrates the attractiveness in terms of historical performance of di-934

rectly targeting the tracking difference using the proposed QD objective, and shows that the935

relatively lower reliance on the riskiest asset by the QD strategy early in the investment time936

horizon (Figures 6.2 and 6.5) improves its out-of-sample performance. In contrast, the IR937

strategy retains some resemblance to the results of MV optimization, and can be viewed as a938
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Table 6.6: Terminal wealth W E∗j (T ) for portfolio P1 obtained on the actual historical path by
implementing the optimal strategies obtained numerically (with constraints) after training the NN on
the training data sets DS1, DS2 and DS3 with benchmark BM1. The column “Best” indicates the
strategy with the highest terminal wealth.

Annual rebalancing Quarterly rebalancing
NN trained on DS1
(1963:07 - 2009:12)

NN trained on DS2
(1963:07 - 1999:12)

NN trained on DS3
(1995:01 - 2009:12)

t0 for
[t0, T + t0]

BM1 IR QD Best IR QD Best BM1 IR QD Best

1980:01 463 537 556 QD 534 548 QD 467 561 565 QD
1985:01 400 467 479 QD 467 475 QD 399 453 457 QD
1990:01 497 568 593 QD 567 588 QD 492 547 583 QD
1995:01 384 460 474 QD 454 459 QD 382 474 475 QD
2000:01 260 315 309 IR 321 310 IR 256 344 307 IR
2005:01 342 400 405 QD 383 406 QD 336 385 389 QD
2010:01 370 432 442 QD 435 438 QD 367 410 427 QD

“high conviction” strategy (see for example [76]), since it is comparatively less diversified near939

the start and near the end of the investment time horizon.940

7. Conclusion. As noted in the Introduction, various objective functions have been for-941

mulated in the literature for benchmark outperformance. In this paper we have made the942

deliberate choice to target metrics which are valued by investors in practice (see the Introduc-943

tion for a discussion).944

We have considered two dynamic investment strategies for outperforming a benchmark,945

namely (i) maximizing information ratio (IR) and (ii) maximizing the tracking difference (cu-946

mulative outperformance). In the case of the tracking difference, we introduced a simple and947

intuitive objective function (the QD objective) for achieving this goal. Closed-form solutions948

under idealized assumptions are presented in order to gain intuition regarding the underlying949

investment strategies.950

In particular, the closed form solutions show that the QD strategy is more diversified than951

the IR policy, and takes less risky positions. However, some properties of the closed form952

solutions are misleading, such as the results for probability of underperformance. We suspect953

that this due to allowing trading if insolvent (for the closed form solutions), similar to the pure954

mean-variance case [116]. This suggests that full numerical solutions with realistic constraints955

should be used to compare strategies.956

Under certain assumptions, it can be shown that any dynamic programming approach for957

solving for the optimal control (which includes reinforcement learning) requires approximation958

of a high dimensional performance criterion, even if the control is low dimensional.959

Abandoning traditional DP, we propose to directly solve the original optimal stochastic960
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control problems, e.g., (2.4) and (2.6). In particular, we represent the control by a Neural961

Network (NN), which explicitly exploits its lower dimensionality. The proposed NN approach962

avoids inefficiency in approximating a high dimensional performance criterion (i.e. the condi-963

tional expectation), as well as avoiding potential instability from backward error propagation.964

Furthermore, the number of NN parameters does not depend on the number of portfolio re-965

balancing times.966

Our approach requires sampling many stochastic paths in order to determine the optimal967

control. We are agnostic as to the method used to generate these paths. Our numerical968

examples generate these paths using parametric models calibrated to historical data, as well969

as block resampling of the historical data. Note that the resampling technique makes no970

assumptions about stochastic processes, and is popular amongst practitioners.971

Both the analytical and numerical results illustrate that, compared with IR-optimal strate-972

gies with the same expected value of terminal wealth, the QD-optimal investment strategies973

result in comparatively more diversified asset allocations during certain periods of the invest-974

ment time horizon.975

Out-of-sample tests indicate that the QD-optimal strategy has an 80% chance of beating976

the benchmark by about about 100 bps per year. Note that this strategy does not require use977

of exotic instruments (e.g. alternative assets, private credit).978

A. Additional analytical results and selected proofs. In this appendix, additional ana-979

lytical results are presented which relate to the various sections of the paper as indicated.980

A.1. Proofs of the key results of Section 3.981

Proof of Theorem 3.3. Let Ñi denote the compensated Poisson random measure ([92])982

associated with the Si-dynamics in (3.8), and define the vector983

dÑ (t) =

(∫ ∞
0

(ξi − 1) Ñi (dt, dξi) : i = 1, ..., N r
a

)>
.(A.1)984

It can be shown that the auxiliary process Yir (t) in (3.15) has the following dynamics in terms985

of auxiliary control u (t) in (3.16),986

dYir (t) =
[
rYir (t) + (u (t))> µ̃

]
dt+ (u (t))> σ · dZ (t) +

(
u
(
t−
))> · dÑ (t) .(A.2)987

Using the dynamics (A.2), the proof applies the techniques outlined in [92, 7] to the analysis988

of problem (3.17), with further details omitted.989

Proof of Lemma 3.4. Considering the form of terminal condition (3.14), we make the990

ansatz that Vir (y, t) is of the form Vir (y, t) = Air (t) y2 + Bir (t) y + Cir (t) for unknown991

functions of time Air, Bir and Cir. If this is indeed the case, then the pointwise supremum in992
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(3.13) is attained by the auxiliary control u∗ir (t), where993

u∗ir (t) = W ∗ir (t) · %∗ir (t,X∗ir (t))− Ŵ (t) · %̂
(
t, Ŵ (t)

)
= −

[
x+

Bir (t)

2Air (t)

]
· (Σ + Λ)−1 µ̃.994

(A.3)995

The substitution of Vir and u∗ir into (3.13)-(3.14) yields three ordinary differential equations996

(ODEs) for Air, Bir and Cir. Solving these equations to obtain Air (t) = e(2r−η)(T−t) and997

Bir (t) = −2γe(r−η)(T−t), where η is given by (3.10). Substitution into (A.3) and simplification998

results in (3.18).999

After substituting the optimal control (3.18) into the dynamics of Yir (t) in (A.2), we1000

obtain the resulting auxiliary dynamics under the IR-optimal control, in other words Y ∗ir (t) :=1001

W ∗ir (t)− Ŵ (t). Techniques as in [92] give the following results1002

(A.4)
Et0,w0

%∗ir

[
W ∗ir (T )− Ŵ (T )

]
= γ

(
1− e−ηT

)
, V art0,w0

%∗ir

[
W ∗ir (T )− Ŵ (T )

]
= γ2e−2ηT

(
eηT − 1

)
,1003

so that the definition (2.2) gives the result (3.19) after some simplification.1004

Proof of Lemma 3.5. Given the form of (3.18), the assertion is obvious when t = t. To1005

show that (3.21) also holds for t > t, we observe that combining (3.18) and (A.2) imply that1006

the auxiliary process Q∗ir (t) := γe−r(T−t) −
[
W ∗ir (t)− Ŵ (t)

]
has dynamics given by1007

dQ∗ir (t)

Q∗ir (t−)
= (r − η) · dt− µ̃> (Σ + Λ)−1 σ · dZ (t)− µ̃> (Σ + Λ)−1 · dÑ (t) ,(A.5)1008

with Q∗ir
(
t
)

= 0. Since Q∗ir (t) = 0 for t > t, (3.18) reduces to (3.21).1009

Proof of Lemma 3.6. The equivalence assertion follows from the results of [31], provided1010

that (3.22) holds. Since in the case of no jumps, Q∗ir (t) in (A.5) reduces to a GBM with initial1011

value Q∗ir (t0) = γe−r(T−t0) > 0, we have Q∗ir (t) > 0 for all t ∈ [t0, T ], which is (3.22).1012

Proof of Lemma 3.7. Since it is assumed that there are no jumps in the risky asset1013

dynamics, note that (3.10) reduces to η = µ̃>Σ−1µ̃. Furthermore, as noted in the proof of1014

Lemma 3.6, in the case of no jumps the dynamics of Q∗ir (t) in (A.5) is a GBM, with (3.23)1015

following from the relationship P t0,w0

%∗ir

[
W ∗ir (t) ≤ Ŵ (t)

]
= P t0,w0

%∗ir

[
Q∗ir (t) ≥ γe−r(T−t)

]
.1016

Proof of Theorem 3.9. The dynamics of the auxiliary process Yqd (t) defined in (3.26)1017

can be written in terms of the auxiliary control v (t), defined in (3.27), as1018

dYqd (t) =
[
h′β (t)− r · (hβ (t)− Yqd (t)) + (v (t))> µ̃

]
dt+ (v (t))> σ · dZ (t) +

(
v
(
t−
))> · dÑ (t) .1019

(A.6)1020
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Here, for a fixed value of the parameter β and the contribution rate q, we define hβ (t) as the1021

following function of time (this definition is also used in Lemma 3.10),1022

hβ (t) :=
(
eβT − 1

)
·
∫ T

t
qe−r(T−z)dz =

q

r

(
eβT − 1

)(
1− e−r(T−t)

)
, t ∈ [t0, T ] ,1023

(A.7)1024

with h′β (t) = d
dthβ (t). The results of Theorem 3.9 then follows from the application of the1025

techniques outlined in [92].1026

Proof of Lemma 3.10. The terminal condition (3.25) suggests an ansatz for Vqd that is1027

quadratic in y, in other words Vqd (y, t) = Aqd (t) y2 + Bqd (t) y + Cqd (t). In this case, the1028

pointwise supremum in (3.24) is attained by the auxiliary control v∗qd (t) with a qualitatively1029

similar form in terms of (y, t) as the result reported in (A.3). Substituting Vqd and v∗qd1030

into (3.24)-(3.25) yields ODEs for Aqd, Bqd and Cqd, which are solved to obtain Aqd (t) =1031

e(2r−η)(T−t) and1032

Bqd (t) =
2q

r

(
1− eβT

)
·
[
e(2r−η)(T−t) − e(r−η)(T−t)

]
,(A.8)1033

where η is given by (3.10). The necessary substitution and simplification yields (3.29).1034

Proof of Lemma 3.11. Substituting (A.7) into (3.30), note that condition (3.30) can1035

equivalently be written as1036

W ∗qd
(
t
)

+

∫ T

t
qe−r(T−z)dz = eβT ·

[
Ŵ
(
t
)

+

∫ T

t
qe−r(T−z)dz

]
,(A.9)1037

which provides intuition as to why result (3.31) should hold. The proof proceeds along the same1038

lines as in the case of Lemma 3.5, except that (3.31) can be established using the properties1039

of the auxiliary process1040

Q∗qd (t) := hβ (t)−
[
W ∗qd (t)− eβT Ŵ (t)

]
,(A.10)1041

which has dynamics that are formally the same as those of Q∗ir in (A.5).1042

Proof of Lemma 3.12. The proof is structurally similar to that of Lemma 3.6, but follows1043

from analyzing the properties of Q∗qd in (A.10) after setting λ = 0.1044

Proof of Lemma 3.13. Using the definition of Q∗qd in (A.10), and observing that q = 0 im-1045

plies that hβ (t) ≡ 0 for all t, we have P t0,w0

%∗qd

[
W ∗qd (t) ≤ Ŵ (t)

]
= P t0,w0

%∗qd

[
Q∗qd (t) ≥

(
eβT − 1

)
Ŵ (t)

]
.1046

Recalling that the dynamics of Q∗qd are formally the same as the dynamics of Q∗ir in (A.5),1047

under the stated conditions of this lemma it can be shown that Q∗qd (t) ≥
(
eβT − 1

)
Ŵ (t) if1048
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and only if1049 [
%̂> + µ̃>Σ−1

]
· σ ·Z (t) ≤

[
1

2
%̂>Σ%̂− µ̃>%̂− 3

2
η

]
t.(A.11)1050

Observing that the left-hand side of (A.11) is a normally distributed random variable with1051

zero mean and a variance of
[
%̂>Σ%̂+ 2µ̃>%̂+ η

]
· t, the result (3.33) follows.1052

Proof of Lemma 3.15. The assumptions of Lemma 3.13 are required to hold since the1053

proof requires the analytical result (3.33) for the left-hand side of (3.37). Since this also implies1054

that the assumptions of Lemma 3.7 are satisfied, the right-hand side of (3.37) is given by (3.23).1055

Using the fact that the CDF Φ (·) is non-decreasing, it then follows that (3.33) holds if and1056

only if1057

−3

2

√
η
[
%̂>Σ%̂+ 2µ̃>%̂+ η

]1/2
·
√
t ≤

[
1

2
%̂>Σ%̂− µ̃>%̂− 3

2
η

]
·
√
t,(A.12)1058

where (since the assumptions of Lemma 3.13 including the absence of jumps in the risky asset1059

processes hold), we have η = µ̃>Σ−1µ̃. SinceΣ is positive definite, so isΣ−1. Therefore, there1060

exists matricesΣ1/2 andΣ−1/2 such that we have the (unique) decompositionsΣ = Σ1/2Σ1/2
1061

and Σ−1 = Σ−1/2Σ−1/2. As a result, recalling the conditions on the (constant proportion)1062

benchmark strategy %̂ and the assumption that the risky asset drift terms satisfy µi > r for1063

all i ∈ {1, ..., N r
a}, the Cauchy-Schwarz inequality implies that1064

−3

2

√
η
[
%̂>Σ%̂+ 2µ̃>%̂+ η

]1/2
= −3

2

∥∥∥Σ−1/2 · µ̃∥∥∥
2

∥∥∥Σ1/2%̂+Σ−1/2µ̃
∥∥∥
2

1065

≤ −3

2

(
µ̃>%̂+ η

)
1066

<
1

2
%̂>Σ%̂− µ̃>%̂− 3

2
η,(A.13)1067

thereby confirming that (3.37) holds for all t ≥ t0 = 0.1068

A.2. Additional analytical comparison results. As a supplement to Subsection 3.4, we1069

present additional analytical comparison results which rely on specific choices of γ and β for the1070

IR (γ) and QD (β) problems, respectively. Since the strategies are compared in Section 6 on1071

the basis of equal expectation of terminal wealth (see (6.1)), we formally introduce Assumption1072

A.1 outlining the basis of the comparison of the subsequent results. Note that these results1073

are all derived within the setting of Section 3.1074

Assumption A.1. (Expected value target for terminal wealth) Assume that Assumption1075

3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12) hold. Suppose that the benchmark1076

investment strategy, given by the fractions of wealth in the risky assets %̂
(
t, Ŵ (t)

)
, results in1077
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an expected value of benchmark terminal wealth satisfying1078

Et0,w0

%̂

[
Ŵ (T )

]
:= K, where K > w0e

rT .(A.14)1079

We assume the investor chooses parameters γ = γEir in the IR (γ) problem and β = βEqd in1080

the QD (β) problem such that the associated IR- and QD-optimal strategies %E∗ir and %E∗qd ,1081

respectively, result in the same desired expected value of terminal wealth,1082

Et0,w0

%E∗ir

[
W E∗ir (T )

]
= Et0,w0

%E∗qd

[
W E∗qd (T )

]
= E = eβ̂TK, for some β̂ > 0.(A.15)1083

The value of E (A.15) will be referred to as the expected value target for terminal wealth.1084

Subject to the assumptions of Section 3, the following lemma shows that the values of1085

γ = γEir and β = βEqd achieving (A.15) can be derived analytically.1086

Lemma A.2. (Analytical values γ and β achieving expected value target). Suppose that1087

Assumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12) hold. The optimal con-1088

trols of problems IR
(
γ = γEir

)
and QD

(
β = βEqd

)
achieve the required expected value target1089

Et0,w0

%E∗j

[
W E∗j (T )

]
≡ E , j ∈ {ir, qd}, provided γEir and βEqd are given respectively by1090

(A.16) γEir =
(E − K)

(1− e−ηT )
, and βEqd =

1

T
log

[
E −

[ q
r

(
1− e−rT

)
+ w0

]
e(r−η)T

K −
[ q
r (1− e−rT ) + w0

]
e(r−η)T

]
,1091

where η is given by (3.10).1092

Proof. Using γEir as an example, we rearrange (A.4) and use definition (A.15). The value1093

of βEqd is obtained similarly.1094

To provide further analysis of the particular results observed in Subsection 6.2, we present the1095

following closed-form result for the specific case of 2 assets (a single risky asset and a risk-free1096

asset) in combination with a constant proportion benchmark strategy.1097

Theorem A.3. (QD-optimal vs. IR-optimal strategies, Na = 2: Risky asset exposure over1098

time) Suppose the following assumptions hold: (i) Assumption 3.1, Assumption 3.2 and wealth1099

dynamics (3.11)-(3.12) with a single risky asset (N r
a = 1); (ii) the investor compares invest-1100

ment strategies on the basis of Assumption A.1; (iii) contributions are zero (q = 0); (iv) the1101

benchmark strategy is a constant proportion strategy with %̂
(
t, Ŵ (t)

)
≡ %̂ > 0 for t ∈ [t0, T ].1102

Note that XE∗ir (t) :=
(
W E∗ir (t) , Ŵ (t) , %̂

)
and XE∗qd (t) :=

(
W E∗qd (t) , Ŵ (t) , %̂

)
.1103

Then, at inception t = t0 = 0, the IR-optimal strategy %E∗ir := %E∗ir requires a larger invest-1104

ment in the single risky asset than the QD-optimal strategy %E∗qd := %E∗qd ,1105

%E∗ir
(
t0,X

E∗
ir (t0)

)
> %E∗qd

(
t0;X

E∗
qd (t0)

)
.(A.17)1106
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At maturity t = T , the IR-optimal strategy is expected to invest less wealth in the risky asset1107

than the QD-optimal strategy,1108

Et0,w0

%E∗ir

[
%E∗ir

(
T,XE∗ir (T )

)
·W E∗ir (T )

]
< Et0,w0

%E∗qd

[
%E∗qd

(
T,XE∗qd (T )

)
·W E∗qd (T )

]
.(A.18)1109

Furthermore, if it is additionally assumed that η (see (3.10)) satisfies η > r, then the function1110

t→ f (t) := Et0,w0

%E∗ir

[
%E∗ir

(
t,XE∗ir (t)

)
·W E∗ir (t)

]
− Et0,w0

%E∗qd

[
%E∗qd

(
t,XE∗qd (t)

)
·W E∗qd (t)

]
1111

(A.19)1112

is monotonically decreasing on t ∈ [t0, T ].1113

Proof. Considering benchmark wealth dynamics (3.12) after setting %̂
(
t, Ŵ (t)

)
≡ %̂ > 01114

and q = 0, it can be shown that a given value of Et0,w0

P̂

[
Ŵ (T )

]
≡ K can be achieved by1115

choosing the constant %̂ according to1116

%̂ =
1

(µ− r)T
log

(
K

w0erT

)
, (if q = 0) .(A.20)1117

where we recall that K > w0e
rT (see (A.15)). Combining, under the stated assumptions, the1118

results (3.18), (3.29), (A.15), (A.16) and (A.20), tedious algebra results in the function f (t)1119

in (A.19) given by the following expression on t ∈ [t0 = 0, T ] ,1120

(A.21)

f (t) =
(E − K)w0

(µ− r)
(
K − w0e(r−η)T

) ·[( η

1− e−ηT

)(
K

w0erT
− 1

)
· e(r−η)t − 1

T
log

(
K

w0erT

)
·
(
K
w0

)t/T]
.1121

The results (A.17), (A.18) and (A.19) follow from an analysis of the properties of the function1122

f (A.21).1123

Note that the additional requirement η > r leading to (A.19) is indeed satisfied in the case of1124

typical process parameters, including by the parameters in Table B.1.1125

Theorem A.3 suggests that in order to achieve the same expected value of terminal wealth,1126

the IR strategy relies on a larger investment in the riskiest asset early in the investment time1127

horizon than the QD strategy. Once the desired outperformance become increasingly likely,1128

the IR strategy’s exposure to the riskiest asset is expected to be reduced to a level below that1129

of the QD strategy. Note that the qualitative implications of Theorem A.3 hold even if the1130

underlying assumptions are relaxed (see Section 6).1131

A.3. Proof of Proposition 4.1. In this proof, we consider only the QD problem (2.6),1132

since the proof for the IR problem (2.4) proceeds along similar lines.1133

In the case of discrete rebalancing and cash injections into the portfolio at each tn ∈ T ,1134

we consider the amounts invested in each asset, since it is no longer sufficient to consider1135
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only the aggregate wealth processes for reasons that will become obvious when using the1136

dynamic programming (DP) approach for solving the problems. To this end, let U (t) =1137

(Ui (t) : i = 1, ..., Na)
> and Û (t) =

(
Ûi (t) : i = 1, ..., Na

)>
denote the amounts invested at1138

time t in each asset, according to the investor and benchmark strategy, respectively. The1139

investor and benchmark wealth therefore satisfy W (t) =
∑Na

i=1 Ui (t) and Ŵ (t) =
∑Na

i=1 Ûi (t),1140

respectively.1141

For an arbitrary admissible investor strategy P ∈ A with discrete rebalancing, define Pt =1142

{p (tm,X (tm)) ∈ P| tm ≥ t, tm ∈ T }, where T is given by (4.1). To solve the QD problem1143

(2.6) using DP, we define the performance criterion (see [92]), which at time t ∈ [t0, T ] is given1144

by the conditional expectation1145

J
(
t,u−, û−,Pt

)
= Et

−,u−,û−

Pt

[(
W (T )− eβT Ŵ (T )

)2∣∣∣∣ (U (t−) , Û (t−)) =
(
u−, û−

)]
,1146

1147

(A.22)1148

where u− =
(
u−1 , ..., u

−
Na

)> and û− =
(
û−1 , ..., û

−
Na

)>. Note that (A.22) is not just defined at1149

rebalancing times.1150

Fix a rebalancing time tn ∈ T and given cash contribution q (tn), and introduce the1151

notation pn := p (tn,X (tn)) and Pn = {pm ∈ P| tm ≥ tn} ,so that Pn = pn ∪ Pn+1. We1152

also define An = {Pn|p ∈ Z, ∀p ∈ Pn}. The investor and benchmark wealth immediately1153

prior to the cash contribution at tn is therefore given by W (t−n ) := w− =
∑Na

i=1 u
−
i and1154

Ŵ (t−n ) := ŵ− =
∑Na

i=1 û
−
i , respectively. After incorporating the cash contribution q (tn),1155

we therefore have W (t+n ) := w+ = w− + q (tn) and Ŵ (t−n ) := ŵ+ = ŵ− + q (tn). As per1156

the stated assumptions of Proposition 4.1, the investor can observe the benchmark allocation1157

p̂n := p̂ (tn, ŵ
+), while we have amount dynamics between rebalancing events, i.e. for t ∈1158

(tn, tn+1), given by1159

dU (t)

U (t−)
=
(
µ− λ ◦ κ(1)

)
dt+ σ · dZ (t) + dN (t) , U

(
t+n
)

= u+ = w+ · pn,(A.23)1160

dÛ (t)

Û (t−)
=
(
µ− λ ◦ κ(1)

)
dt+ σ · dZ (t) + dN (t) , Û

(
t+n
)

= û+ = ŵ+ · p̂n.(A.24)1161

By definition of the QD problem, at rebalancing time tn we therefore have the auxiliary1162

value function1163

V
(
t−n , w

−, ŵ−
)

= inf
Pn∈An

Et
−,w−,ŵ−

Pn

[(
W (T )− eβT Ŵ (T )

)2∣∣∣∣ (W (
t−n
)
, Ŵ

(
t−n
))

=
(
w−, ŵ−

)]
,1164

(A.25)1165

≡ J
(
t−n ,u

−, û−,P∗n = p∗n ∪ P∗n+1

)
,(A.26)1166
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where P∗n ∈ An denotes the control realizing the infimum in (A.25), whereas the dependence1167

of (A.25) and (A.26) on (w−, ŵ−) and
(
u−, û−

)
, respectively, will be clarified below.1168

At the terminal time T , there are no rebalancing events (i.e. no control applied) or cash1169

contributions, so in the case of the QD problem we simply have1170

V (T,w, ŵ) = V

(
T−, w− =

Na∑
i=1

u−i , ŵ
− =

Na∑
i=1

û−i

)
1171

≡ J
(
T−,u−, û−,P∗Nrb ≡ ∅

)
=

[(
Na∑
i=1

u−i

)
− eβT

(
Na∑
i=1

û−i

)]2
,(A.27)1172

From (A.27), it is obvious that the performance criterion J and value function V at time T1173

can be expressed as a function of the investor wealth and benchmark wealth only.1174

Stepping backwards in time, consider the problem at a fixed rebalancing time tn ∈ T ,1175

and assume that the function J
(
t−n+1,u

−, û−,Pn+1

)
is given, along with the optimal control1176

P∗n+1 which is applicable to the interval [tn+1, T ]. Despite the fact that by (A.26), we have1177

V
(
t−n+1, w

−, ŵ−
)

= J
(
t−n+1,u

−, û−,P∗n+1

)
, we do require the performance criterion J

(
t−n+1, ·

)
1178

as a function of the amounts
(
u−, û−

)
, since J

(
t−n+1,u

−, û−,P∗n+1

)
will serve as the termi-1179

nal condition to be satisfied by the (at this point, unknown) performance criterion function1180

J (t,u, û,Pt) , t ∈ (tn, tn+1). Between rebalancing times, i.e. for t ∈ (tn, tn+1), there are no1181

controls applied, cash flows or discounting. Considering the role of inflation, note that we1182

can always make use of inflation-adjusted quantities, as is done in Section 6. The dynamic1183

programming principle, definition (A.22) and dynamics (A.23)-(A.24) therefore imply that1184

J (t,u, û,Pt) satisfies the following (2Na + 1)-dimensional PIDE on t ∈ (tn, tn+1) with given1185

terminal condition J
(
t−n+1,u

−, û−,P∗n+1

)
:1186

0 = Jt +
(
u ◦

[
µ−

(
λ ◦ κ(1)

)])>
·∇Ju +

(
û ◦

[
µ−

(
λ ◦ κ(1)

)])>
·∇Jû1187

+
1

2
tr
[
diag (u) ·Σ · diag (u) ·∇2Juu

]
+

1

2
tr
[
diag (û) ·Σ · diag (û) ·∇2Jûû

]
1188

+tr
[
diag (u) ·Σ · diag (û) ·∇2Juû

]
−

(
Na∑
i=1

λi

)
· J (t,u, û)1189

+

Na∑
i=1

λi

∫ ∞
0

[J (t , u+ ui (ξi − 1) · ei , û+ ûi (ξi − 1) · ei)] fξi (ξi) dξi.(A.28)1190

In (A.28), tr (·) denotes the trace of a matrix, diag (v) denotes the diagonal matrix with1191

vector v on the main diagonal, ei ∈ RNa is the ith standard basis vector in RNa , and we have1192

gradients ∇Ju =
[
∂J
∂ui

: i = 1, ..., Na

]>
and ∇Jû =

[
∂J
∂ûi

: i = 1, ..., Na

]>
, as well as matrices1193

of second derivatives ∇2Juu =
(

∂2J
∂ui∂uj

)
i,j=1,...,Na

, ∇2Jûû =
(

∂2J
∂ûi∂ûj

)
i,j=1,...,Na

as well as1194
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∇2Juû =
(

∂2J
∂ui∂ûj

)
i,j=1,...,Na

.1195

Let J denote the lower semi-continuous envelope of the function J obtained by solving1196

(A.28). Under the stated assumptions, the QD-optimal control at time tn is therefore a function1197

of the investor wealth w+ and benchmark wealth ŵ+ (after the cash injection) only, since1198

p∗n = p∗
(
tn, w

+, ŵ+
)

= argmin
pn∈Z

J
(
t+n ,u

+ = w+ · pn, û+ = ŵ+ · p̂n,Pn = pn ∪ P∗n+1

)
,1199

(A.29)1200

with w+ =
∑Na

i=1 u
−
i + q (tn) and ŵ+ =

∑Na
i=1 û

−
i + q (tn). Applying the DP principle at tn, we1201

advance J backwards across the rebalancing event at tn, and also obtain the value function at1202

time tn, using1203

V
(
t−n , w

−, ŵ−
)

= J
(
t+n ,u

+ = w+ · p∗n, û+ = ŵ+ · p̂n,P∗n = p∗n ∪ P∗n+1

)
(A.30)1204

= J
(
t−n ,u

−, û−,P∗n
)
,(A.31)1205

where p∗n is given by (A.29).1206

The results (A.27) and (A.31) therefore show that it is only at each fixed rebalancing event1207

tn ∈ T and at the terminal time T can we express the performance criterion J as a function1208

of investor and benchmark wealth. By definition, at each rebalancing time J also coincides1209

with the value function if the optimal control is used, and therefore at each fixed tn ∈ T1210

the value function is also only a function of the investor and benchmark wealth. However,1211

in general, the DP approach requires the solution of a (2Na + 1)-dimensional performance1212

criterion J : R(2Na+1) → R, obtained in this case by solving the PIDE (A.28).1213

B. Supplementary information for numerical results. This appendix provides supple-1214

mentary information for the numerical results of Section 6.1215

B.1. Source data and parameters. The historical returns data for the basic assets such1216

as the T-bills/bonds and the broad market index were obtained from the CRSP 6, whereas1217

factor data for Size and Value (see [39, 38]) were obtained from Kenneth French’s data library7
1218

(KFDL). The detailed time series sourced for each asset is as follows:1219

(i) T30 (30-day Treasury bill): CRSP, monthly returns for 30-day Treasury bill.1220

(ii) B10 (10-year Treasury bond): CRSP, monthly returns for 10-year Treasury bond.1221

(iii) Market (broad equity market index): CRSP, monthly returns, including dividends1222

and distributions, for a capitalization-weighted index consisting of all domestic stocks1223

trading on major US exchanges (the VWD index).1224

6Calculations were based on data from the Historical Indexes 2020©, Center for Research in Security Prices
(CRSP), The University of Chicago Booth School of Business. Wharton Research Data Services was used in
preparing this article. This service and the data available thereon constitute valuable intellectual property and
trade secrets of WRDS and/or its third party suppliers.

7See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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(iv) Size (Portfolio of small stocks): KFDL, “Portfolios Formed on Size”, which consists of1225

monthly returns on a capitalization-weighted index consisting of the firms (listed on1226

major US exchanges) with market value of equity, or market capitalization, at or below1227

the 30th percentile (i.e. smallest 30%) of market capitalization values of NYSE-listed1228

firms.1229

(v) Value (Portfolio of value stocks): KFDL, “Portfolios Formed on Book-to-Market”, which1230

consists of monthly returns on a capitalization-weighted index of the firms (listed on1231

major US exchanges) consisting of the firms (listed on major US exchanges) with book-1232

to-market value of equity ratios at or above the 70th percentile (i.e. highest 30%) of1233

book-to-market ratios of NYSE-listed firms.1234

Data was obtained for the period from 1963:07 to 2020:12, and inflation-adjusted using inflation1235

data from the US Bureau of Labor Statistics8.1236

For the illustration of analytical solutions in Subsection 6.2, the parameters of (3.5) and1237

(3.8) are to be determined. We use the same calibration methodology as outlined in [29, 43],1238

and assume that the risky asset evolves according to the dynamics of the [73] model, with log ξ1239

having an asymmetric double-exponential distribution,1240

fξ (ξ) =νζ1ξ
−ζ1−1I[ξ≥1] (ξ) + (1− ν) ζ2ξ

ζ2−1I[0≤ξ<1] (ξ) , υ ∈ [0, 1] and ζ1 > 1, ζ2 > 0,1241

(B.1)1242

where ν denotes the probability of an upward jump given that a jump occurs. Table B.11243

summarizes the resulting parameters obtained using the filtering technique for the calibration1244

of jump diffusion processes - see [29, 43] for the relevant methodological details.1245

Table B.1: Analytical solutions: Calibrated, inflation-adjusted parameters for asset dynamics (3.5)
and (3.8), with fξ (ξ) given by (B.1). For calibration purposes, a jump threshold equal to 3 has been
used in the methodology of [29].

Parameter r µ σ λ υ ζ1 ζ2

Value 0.0074 0.0749 0.1392 0.2090 0.2500 7.7830 6.1074

1246

B.2. Additional numerical results. As a supplement to the results in Subsection 6.2,1247

Figure B.1 illustrates CDFs corresponding to the PDFs presented in Figure 6.1. Recall that1248

Lemma 3.15 focused on just one point of the CDF, whereas Figure B.1(b) illustrates the1249

complete CDFs. We observe that Figure B.1 appears to show a form of (partial) stochastic1250

dominance of IR over QD for wealth outcomes below the mean E (see [112] for a definition1251

and discussion).1252

8The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see
http://www.bls.gov.cpi
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However, the situation changes when investment constraints are applied. This can be1253

observed in Figures B.2 and B.3, which illustrate the corresponding CDFs to the PDFs pre-1254

sented in Figures 6.3 and 6.4 (Subsection 6.3). In this case, it appears that QD effectively1255

achieves stochastic dominance over IR (and not just partial stochastic dominance for downside1256

outcomes) regardless of whether wealth or the wealth ratio is considered.1257

From a practical perspective, Figures B.2 and B.3 show that the QD strategy has an1258

80% probability (out of sample) of outperforming the benchmark by about 100 bps per year.1259

We remind the reader that this requires no stock picking ability, or use of exotic financial1260

instruments, simply application of optimal control.1261
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Figure B.1: Analytical solutions, no constraints, investor portfolio P0, benchmark BM0: Simulated
CDFs of benchmark and investor’s target terminal wealth Ŵ (T ) and W E∗j (T ), respectively, as well as
the ratio W E∗j (T ) /Ŵ (T ), for j ∈ {ir, qd} . 106 Monte Carlo simulations, E = 400 in (6.1).
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Figure B.2: Out-of-sample (testing) results for DS1 using annual rebalancing, numerical solutions,
with constraints, investor portfolio P1, benchmark BM1: Simulated CDFs of benchmark and investor’s
target terminal wealth Ŵ (T ) and W E∗j (T ), respectively, as well as the ratio W E∗j (T ) /Ŵ (T ), for
j ∈ {ir, qd}.
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Figure B.3: Out-of-sample (testing) results for DS3 using quarterly rebalancing, numerical solutions,
with constraints, investor portfolio P1, benchmark BM1: Simulated CDFs of benchmark and investor’s
target terminal wealth Ŵ (T ) and W E∗j (T ), respectively, as well as the ratio W E∗j (T ) /Ŵ (T ), for
j ∈ {ir, qd}.

Table B.2 presents results for using investor portfolio P1 to outperform benchmark BM11265

on data set DS, from which we conclude that the qualitative aspects of the comparative1266

performance of the IR and QD-optimal strategies also hold on data set DS2.1267

Table B.2: Numerical solutions, with constraints, investor portfolio P1, benchmark B1, data set
DS2, annual rebalancing: Training and testing results for mean terminal wealth E = 430 (β̂ ' 1.7% in
(6.1)) on the training data.

Quantity Training data DS2 (1963:07 - 1999:12) Testing data DS2 (2000:01 - 2010:12)
Ŵ (T ) W E∗j (T ) W E∗j (T ) /Ŵ (T ) Ŵ (T ) W E∗j (T ) W E∗j (T ) /Ŵ (T )

BM1 IR QD IR QD BM1 IR QD IR QD

Mean 364 430 430 1.19 1.18 273 315 309 1.14 1.12
CExp 5% 212 249 235 1.04 1.05 172 104 110 0.53 0.55
5th pctile 235 286 268 1.11 1.12 187 135 143 0.64 0.67
Median 354 422 419 1.19 1.19 266 326 311 1.21 1.19

95th pctile 531 601 630 1.28 1.20 381 454 455 1.37 1.25

Prob. underp. 1.22% 1.05% 19.26% 15.64%

1268

C. Neural network (NN) approach - additional details. In this appendix, we discuss a1269

number of additional details related to the neural network (NN) approach discussed in Section1270

5.1271

C.1. Implementation parameters and gradient descent algorithm. The NN is trained1272

with stochastic gradient descent using the Gadam algorithm of [54]. This combines the Adam1273

algorithm ([71]) with tail iterate averaging for improved convergence properties and variance1274

reduction ([101, 86, 87]). Numerical experiments showed that the default algorithm parameters1275
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of [71] performed well in our setting. Additionally, we used 64,000 stochastic gradient descent1276

steps, together with a mini-batch size of 100 paths from the training data set Y on each1277

gradient descent iteration. Numerical tests showed that results with this configuration were1278

very stable and reliable; for example, essentially identical results are obtained each time the1279

NN is trained independently on the same underlying data.1280

In terms of the structure of the NN, the minimal features were used (time, investor wealth,1281

benchmark wealth) for illustrative purposes. As noted in Section 5, two hidden layers, each1282

with Na + 2 nodes, were found to capture sufficient complexity for both benchmark outperfor-1283

mance problems, while ensuring that stable results were obtained on the numerical solutions1284

as well as the ground truth solutions (see Appendix C).1285

C.2. Ground truth results. To show that the numerical solutions obtained as described1286

in Section 5 can converge under suitable conditions to the closed-form solutions as described1287

in Section 3, we encounter the problem that the numerical solutions are explicitly constructed1288

(via the NN output layer activation function) to enforce the desired investment constraints.1289

While a different output layer activation function could be implemented, the treatment of1290

trading in the case of insolvency (i.e when wealth crosses zero into the negative domain) needs1291

to be carefully addressed in any numerical solution.1292

Instead of modifying the methodology used to obtain numerical solutions, we observe1293

that if a relatively short time horizon (e.g. T = 1 year) is combined with a reasonable1294

outperformance target (e.g. β̂ ' 1.0% in (6.1)), then the probability of insolvency is negligible,1295

as is the need for leverage or short-selling in the closed-form solutions. This allows us to1296

use the numerical solutions (with constraints) to approximate the closed-form solutions (no1297

constraints), provided the underlying data is the same. We can therefore use a NN training1298

data set based on simulated data with parameters as in Table B.1, and use the same data1299

for the implementation of analytical solutions. The results, obtained using 106 Monte Carlo1300

simulations, are illustrated in Table C.1. Investor portfolio P0 and benchmark BM0 are used,1301

and we assume contributions are zero to avoid discrete approximation errors when comparing1302

a continuous contribution rate to discrete contribution amounts made at rebalancing times.1303

Table C.1 confirms that the numerical results using the NN approach recovers the analytical1304

results as desired.1305
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Table C.1: Ground truth comparison, investor portfolio P0, benchmark BM0, and data set DS0
used for NN training data: w0 = 100, q = q (tn) = 0, T = 1 year. Since BM0 results in an expected
terminal wealth K = 104.20, a value of E = 105.25 implies β̂ ' 1.0%. Analytical solutions based on
360 rebalancing events approximating continuous rebalancing. Numerical results are based on only 36
discrete rebalancing events to ensure that computation times remain reasonable.

Quantity
Analytical solutions: P0 Numerical solutions (using NN): P0

BM0 W E∗j (T ) W E∗j (T ) /Ŵ (T ) BM0 W E∗j (T ) W E∗j (T ) /Ŵ (T )

Ŵ (T ) IR QD IR QD Ŵ (T ) IR QD IR QD

Mean 104.2 105.3 105.3 1.01 1.01 104.2 105.2 105.2 1.01 1.01
CExp 5% 85.6 80.1 80.2 0.93 0.93 85.6 80.2 80.2 0.93 0.93
5th pctile 90.7 87.4 87.4 0.96 0.96 90.7 87.2 87.2 0.96 0.96
Median 104.1 105.6 105.5 1.01 1.01 104.1 105.6 105.5 1.01 1.01

95th pctile 117.9 121.9 122.1 1.03 1.04 117.9 121.8 122.0 1.03 1.03
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