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Abstract5

We discuss a neural network approach, which does not rely on dynamic programming techniques, to solve6

dynamic portfolio optimization problems subject to multiple investment constraints. The approach allows7

for objectives of a very general form encompassing both time-consistent and time-inconsistent objectives,8

as well as objectives requiring multi-level optimization. The number of parameters of the neural network9

remains independent of the number of portfolio rebalancing events. Compared to reinforcement learning,10

this technique avoids the computation of high-dimensional conditional expectations. The approach remains11

practical when considering large numbers of underlying assets, long investment time horizons or very frequent12

rebalancing events. We prove convergence of the numerical solution to the theoretical optimal solution of13

a large class of problems under fairly general conditions, and present ground truth analyses for a number14

of popular formulations, including mean-variance, mean-semi-variance, and mean-conditional value-at-risk15

problems. Numerical experiments show that if the investment objective functional is separable in the sense16

of dynamic programming, the correct time-consistent optimal investment strategy is recovered, otherwise17

we obtain the correct pre-commitment (time-inconsistent) investment strategy. This method is agnostic as18

to the underlying data generating assumptions, and results are illustrated using (i) parametric models for19

underlying asset returns, (ii) stationary block bootstrap resampling of empirical returns, and (iii) generative20

adversarial network (GAN)-generated synthetic asset returns.21
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JEL classification: G11, C6123

1 Introduction24

We develop a flexible neural network approach to obtain the numerical solution of a large class of dynamic (i.e.25

multi-period) portfolio optimization problems, while allowing for multiple investment constraints.26

This method presents a significant generalization of our previous work (Li and Forsyth (2019)), and is also27

related to a large and growing existing literature on the use of neural networks to approximate the optimal28

control function directly in stochastic optimal control problems, avoiding use of dynamic programming methods29

(Buehler et al., 2019; Han et al., 2018; Han and Weinan, 2016; Reppen and Soner, 2023; Reppen et al., 2023;30

Tsang and Wong, 2020). In the taxonomy of Powell (2023), all of these methods are simply variations of31

the “policy function approximation” approach to stochastic optimal control, and upon cursory inspection are32

therefore expected to share many common properties.33

However, in basic formulation, Buehler et al. (2019); Han and Weinan (2016); Tsang and Wong (2020) rely34

on a “sub”-neural network to approximate the control at each rebalancing step. Consequently, the number of35

neural network parameters required increases linearly with the number of portfolio rebalancing events.36

Alternatively, a single neural network with time as an input feature can be used to approximate the optimal37

control (Buehler et al., 2019; Li and Forsyth, 2019; Reppen and Soner, 2023; Reppen et al., 2023)). In the38

taxonomy of Hu and Laurière (2023), these methods can be classified as “global-in-time” machine learning39

approaches to stochastic control problems. Such an approach implies that the optimal investment strategy40

at each rebalancing event would simply involve evaluating the trained neural network by specifying the time41
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and other relevant input features. The NN approach presented in this paper is an example of a global-in-time42

approach, and compared to many other NN approaches, our approach can be viewed as parsimonious in the43

sense that the number of parameters does not scale with the number of rebalancing events. This ensures that44

our approach remains feasible even for problems with very long time horizons (see e.g. Forsyth et al. (2019))45

or with a shorter time horizon but with frequent trading/rebalancing (Forsyth et al., 2011).46

Moreover, global-in-time techniques, including the approach presented in this paper, only require the so-47

lution of a single optimization problem to determine the parameters of the neural network. This avoids the48

error amplification problems associated with the backward time-recursion in techniques based on dynamic pro-49

gramming (DP), e.g. Q-learning (Dixon et al., 2020; Gao et al., 2020; Park et al., 2020), or other DP-based50

techniques (Bachouch et al., 2022; Van Heeswijk and Poutré, 2019).51

Given the context of the existing literature, the contributions of this paper are as follows:52

• The existing literature focuses on objective functionals that are separable in the sense of dynamic pro-53

gramming, although this may not be required. In this paper, we consider a much larger class of objectives,54

with generalization along two dimensions:55

(i) We consider objectives of a very general form encompassing both time-consistent and time-inconsistent56

objectives (see Bjork et al. (2021)). We demonstrate how our method can be used to solve pre-57

commitment (time-inconsistent) problems to obtain the resulting induced time-consistent strategy58

(Bjork et al. (2021); Forsyth (2020); Strub et al. (2019a,b)) directly, without first requiring a theoret-59

ical derivation of the induced time-consistent problem. Additionally, we demonstrate the application60

of this method to objectives involving mean-semi-variance (e.g. Sortino ratio), for which no equivalent61

DP principle is known.62

(ii) We extend the class of objectives considered to include problems involving multi-level optimization63

such as Mean-CVaR in a dynamic setting (see for example Forsyth (2020); Miller and Yang (2017)).64

We also allow for a broader class of inner objectives which may not be separable in the sense of65

dynamic programming.66

• We present theoretical results establishing the convergence of the proposed approach for the general class67

of objectives as discussed above. We prove convergence to the optimal strategy (assuming it exists) in the68

limit as the number neural network parameters (nodes in each layer) increases, provided that the number69

of samples in the training data also increases at the appropriate rate.70

The broad outlines of our proofs follow along the lines of convergence analyses in the literature (Reppen71

and Soner, 2023; Tsang and Wong, 2020). However, the details of the convergence proofs differ, in72

particular due to the nested structure of the objectives and the precise form of the techniques used. Note73

that while the main convergence results are necessarily obtained under some fairly strong assumptions,74

the convergence analysis remains valuable in that it proves useful theoretical convergence properties of75

the NN approach. As discussed in the next point, we also demonstrate that convergence is attainable in76

practical settings to sufficient levels of accuracy.77

• Numerical examples show that the computed solutions using our technique confirm the theoretical equiv-78

alence results regarding the original and embedded formulations of the dynamic Mean-Variance problem.79

On the other hand, if no equivalent time-consistent formulation exists, then we obtain the correct pre-80

commitment (time-inconsistent) investment strategy.81

The neural network approach is also validated by comparing with analytical solutions which assume82

continuous rebalancing. This demonstrates that the global-in-time approach permits accurate solutions,83

even for the case of an infinite number of rebalancing times. As a result, our approach can be used84

without change for both frequent or infrequent rebalancing. We also verify that the approach generates85

comparable solutions to existing ground truth results for the Mean-CVaR problem.86

The approach merely assumes the existence of available training data, regardless of the assumptions of87

the underlying data generation method itself. In particular, there is no need to specify for example88

a set of parametric models for underlying asset dynamics, since the approach also works for model-89

independent data-driven generation methods, such as generative adversarial network (GAN)-generated90

synthetic asset returns or bootstrap-resampled paths of empirical asset returns. To demonstrate that the91

approach remains feasible and accurate regardless of the underlying data generation method, numerical92

examples are presented using data based on (i) parametric stochastic models for the underlying asset93
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dynamics, (ii) bootstrap resampling of empirical asset returns, and (iii) GAN-generated synthetic asset94

returns.95

The remainder of the paper is organized as follows: Section 2 discusses the large class of portfolio optimization96

problems that can be solved using this methodology, along with issues related to time-consistency and time-97

inconsistency of the optimal strategies. Section 3 formalizes the problem formulation, while Section 4 provides a98

summary of the proposed approach, with additional technical and practical details provided in Appendix A and99

Appendix B. Section 5 presents the convergence analysis of the proposed approach. Finally, Section 6 provides100

ground truth analyses, with Section 7 concluding the paper and discussing possible avenues for future research.101

2 Problem overview and selected applications102

The neural network approach and convergence analysis presented in this paper applies to the solutions of a103

large class of dynamic (i.e. multi-period) portfolio optimization problems that can be expressed in the following104

form,105

inf
ξ∈R

inf
P∈A

{
Et0,w0

P

[
F (W (T ) , ξ) +G

(
W (T ) , Et0,w0

P [W (T )] , w0, ξ
) ] }

. (2.1)106

While rigorous definitions and assumptions are discussed in subsequent sections, for introductory purposes we107

simply note that in general, F : R2 → R and G : R4 → R denote some continuous functions and ξ ∈ R some108

auxiliary variable, with T > 0 denoting the investment time horizon, W (t) , t ∈ [t0, T ], the controlled wealth109

process, and P representing the investment strategy (or control) implemented over [t0, T ]. Typically, P specifies110

the amount or fraction of wealth to invest in each of the underlying assets at each portfolio rebalancing event,111

which in practice occurs at some discrete subset of rebalancing times in [t0, T ]. A denotes the set of admissible112

investment strategies encoding the investment constraints faced by the investor. Finally, Et0,w0

P [·] denotes the113

expectation given control P and initial wealth W (t0) = w0.114

We make the following general observations regarding (2.1):115

• The function G forming part of the objective is allowed to be a nonlinear function of Et0,w0

P [W (T )], which116

could result in an optimal control that is not time-consistent (Bjork et al. (2021)). The theoretical and117

practical benefits of solving problems which might be time-inconsistent are discussed in more detail below.118

• For every fixed value of the auxiliary variable ξ ∈ R in the outer optimization problem of (2.1), the inner119

problem infP∈A {·} takes on the structure of a standard (if possibly time-inconsistent) stochastic optimal120

control problem. As discussed below, this problem structure arises in the case of Mean-Conditional Value-121

at-Risk (CVaR) optimization.122

• Although (2.1) is written for objective functions involving the terminal portfolio wealth W (T ), the ap-123

proach and convergence analysis could be generalized without difficulty to objective functions that are124

wealth path-dependent, i.e. functions of {W (t) : t ∈ T } for some subset T ⊆ [t0,T ] - see Forsyth et al.125

(2023); Van Staden et al. (2024) for examples. However, since a sufficiently rich class of problems are of126

the form (2.1), this will remain the main focus of this paper.127

For purposes of concreteness, we highlight some specific examples of problems of the form (2.1):128

(i) Utility maximization (see for example Vigna (2014)), in which case there is no outer optimization problem129

and G ≡ 0, while w → U (w) denotes the investor’s utility function, so that (2.1) therefore reduces to130

sup
P∈A

{
Et0,w0

P [U (W (T ))]
}
. (2.2)131

(ii) Mean-variance (MV) optimization (see e.g. Li and Ng (2000); Zhou and Li (2000)), with ρ > 0 denoting132

the scalarization (or risk aversion) parameter, where the problem133

sup
P∈A

{
Et0,w0

P [W (T )]− ρ · V art0,w0

P [W (T )]
}
, (2.3)134

can also be written in the general form (2.1).135
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(iii) Mean-CVaR optimization, in which case we do have both an inner and an outer optimization problems136

(see e.g. Forsyth (2020); Miller and Yang (2017), resulting in a problem of the form137

inf
ξ∈R

inf
P∈A

{
Et0,w0

P [F (W (T ) , ξ)]
}
, (2.4)138

for a particular choice of the function F (see (3.15) below).139

(iv) To illustrate the flexibility and generality of the proposed approach, we also consider a “mean semi-140

variance” portfolio optimization problem that is inspired by the popular Sortino ratio (Bodie et al. (2014))141

in the case of one-period portfolio analysis, where only the variance of downside outcomes relative to the142

mean is penalized. In the case of dynamic trading strategies, this suggests an objective function of the143

form144

sup
P∈A

{
Et0,w0

P

[
W (T )− ρ ·

(
min

{
W (T )− Et0,w0

P [W (T )] , 0
})2]}

, (2.5)145

where, as in the case of (2.3), the parameter ρ > 0 encodes the trade-off between risk and return. Note146

that (2.5) is not separable in the sense of dynamic programming, and in the absence of embedding results147

(analogous to those of Li and Ng (2000); Zhou and Li (2000) in the case of MV optimization (2.3)),148

problem (2.5) cannot be solved using traditional dynamic programming-based methods.149

However, we emphasize that (2.2)-(2.5) are only a selection of examples, and the proposed approach and150

theoretical analysis remains applicable to problems that can be expressed in the general form (2.1).151

Portfolio optimization problems of the form (2.1) can give rise to investment strategies that are not time-152

consistent due to the presence of the (possibly non-linear) function G (Bjork et al. (2021)). This gives rise to153

two related problems:154

(i) Since (2.1) cannot be solved directly using a dynamic programming-based approach, some other solu-155

tion methodology has to be implemented, or some re-interpretation of the problem or the concept of156

“optimality” might be required. For example, the approach of Bjork et al. (2017, 2021); Bjork and Mur-157

goci (2014), including recent developments such as Dai et al. (2023), can be interpreted as transforming158

a time-inconsistent problem such as (2.1) into a time-consistent problem by imposing a constraint of159

time-consistency on the strategies, which effectively changes the nature of the objective function - see160

for example Bjork and Murgoci (2014); Cong and Oosterlee (2016); Forsyth (2020); Van Staden et al.161

(2019) where this is explored in more detail. However, if the goal is to solve a truly time-inconsistent162

problem such as (2.1) without enforced time-consistency, a solution method that does not rely on dynamic163

programming is required.164

(ii) If the investment strategies are time-inconsistent, this can raise questions as to whether these strategies165

are feasible to implement as practical investment strategies.166

We make the following general observations:167

• Provided a problem can be solved using dynamic programming (DP), a DP-based approach is arguably168

preferable in many low-dimensional settings, since it introduces significant simplification by reducing a169

dynamic problem to a recursive yet static inter-temporal problem. However, in higher dimensional settings170

or problems with many rebalancing events (whether due to a long time horizon or simply more frequent171

rebalancing), it may be desirable to avoid using DP even if (2.1) can be solved using DP techniques. For172

example, it is well known that DP has an associated “curse of dimensionality”, in that as the number state173

variables increases linearly, the computational burden increases exponentially (Bellman (1957); Fernández-174

Villaverde et al. (2020); Han and Weinan (2016)). In addition, since DP techniques necessarily incur175

estimation errors at each time step, significant error amplification can occur which is further exacerbated176

in high-dimensional settings (Li et al., 2020; Tsang and Wong, 2020; Wang and Foster, 2020).177

Instead of relying on DP-based techniques and attempting to address the challenges of dimensionality using178

machine learning techniques (see for example Bachouch et al. (2022); Dixon et al. (2020); Fernández-179

Villaverde et al. (2020); Gao et al. (2020); Henry-Labordère (2017); Huré et al. (2021); Lucarelli and180

Borrotti (2020); Park et al. (2020)), the proposed method fundamentally avoids DP techniques altogether.181

This is especially relevant in our setting, since we have shown that in some cases, DP can be unnecessarily182

high-dimensional (see Van Staden et al. (2023)). This occurs since the objective functional (or performance183
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criteria (Oksendal and Sulem (2019)) ) is typically high-dimensional while the optimal investment strategy184

remains relatively low-dimensional.185

The proposed method therefore forms part of the significant recent interest in developing machine learning186

techniques to solve multi-period portfolio optimization problems that avoids using DP techniques alto-187

gether (see for example Buehler et al. (2019); Ni et al. (2022); Reppen and Soner (2023); Reppen et al.188

(2023); Tsang and Wong (2020); Van Staden et al. (2023)).189

• Time-inconsistent problems naturally arise in financial applications (see Bjork et al. (2021)), and as a190

result their solution is often an area of active research. Examples include the mean-variance problem,191

which remained an open problem for decades until the solution using the embedding technique of Li and192

Ng (2000); Zhou and Li (2000). As a result, being able to obtain a numerical solution to problems of the193

form (2.1) directly is potentially useful.194

From a practical point of view, in many cases, time-inconsistent problems generate an induced time195

consistent objective function (Forsyth (2020); Strub et al. (2019a,b)). The optimal policy for this induced196

time consistent objective function is identical to the pre-commitment policy at time zero. The induced197

time consistent strategy is, of course implementable (Forsyth (2020)), in the sense that the investor has198

no incentive to deviate from the strategy determined at time zero, at later times. As mentioned above, an199

alternative approach to handling time-inconsistent problems is to impose a constraint of time-consistency200

on the strategies which results in an the equilibrium control (see for example Bjork et al. (2021); Dai et al.201

(2023)). As shown in Bjork and Murgoci (2010), for every equilibrium control, there exists a standard,202

time consistent problem which has the same optimal control but under a different objective function.203

These considerations imply that the question of time-consistency is a often matter of perspective, since204

there may be alternative objective functions which give rise to the same pre-commitment control, yet205

are time-consistent. In fact, other subtle issues arise in comparing pre-commitment and time consistent206

controls, see Vigna (2020, 2022) for further discussion.207

Furthermore, over very short time horizons such as those encountered in optimal trade execution, time208

consistency or its absence may not be of much concern to the investor or market participant (see for209

example Forsyth et al. (2011); Tse et al. (2013)).210

In addition, as noted by Bernard and Vanduffel (2014), if the strategy is realized in an investment product211

sold to a retail investor, then the optimal policy from the investor’s point of view is in fact of pre-212

commitment type, since the retail client does not herself trade in the underlying assets during the lifetime213

of the contract.214

As a result of these observations, we will consider problem (2.1) in its general form. As discussed in the215

Introduction, we present ground truth analyses confirming that the proposed approach is very effective in216

solving portfolio optimization problems of the form (2.1). The results illustrate numerically that if (2.1) is not217

separable in the sense of DP, our approach recovers the correct pre-commitment (time-inconsistent) optimal218

control, otherwise it recovers the correct time-consistent optimal control.219

3 Problem formulation220

We start by formulating portfolio optimization problems of the form (2.1) more rigorously in a setting of discrete221

portfolio rebalancing and multiple investment constraints. Throughout, we work on filtered probability space222 (
Ω,F , {F (t)}t∈[t0,T ] ,P

)
satisfying the usual conditions, with P denoting the actual (and not the risk-neutral)223

probability measure.224

Let T denote the set of Nrb discrete portfolio rebalancing times in [t0 = 0, T ], which we assume to be225

equally-spaced to lighten notation,226

T = { tm = m∆t|m = 0, ..., Nrb − 1} , ∆t = T/Nrb, (3.1)227

where we observe that the last rebalancing event occurs at time tNrb−1 = T −∆t.228

At each rebalancing time tm ∈ T , the investor observes the F (tm)-measurable vectorX (tm) = (Xi (tm) : i = 1, ..., ηX) ∈229

RηX , which can be interpreted informally as the information taken into account by the investor in reaching their230

asset allocation decision. As a concrete example, we assume below that X (tm) includes at least the wealth231
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available for investment, an assumption which can be rigorously justified using analytical results (see for example232

Van Staden et al. (2023)).233

Given X (tm), the investor then rebalances a portfolio of Na assets to new positions given by the vector234

pm (tm,X (tm)) = (pm,i (tm,X (tm)) : i = 1, .., Na) ∈ RNa , (3.2)235

where pm,i (tm,X (tm)) denotes the fraction of wealth W (tm) invested in the ith asset at rebalancing time236

tm. The subscript “m” in the notation pm emphasizes that in general, each rebalancing time tm ∈ T could237

be associated with potentially a different function pm : RηX+1 → RNa , while the subscript is removed below238

when we consider a single function that is simply evaluated at different times, in which case we will write239

p : RηX+1 → RNa .240

For purposes of concreteness, we assume that the investor is subject to the constraints of (i) no short-selling241

and (ii) no leverage being allowed, although the proposed methodology can be adjusted without difficulty to242

treat different constraint formulations1. For illustrative purposes, we therefore assume that each allocation (3.2)243

is only allowed to take values in (Na − 1)-dimensional probability simplex Z,244

Z =

{
(y1, ..., yNa) ∈ RNa :

Na∑
i=1

yi = 1 and yi ≥ 0 for all i = 1, ..., Na

}
. (3.3)245

In this setting, an investment strategy or control P applicable to [t0, T ] is therefore of the form,246

P = {pm (tm,X (tm)) = (pm,i (tm,X (tm)) : i = 1, .., Na) : tm ∈ T } , (3.4)247

while the set of admissible controls A is defined by248

A = {P = {pm (tm,X (tm)) : tm ∈ T }|pm (tm,X (tm)) ∈ Z,∀tm ∈ T } . (3.5)249

The randomness in the system is introduced through the returns of the underlying assets, Ri, i ∈ {1, ..., Na},250

which are adapted to the natural filtration. In the context of discrete rebalancing, let Ri (tm) denote the return251

of asset i over the interval (tm−1, tm], observable at time tm. We make no assumptions regarding the underlying252

asset dynamics, but at a minimum, we do require (P) integrability, i.e. E |Ri (tm)| < ∞ for all i ∈ {1, ..., Na}253

and m ∈ {1, ..., Nrb}. Informally, we will refer to the set254

Y =
{

(Yi (tm) := 1 +Ri (tm) : i = 1, ..., Na)
>

: m ∈ {1, ..., Nrb}
}

(3.6)255

as the path of (joint) asset returns over the investment time horizon [t0, T ].256

To clarify the subsequent notation, for any functional ψ (t) , t ∈ [t0, T ] we will use the notation ψ (t−) and257

ψ (t+) as shorthand for the one-sided limits ψ (t−) = limε↓0 ψ (t− ε) and ψ (t+) = limε↓0 ψ (t+ ε), respectively.258

Given control P ∈ A, asset returns Y , initial wealthW
(
t−0
)

:= w0 > 0 and a (non-random) cash contribution259

schedule {q (tm) : tm ∈ T }, the portfolio wealth dynamics form = 0, ..., Nrb−1 are given by the general recursion260

W
(
t−m+1;P,Y

)
=

[
W
(
t−m;P,Y

)
+ q (tm)

]
·
Na∑
i=1

pm,i (tm,X (tm)) · Yi (tm+1) . (3.7)261

Note that we write W (u) = W (u;P,Y ) to emphasize the dependence of wealth on the control P and the262

(random) path of asset returns in Y that relates to the time period t ∈ [t0, u]. In other words, despite using263

Y in the notation for simplicity, W (u;P,Y ) is F (u)-measurable. Finally, since there are no contributions or264

rebalancing at maturity, we simply have W
(
t−Nrb

)
= W (T−) = W (T ) = W (T ;P,Y ).265

3.1 Investment objectives266

Given this general investment setting and wealth dynamics (3.7), our goal is to solve dynamic portfolio opti-267

mization problems of the general form268

inf
ξ∈R

inf
P∈A

J (P, ξ; t0, w0) , (3.8)269

1As discussed in Section 4 and Appendix A, adjustments to the output layer of the neural network may be required.

6



where, for some given continuous functions F : R2 → R and G : R3 → R, the objective functional J is given by270

J (P, ξ; t0, w0) = Et0,w0

P

[
F (W (T ;P,Y ) , ξ) +G

(
W (T ;P,Y ) , Et0,w0

P [W (T ;P,Y )] , w0, ξ
) ]

. (3.9)271

Note that the expectations Et0,w0 [·] in (3.9) are taken over Y , given initial wealth W
(
t−0
)

= w0, control P ∈ A272

and auxiliary variable ξ ∈ R. In addition to the assumption of continuity of F and G, we will make only the273

minimal assumptions regarding the exact properties of J , including that ξ → F (·, ξ) and ξ → G (·, ·, w0, ξ) are274

convex for all admissible controls P ∈ A, and the standard assumption (see for example Bjork et al. (2021))275

that an optimal control P∗ ∈ A exists.276

For illustrative and ground truth analysis purposes, we consider a number of examples of problems of the277

form (3.8)-(3.9).278

As noted in the Introduction, the simplest examples of problems of the form (3.8) arise in the special279

case where G ≡ 0 and there is no outer optimization problem over ξ, such as in the case of standard utility280

maximization problems. As concrete examples of this class of objective functions, we will consider the quadratic281

target minimization (or quadratic utility) described in for example Vigna (2014); Zhou and Li (2000),282

(DSQ (γ)) : inf
P∈A

{
Et0,w0

[
(W (T ;P,Y )− γ)

2
]}

, γ > 0, (3.10)283

as well as the (closely-related) one-sided quadratic loss minimization used in for example Dang and Forsyth284

(2016); Li and Forsyth (2019),285

(OSQ (γ)) : inf
P∈A

{
Et0,w0

[
(min {W (T ;P,Y )− γ, 0})2 − ε ·W (T ;P,Y )

]}
, γ > 0. (3.11)286

The term εW (·) in equation (3.11) ensures that the problem remains well-posed2 in the event that W (t)� γ.287

Observe that problems of the form (3.10) or (3.11) are separable in the sense of dynamic programming, so that288

the resulting optimal control is therefore time-consistent.289

As a classical example of the case where G is nonlinear and the objective functional (3.9) is not separable290

in the sense of dynamic programming, we consider the mean-variance (MV) objective with scalarization or291

risk-aversion parameter ρ > 0 (see for example Bjork et al. (2017)),292

(MV (ρ)) : sup
P∈A

{
Et0,w0 [W (T ;P,Y )]− ρ · V art0,w0 [W (T ;P,Y )]

}
, ρ > 0.293

= sup
P∈A

Et0,w0

P

[
W (T ;P,Y )− ρ ·

(
W (T ;P,Y )− Et0,w0

P [W (T ;P,Y )]
)2]

. (3.12)294

Note that issues relating to the time-inconsistency of the optimal control of (3.12) are discussed in Remark 3.1295

below, along with the relationship between (3.10) and (3.12).296

As an example of a problem involving both the inner and outer optimization in (3.8), we consider the Mean297

- Conditional Value-at-Risk (or Mean-CVaR) problem, subsequently simply abbreviated the MCV problem.298

First, as a measure of tail risk, the CVaR at level α, or α-CVaR, is the expected value of the worst α percent299

of wealth outcomes, with typical values being α ∈ {1%, 5%}. As in Forsyth (2020), a larger value of the CVaR300

is preferable to smaller value, since our definition of α-CVaR is formulated in terms of the terminal wealth, not301

in terms of the loss. Informally, if the distribution of terminal wealth W (T ) is continuous with PDF ψ̂, then302

the α-CVaR in this case is given by303

CVARα =
1

α

∫ w∗α

−∞
w · ψ̂ (w) · dw, (3.13)304

where w represents possible values of the random variable W (T ), and w∗α is the corresponding Value-at-Risk305

(VaR) at level α defined such that
∫ w∗α
−∞ ψ̂ (w) dw = α. More formally, we follow for example Forsyth (2020) in306

defining the MCV problem with scalarization parameter ρ > 0 as307

sup
P∈A

{
ρ · Et0,w0 [W (T )] + CVARα

}
, ρ > 0. (3.14)308

2Although this is a mathematical necessity (see e.g. (Li and Forsyth, 2019)), in practice, if we use a very small value of ε, then
this has no perceptible effect on the summary statistics. In the numerical results of Section 6, we use ε = 10−6; see Appendix B
for a discussion.
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However, instead of (3.13), we use the definition of CVaR from Rockafellar and Uryasev (2002) that is applicable309

to more general terminal wealth distributions, so that the MCV problem definition used subsequently aligns310

with the definition given in Forsyth (2020); Miller and Yang (2017)),311

(MCV (ρ)) : inf
ξ∈R

inf
P∈A

Et0,w0

[
−ρ ·W (T ;P,Y )− ξ +

1

α
max (ξ −W (T ;P,Y ) , 0)

]
, ρ > 0. (3.15)312

Finally, as noted in the Introduction, we apply the ideas underlying the Sortino ratio where the variance of313

returns below the mean are penalized, to formulate the following objective function for dynamic trading,314

(MSemiV (ρ)) : sup
P∈A

{
Et0,w0

P

[
W (T ;P,Y )− ρ ·

(
min

{
W (T ;P,Y )− Et0,w0

P [W (T ;P,Y )] , 0
})2]}

, (3.16)315

which we refer to as the “Mean- Semi-variance” problem, with scalarization (or risk-aversion) parameter ρ > 0.3316

The following remark discusses issues relating to the possible time-inconsistency of the optimal controls of317

(3.12) , (3.15) and (3.16).318

Remark 3.1. (Time-inconsistency and induced time-consistency) Formally, the optimal controls for problems319

MV (ρ), MCV (ρ) and MSemiV (ρ) are not time-consistent, but instead are of the pre-commitment type (see320

Basak and Chabakauri (2010); Bjork and Murgoci (2014); Forsyth (2020)). However, in many cases, there exists321

an induced time consistent problem formulation which has the same controls at time zero as the pre-commitment322

problem (see Forsyth (2020); Strub et al. (2019a,b)).323

As a concrete example of induced time-consistency, the embedding result of Li and Ng (2000); Zhou and Li324

(2000) establishes that the DSQ (γ) objective is the induced time-consistent objective function associated with325

the MV (ρ) problem, which is a result that we exploit for ground truth analysis purposes in Section 6.326

Similarly, there is an induced time consistent objective function for the Mean-CVAR problem MCV (ρ) in327

(3.15) - see Forsyth (2020).328

Consequently, when we refer to a strategy as optimal, for either the Mean-CVAR (MCV (ρ)) or Mean-329

Variance (MV (ρ)) problems, this will be understood to mean that at any t > t0, the investor follows the330

associated induced time-consistent strategy rather than a pre-commitment strategy.331

In the Mean-Semi-variance (MSemiV (ρ)) case as per (3.16), there is no obvious induced time consistent332

objective function. In this case, we seek the pre-commitment policy.333

For a detailed discussion of the many subtle issues involved in the case of time-inconsistency, induced time-334

consistency, and equilibrium controls, see for example Bjork et al. (2021); Bjork and Murgoci (2014); Forsyth335

(2020); Strub et al. (2019a,b); Vigna (2020, 2022).336

4 Neural network approach337

In this section, we provide an overview of the neural network (NN) approach. Additional technical details and338

practical considerations are discussed in Appendices A and B, while the theoretical justification via convergence339

analysis will be discussed in Section 5 (and Appendix B).340

Recall from (3.2) that X (tm) ∈ RηX denotes the information taken into account in determining the invest-341

ment strategy (3.2) at rebalancing time tm. Using the initial experimental results of Li and Forsyth (2019) and342

the analytical results of Van Staden et al. (2023) applied to this setting, we assume that X (tm) includes at343

least the wealth available for investment at time tm, so that344

W
(
t+m;P,Y

)
:= W

(
t−m;P,Y

)
+ q (tm) ∈ X (tm) , ∀tm ∈ T . (4.1)345

However, we emphasize that X (tm) may include additional variables in different settings. For example, in346

non-Markovian settings or in the case of certain solution approaches involving auxiliary variables, it is natural347

to “lift the state space” by including additional quantities in X such as relevant historical quantities related to348

market variables, or other auxiliary variables - see for example Forsyth (2020); Miller and Yang (2017); Tsang349

and Wong (2020).350

Let Dφ ⊆ RηX+1 be any given set such that (tm,X (tm)) ∈ Dφ for all tm ∈ T . Let C (Dφ,Z) denote the351

set of all continuous functions from Dφ to Z ⊂ RNa (see (3.3)). We will use the notation X∗ to denote the352

3In continuous time, the unconstrained Mean-Semi-variance problem is ill-posed (Jin et al. (2005)). However, we will impose
bounded leverage constraints, which is, of course, a realistic condition. This makes problem (MSemiV (ρ)) well posed.
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information taken into account by the optimal control, since in the simplest case implied by (4.1), we simply353

have X∗ = W ∗, where W ∗ denotes the wealth under the optimal strategy. We make the following assumption.354

Assumption 4.1. (Properties of the optimal control) Considering the general form of the problem (3.8), we355

assume that there exists an optimal feedback control P∗ ∈ A. Specifically, we assume that at each rebalancing356

time tm ∈ T , the time tm itself together with the information vector under optimal behavior X∗ (tm), which357

includes at least the wealth W ∗ (t+m) available for investment (see (4.1)), are sufficient to fully determine the358

optimal asset allocation p∗m (tm,X
∗ (tm)).359

Furthermore, we assume that there exists a continuous function p∗ ∈ C (Dφ,Z) such that p∗m (tm,X
∗ (tm)) =360

p∗ (tm,X
∗ (tm)) for all tm ∈ T , so that any given optimal control P∗ can be expressed as361

P∗ = {p∗ (tm,X
∗ (tm)) : ∀tm ∈ T } , where p∗ ∈ C (Dφ,Z) . (4.2)362

We make the following observations regarding Assumption 4.1:363

(i) Continuity of p∗ in space and time: While assuming the optimal control is a continuous map in the364

state space X is fairly standard in the literature, especially in the context of using neural network ap-365

proximations (see for example Han and Weinan (2016); Huré et al. (2021); Tsang and Wong (2020)), the366

assumption of continuity in time in (4.2) is therefore worth emphasizing, since it identifies this approach367

as a “global in time” approach in the taxonomy of Hu and Laurière (2023), and relates this approach to368

some specific applications of Buehler et al. (2019); Reppen and Soner (2023); Reppen et al. (2023). This369

assumption enforces the requirement that in the limit of continuous rebalancing (i.e. when ∆t → 0),370

the control remains a continuous function of time, which is a practical requirement for any reasonable371

investment policy. In particular, this ensures that the asset allocation retains its smooth behavior as the372

number of rebalancing events in [0, T ] is increased, which we consider a fundamental requirement ensuring373

that the resulting investment strategy is reasonable. In addition, in Section 6 we demonstrate how the374

known theoretical solution to a problem assuming continuous rebalancing (∆t→ 0) can be approximated375

very well using ∆t � 0 in the NN approach, even though the resulting NN approximation is only truly376

optimal in the case of ∆t� 0.377

(ii) The control is a single function for all rebalancing times; note that the function p∗ is not subscripted by378

time. If the portfolio is rebalanced only at discrete time intervals, the investment strategy can be found (as379

suggested in (4.2)) by evaluating this continuous function at discrete time intervals, i.e. (tm,X (tm)) →380

p∗ (tm,X (tm)) = (p∗i (tm,X (tm)) : i = 1, ..., Na), for all tm ∈ T . We discuss below how we solve for this381

(single) function directly, without resorting to dynamic programming, which avoids not only the challenge382

with error propagation due to value iteration over multiple timesteps, but also avoids solving for the383

high-dimensional conditional expectation (also termed the performance criteria by Oksendal and Sulem384

(2019)) if we are only interested in the relatively low-dimensional optimal control (see for example Van385

Staden et al. (2023)).386

These observations ultimately suggest the NN approach discussed below, while the soundness of Assumption387

4.1 is experimentally confirmed in the ground truth results presented in Section 6.388

Given Assumption 4.1 and in particular (4.2), we therefore limit our consideration to controls of the form389

P = {p (tm,X (tm)) : ∀tm ∈ T } , for some p ∈ C (Dφ,Z) . (4.3)390

To simplify notation, we identify an arbitrary control P of the form (4.3) with its associated function p =391

(pi : i = 1, ..., Na) ∈ C (Dφ,Z), so that the objective functional (3.9) is written as392

J (p, ξ; t0, w0) = Et0,w0

[
F (W (T ;p,Y ) , ξ) +G

(
W (T ) , Et0,w0 [W (T ;p,Y )] , w0, ξ

) ]
. (4.4)393

In (4.4), W (·;p,Y ) denotes the controlled wealth process using a control of the form (4.3), so that the wealth394

dynamics (3.7) for tm ∈ T (recall t−Nrb = T ) now becomes395

W
(
t−m+1;p,Y

)
=

[
W
(
t−m;p,Y

)
+ q (tm)

]
·
Na∑
i=1

pi (tm,X (tm)) · Yi (tm+1) . (4.5)396

Therefore, using Assumption 4.1 and (4.4)-(4.5), problem (3.8) is therefore expressed as397
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V (t0, w0) = inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (4.6)398

We now provide a brief overview of the proposed methodology to solve problems of the form (4.6). This399

consists of two steps discussed in the following subsections, namely (i) the NN approximation (with a finite400

number of unknown parameters) to the control, and (ii) computational estimate of the optimal control from401

training on a finite number n of joint paths of asset returns, n ∈ N.402

Intuitively, convergence analysis requires having both sufficient training data and a sufficiently complex NN403

to obtain a sufficiently accurate solution. In convergence analysis in §5, we assume, without loss of generality, a404

fixed number Lh ≥ 1 of hidden layers. Convergence analysis then requires that, as the number n of observations405

in the training data, n→∞ goes to infinity, the number of nodes ~ in each hidden layer of the NN also increases406

to infinity, but at a slower rate of for example o
(
n1/4

)
in the case of a NN with a single hidden layer.407

Subsequently, we use n as an index for identifying a given NN structure for simplicity and denote the number408

of nodes in each hidden layer by ~(n), explicitly indicating that there is a functional relationship between the409

number of training paths and the number of nodes in each layer, with increasing values of the index n signifying410

an increase in the number of nodes in each hidden layer of the NN. We simultaneously establish the validity411

of the NN approximation to the optimal control (Theorem 5.1) as well as the validity of the computational412

estimate (Theorem 5.2) by having a single parameter n → ∞, which not only greatly reduces the notational413

burden, but also emphasizes the interconnectedness between different aspects of the NN approach. Note that414

the actual number of hidden nodes are significantly fewer than n.415

Using n as an index, we subsequently provide details for NN approximation to control and computational416

estimate of the optimal control respectively.417

4.1 Step 1: NN approximation to control418

More formally, consider a fully-connected, feedforward NN fn with parameter vector θn ∈ Rνn and a fixed419

number Lh ≥ 1 of hidden layers, where each hidden layer contains ~ (n) ∈ N nodes. The NN has (ηX + 1) input420

nodes, mapping feature (input) vectors of the form φ (t) = (t,X (t)) ∈ Dφ to Na output nodes. For a more421

detailed introduction to neural networks, see for example Goodfellow et al. (2016).422

Additional technical and practical details can be found in Appendices A and B. For this discussion, we423

simply note that the index n ∈ N is used for the purposes of the analytical results and convergence analysis,424

where we fix a choice of Lh ≥ 1 while ~ (n) , n ∈ N is assumed to be a monotonically increasing sequence such425

that limn→∞ ~ (n) = ∞ (see Section 5 and Appendix A). However, for practical implementation, a fixed value426

of ~ (n) ∈ N is chosen (along with Lh ≥ 1) to ensure the NN has sufficient depth and complexity to solve the427

problem under consideration (see Appendix B).428

Any NN considered is constructed such that fn : Dφ → Z ⊂ RNa . In other words, the values of the Na429

outputs are automatically in the set Z defined in (3.3) for any φ ∈ Dφ,430

fn (φ (t) ;θn) = (fn,i (φ (t) ;θn) : i = 1, ..., Na) ∈ Z. (4.7)431

As a result, the outputs of the NN fn in (4.7) can be interpreted as portfolio weights satisfying the required432

investment constraints. A more detailed discussion of the NN structure can be found in Assumption A.1 in433

Appendix A, along with an illustration in Figure A.1.434

For some fixed value of the index n ∈ N, let Nn denote the set of NNs constructed in the same way as fn for435

the fixed and given values of Lh and ~ (n). While a formal definition of the set Nn is provided in Appendix A,436

here we simply note that each NN fn (·;θn) ∈ Nn only differs in terms of the parameter values constituting its437

parameter vector θn (i.e. for a fixed n, each fn ∈ Nn has the same number of hidden layers Lh, hidden nodes438

~ (n), activation functions etc.).439

Observing that Nn ⊂ C (Dφ,Z), our first step is to approximate (4.6) by performing the optimization over440

fn (·;θn) ∈ Nn instead. In other words, we approximate the control p by a neural network fn ∈ Nn,441

p (φ (t)) ' fn (φ (t) ;θn) , where φ (t) = (t,X (t)) ,p ∈ C (Dφ,Z) ,fn ∈ Nn. (4.8)442

We identify the NN fn (·;θn) with its parameter vector θn, so that the (approximate) objective functional using443
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approximation (4.8) is written as444

Jn (θn, ξ; t0, w0) = Et0,w0

[
F (W (T ;θn,Y ) , ξ) +G

(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

) ]
.(4.9)445

Combining (4.7) and (4.8), the wealth dynamics (4.5) is expressed as446

W
(
t−m+1;θn,Y

)
=

[
W
(
t−m;θn,Y

)
+ q (tm)

]
·
Na∑
i=1

fn,i (φ (tm) ;θn) · Yi (tm+1) . (4.10)447

Using (4.8) and (4.9), for fixed and given values of Lh and ~ (n), we therefore approximate problem (4.6) by448

Vn (t0, w0) = inf
ξ∈R

inf
fn(·;θn)∈Nn

Jn (θn, ξ; t0, w0) (4.11)449

= inf
ξ∈R

inf
θn∈Rνn

Jn (θn, ξ; t0, w0)450

= inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) . (4.12)451

We highlight that the optimization in (4.12) is unconstrained since, by construction, each NN fn (·;θn) ∈ Nn452

always generates outputs in Z.453

The notation (θ∗n, ξ
∗) and the associated NN f∗n (·;θ∗n) ∈ Nn are subsequently used to denote the values454

achieving the optimum in (4.12) for given values of Lh and ~ (n). Note however that we do not assume that455

the optimal control p∗ ∈ C (Dφ,Z) satisfying Assumption 4.1 is also a NN in Nn, since by the universal456

approximation results (see for example Hornik et al. (1989)), we would expect that the error in approximating457

(4.6) by (4.12) can be made arbitrarily small for sufficiently large ~ (n). These claims are rigorously confirmed458

in Section 5 below, where we consider a sequence of NNs fn (·;θn) ∈ Nn obtained by letting ~ (n) → ∞ as459

n→∞ (for any fixed value of Lh ≥ 1).460

4.2 Step 2 : Computational estimate of the optimal control461

In order to solve the approximation (4.12) to problem (4.6), we require estimates of the expectations in (4.9).462

For computational purposes, suppose we take as given a set Yn ∈ Rn×Na×Nrb , consisting of n ∈ N independent463

realizations of the paths of joint asset returns Y ,464

Yn =
{
Y (j) : j = 1, ..., n

}
. (4.13)465

We highlight that each entry Y (j) ∈ Yn consists of a path of joint asset returns (see (3.6)), and we assume that466

the paths are independent, we do not assume that the asset returns constituting each path are independent. In467

particular, both cross-correlations and autocorrelation structures within each path of returns are permitted.468

Constructing the set Yn in practical applications is further discussed in Appendix B. In the numerical469

examples in Section 6, we use examples where Yn is generated using (i) Monte Carlo simulation of parametric470

asset dynamics, (ii) stationary block bootstrap resampling of empirical asset returns, (Anarkulova et al. (2022))471

and (iii) generative adversarial network (GAN)-generated synthetic asset returns (Yoon et al. (2019)). While472

we let n→∞ in (4.13) for convergence analysis purposes, in practical applications (e.g. the results of Section473

6) we simply choose n sufficiently large such that we are reasonably confident that reliable numerical estimates474

of the expectations in (4.9) are obtained.475

Given a NN fn (·;θn) ∈ Nn and set Yn, the wealth dynamics (4.10) along path Y (j) ∈ Yn is given by476

W (j)
(
t−m+1;θn,Yn

)
=

[
W (j)

(
t−m;θn,Yn

)
+ q (tm)

]
·
Na∑
i=1

fn,i

(
φ(j) (tm) ;θn

)
· Y (j)

i (tm+1) , (4.14)477

for m = 0, ..., Nrb− 1. We introduce the superscript (j) to emphasize that the quantities are obtained along the478

jth entry of (4.13).479
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The computational estimate of Jn (θn, ξ; t0, w0) in (4.9) is then given by480

Ĵn (θn, ξ; t0, w0,Yn) =
1

n

n∑
j=1

F
(
W (j) (T ;θn,Yn) , ξ

)
481

+
1

n

n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
, (4.15)482

so that we approximate problem (4.12) by483

V̂n (t0, w0;Yn) = inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn) . (4.16)484

The numerical solution of (4.16) can then proceed using standard (stochastic) gradient descent techniques. For485

subsequent reference, let
(
θ̂
∗
n, ξ̂
∗
n

)
denote the optimal point in (4.16) relative to the training data set Yn in486

(4.16). For more details and practical considerations regarding the construction of training and testing data487

sets, as well as the stochastic gradient descent technique used, please refer to Appendix B.488

In the case of sufficiently large datasets (4.13), in other words as n → ∞, we would expect that the error489

in approximating (4.12) by (4.16) can be made arbitrarily small. However, as noted above, as n→∞ and the490

number of hidden nodes ~ (n) → ∞ (for any fixed Lh ≥ 1), (4.12) is also expected to approximate (4.6) more491

accurately. As a result, we obtain the necessary intuition for establishing the convergence of (4.16) to (4.6)492

under suitable conditions, which is indeed confirmed in the results of Section 5.493

Remark 4.1. (Extension to wealth path-dependent objectives) As noted in the Introduction, the NN approach494

as well as the convergence analysis of Section 5 can be extended to objective functions that depend on the entire495

wealth path {W (t) : t ∈ T } instead of just the terminal wealth W (T ). This is achieved by simply modifying496

(4.15) appropriately and ensuring the wealth is assessed at the desired intervals using (4.14). The practical497

consequences of applying this approach to path-dependent objectives include the additional input(s) that are498

typically required for the NN due to the augmented state space X, along with a slightly more costly sampling499

process to obtain the NN training data set Yn. An example of the proposed approach being applied to a500

path-dependent objective function can be found in Van Staden et al. (2024).501

4.3 Advantages of the NN approach502

The following observations highlight some advantages of the proposed NN approach:503

(i) The approach does not rely on dynamic programming (DP) methods for the solution of problem (4.16), and504

therefore does not require value iteration or backward time stepping. In particular, we observe that due to505

the explicit time-dependence of the NN feature vector, the optimization problem (4.16) itself only indirectly506

depends on the number of rebalancing events, while time recursion is limited to the (computationally507

inexpensive) wealth dynamics (4.14). As result, problems relating to the error amplification associated508

with DP methods (Li et al. (2020); Tsang and Wong (2020); Wang and Foster (2020)) are avoided, and only509

a single optimization problem that is independent of the number of portfolio rebalancing events is solved, in510

contrast to DP-based methods (see for example Bachouch et al. (2022); Van Heeswijk and Poutré (2019)).511

In addition, NNs appear to be very effective in handling the Bellman’s “curse of dimensionality” (Bellman512

(1957)), which can be summarized as the problem of exponential growth in computational complexity as513

the state variables (or dimensions) of the problem increase linearly in number. In fact, it has been argued514

that one of the principal reasons for considering NN-based methods is precisely their ability to deal with515

this challenge (Hu and Laurière (2023)), and there exists a rich literature of using a variety of NN-based516

methods for different applications to support this conclusion (see for example Han et al. (2018), Jentzen517

et al. (2021b), Becker et al. (2021) Hutzenthaler et al. (2020), Hu and Laurière (2023) and Reppen et al.518

(2023)).519

Not relying on DP techniques also makes the approach significantly more flexible, in that it can directly520

handle objective functions that are not separable in the sense of DP, without requiring theoretical results521

such as embedding in the case of MV optimization (see for example Li and Ng (2000); Zhou and Li (2000)).522

As an example of this, we present the solution of the mean - semi-variance problem (3.16) in Section 6.523

(ii) The NN parameter vector θn ∈ Rνn does not depend on the rebalancing time tm ∈ T or on the sample524

path j. In particular, the number of NN parameters does not increase with the number of rebalancing525
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events. This contrasts our approach with the approaches of for example Han and Weinan (2016); Tsang526

and Wong (2020),4 where the number of parameters scale with the number of rebalancing events. As a527

result, the NN approach presented here can lead to potentially significant computational advantages in528

the cases of (i) long investment time horizons or (ii) short trading time horizons with a frequent number529

of portfolio rebalancing events.530

A natural question might be whether the NNs in the proposed approach are required to be very deep, thus531

potentially exposing the training of the NN in (4.16) to problem of vanishing or exploding gradients (see for532

example Goodfellow et al. (2016)). However, the ground truth results presented in Section 6 demonstrate533

that we obtain very accurate results with relatively shallow NNs (at most two hidden layers). We suspect534

this might be due to the optimal control being relatively low-dimensional compared to the high-dimensional535

objective functionals in portfolio optimization problems with discrete rebalancing (see Van Staden et al.536

(2023) for a rigorous analysis), while in this NN approach approach the optimal control is obtained directly537

without requiring the solution of the (high-dimensional) objective functional at rebalancing times.538

Note that these advantages also contrast the NN approach with Reinforcement Learning-based algorithms539

to solve portfolio optimization problems, as the following remark discusses.540

Remark 4.2. (Contrast of NN approach to Reinforcement Learning). Reinforcement learning (RL) algorithms541

(for example, Q-learning) relies fundamentally on the DP principle for the numerical solution of the portfolio542

optimization problem (see for example Gao et al. (2020); Lucarelli and Borrotti (2020); Park et al. (2020)).543

This requires, at each value iteration step, the approximation of a (high-dimensional) conditional expectation.544

As a result, RL is associated with standard DP-related concerns related to error amplification and the curse of545

dimensionality discussed above, and also cannot solve general problems of the form (2.1) without relying on for546

example an embedding approach to obtain an associated problem that can be solved using DP methods.547

5 Convergence analysis548

In this section, we present the theoretical justification of the proposed NN approach as outlined in Section 4.549

We confirm that the numerical solution of (4.16) can be used to approximate the theoretical solution of (4.6)550

arbitrarily well (in probability) under suitable conditions. This section only summarizes the key convergence551

results which are among the main contributions of this paper, while additional technical details and proofs552

are provided in Appendix A. Note that while the theoretical convergence results in this section are necessarily553

obtained under some fairly strong assumptions, perhaps the strongest being the standard assumption (see for554

example Tsang and Wong (2020)) that the chosen numerical optimization technique attains a global minimum,555

it still demonstrates useful theoretical convergence properties of the proposed NN approach. To confirm that556

convergence is also attainable in practical settings, Section 6 presents a variety of numerical experiments where557

the NN approach easily attains an independently obtained or known result to a high degree of accuracy.558

We start with Theorem 5.1, which confirms the validity of Step 1 (Subsection 4.1), namely using a NN559

fn (·;θn) ∈ Nn to approximate the control. Note that Theorem 5.1 relies on two assumptions, presented560

in Appendix A.2: We emphasize that Assumption A.3 is purely made for purposes of convenience, since its561

requirements can easily be relaxed with only minor modifications to the proofs (as discussed in Remark A.1),562

but at the cost of significant notational complexity and no additional insights. In contrast, Assumption A.2 is563

critical to establish the result of Theorem 5.1, and requires that the optimal investment strategy (or control)564

satisfies Assumption 4.1, places some basic requirements on F and G, and assumes that the sequence of NNs565

{fn (·;θn) , n ∈ N} is constructed such that the number of nodes in each hidden layer ~ (n)→∞ as n→∞ (no566

assumptions are yet required regarding the exact form of n→ ~ (n)).567

Theorem 5.1. (Validity of NN approximation) We assume that Assumption A.2 holds, and for ease of expo-568

sition, we also assume that Assumption A.3 holds. Then the NN approximation to the control in (4.8) is valid,569

in the sense that V (t0, w0) in (4.6) can be approximated arbitrarily well by Vn (t0, w0) in (4.12) for sufficiently570

large n, since571

lim
n→∞

|Vn (t0, w0)− V (t0, w0)| = lim
n→∞

∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣572

= 0. (5.1)573

4Tsang and Wong (2020) use a stacked NN approach, with a different NN at each rebalancing time.
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Proof. See Appendix A.3.574

Having justified Step 1 of the approach, Theorem 5.2 now confirms the validity of Step 2 of the NN approach575

(see Subsection 4.2), namely using the computational estimate f∗n
(
·; θ̂
∗
n

)
∈ Nn from (4.16) as an approximation576

of the true optimal control p∗ ∈ C (Dφ,Z). Note that in addition to the assumptions of Theorem 5.1, Theorem577

5.2 also requires Assumption A.4, which by necessity includes computational considerations such as the structure578

of the training dataset Yn, the rate of divergence of the number of hidden nodes ~ (n) → ∞ as n → ∞, and579

assumptions regarding the optimization algorithm used in solving problem (4.16).580

Theorem 5.2. (Validity of computational estimate) We assume that Assumption A.2, Assumption A.3 and581

Assumption A.4 hold. Then the computational estimate to the optimal control (4.2) obtained using (4.8) and582

(4.16) is valid, in the sense that the value function V (t0, w0) in (4.6) can be approximated arbitrarily well in583

probability by V̂n (t0, w0;Yn) in (4.16) for sufficiently large n, since584

∣∣∣V̂n (t0, w0;Yn)− V (t0, w0)
∣∣∣ =

∣∣∣∣ inf
(θn,ξ)∈Rηn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣585

P−→ 0, as n→∞. (5.2)586

Proof. See Appendix A.3.587

Taken together, Theorem 5.1 and Theorem 5.2 establish the theoretical validity of the NN approach to solve588

problems of the form (2.1).589

6 Numerical results590

In this section, we present numerical results obtained by implementing the NN approach described in Section591

4. For illustrative purposes, the examples focus on investment objectives as outlined in Subsection 3.1. Since592

the approach does not depend on particular methods or assumptions for the generation of training data, the593

numerical results illustrate applications of the approach under three different data generation techniques for594

obtaining the training data set Yn of the NN: (i) parametric stochastic models for the underlying asset dynamics,595

(ii) bootstrap resampling of empirical asset returns, and (iii) GAN-generated synthetic asset returns. Note that596

the question of whether one data generation technique is to be preferred over another in a particular setting is597

outside the scope of this paper. Instead, for the purposes of this paper, it is sufficient to emphasize that the598

approach can be used regardless of how the underlying data has been obtained.599

The main focus of the numerical results is the demonstration of key aspects of the proposed NN method,600

such as (i) the ability to deal with cases where there are both inner and an outer optimization problems in601

the general objective (2.1) as in the case of Mean-CVaR, (ii) the ability to solve problems such as “mean602

semi-variance” (2.5) that cannot be solved using traditional dynamic programming-based methods, (iii) the603

ability to accurately approximate the analytical solution of a portfolio optimization problem under continuous604

rebalancing (i.e. theoretically infinite number of rebalancing events), and (iv) the ability to numerically recover605

the theoretical embedding result of Li and Ng (2000); Zhou and Li (2000). Given the theoretical results of606

Section 5, the NN approach is also expected to handle portfolio problems in higher dimensions than those607

illustrated in this section without difficulty, with practical applications being provided in our other work (Van608

Staden et al. (2023, 2024)).609

6.1 Closed-form solution: DSQ (γ) with continuous rebalancing610

Under certain conditions, some of the optimization problems in Subsection 3.1 can be solved analytically. In611

this subsection, we demonstrate how a closed-form solution of problem DSQ (γ) in (3.10), assuming continuous612

rebalancing (i.e. if we let ∆t → 0 in (3.1)), can be approximated very accurately using a very simple NN613

(1 hidden layer, only 3 hidden nodes) using discrete rebalancing with ∆t � 0 in (3.1). Note that analytical614

solutions such as this particular example typically require unrealistic assumptions, including infinite leverage615

being allowed, trading continuing in the event of insolvency and the aforementioned continuous rebalancing.616

The goal of this example is not to discuss the merits of a particular analytical solution, but to simultaneously617

illustrate how parsimonious the NN approach is compared to alternative NN approaches where the parameter618
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vector increases in size as the number of rebalancing events increases, as well as how useful the imposition of619

time-continuity is in ensuring the smooth behavior of the (approximate) optimal control by using the extreme620

and unrealistic case of continuous rebalancing. Note that all subsequent examples (see Sections 6.2, 6.3 and621

6.4) impose multiple realistic investment constraints on the investment problems, including the assumption of622

discrete rebalancing.623

In this subsection, we assume parametric dynamics for the underlying assets due to the use of an associated624

analytical solution (based on the same parametric dynamics) as the ground truth, but we emphasize that625

parametric underlying models are not required in Sections 6.3 and 6.4. For concreteness, we consider the626

scenario of two assets, Na = 2, with unit values Si, i = 1, 2, evolving according to the following dynamics,627

dSi (t)

Si (t−)
=

(
µi − λiκ(1)i

)
· dt+ σi · dZi (t) + d

πi(t)∑
k=1

(
ϑ
(k)
i − 1

) , i = 1, 2. (6.1)628

Note that (6.1) takes the form of the standard jump diffusion models in finance - see e.g. Kou (2002);629

Merton (1976) for more information. For each asset i in (6.1), µi and σi denote the (actual, not risk-neutral)630

drift and volatility, respectively, Zi denotes a standard Brownian motion, πi (t) denotes a Poisson process with631

intensity λi ≥ 0, and ϑ(k)i are i.i.d. random variables with the same distribution as ϑi, which represents the jump632

multiplier of the ith risky asset with κ(1)i = E [ϑi − 1] and κ(2)i = E
[
(ϑi − 1)

2
]
. While the Brownian motions633

can be correlated with dZ1 (t) dZ2 (t) = ρ1,2 · dt, we make the standard assumption that the jump components634

are independent (see for example Forsyth and Vetzal (2022)).635

For this subsection only, we treat the first asset (i = 1 in (6.1)) as a “risk-free” asset, and set µ1 = r > 0

where r is the risk-free rate, so that we have λ1 = 0, σ1j = 0 ∀j, and Z1 ≡ 0, while the second asset (i = 2 in
(6.1)) is assumed to be a broad equity market index (the “risky asset”). In this scenario, if problem DSQ (γ)

in (3.10) is solved subject to dynamics (6.1) together with the assumptions of costless continuous trading,
infinite leverage, and uninterrupted trading in the event of insolvency, then the DSQ (γ)-optimal control can
be obtained analytically as

p∗ (t,W ∗ (t)) = [1− p∗2 (t,W ∗ (t)) , p∗2 (t,W ∗ (t))] ∈ R2, (6.2)

where the fraction of wealth in the broad stock market index (asset i = 2) is given by (Zweng and Li (2011))

p∗2 (t,W ∗ (t)) =
µ2 − r

σ2
2 + λ2κ

(2)
2

·
[
γe−r(T−t) −W ∗ (t)

W ∗ (t)

]
, w0 < γe−r(T−t). (6.3)

By design, the NN approach is not constructed to solve problems with unrealistic assumptions such as636

continuous trading, infinite leverage and short-selling, or trading in the event of bankruptcy, all of which are637

required to derive (6.3). However, if the implicit quadratic wealth target for the DSQ problem (i.e. the value of638

γ, see Vigna (2014)) is not too aggressive, the analytical solution (6.3) does not require significant leverage or639

lead to a large probability of insolvency. In such a scenario, we can use the NN approach to approximate (6.3).640

We select w0 = 100, T = 1 year and γ = 138.33, and simulate n = 2.56× 106 paths of the underlying assets641

using (6.1) and parameters as in Table C.1 (Appendix C). On this set of paths, the true analytical solution642

(6.3) is implemented using 7,200 time steps. In contrast, for the NN approach, we use only 4 rebalancing events643

in [0, T = 1], and therefore aggregate the simulated returns in quarterly time intervals to construct the training644

data set Yn. We consider only a very shallow NN, consisting of a single hidden layer and only 3 hidden nodes.645

Figure 6.1 compares the resulting optimal investment strategies by illustrating the optimal proportion of646

wealth invested in the the broad equity market index (asset i = 2) as a function of time and wealth. We647

emphasize that the NN strategy in Figure 6.1(b) is not expected to be exactly identical to the analytical648

solution in Figure 6.1(a), since it is based on fundamentally different assumptions such as discrete rebalancing649

and investment constraints (3.5).650

651

However, requiring that the NN feature vector includes time in the proposed NN approach, together with652

a NN parameter vector that does not depend on time, we guarantee the smooth behavior in time of the NN653

approximation observed in Figure 6.1(b). As a result, Table 6.1 shows that the shallow NN strategy trained654

with ∆t� 0 results in a remarkably accurate approximation to the true analytical solution where ∆t→ 0, since655

we obtain nearly identical optimal terminal wealth distributions. Note that the NN strategy in Figure 6.1(b)656

has been trained with a fixed initial wealth w0 = 100, with no training data provided for wealth not equal to657
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(a) Closed-form solution, ∆t→ 0 (w0 ∈ R) (b) Shallow NN, ∆t = 0.25 (w0 = 100)

Figure 6.1: Closed-form solution - DSQ (γ) with continuous rebalancing: Optimal proportion of wealth invested in
the broad equity market index as a function of time and wealth. The NN approximation is obtained for a specific initial
wealth of w0 =100, and only four rebalancing events in [0, T ].

Table 6.1: Closed-form solution - DSQ (γ) with continuous rebalancing: Percentiles of the simulated ( n = 2.56× 106)
terminal wealth distributions obtained by implementing the optimal strategies in Figure 6.1. In both cases, a mean
terminal wealth of 105 is obtained. Note that the NN approximation was obtained under the assumption of quarterly
rebalancing only, no leverage or short-selling, and therefore no trading in insolvency.

W (T ) percentiles
Solution approach Rebalancing 5th 20th 50th 80th 95th

Closed-form solution Continuous, ∆t→ 0 86.81 98.02 106.35 112.82 118.15
Shallow NN approximation Discrete, ∆t = 0.25, total of Nrb = 4 only 86.62 97.30 105.67 112.54 118.85

100 as t ↓ 0. If higher accuracy is required in the NN solution, the initial wealth can be randomized during658

training to decrease the error in Figure 6.1(b) relative to Figure 6.1(a) further, but for most practical purposes659

the results obtained using Figure 6.1(b) can be considered as being sufficiently accurate (see Table 6.1).660

661

6.2 Ground truth: Problem MCV (ρ)662

In the case of the Mean-CVaR problem MCV (ρ) in (3.15), Forsyth and Vetzal (2022) obtain an MCV-optimal663

investment strategy subject to the same investment constraints as in Section 3 (namely discrete rebalancing, no664

short-selling or leverage allowed, and no trading in insolvency) using the partial (integro-)differential equation665

(PDE) approach of Forsyth (2020). Since the PDE approach is based on the assumption of parametric underlying666

asset dynamics, we use the PDE solution as ground truth and assume the same underlying dynamics to generate667

the training data for the NN-based solution using the proposed approach. Note that parametric models for the668

underlying asset dynamics are not required in Sections 6.3 and 6.4.669

For ground truth analysis purposes, we therefore consider the same investment scenario as in Forsyth and670

Vetzal (2022), where two underlying assets are considered, namely 30-day US T-bills and a broad equity market671

index (the CRSP VWD index) - see Appendix C for definitions. However, in contrast to the preceding section672

where one asset was taken as the risk-free asset, both assets are now assumed to evolve according to dynamics673

of the form (6.1), using the double-exponential Kou (2002) formulation for the jump distributions. The NN674

training data set is therefore constructed by simulating the same underlying dynamics. While further details675

regarding the context and motivation for the investment scenario can be found in Forsyth and Vetzal (2022),676

here we simply note that the scenario involves T = 5 years, quarterly rebalancing, a set of admissible strategies677

satisfying (3.5), and parameters for (6.1) as in Table C.2.678

As discussed in Appendix B, the inherently higher complexity of the Mean-CVaR optimal control requires679

the NN to be deeper than in the case of the problem considered in Subsection 6.1. As a result, we consider680

approximating NNs with two hidden layers, each with 8 hidden nodes, while relatively large mini-batches of681

2,000 paths were used in the stochastic gradient descent algorithm (see Appendix B) to ensure sufficiently682

accurate sampling of the tail of the returns distribution in selecting the descent direction at each step. Note683

that despite using a deeper NN, this NN structure is still very parsimonious and relatively shallow compared to684

the rebalancing time-dependent structures considered in for example Han and Weinan (2016), where a new set685

of parameters is introduced at each rebalancing event.686
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Table 6.2 compares the PDE results reported in Forsyth and Vetzal (2022) with the corresponding NN results.687

Note that the PDE optimal control was determined by solving a Hamilton-Jacobi-Bellman PDE numerically.688

The statistics for the PDE generated control were computed using n = 2.56× 106 Monte Carlo simulations of689

the joint underlying asset dynamics in order to calculate the results of Table 6.2, while the NN was trained on690

n = 2.56 × 106 paths of the same underlying asset dynamics but which were independently simulated. While691

some variability of the results are therefore to be expected due to the underlying samples, the results in Table692

6.2 demonstrate the robustness of the proposed NN approach.693

Table 6.2: Ground truth - problemMCV (ρ): The PDE results are obtained from Forsyth and Vetzal (2022) for selected
points on the Mean-CVaR “efficient frontier”. The “Value function” column reports the value of the objective function
(3.14) under the corresponding optimal control, while “% difference” reports the percentage difference in the reported
value functions for the NN solution compared to the PDE solution.

ρ 5% CVaR Et0,w0 [W (T )] Value function %
difference

PDE NN PDE NN PDE NN
0.10 940.60 940.55 1069.19 1062.97 1047.52 1046.85 -0.06%
0.25 936.23 937.39 1090.89 1081.99 1208.95 1207.88 -0.09%
1.00 697.56 690.11 1437.73 1444.16 2135.29 2134.27 -0.05%
1.50 614.92 611.65 1508.10 1510.07 2877.07 2876.76 -0.01%

694

6.3 Ground truth: Problems MV (ρ) and DSQ (γ)695

In this subsection, we demonstrate that if the investment objective (2.1) is separable in the sense of dynamic696

programming, the correct time-consistent optimal investment strategy is recovered, otherwise we obtain the697

correct pre-commitment (time-inconsistent) investment strategy.698

To demonstrate this, the theoretical embedding result of Li and Ng (2000); Zhou and Li (2000), which699

establishes the equivalence of problems MV (ρ) and DSQ (γ) under fairly general conditions, can be exploited700

for ground truth analysis purposes as follows. Suppose we solved problems MV (ρ) and DSQ (γ) on the same701

underlying training data set. We remind the reader that in the proposed NN approach, problem MV (ρ) can702

indeed be solved directly without difficulty, which is not possible in dynamic programming-based approaches.703

Then, considering the numerical results, there should be values of parameters ρ ≡ ρ̃ and γ ≡ γ̃ such that the704

optimal strategy of MV (ρ ≡ ρ̃) corresponds exactly to the optimal strategy of DSQ (γ ≡ γ̃), with a specific705

relationship holding between ρ̃ and γ̃. The NN approach can therefore enable us to numerically demonstrate706

the embedding result of Li and Ng (2000); Zhou and Li (2000) in a setting where the underlying asset dynamics707

are not explicitly specified and where multiple investment constraints are present. We start by recalling the708

embedding result.709

Proposition 6.1. (Embedding result of Li and Ng (2000); Zhou and Li (2000)) Fix a value ρ̃ > 0. If P∗ ∈710

A is the optimal control of problem MV (ρ ≡ ρ̃) in (3.12), then P∗ is also the optimal control for problem711

DSQ (γ = γ̃) in (3.10), provided that712

γ̃ =
1

2ρ̃
+ Et0,w0 [W ∗ (T ;P∗,Y )] . (6.4)713

Proof. See Li and Ng (2000); Zhou and Li (2000). We also highlight the alternative proof provided in Dang and714

Forsyth (2016), which shows that this result is valid for any admissible control set A.715

Since (6.4) is valid for any admissible control set A, we consider a factor investing scenario where portfolios716

are constructed using popular long-only investable equity factor indices (Momentum, Value, Low Volatility,717

Size), a broad equity market index (the CRSP VWD index), 30-day T-bills and 10-year Treasury bonds (see718

Appendix C for definitions). For illustrative purposes in the case of an investor primarily concerned with719

long-run factor portfolio performance, we use a horizon of T = 10 years, w0 = 120, annual contributions of720

q (tm) = 12, and annual rebalancing.721

Given historical returns data for the underlying assets, we construct training and testing (out-of-sample)722

data sets for the NN, Yn and Ytestn̂ , respectively, using stationary block bootstrap resampling of empirical723

historical asset returns (see Appendix C), which is popular with practitioners (Anarkulova et al. (2022); Cavaglia724
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et al. (2022); Cogneau and Zakalmouline (2013); Dichtl et al. (2016); Scott and Cavaglia (2017); Simonian and725

Martirosyan (2022)) and is designed to handle weakly stationary time series with serial dependence. See Ni et al.726

(2022) for a discussion concerning the probability of obtaining a repeated path in block bootstrap resampling727

(which is negligible for any realistic number of samples). Due to availability of historical data we use inflation-728

adjusted monthly empirical returns from 1963:07 to 2020:12. The training data set (n = 106) is obtained using729

an expected block size of 6 months of joint returns from 1963:07 to 2009:12, while the testing data set (n = 106)730

uses an expected block size of 3 months and returns from 2010:01 to 2020:12. We consider NNs with two hidden731

layers, each with only eight hidden nodes.732

Choosing two values of ρ̃ > 0 to illustrate different levels of risk aversion (see Table 6.3), we solve problem733

MV (ρ = ρ̃) in (3.12) directly using the proposed approach to obtain the optimal investment strategy f
(
·; θ̂
∗
mv

)
.734

Note that since we consider a fixed NN structure in this setting rather than a sequence of NNs, we drop the735

subscript “n” in the notation f
(
·; θ̂
∗
mv

)
. Using this result together with (6.4), we can approximate the associated736

value of γ̃ by737

γ̃ ' 1

2ρ̃
+

1

n

n∑
j=1

W ∗(j)
(
T ; θ̂

∗
mv, ,Yn

)
, (6.5)738

and solve problem DSQ (γ = γ̃) independently using the proposed approach on the same training data set Yn.739

According to Proposition 6.1, the resulting investment strategy f
(
·; θ̂
∗
dsq

)
should be (approximately) iden-740

tical to the strategy f
(
·; θ̂
∗
mv

)
if the proposed approach works as required. Note that the parameter vectors are741

expected to be different (i.e. θ̂
∗
dsq 6= θ̂

∗
mv) due to a variety of reasons (multiple local minima, optimization using742

SGD, etc.), but the resulting wealth distributions and asset allocation should agree, i.e. f
(
·; θ̂
∗
dsq

)
' f

(
·; θ̂
∗
mv

)
.743

Figure 6.2 demonstrates the investment strategies f
(
·; θ̂
∗
mv

)
and f

(
·; θ̂
∗
dsq

)
obtained by training the NNs744

on the same training data set using values of ρ̃ = 0.017 and γ̃ = 429.647, respectively. Note that the values ρ̃745

and γ̃ are rounded to three decimal places, and Figure 6.2 corresponds to Results set 1 in Table 6.3. In this746

example, only four of the underlying candidate assets have non-zero investments, which is to be expected due747

to the high correlation between long-only equity factor indices.748

(a) MV (ρ = ρ̃) - Momentum (b) MV (ρ = ρ̃) - Value (c) MV (ρ = ρ̃) - B10 (d) MV (ρ = ρ̃) - T30

(e) DSQ (γ = γ̃) - Momentum (f) DSQ (γ = γ̃) - Value (g) DSQ (γ = γ̃) - B10 (h) DSQ (γ = γ̃) - T30

Figure 6.2: Ground truth - problems MV (ρ = ρ̃) and DSQ (γ = γ̃): investment strategies f
(
·; θ̂

∗
mv

)
and f

(
·; θ̂

∗
dsq

)
obtained by training the NNs using values of ρ̃ = 0.017 and γ̃ = 429.647 (rounded to three decimal places), respectively.
Each figure shows the proportion of wealth invested in the asset as a function of the minimal NN features, namely time
and available wealth. Zero investment under the optimal strategies in the broad market index and the Size factor.

749
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Table 6.3 confirms that the associated optimal terminal wealth distributions ofMV (ρ = ρ̃) andDSQ (γ = γ̃)750

indeed correspond, both in-sample (training data set) and out-of-sample (testing data set).751

Table 6.3: Ground truth - problems MV (ρ = ρ̃) and DSQ (γ = γ̃): Terminal wealth results obtained using n = 106

joint paths for the underlying assets. Note that the values of ρ̃ and γ̃ are rounded to three decimal places, .

Results set 1: ρ̃ = 0.017, γ̃ = 429.647 Results set 2: ρ̃ = 0.0097, γ̃ = 493.196

W (T ) Training data Testing data Training data Testing data
distribution MV DSQ MV DSQ MV DSQ MV DSQ

Mean 400.2 400.3 391.2 391.6 441.5 441.8 441.8 441.5
Stdev 55.4 55.4 26.2 25.7 79.6 79.7 39.4 39.5

5th percentile 276.5 276.4 346.6 347.5 255.2 254.6 367.8 367.1
25th percentile 391.8 392.3 382.4 382.8 422.4 423.6 430.9 430.7
50th percentile 416.1 416.3 396.5 396.8 469.8 470.1 451.3 451.2
75th percentile 429.9 429.8 406.4 406.7 487.7 489.6 465.0 464.8
95th percentile 452.1 452.1 418.9 419.0 516.1 516.5 480.9 480.2

752

The proposed NN approach therefore clearly works as expected, in that we demonstrated that the result753

of Proposition 6.1 in a completely model-independent way in a portfolio optimization setting where no known754

analytical solutions exist. In particular, we emphasize that no assumptions were made regarding parametric755

underlying asset dynamics, the results are entirely data-driven. As a result, we can interpret the preceding756

results as showing that the approach correctly recovers the time-inconsistent (or pre-commitment) strategy757

without difficulty if the objective is not separable in the sense of dynamic programming, such as in the case of758

the MV (ρ) problem, whereas if the objective is separable in the sense of dynamic programming, such as in the759

case of the DSQ (γ) problem, the approach correctly recovers the associated time-consistent strategy.760

6.4 Mean - Semi-variance strategies761

Having demonstrated the reliability of the results obtained using the proposed NN approach with the preceding762

ground truth analyses, we now consider the solution of the Mean - Semi-variance problem (3.16). To provide the763

necessary context to interpret the MSemiV (ρ)-optimal results, we compare the results of the optimal solutions764

of the MCV (ρ = ρmcv), MSemiV (ρ = ρmsv), and OSQ (γ = γosq) problems, where the values of ρmcv, ρmsv765

and γosq are selected to obtain the same expected value of terminal wealth on the NN training data set. This766

is done since the MCV- and OSQ-optimal strategies have been analyzed in great detail (Dang and Forsyth767

(2016); Forsyth (2020)), and are therefore well understood. Note that since all three strategies are related to768

the maximization of the mean terminal wealth and while simultaneously minimizing some risk measure (which769

is implicitly done in the case of the OSQ problem, see Dang and Forsyth (2016)), it is natural to compare the770

strategies on the basis of equal expectation of terminal wealth.771

To highlight the main qualitative features of the MSemiV (ρ)-optimal results, we consider a simple invest-772

ment scenario of two assets, namely 30-day T-bills and a broad equity market index (the VWD index) - see773

Appendix C for definitions. We choose T =5 years, w0 = 1000, and zero contributions to demonstrate a lump774

sum investment scenario with quarterly rebalancing.775

To illustrate the flexibility of the NN approach to underlying data generating assumptions, the NN training776

data sets are constructed using generative adversarial network (GAN)-generated synthetic asset returns obtained777

by implementing the TimeGAN algorithm proposed by Yoon et al. (2019). In more detail, using empirical778

monthly asset returns from 1926:01 to 2019:12 for the underlying assets (data sources are specified in Appendix779

C), the TimeGAN is trained with default parameters as in Yoon et al. (2019) using block sizes of 6 months to780

capture both correlation and serial correlation aspects of the (joint) time series.5 Once trained, the TimeGAN781

is then used to generate a set of n = 106 paths of synthetic asset returns, which is used as the training data set782

to train the NNs corresponding to the MCV, MSemiV and OSQ-optimal investment strategies.783

5It appears that the actual code in Yoon et al. (2019) implements the following steps: (i) takes as input actual price data,
(ii) forms rolling blocks of price data and (iii) forms a single synthetic price path (which is the same length as the original path)
by randomly sampling (without replacement) from the set of rolling blocks. Step (iii) corresponds to the non-overlapping block
bootstrap using a fixed block size. This should be contrasted with stationary block bootstrap resampling of Politis and Romano
(1994). Step (i) does not make sense as input to a bootstrap technique, since the data set is about 10 years long, with an initial
price of $50 and a final price of $1200. We therefore changed Step (i), so that all data was converted to returns prior to being used
as input.
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Figure 6.3 illustrates the resulting optimal investment strategies, and we observe that the MSemiV-optimal784

strategy is fundamentally different from the MCV and OSQ-optimal strategies, while featuring elements of785

both. Specifically, Figure 6.4, which illustrates the resulting optimal terminal wealth distributions (with the786

same expectation), demonstrates that the MSemiV strategy, like the MCV strategy, can offer better downside787

protection than the OSQ strategy, while the MSemiV strategy retains some of the qualitative elements of the788

OSQ distribution such as the left skew.789

Having illustrated that the MSemiV problem can be solved in a dynamic trading setting using the proposed790

NN approach to obtain investment strategies that offer potentially valuable characteristics, we leave a more791

in-depth investigation of the properties and applications of MSemiV-optimal strategies for future work.792

(a) MCV (ρ = ρmcv) (b) MSemiV (ρ = ρmsv) (c) OSQ (γ = γosq)

Figure 6.3: Optimal investment strategies for the MCV (ρ = ρmcv), MSemiV (ρ = ρmsv), and OSQ (γ = γosq) strate-
gies, obtaining identical expectation of terminal wealth on the training data set. Each figure shows the proportion of
wealth invested in the broad equity market index as a function of the minimal NN features, namely time and available
wealth.
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Figure 6.4: PDFs and CDFs of optimal terminal wealth obtained under the MCV (ρ = ρmcv), MSemiV (ρ = ρmsv),
and OSQ (γ = γosq) strategies, where the values of ρmcv, ρmsv and γosq are selected to obtain the same expected value
of optimal terminal wealth on the NN training data set.
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7 Conclusion795

In this paper, we presented a flexible NN approach, which does not rely on dynamic programming techniques, to796

solve a large class of dynamic portfolio optimization problems. We considered objectives of a very general form,797

encompassing both time-consistent and time-inconsistent objectives, as well as objectives requiring multi-level798

optimization. In the proposed approach, a single optimization problem is solved, issues of instability and error799

propagation involved in estimating high-dimensional conditional expectations are avoided, and the resulting800

NN is parsimonious in the sense that the number of parameters does not scale with the number of rebalancing801

events.802
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We also presented theoretical convergence analysis results which show that the numerical solution obtained803

using the proposed approach can recover the optimal investment strategy, provided it exists, regardless of804

whether the resulting optimal investment strategy is time-consistent or (formally) time-inconsistent.805

Numerical results confirmed the advantages of the NN approach, and showed that accurate results can be806

obtained in ground truth analyses in a variety of settings. The numerical results also highlighted that the807

approach remains agnostic as to the underlying data generating assumptions, so that for example empirical808

asset returns or synthetic asset returns can be used without difficulty.809

We conclude by noting that the NN approach is not necessarily limited to portfolio optimization problems810

such a those encountered during the accumulation phase of pension funds, and could be extended to address811

the significantly more challenging problems encountered during the decumulation phase of defined contribution812

pension funds (see for example Forsyth (2022)). We leave this extension for future work.813

8 Declarations814

The authors have no competing interests to declare that are relevant to the content of this article.815

9 Acknowledgements816

P.A. Forsyth’s work was supported by the Natural Sciences and Engineering Research Council of Canada817

(NSERC) grant RGPIN-2017-03760. Li’s work was supported by the Natural Sciences and Engineering Research818

Council of Canada (NSERC) grant RGPIN-2020-04331.819

820

References821

Alexander, S., T. Coleman, and Y. Li (2006). Minimizing CVaR and VaR for a portfolio of derivatives. Journal of822

Banking and Finance 30, 583–605.823

Anarkulova, A., S. Cederburg, and M. S. O’Doherty (2022). Stocks for the long run? Evidence from a broad sample of824

developed markets. Journal of Financial Economics 143:1, 409–433.825

Bachouch, A., C. Huré, N. Langrené, and H. Pham (2022). Deep neural networks algorithms for stochastic control826

problems on finite horizon: Numerical applications. Methodology and Computing in Applied Probability 24, 143–178.827

Basak, S. and G. Chabakauri (2010). Dynamic mean-variance asset allocation. Review of Financial Studies 23, 2970–3016.828

Beck, C., A. Jentzen, and B. Kuckuck (2022). Full error analysis for the training of deep neural networks. Infinite829

dimensional analysis, quantum probability and related topics 25(2).830

Becker, S., P. Cheridito, A. Jentzen, and T. Welti (2021). Solving high-dimensional optimal stopping problems using831

deep learning. European Journal of Applied Mathematics 32(3), 470–514.832

Bellman, R. (1957). A Markovian decision process. Journal of Mathematics and Mechanics (5), 679–684.833

Bernard, C. and S. Vanduffel (2014). Mean-variance optimal portfolios in the presence of a benchmark with applications834

to fraud detection. European Journal of Operational Research 234, 469–480.835

Bjork, T., M. Khapko, and A. Murgoci (2017). On time-inconsistent stochastic control in continuous time. Finance and836

Stochastics 21, 331–360.837

Bjork, T., M. Khapko, and A. Murgoci (2021). Time-inconsistent control theory with finance applications. Springer838

Finance.839

Bjork, T. and A. Murgoci (2010). A general theory of Markovian time inconsistent stochastic control problems. Working840

paper .841

Bjork, T. and A. Murgoci (2014). A theory of Markovian time-inconsistent stochastic control in discrete time. Finance842

and Stochastics 18, 545–592.843

Bodie, Z., A. Kane, and A. J. Marcus (2014). Investments. McGraw Hill New York, 10th edition edition.844

Buehler, H., L. Gonon, J. Teichmann, and B. Wood (2019). Deep hedging. Quantitative Finance 19(8), 1271–1291.845

Cavaglia, S., L. Scott, K. Blay, and S. Hixon (2022). Multi-asset class factor premia: A strategic asset allocation846

perspective. The Journal of Portfolio Management 48:9, 14–32.847

Cogneau, P. and V. Zakalmouline (2013). Block bootstrap methods and the choice of stocks for the long run. Quantitative848

Finance 13:9, 1443–1457.849

Cong, F. and C. Oosterlee (2016). On pre-commitment aspects of a time-consistent strategy for a mean-variance investor.850

Journal of Economic Dynamics and Control 70, 178–193.851

21



Dai, M., Y. Dong, and Y. Jia (2023). Learning equilibrium mean-variance strategy. Mathematical Finance 33(4),852

1166–1212.853

Dang, D. and P. Forsyth (2016). Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-854

financing Hamilton–Jacobi–Bellman equation approach. European Journal of Operational Research 250:1, 827–841.855

Dichtl, H., W. Drobetz, and M. Wambach (2016). Testing rebalancing strategies for stock-bond portfolos across different856

asset allocations. Applied Economics 48, 772–788.857

Dixon, M. F., I. Halperin, and P. Bilokon (2020). Machine learning in finance. Springer International Publishing.858

Fama, E. and K. French (2015). A five-factor asset pricing model. Journal of Financial Economics 116(1), 1–22.859

Fama, E. F. and K. R. French (1992). The cross-section of expected stock returns. Journal of Finance 47, 427–465.860

Fama, E. F. and K. R. French (2010). Luck versus skill in the cross-section of mutual fund returns. The Journal of861

Finance 65(5), 1915–1947.862

Fama, E. F. and K. R. French (2012). Size, value, and momentum in international stock returns. Journal of Financial863

Economics 105, 457–472.864

Fernández-Villaverde, J., G. Nuño, G. Sorg-Langhans, and M. Vogler (2020). Solving high-dimensional dynamic pro-865

gramming problems using deep learning. Working paper .866

Forsyth, P. (2020). Multiperiod mean conditional value at risk asset allocation: Is it advantageous to be time consistent?867

SIAM Journal on Financial Mathematics 11(2), 358–384.868

Forsyth, P., J. Kennedy, S. Tse, and H. Windcliff (2011). Optimal trade execution: A mean quadratic variation approach.869

Journal of Economic Dynamics and Control 36:12, 1971–1991.870

Forsyth, P. and K. Vetzal (2017). Dynamic mean variance asset allocation: Tests for robustness. International Journal871

of Financial Engineering 4:2. 1750021 (electronic).872

Forsyth, P., K. Vetzal, and G. Westmacott (2019). Management of portfolio depletion risk through optimal life cycle873

asset allocation. North American Actuarial Journal 23(3), 447–468.874

Forsyth, P. A. (2022). A stochastic control approach to defined contribution plan decumulation: The nastiest, hardest875

problem in finance. North American Actuarial Journal 26:2, 227–252.876

Forsyth, P. A., P. M. Van Staden, and Y. Li (2023). Beating a constant weight benchmark: easier done than said.877

International Journal of Theoretical and Applied Finance Paper 350001 (electronic).878

Forsyth, P. A. and K. R. Vetzal (2022). Multi-period mean expected-shortfall strategies: Cut your losses and ride your879

gains. Applied Mathematical Finance 29:5, 402–438.880

Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks881

2, 183–189.882

Gao, B. and L. Pavel (2018). On the properties of the softmax function with application in game theory and reinforcement883

learning. Working paper ArXiv 1704.00805.884

Gao, Z., Y. Gao, Y. Hu, Z. Jiang, and J. Su (2020). Application of deep q-network in portfolio management. In 2020885

5th IEEE International Conference on Big Data Analytics (ICBDA), pp. 268–275.886

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. MIT press.887

Granziol, D., X. Wan, S. Albanie, and S. Roberts (2021). Iterative averaging in the quest for best test error. Working888

paper .889

Han, J., A. Jentzen, and E. Weinan (2018). Solving high-dimensional partial differential equations using deep learning.890

PNAS 115(34), 8505–8510.891

Han, J. and E. Weinan (2016). Deep learning approximation for stochastic control problems. NIPS Deep Reinforcement892

Learning Workshop .893

Henry-Labordère, P. (2017). Deep primal-dual algorithm for BSDEs: Application of machine learning to CVA and IM.894

Working paper .895

Homer, S. and R. Sylla (2015). A History of Interest Rates. New York: Wiley.896

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251–257.897

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal approximators. Neural898

Networks 2, 359–366.899

Hu, R. and M. Laurière (2023). Recent developments in machine learning methods for stochastic control and games.900

Working paper .901

Huré, C., H. Pham, A. Bachouch, and N. Langrené (2021). Deep neural networks algorithms for stochastic control902

problems on finite horizon: Convergence analysis. SIAM Journal on Numerical Analysis 59(1).903

Hutzenthaler, M., A. Jentzen, T. Kruse, and T. A. Nguyen (2020). A proof that rectified deep neural networks overcome904

the curse of dimensionality in the numerical approximation of semilinear heat equations. SN partial differential905

equations and applications (1), 1–34.906

Jentzen, A., B. Kuckuck, A. Neufeld, and P. von Wurstemberger (2021a). Strong error analysis for stochastic gradient907

descent optimization algorithms. IMA Journal of Numerical Analysis 41(1), 455–492.908

22



Jentzen, A., D. Salimova, and T. Welti (2021b). A proof that deep artificial neural networks overcome the curse of909

dimensionality in the numerical approximation of kolmogorov partial differential equations with constant diffusion910

and nonlinear drift coefficients. Communications in Mathematical Sciences 19(5), 1167–1205.911

Jin, H. Q., J. A. Yan, and X. Y. Zhou (2005). Continuous-time mean-risk portfolio selection. Annales Henri Poincaré912

18, 171–183.913

Kingma, D. P. and J. L. Ba (2015). Adam: A method for stochastic optimization. Published as a conference paper at914

ICLR 2015 .915

Kou, S. G. (2002). A jump-diffusion model for option pricing. Management Science 48(8), 1086–1101.916

Kratsios, A. and E. Bilokopytov (2020). Non-euclidean universal approximation. Proceedings of the 34th Conference on917

Neural Information Processing Systems (NeurIPS 2020).918

Leshno, M., V. Y. Lin, A. Pinkus, and S. Schocken (1993). Multilayer feedforward networks with a nonpolynomial919

activation function can approximate any function. Neural Networks 6, 861–867.920

Li, D. and W.-L. Ng (2000). Optimal dynamic portfolio selection: multi period mean variance formulation. Mathematical921

Finance 10, 387–406.922

Li, Y. and P. Forsyth (2019). A data-driven neural network approach to optimal asset allocation for target based defined923

contribution pension plans. Insurance: Mathematics and Economics 86, 189–204.924

Li, Z., K. H. Tsang, and H. Y. Wong (2020). Lasso-based simulation for high-dimensional multi-period portfolio opti-925

mization. IMA Journal of Management Mathematics 31(3), 257–280.926

Lucarelli, G. and M. Borrotti (2020). A deep q-learning portfolio management framework for the cryptocurrency market.927

Neural Computing and Applications 32(23), 17229–17244.928

Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3,929

125–144.930

Miculescu, R. (2000). Approximation of continuous functions by Lipschitz functions. Real Analysis Exchange 26(1),931

449–452.932

Miller, C. and I. Yang (2017). Optimal control of conditional value-at-risk in continuous time. SIAM Journal on Control933

and Optimization 55(2), 856–884.934

Mucke, N., G. Neu, and L. Rosasco (2019). Beating SGD saturation with tail-averaging and minibatching. 33rd935

Conference on Neural Information Processing Systems (NeurIPS 2019) .936

Neu, G. and L. Rosasco (2018). Iterate averaging as regularization for stochastic gradient descent. Proceedings of Machine937

Learning Research, 31st Annual Conference on Learning Theory 75, 1–21.938

Ni, C., Y. Li, P. Forsyth, and R. Carroll (2022). Optimal asset allocation for outperforming a stochastic benchmark939

target. Quantitative Finance 22:9, 1595–1626.940

Oksendal, B. and A. Sulem (2019). Applied Stochastic Control of Jump Diffusions. Springer, 3rd edition.941

Park, H., M. K. Sim, and D. G. Choi (2020). An intelligent financial portfolio trading strategy using deep q-learning.942

Expert Systems with Applications 158.943

Politis, D. and J. Romano (1994). The stationary bootstrap. Journal of the American Statistical Association 89,944

1303–1313.945

Polyak, B. T. and A. B. Juditsky (1992). Acceleration of stochastic approximation by averaging. SIAM Journal on946

Control and Optimization 30(4), 838–855.947

Powell, W. (2023). A universal framework for sequential decision problems. OR/MS Today February. https://tinyurl.948

com/PowellORMSfeature/.949

Reppen, A. M. and H. M. Soner (2023). Deep empirical risk minimization in finance: looking into the future. Mathematical950

Finance 33(1), 116–145.951

Reppen, A. M., H. M. Soner, and V. Tissot-Daguette (2023). Deep stochastic optimization in finance. Digital Finance952

5, 91–111.953

Rockafellar, R. and S. Uryasev (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and954

Finance 26:7, 1443–1471.955

Scott, L. and S. Cavaglia (2017). A wealth management perspective on factor premia and the value of downside protection.956

The Journal of Portfolio Management 43:3, 1–9.957

Shapiro, A. and Y. Wardi (1996). Convergence analysis of gradient descent stochastic algorithms. Journal of Optimization958

Theory and Applications 91(2).959

Simonian, J. and A. Martirosyan (2022). Sharpe parity redux. The Journal of Portfolio Management 48:9, 183–193.960

Sonoda, S. and N. Murata (2017). Neural network with unbounded activation functions is universal approximator.961

Applied and Computational Harmonic Analysis 43, 233–268.962

Strub, M., D. Li, and X. Cui (2019a). An enhanced mean-variance framework for robo-advising applications. SSRN963

3302111.964

Strub, M. S., D. Li, X. Cui, and J. Gao (2019b). Discrete-time mean-CVaR portfolio selection and time-consistency965

induced term structure of the CVaR. Journal of Economic Dynamics and Control 108(103751).966

23

https://tinyurl.com/PowellORMSfeature/
https://tinyurl.com/PowellORMSfeature/
https://tinyurl.com/PowellORMSfeature/


Tsang, K. H. and H. Y. Wong (2020). Deep-learning solution to portfolio selection with serially dependent returns. SIAM967

Journal on Financial Mathematics 11(2), 593–619.968

Tse, S., P. Forsyth, J. Kennedy, and H. Windcliff (2013). Comparison between the mean-variance optimal and the969

mean-quadratic-variation optimal trading strategies. Applied Mathematical Finance 20(5), 415–449.970

Van Heeswijk, W. and H. L. Poutré (2019). Approximate dynamic programming with neural networks in linear discrete971

action spaces approximate dynamic programming with neural networks in linear discrete action spaces. Working paper972

.973

Van Staden, P. M., D. Dang, and P. Forsyth (2019). Mean-quadratic variation portfolio optimization: A desirable974

alternative to time-consistent mean-variance optimization? SIAM Journal on Financial Mathematics 10(3), 815–856.975

Van Staden, P. M., P. A. Forsyth, and Y. Li (2023). Beating a benchmark: dynamic programming may not be the right976

numerical approach. SIAM Journal on Financial Mathematics 14(2).977

Van Staden, P. M., P. A. Forsyth, and Y. Li (2024). Across-time risk-aware strategies for outperforming a benchmark.978

European Journal of Operational Research 313(2), 776–800.979

Vigna, E. (2014). On efficiency of mean-variance based portfolio selection in defined contribution pension schemes.980

Quantitative Finance 14(2), 237–258.981

Vigna, E. (2020). On time consistency for mean-variance portfolio selection. International Journal of Theoretical and982

Applied Finance 23(6).983

Vigna, E. (2022). Tail optimality and preferences consistency for intertemporal optimization problems. SIAM Journal984

on Financial Mathematics 13(1).985

Wang, R. and D. P. Foster (2020). What are the statistical limits of offline RL with linear function approximation?986

Working paper .987

Yoon, J., D. Jarrett, and M. Van der Schaar (2019). Time-series generative adversarial networks. 33rd Conference988

on Neural Information Processing Systems (NeurIPS 2019) https://proceedings.neurips.cc/paper/2019/file/989

c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.990

Zhou, X. and D. Li (2000). Continuous time mean variance portfolio selection: a stochastic LQ framework. Applied991

Mathematics and Optimization 42, 19–33.992

Zweng, Y. and Z. Li (2011). Asset liability management under benchmark and mean-variance criteria in a jump diffusion993

market. Journal of Systems Science and Complexity 24, 317–327.994

Appendix A: NN approach: technical details and analytical results995

In this appendix, additional analytical results, relating to the convergence analysis presented in Section 5, are996

presented.997

A.1: NN structural assumptions998

In this section, we discuss the NN structural assumptions. First, we introduce the necessary notation - for a999

more detailed treatment of NNs, see for example Goodfellow et al. (2016). Consider a fully-connected, feed-1000

forward NN fn with Lh ≥ 1 hidden layers. The NN layers are indexed by ` ∈ {0, ...,L}, where ` = 0 and1001

` = Lh + 1 ≡ L denote the input and output layers, respectively. Let ηn,` ∈ N denote the number of nodes1002

in layer ` of fn. With the exception of the input layer, each layer ` ∈ {1, ...,L} is associated with a weights1003

matrix x[`]
n ∈ Rηn,`×ηn,`−1 into the layer, an optional bias vector b[`]n ∈ Rηn,` , as well as an activation function1004

a
[`]
n : Rη` → Rη` which is applied to the weighted inputs into the layer.1005

The parameter vector of the NN fn, which consists of all weights and biases, is denoted by θn ∈ Rνn , where1006

νn ∈ N denotes the total number of weights and biases. In other words, the weights matrices
{
x
[`]
n : ` = 1, ...,L

}
1007

and optional bias vectors
{
b[`]n : ` = 1, ...,L

}
are transformed into a single vector θn = (θ1, ..., θνn), where each1008

θn,i ∈ θn can be uniquely mapped to a single weight or bias in some layer.1009

Note that no activation function is applied at the input layer (` = 0), so that the η0 ≡ ηn,0 output values of1010

the input layer corresponds to feature (input) vector of the NN, which will be denoted by φ ∈ Rη0 . Recalling1011

that ηL ≡ ηn,L is the number of nodes in the output layer (` = L) and setting the bias vectors b[`]n ≡ 0 for1012

convenience, the NN can therefore be written as a single function fn (φ;θn) : Rη0 → RηL , where1013

fn (φ;θn) := (fn,1 (φ;θn) , ..., fn,ηL (φ;θn)) , φ ∈ Rη0 ,θn ∈ Rνn (A.1)1014

We highlight that the output of the ith node in the output layer is given by fn,i (φ;θn) = a
[L]
n,i.1015

Given this standard fully-connected, feedforward NN formulation, we introduce the following NN structural1016

assumption.1017
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Assumption A.1. (NN structure) Let fn (·;θn) , n ∈ N, be a sequence of fully-connected feedforward neural1018

networks, and let ~ (n) , n ∈ N be a monotonically increasing sequence (i.e. ~ (n) < ~ (n+ 1), ∀n ∈ N) such that1019

limn→∞ ~ (n) =∞. For each n ∈ N, the NN fn is constructed to satisfy the following structural assumptions.1020

(i) The number of hidden layers Lh ≥ 1 (Lh ∈ N) remains fixed for all n ∈ N. For notational simplicity, we1021

assume that each of the Lh hidden layers of the NN fn has the same number ~ (n) of hidden nodes,1022

ηn,` ≡ ~ (n) , ∀` = 1, ...,L − 1, for some ~ (n) ∈ N. (A.2)1023

(ii) For convenience, we assume that the sigmoid activation function σh is applied at each hidden node,1024

σh (y) =
1

1 + e−y
≡ a

[`]
n,i (y) , where y =

(ηn,`−1∑
k=1

x
[`]
n,ika

[`−1]
n,k

)
+ b

[`]
n,i, (A.3)1025

for all ` = 1, ...,Lh and i = 1, ..., ~ (n). Note that in principle, any of the popular activation functions can1026

be used instead of (A.3), with minor modifications to the theoretical analysis presented in this paper.1027

(iii) The NN fn has η0 = ηX +1 ≡ ηn,0 input nodes (i.e. the number of input nodes are independent of n ∈ N),1028

with feature (input) vectors φ ∈ Rη0 of the form1029

φ := φ (t) := (t,X (t)) ∈ Dφ ⊆ RηX+1, with X (t) =
(
W
(
t+
)
, X̂ (t)

)
, (A.4)1030

where W (t+) denotes the wealth available for investment at time t after any contributions to the portfolio1031

at time t, while X̂ (t) denotes a vector of additional information taken into account by the investment1032

strategy. We emphasize that (A.4) clarifies that at time t ∈ [t0, T ], at least time t itself and W (t+) are1033

always assumed to be inputs into the NN.1034

(iv) The NN fn has Na = ηn,L output nodes (i.e. the number of output nodes are independent of n ∈ N), with1035

the output of node i, denoted by fn,i (φ (t) ;θn), being associated with the proportion of available wealth1036

W (t+) invested in asset i ∈ {1, ..., Na} after rebalancing the portfolio at time t.1037

(v) The output layer (` = L = Lh + 1) of each NN fn uses the softmax activation function (see for example1038

Gao and Pavel (2018)). Therefore we have a
[L]
n = ψ : RNa → RNa , where the ith component of ψ =1039

(ψi : i = 1, .., Na) is given by1040

ψi = a
[L]
n,i =

exp
{
z
[L]
n,i

}
∑Na
m=1 exp

{
z
[L]
n,m

} , where z[L]n,i =

Na∑
k=1

x
[L]
n,ika

[L−1]
n,k + b

[L]
n,i, i = 1, ..., Na. (A.5)1041

For a given n ∈ N, we define the set Nn as the set of all neural networks satisfying Assumption (A.1),1042

Nn = {fn : Dφ → Z|fn (·;θn) satisfies Assumption A.1 with ~ (n) nodes in each hidden layer} . (A.6)1043

In other words, each fn (·;θn) ∈ Nn has the same number of hidden nodes ~ (n) in each hidden layer, but a1044

potentially different parameter vector θn (i.e. different values associated with the weights and biases).1045

We make the following observations regarding Assumption A.1, noting that an illustration of the NN struc-1046

ture is provided in Figure A.1:1047

• Any NN constructed to satisfy Assumption A.1 will, for any input vector φ (t), automatically generate an1048

output in the set Z defined in (3.3), hence the definition (A.6) noting that fn : Dφ → Z. In other words,1049

the given constraints are automatically satisfied. However, different sets of constraints would require1050

modifications to the output activation, or post-processing of NN outputs, without affecting the technical1051

results6. Since we are illustrating the approach using the particular form of Z in (3.3) because of its wide1052

applicability (no short-selling and no leverage), a softmax output layer is used to ensure the NN output1053

6For example, position limits and limited leverage can be introduced using minor modifications to the output layer. Perhaps
the only substantial challenge is offered by unrealistic investment scenarios, such as insisting that trading should continue in the
event of bankruptcy, in which case consideration should be given to the possibility of wealth being identically zero or negative.
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remains in Z ⊂ RNa for any φ (t) (see (4.7)). While we assume sigmoid activations for the hidden nodes1054

for concreteness and convenience (see Assumption A.1), any of the commonly-used activation functions1055

can be implemented with only minor modifications to the technical results presented in Section 5.1056

• Note that further assumptions regarding the rate of at which the sequence ~ (n) increases relative to that1057

of the sequence {n}n∈N will be introduced in the convergence analysis of Section 5 (see Assumption A.4.1058

• In practical applications, it is not necessary to consider a sequence of NNs; instead, we will use a single1059

NN f ñ with ~ (ñ) hidden nodes in each of the hidden layers to get a reasonable trade-off between accuracy1060

and computational efficiency. However, we emphasize that any such f ñ is still constructed to satisfy1061

Assumption A.1.1062

A.2: Assumptions for convergence analysis1063

Assumption A.2 introduces the main assumptions used in rigorously justifying the approximation (4.8) and1064

therefore to prove Theorem 5.1.1065

Assumption A.2. (Convergence analysis: NN approximation to control) To establish the validity of the NN1066

approximation to the control, we make the following assumptions:1067

(i) The optimal investment strategy (or control) satisfies Assumption 4.1.1068

(ii) The functions F and G in the objective functional J (p, ξ; t0, w0) (see (4.4)) are continuous, and ξ →1069

F (·, ξ) and ξ → G (·, ·, ·, ξ) are convex for any admissible strategy p ∈ C (Dφ,Z). Note that in for example1070

the Mean - Conditional Value-at-Risk problem (3.15) where there is an inner and outer optimization1071

problem, this assumption is standard in computational settings (Forsyth (2020)).1072

(iii) The NN approximation (4.8) of the investment strategy p ∈ C (Dφ,Z) is implemented by a NN fn (·;θn) ∈1073

Nn, where Nn is given by (A.6). In other words, each approximating NN in the sequence of NNs fn, n ∈ N1074

is constructed according to Assumption A.1.1075

Note that Assumption A.2(iii) specifically requires that Assumption A.1 is satisfied, so each fn, n ∈ N, has1076

~ (n) nodes in each hidden layer, where we recall that the sequence ~ (n) , n ∈ N, is monotonically increasing and1077

satisfies ~ (n)→∞ as n→∞. However, we make no further assumptions yet regarding the form of n→ ~ (n).1078

For ease of exposition, we introduce Assumption A.3 below. We emphasize that Assumption A.3 is purely for1079

the sake of convenience, with Remark A.1 below discussing briefly how each component of Assumption A.3 can1080

be relaxed with only minor (but tedious and notationally demanding) modifications to the subsequent proofs.1081

Assumption A.3. (Convergence analysis: Assumptions for ease of exposition) For convenience, we introduce1082

the following assumptions which can be relaxed without difficulty, as discussed in Remark A.1 below.1083

(i) We assume that the optimal control p∗ as per Assumption 4.1 is a function of time and wealth only, i.e.1084

X∗ (tm) = W ∗ (t+m) for each tm ∈ T in (4.2). As a result, we work with the minimal form of the NN1085

feature vector satisfying Assumption A.1. Specifically, in the subsequent results we will always assume that1086

X (t) = W (t+), so that we will consider feature vectors (A.4) of the form1087

φ (t) =
(
t,W

(
t+;θn,Y

))
∈ Dφ ⊆ R2. (A.7)1088

(ii) The wealth process with dynamics given by (4.10) remains bounded. In other words, we assume that there1089

exists a value wmax > 0 such that1090

0 ≤W (t;θn,Y ) ≤ wmax a.s. for all t ∈ [t0, T ] ,θn ∈ Rνn , (A.8)1091

so that Dφ in (A.7) satisfies1092

Dφ = [t0, T ]× [0, wmax] . (A.9)1093

The following remark discusses how Assumption A.3 can be relaxed.1094
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Remark A.1. (Relaxing Assumption A.3) As noted above, Assumption A.3 has been introduced for ease of1095

exposition. We therefore briefly describe how each element of element of Assumption A.3 can be relaxed without1096

difficulty.1097

(i) In the case where the state X∗ (tm) depends on variables in addition to the portfolio wealth, for example1098

historical returns or additional variables (see for example Forsyth (2020); Tsang and Wong (2020)), it is1099

straightforward to incorporate these extra values without materially impacting the key aspects of the con-1100

vergence analysis. However, it is essential that portfolio wealth is included in X∗ (tm) as per Assumption1101

4.1.1102

(ii) The assumption of bounded wealth (A.8) is clearly practical, in that while it is undoubtedly true that the1103

entire wealth of the world is very large, it remains finite. However, from a theoretical perspective, the1104

only reason we introduce (A.8) is to ensure that, given the minimal form of the feature vector (A.7), the1105

controls take inputs in a compact domain (A.9). While boundedness assumptions can be relaxed without1106

theoretical difficulty using straightforward localization arguments (see for example Huré et al. (2021);1107

Tsang and Wong (2020)), this simply introduces yet further notational complexity without providing1108

additional insights into the fundamental arguments underlying the subsequent proofs.1109

1110

In the convergence analysis of Step 2 of the proposed approach, namely the computational estimate of the1111

optimal control obtained using (4.16), we need to introduce some additional assumptions (Assumption A.41112

below) since this step involves the training dataset Yn of the NN and numerical solution of problem (4.16).1113

Assumption A.4. (Convergence analysis: Computational estimate of optimal control) We introduce the fol-1114

lowing assumptions:1115

(i) The training data set Yn =
{
Y (j) : j ∈ {1, ..., n}

}
used for training the NN (see (4.13) and associated1116

discussion) is constructed with independent joint asset return paths Y (j) ∈ Yn. As noted before, this does1117

not assume that the joint asset returns along a given path are independent or serially independent.1118

(ii) Number of nodes in each hidden layer ~ (n),n ∈ N: As n → ∞ (n ∈ N), in the case of one hidden layer1119 (
Lh = 1

)
, we assume that ~ (n) = o

(
n1/4

)
. For deeper NNs

(
Lh > 1

)
, we assume that ~ (n) = o

(
n1/6

)
.1120

(iii) For each n ∈ N, the optimization algorithm used in solving problem (4.16) attains the minimum
(
θ̂
∗
n, ξ̂
∗
n

)
∈1121

Rνn+1 corresponding to a given training data set Yn.1122

Since stochastic gradient descent (SGD) is used in training the NN, Assumption A.4(iii) is very strong;1123

however, it is a standard assumption in convergence analyses in the literature (see for example Huré et al.1124

(2021); Tsang and Wong (2020)) in order to focus on the key aspects of a proposed approach. For detailed1125

treatments of theoretical aspects regarding optimization errors (i.e. the differences between the attained values1126

and the true minima) arising when training NNs, the reader is referred to for example Beck et al. (2022); Jentzen1127

et al. (2021a). Note that Assumption A.4(ii), which can also be found in Tsang and Wong (2020), is used to1128

establish a version of the law of large numbers that is applicable to our setting.1129

Remark A.2 (Increase in number of training samples as ~ increases). Informally, Assumption A.4(ii) requires1130

that the number of training samples n grows faster than O(~4) for Lh = 1 and O(~6) for Lh > 1, where ~1131

is the number of nodes in each hidden layer. Since we require a large ~ (number of nodes in each layer) for1132

good function approximation, this would suggest that convergence in terms of both function approximation1133

and sampling error requires a very large number of sample paths. This would appear to result in a barrier1134

to obtaining accurate results, for practical numbers of samples. However, our numerical examples seem to1135

produce solutions with reasonable errors, hence the requirements of Assumption A.4(ii) are probably not sharp.1136

Regardless, we can certainly expect that the number of samples should be significantly increased as we increase1137

~.1138

A.3: Proof of Theorem 5.11139

Before presenting the proof of Theorem 5.1, we first prove some auxiliary results that are preliminary require-1140

ments for the proof.1141
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We start with Lemma A.5, which combines and applies selected universal approximation results to our1142

setting. The use of the notation f∗n (·,θ∗n) ∈ Nn in Lemma A.5, which has been defined in Subsection 4.1 as1143

the NN using the optimal parameter vector consistent with problem (4.11)-(4.12), will be become clear in the1144

subsequent results.1145

Lemma A.5. (Convergence to optimal control) Suppose that Assumption A.2 and Assumption A.3 hold. As1146

per (4.2), let p∗ = (p∗i : i = 1, ..., Na) ∈ C (Dφ,Z) denote the optimal control associated with problem (4.6).1147

Then there exists a sequence of neural networks, f∗n ∈ Nn, n ∈ N, where each f∗n =
(
f∗n,i : i = 1, ..., Na

)
has1148

parameter vector θ∗n ∈ Rνn ,such that1149

lim
n→∞

sup
φ∈Dφ

∣∣f∗n,i (φ;θ∗n)− p∗i (φ)
∣∣ = 0, ∀i = 1, ..., Na, (A.10)1150

Proof. For ease of reference, recall that we have defined Nn as the set of NNs with ~ (n) hidden nodes in each1151

of the (fixed number of) Lh ≥ 1 hidden layers, constructed according to Assumption A.1,1152

Nn = {fn : Dφ → Z|fn (·;θn) satisfies Assumption A.1 with ~ (n) nodes in each hidden layer} . (A.11)1153

Consider another sequence of NNs,
◦
fn, n ∈ N, where each

◦
fn : Dφ → RNa is structurally identical to the1154

corresponding fn ∈ Nn in terms of Assumption A.1, except that
◦
fn uses the identity as the (linear) output1155

activation function. Specifically, we assume that
◦
fn does not apply the activation (A.1) at its output layer, but1156

instead replaces (A.1) with
◦
a
[L]
n =

(
◦
a
[L]
n,i : i = 1, ..., Na

)
: RNa → RNa where1157

◦
a
[L]
n,i

(
z[L]n

)
= z

[L]
n,i =

Na∑
k=1

x
[L]
n,ika

[L−1]
n,k + b

[L]
n,i, ∀i = 1, ..., Na. (A.12)1158

For any given n ∈ N, the relationship between fn and
◦
fn are illustrated in Figure A.1. Note that the entire1159

parameter vector θn of fn is inherited by
◦
fn, since all the weights, biases, and hidden layers and nodes of

◦
fn1160

and fn are identical. As a result, we define the set
◦
Nn1161

◦
Nn =

{
◦
fn : Dφ → RNa

∣∣∣∣ ◦fn (·;θn) satisfies Assumption A.1, except1162

output activation (A.5) is replaced by (A.12).} , (A.13)1163

where we note that the outputs of
◦
fn take values which are no longer in Z ⊂ RNa , but instead merely in RNa .1164

The main benefit of working with
◦
fn ∈

◦
Nn instead of fn ∈ Nn, is that the linear output layer (A.12) means1165

that each
◦
fn ∈

◦
Nn is in the standard form used by most universal approximation theorems for NNs (see for1166

example Funahashi (1989); Hornik (1991); Hornik et al. (1989); Leshno et al. (1993)).1167

Recalling for convenience the definition of the softmax function ψ = (ψi : i = 1, .., Na) : RNa → RNa in1168

(A.5),1169

ψi (y) =
exp {yi}∑Na
i=1 exp {yj}

, ∀y = (yi : i = 1, .., Na) ∈ RNa , (A.14)1170

we therefore observe that for any n ∈ N, the NN fn (·;θn) ∈ Nn can be expressed as a transformation of the

corresponding NN
◦
fn (·;θn) ∈

◦
Nn, provided both NNs use the same parameter vector θn ∈ Rνn :

fn (·;θn) =ψ ◦
◦
fn (·;θn) , where

◦
fn (·;θn) ∈

◦
Nn. (A.15)

As per Assumption A.1, recall that ~ (n) , n ∈ N satisfies ~ (n) < ~ (n+ 1) ,∀n ∈ N such that limn→∞ ~ (n) =1171

∞. Inspired by the notation of Hornik (1991), we define the sets N∞ and
◦
N∞ as the sets of NNs constructed1172
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according to (A.11) and (A.13), respectively, but with an arbitrarily large number of hidden nodes,1173

N∞ =
⋃
n∈N
Nn, and

◦
N∞ =

⋃
n∈N

◦
Nn. (A.16)1174

Since Dφ ⊂ RηX+1 is compact by (A.9) as per Assumption A.3 (note that this requirement can be relaxed1175

without difficulty as discussed in Remark A.1), we know by the results of Hornik (1991); Hornik et al. (1989)1176

that
◦
N∞ is uniformly dense in C

(
Dφ,RNa

)
. In other words, for any function

◦
g =

(
◦
gi : i = 1, ..., Na

)
∈1177

C
(
Dφ,RNa

)
and any ε > 0, there exists a value of n = nε sufficiently large such that the corresponding NN1178

◦
fnε =

(
◦
fnε,i : i = 1, ..., Na

)
∈
◦
Nnε such that1179

sup
φ∈Dφ

∣∣∣∣◦fnε,i (φ;θn(ε)
)
− ◦gi (φ)

∣∣∣∣ < ε, ∀i = 1, ..., Na. (A.17)1180

Note that (A.17) holds for any given number Lh ≥ 1 of hidden layers (see for example Corollary 2.7 in Hornik1181

et al. (1989)).1182

Using the results of Gao and Pavel (2018) , the softmax (A.14) is (Lipschitz) continuous and surjective,1183

since ψi (y) = ψi (y + c) for any y ∈ RNa and c ∈ R, where y + c := (yi + c : i = 1, .., Na). In addition, it has1184

a continuous right-inverse; as an example, we can simply consider the function
←−
ψ (z) = (log (zi) : i = 1, ..., Na)1185

where each zi ∈ (0, 1) and that
∑
i zi = 1. Furthermore, by Assumption A.1, no activation function is applied1186

at the input layer (i.e. the “input activation” is trivially injective and continuous). Using these properties of1187

the input and output layers of any fn ∈ Nn together with the results (A.15) and (A.17), we can conclude by1188

the results of Kratsios and Bilokopytov (2020) that the set N∞ is uniformly dense in C (Dφ,Z).1189

Applying this result specifically to the optimal control p∗ ∈ C (Dφ,Z) as per Assumption 4.1, we can1190

conclude that, for any ε > 0, there exists a value n = nε sufficiently large such that the corresponding NN1191

f∗nε
(
·;θ∗nε

)
∈ Nnε satisfies1192

sup
φ∈Dφ

∣∣f∗nε,i (φ;θ∗nε
)
− p∗i (φ)

∣∣ < ε, ∀i = 1, ..., Na. (A.18)1193

Note that the exact output of the NN f∗nε ∈ Nnε , which we recall has ~ (nε) hidden nodes in each hidden layer,1194

can be attained by a NN with ~ (nε + k), k ∈ N hidden nodes, since we can always set the weights and biases1195

corresponding to the additional ~ (nε + k) − ~ (nε) nodes identically to zero. In other words, (A.18) implies1196

the existence of a sequence of NNs f∗n (·;θ∗n) , n ∈ N, where each f∗n (·;θ∗n) ∈ Nn, such that for any ε > 0 and1197

sufficiently large nε ∈ N, we have1198

sup
φ∈Dφ

∣∣f∗n,i (φ;θ∗n)− p∗i (φ)
∣∣ < ε, ∀n ≥ nε, i = 1, ..., Na, (A.19)1199

completing the proof of (A.10).1200

1201

If Assumption 4.2 and Assumption A.3 are applicable, the wealth dynamics (4.5) using the optimal control1202

is given by1203

W ∗
(
t−m+1;p∗,Y

)
= W ∗

(
t+m;p∗,Y

)
·
Na∑
i=1

p∗i
(
tm,W

∗ (t+m;p∗,Y
))
· Yi (tm+1) , tm ∈ T , (A.20)1204

where we recall that W ∗ (t+m;p∗,Y ) = W ∗ (t−m;p∗,Y ) + q (tm), X∗ (tm) = W ∗ (t+m;p∗,Y ) and W ∗
(
t−Nrb

)
:=

W ∗ (T ). Furthermore, associated with every NN in the sequence f∗n (·,θ∗n) ∈ Nn identified in Lemma A.5, we
have the corresponding wealth dynamics as per (4.10) that satisfies

W ∗
(
t−m+1;θ∗n,Y

)
= W ∗

(
t+m;θ∗n,Y

)
·
Na∑
i=1

f∗n,i
(
tm,W

∗ (t+m;θ∗n,Y
)

;θ∗n
)
· Yi (tm+1) , tm ∈ T , n ∈ N. (A.21)

The following lemma justifies the use of the notation W ∗ in the wealth dynamics (A.21).1205
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Figure A.1: Illustration of the interpretation of the NN fn (·;θn) as a composition of the softmax ψ and the NN
◦
fn (·;θn) as per equation (A.15). Note that a softmax output layer is used to reflect the given constraints of no short-
selling and no leverage, but different admissible control set formulations can be handled without difficulty by modifying
the output activation.

Lemma A.6. (Convergence to optimal wealth) Suppose that Assumption A.2 and Assumption A.3 hold. Let1206

f∗n (·,θ∗n) ∈ Nn be the sequence identified in Lemma A.5 such that (A.10) holds. Then the wealth dynamics1207

W ∗ (t;θ∗n,Y ) associated with each f∗n, obtained as per (A.21), converges to the true optimal wealth dynamics1208

W ∗ (t;p∗,Y ) as n→∞ almost surely. In more detail, we have1209

lim
n→∞

W ∗
(
t−m;θ∗n,Y

)
= W ∗

(
t−m;p∗,Y

)
a.s., ∀tm ∈ T , (A.22)1210

and1211

lim
n→∞

W ∗ (T ;θ∗n,Y ) = W ∗ (T ;p∗,Y ) a.s. (A.23)1212

Proof. Note that (A.23) is stated separately since the terminal time T is not a rebalancing time (see (3.1)) and1213

the terminal wealth is critical in the evaluation of the objective functional.1214

At the start of the time horizon [t0, T ], we are given the initial wealth W
(
t−0
)

= w0 > 0. Therefore, at the1215

first rebalancing time t0 ∈ T , the wealth available for investment does not depend on the control, so that1216

w+
0 := w0 + q (t0) = W ∗

(
t+0 ;θ∗n,Y

)
= W ∗

(
t+0 ;p∗,Y

)
, ∀n ∈ N. (A.24)1217

Using dynamics (A.20) and (A.21) to compare the wealth at time t0 + ∆t = t1 ∈ T , we have1218

lim
n→∞

W ∗
(
t−1 ;θ∗n,Y

)
−W ∗

(
t−1 ;p∗,Y

)
= w+

0 ·
Na∑
i=1

[
lim
n→∞

f∗n,i
(
t0, w

+
0 ;θ∗n

)
− p∗i

(
t0, w

+
0

)]
· Yi (t1)1219

= 0 a.s., (A.25)1220

which follows from Lemma A.5 and the fact that Yi (t1) <∞ a.s. by assumption (see definition (3.6)).1221

For purposes of induction, assume that at some tm ∈ T , we have1222

lim
n→∞

W ∗
(
t−m;θ∗n,Y

)
= W ∗

(
t−m;p∗,Y

)
a.s. (A.26)1223

If (A.26) holds, then we have1224

lim
n→∞

W ∗
(
t+m;θ∗n,Y

)
= lim
n→∞

[
W ∗

(
t−m;θ∗n,Y

)
+ q (tm)

]
= W ∗

(
t+m;p∗,Y

)
a.s., (A.27)1225
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as well as1226

lim
n→∞

∣∣f∗n,i (tm,W ∗ (t+m;θ∗n,Y
)

;θ∗n
)
− p∗i

(
tm,W

∗ (t+m;p∗,Y
))∣∣1227

≤ lim
n→∞

∣∣f∗n,i (tm,W ∗ (t+m;θ∗n,Y
)

;θ∗n
)
− p∗i

(
tm,W

∗ (t+m;θ∗n,Y
))∣∣1228

+ lim
n→∞

∣∣p∗i (tm,W ∗ (t+m;θ∗n,Y
))
− p∗i

(
tm,W

∗ (t+m;p∗,Y
))∣∣1229

≤ lim
n→∞

sup
φ∈Dφ

∣∣f∗n,i (φ;θ∗n)− p∗i (φ)
∣∣1230

= 0 a.s., ∀i = 1, ..., Na, (A.28)1231

which is a consequence of Lemma A.5 and the continuity of p∗ ∈ C (Dφ,Z). From (A.27) and (A.28), we1232

therefore conclude that1233

lim
n→∞

∣∣W ∗ (t+m;θ∗n,Y
)
· f∗n,i

(
tm,W

∗ (t+m;θ∗n,Y
)

;θ∗n
)
−W ∗

(
t+m;p∗,Y

)
· p∗i

(
tm,W

∗ (t+m;p∗,Y
))∣∣

=0 a.s., ∀i = 1, ..., Na. (A.29)

Using dynamics (A.20) and (A.21) to compare the wealth at time tm + ∆t = tm+1, we have1234

lim
n→∞

W ∗
(
t−m+1;θ∗n,Y

)
−W ∗

(
t−m+1;p∗,Y

)
= lim

n→∞
W ∗

(
t+m;θ∗n,Y

)
·
Na∑
i=1

f∗n,i
(
tm,W

∗ (t+m;θ∗n,Y
)

;θ∗n
)
· Yi (tm+1)1235

−W ∗
(
t+m;p∗,Y

)
·
Na∑
i=1

p∗i
(
tm,W

∗ (t+m;p∗,Y
))
· Yi (tm+1)1236

= 0 a.s., (A.30)1237

which follows from (A.29) and Yi (tm) < ∞ a.s. By induction, we therefore conclude that (A.22) holds if1238

tm+1 ∈ T (i.e. if m < Nrb − 1), and (A.23) holds in the case where tm+1 = tNrb = T (i.e. m = Nrb − 1).1239

The following lemma establishes the convergence of the sequence of objective functionals using the NN1240

approximations identified in Lemma A.5.1241

Lemma A.7. (Convergence of objective functionals) Suppose that Assumption A.2 and Assumption A.3 hold.1242

Let f∗n (·,θ∗n) ∈ Nn be the sequence identified in Lemma A.5 such that (A.10) holds. Then1243

lim
n→∞

Jn (θ∗n, ξ; t0, w0) = J (p∗, ξ; t0, w0) , ∀ξ ∈ R, (A.31)1244

where Jn is defined in (4.9), and J is defined in (4.4).1245

Proof. Let ξ ∈ R be arbitrary. By Lemma A.6 and the continuity of F , we have1246

lim
n→∞

F (W ∗ (T ;θ∗n,Y ) , ξ) = F (W ∗ (T ;p∗,Y ) , ξ) a.s. (A.32)1247

Therefore, by using the boundedness of wealth as per Assumption A.3, the dominated convergence theorem1248

gives1249

lim
n→∞

Et0,w0 [F (W ∗ (T ;θ∗n,Y ) , ξ)] = Et0,w0 [F (W ∗ (T ;p∗,Y ) , ξ)] . (A.33)1250

Similarly, by the continuity of G, Lemma A.6, the boundedness of wealth and the dominated convergence1251

theorem, we have1252

lim
n→∞

Et0,w0
[
G
(
W ∗ (T ;θ∗n,Y ) , Et0,w0 [W ∗ (T ;θ∗n,Y )] , w0, ξ

)]
1253

= Et0,w0
[
G
(
W ∗ (T ;p∗,Y ) , Et0,w0 [W ∗ (T ;p∗,Y )] , w0, ξ

)]
. (A.34)1254

Finally, using the definitions of J in (4.4) and Jn in (4.9), we combine (A.33) and (A.34) to conclude (A.31).1255
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Proof of Theorem 5.11256

Using the preceding results, we are finally in the position to prove Theorem 5.1. Note that this proof also1257

motivates the use of the notation f∗n (·,θ∗n) and its associated wealth W ∗ (T ;θ∗n,Y ) for the sequence of NNs1258

identified in Lemma A.5 and subsequently used in Lemmas A.6 and A.7 above.1259

Since ξ → F (w, ξ) and ξ → G (w, x,w0, ξ) are convex by Assumption A.2, and the convexity is preserved1260

by taking the expectation of F , we have the result that ξ → Jn (θn, ξ; t0, w0) and ξ → J (p, ξ; t0, w0) are also1261

convex, so that the infimum over ξ ∈ R in each case can be attained and is unique. With p∗ still denoting the1262

optimal control, define ξ∗ as the value1263

ξ∗ := inf
ξ∈R

J (p∗, ξ; t0, w0) . (A.35)1264

Since Nn ⊂ C (Dφ,Z), we have, for all ξ ∈ R and all n ∈ N,1265

inf
θn∈Rνn

Jn (θn, ξ; t0, w0) = inf
fn(·;θn)∈Nn

J (fn, ξ; t0, w0) ≥ inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (A.36)1266

Taking the infimum in (A.36) over ξ ∈ R, and exchanging the order of minimization, we therefore have1267

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) = inf
θn∈Rνn

inf
ξ∈R

Jn (θn, ξ; t0, w0)1268

≥ inf
p∈C(Dφ,Z)

inf
ξ∈R

J (p, ξ; t0, w0) , ∀n ∈ N. (A.37)1269

Taking limits in (A.37), we obtain1270

lim
n→∞

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) ≥ inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (A.38)1271

Now consider specifically the sequence f∗n (·,θ∗n) identified in Lemma A.5 and the value ξ∗ in (A.35). Since1272

f∗n (·,θ∗n) ∈ Nn (so that θ∗n ∈ Rνn) and ξ∗ ∈ R, we have1273

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) ≤ Jn (θ∗n, ξ
∗; t0, w0) , ∀n ∈ N. (A.39)1274

By Lemma A.7, we have1275

lim
n→∞

Jn (θ∗n, ξ
∗; t0, w0) = J (p∗, ξ∗; t0, w0) , where ξ∗ is given by (A.35). (A.40)1276

Therefore, taking limits in (A.39) and using (A.40), we obtain the inequality1277

lim
n→∞

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) ≤ lim
n→∞

Jn (θ∗n, ξ
∗; t0, w0)1278

= J (p∗, ξ∗; t0, w0)1279

= inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (A.41)1280

Combining (A.38) and (A.41), we therefore have equality in both (A.38) and (A.41), and obtain1281

lim
n→∞

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) = inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) , (A.42)1282

which concludes the proof of Theorem 5.1. Finally, the notation f∗n (·,θ∗n) in Lemma A.5 is motivated by the1283

fact that equality holds in (A.41).1284

A.4: Proof of Theorem 5.21285

We start with the following auxiliary result, which is essentially a version of the law of large numbers applicable1286

to the current setting.1287

Lemma A.8. (Applicable version of the law of large numbers) Suppose that Assumption A.2, Assumption A.31288
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and Assumption A.4 hold. Then1289

sup
θn∈Rνn

∣∣∣∣∣∣ 1n
n∑
j=1

W (j) (T ;θn,Yn)− Et0,w0 [W (T ;θn,Y )]

∣∣∣∣∣∣ P−→ 0, as n→∞, (A.43)1290

and1291

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

F
(
W (j) (T ;θn,Yn) , ξ

)
− Et0,w0 [F (W (T ;θn,Y ) , ξ)]

∣∣∣∣∣∣ P−→ 0, as n→∞. (A.44)1292

Proof. Since for any fixed number of hidden layers, our NN formulation also requires O (~n) evaluations of the1293

exponential function, exactly the same steps as in Tsang and Wong (2020) (specifically, see Corollary 7.4 and1294

Theorem 4.3 in Tsang and Wong (2020)) can be used to establish (A.43) and (A.44).1295

The following lemma establishes a required auxiliary result involving the function G.1296

Lemma A.9. (Convergence of G in probability) Suppose that Assumption A.2, Assumption A.3 and Assumption1297

A.4 hold. Then1298

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1299

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣ P−→ 0, (A.45)1300

as n→∞.1301

Proof. For given values of ξ ∈ R, w0 > 0 and w ∈ R, consider the function x → G (x,w,w0, ξ). By the results1302

of Lemma A.8, we have1303

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G
(
W (j) (T ;θn,Yn) , w, w0, ξ

)
− Et0,w0 [G (W (T ;θn,Y ) , w, w0, ξ)]

∣∣∣∣∣∣ P−→ 0, (A.46)1304

as n → ∞. Keeping x fixed, consider the function w → G (x,w,w0, ξ) : [0, wmax] → R. Since G is continuous,
there exists a sequence of functions (Gm)m∈N, where for each m ∈ N, the function w → Gm (x,w,w0, ξ) :

[0, wmax]→ R is Lm-Lipschitz, such that (Gm) converges uniformly to G on [0, wmax] - see for example Miculescu
(2000). Therefore, for an arbitrary value of ε > 0, there exists a sufficiently large value m̃ ∈ N such that

|Gm̃ (x,w,w0, ξ)−G (x,w,w0, ξ)| <
ε

2
, ∀w ∈ [0, wmax] . (A.47)

Observing that 1
n

∑n
j=1W

(j) (T ;θn,Yn) ∈ [0, wmax] and by the monotonicity of expectation we also have1305

Et0,w0 [W (T ;θn,Y )] ∈ [0, wmax], we use (A.47) to obtain1306 ∣∣∣∣∣∣Gm̃
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

−G
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

∣∣∣∣∣∣1307

+

∣∣∣∣Gm̃ (x,Et0,w0 [W (T ;θn,Y )] , w0, ξ
)
−G

(
x,Et0,w0 [W (T ;θn,Y )] , w0, ξ

) ∣∣∣∣1308

< ε, (A.48)1309

for any given values of ξ ∈ R and w0 > 0. In addition, since Gm̃ is Lm̃-Lipschitz, we have1310 ∣∣∣∣∣∣Gm̃
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

−Gm̃ (x,Et0,w0 [W (T ;θn,Y )] , w0, ξ
)∣∣∣∣∣∣1311

≤ Lm̃ ·

∣∣∣∣∣∣ 1n
n∑
j=1

W (j) (T ;θn,Yn)− Et0,w0 [W (T ;θn,Y )]

∣∣∣∣∣∣ . (A.49)1312
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Using (A.48) and (A.49) as well as the triangle inequality, we therefore have1313 ∣∣∣∣∣∣G
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

−G (x,Et0,w0 [W (T ;θn,Y )]
)
, w0, ξ

∣∣∣∣∣∣1314

< ε+ Lm̃ ·

∣∣∣∣∣∣ 1n
n∑
j=1

W (j) (T ;θn,Yn)− Et0,w0 [W (T ;θn,Y )]

∣∣∣∣∣∣ , (A.50)1315

for any given values of ξ ∈ R and w0 > 0. Taking the supremum over (θn, ξ) ∈ Rνn+1 in (A.50), using the result1316

(A.43) from Lemma A.8 as well as the fact that ε > 0 was arbitrary, we therefore have1317

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣G
(
x,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
−G

(
x,Et0,w0 [W (T ;θn,Y )] , w0, ξ

)∣∣∣∣∣ P−→ 0. (A.51)1318

The results (A.46) and (A.51), together with the triangle inequality, therefore gives1319

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1320

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣1321

≤ 1

n

n∑
j=1

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1322

−G
(
W (j) (T ;θn,Yn) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

) ∣∣∣∣1323

+ sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G
(
W (j) (T ;θn,Yn) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)
1324

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣1325

P−→ 0 as n→∞. (A.52)1326

1327

Proof of Theorem 5.21328

The expression in (5.2), together with the triangle inequality, imply that1329

∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣1330

≤
∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
(θn,ξ)∈Rηn+1

Jn (θn, ξ; t0, w0)

∣∣∣∣ (A.53)1331

+

∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣ . (A.54)1332

Using the definitions of Ĵn (θn, ξ; t0, w0,Yn) in (4.15) and Jn (θn, ξ; t0, w0) in (4.9), the expression (A.53)1333
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gives1334 ∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
(θn,ξ)∈Rηn+1

Jn (θn, ξ; t0, w0)

∣∣∣∣1335

≤ sup
(θn,ξ)∈Rνn+1

∣∣∣∣Ĵn (θn, ξ; t0, w0,Yn)− Jn (θn, ξ; t0, w0)

∣∣∣∣1336

≤ sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

F
(
W (j) (T ;θn,Yn) , ξ

)
− Et0,w0 [F (W (T ;θn,Y ) , ξ)]

∣∣∣∣∣∣ (A.55)1337

+ sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1338

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣ . (A.56)1339

As per Lemma A.8 and Lemma A.9, (A.55) and (A.56) converge to zero in probability as n→∞. As a result,1340

since (A.53) therefore converges to zero in probability as n→∞ and, by Theorem 5.1, (A.54) converges to zero1341

as n→∞, we conclude that the result (5.2) of Theorem 5.2 holds.1342

Appendix B: NN approach: Selected practical considerations1343

We summarize some practical considerations with respect to the NN approach:1344

(i) Constructing training and testing datasets Yn and Ytestn̂ : Since Yn is used in (4.16) to obtain the optimal1345

NN parameter vector θ̂
∗
n, it is usually referred to as the NN “training” dataset (see for example Goodfellow1346

et al. (2016)). Similarly, we can also construct a “testing” dataset Ytestn̂ , that is of the same structure as1347

(4.13), but typically based on a different implied distribution of Y as a result of different data generation1348

assumptions. For example, Ytestn̂ can be obtained using a different time period of historical data for its1349

construction, or different process parameters if there are parametric asset dynamics specified. The resulting1350

approximation f∗n
(
·; θ̂
∗
n

)
∈ Nn to the optimal control p∗ ∈ C (Dφ,Z) obtained using the training dataset1351

in (4.16) can then be implemented on the testing dataset for out-of-sample testing or scenario analysis.1352

Since Yn and Ytestn̂ correspond to finite samples of Y and Y test, any data generation technique generating1353

paths of underlying asset returns can be used for the construction of training and testing data sets.1354

As illustrated in Section 6, data generation techniques like (i) Monte Carlo simulation of parametric1355

asset dynamics, (ii) block bootstrap resampling of empirical returns, or for example (iii) GAN-generated1356

synthetic returns can all be employed without difficulty, but we emphasize that the approach remains1357

agnostic regarding the underlying data generation methodology. Note that the underlying data generation1358

assumptions typically differ for Yn and Ytestn̂ , respectively, depending on for example the time periods of1359

empirical data considered for in-sample and out-of-sample testing.1360

As for the number of paths n in each of Yn and Ytestn̂ , experiments show that in the case of measures of1361

tail risk in the objectives such as CVaR (see (3.15)), a significantly larger number of paths are required1362

in order to obtain a sufficiently large sample of tail outcomes in the training and testing data, than for1363

example in cases where variance is the risk measure. To give a concrete examples, at least 2 million paths1364

in the training set of the NN in Subsection 6.2 is required to produce reliable results for the CVaR, whereas1365

1 million paths in the training set of the NN in Subsection 6.1 are more than sufficient to obtain reliable1366

results.1367

(ii) Depth (number of hidden layers Lh) and width (number of nodes in each hidden layer ~ (n)) of the NN: As1368

the examples in Section 6 show, remarkably accurate can be obtained with NNs no deeper than 2 hidden1369

layers and a relatively small number of nodes in each hidden layer. For objectives involving more complex1370

investment strategies such as MCV and Mean - Semi-variance (where, even in the case of two assets, the1371

behavior of the optimal strategy is clearly more complex than in the case of for example the MV-optimal1372

strategy), experiments show that two hidden layers lead to stable and reliable results, with the number1373

of hidden nodes in each hidden layer chosen to be slightly more than the number of assets, for example1374

~ (n) = Na + 2. For objectives such as DSQ and MV, a single hidden layer is often sufficient.1375
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(iii) Activation functions: As highlighted in Assumption A.1, we use logistic sigmoid activations as a concrete1376

example for convergence analysis purposes, but that these theoretical results can be modified for any of1377

the commonly-used activations (see for example Sonoda and Murata (2017)). Note that since NNs of one1378

or two hidden layers were found to be very effective in solving the problems under consideration, we did1379

not encounter any problems related to vanishing or exploding gradients in the case of logistic sigmoid1380

activations. However, if deeper NNs are required, activation functions could be changed to e.g. ReLU or1381

ELU without affecting the theoretical foundations for the proposed approach.1382

(iv) For the solution of (4.16) by gradient descent, we used the Gadam algorithm of Granziol et al. (2021).1383

This is simply a combination of the Adam algorithm (Kingma and Ba (2015)) with tail iterate averaging1384

for improved convergence properties and variance reduction (Mucke et al. (2019); Neu and Rosasco (2018);1385

Polyak and Juditsky (1992)). For the Adam algorithm component, the default algorithm parameters of1386

Kingma and Ba (2015) performed well in our setting, typically with no more than 50,000 SGD steps. Note1387

that the mini-batch size selected depends on the problem to be solved: we found that mini-batch sizes1388

of at least 1,000 paths of the training data set Yn are required for measures of tail risk in the objective1389

(such as CVaR), since smaller batch sizes typically means that the tail of the returns distribution is not1390

sufficiently well represented in choosing the descent direction, leading to unreliable results in ground truth1391

analyses.1392

While the technical results of Section 6 formally do not require continuous differentiability (in addition1393

to continuity) of the functions F and G, improved convergence properties of the SGD algorithm can1394

be obtained if the objective is at least continuously differentiable (see for example Shapiro and Wardi1395

(1996)). For implementation purposes, we can therefore smooth objectives like (3.15) in a straightforward1396

way, by for example replacing max (x, 0) in (3.15) with a continuously differentiable approximation used1397

in Alexander et al. (2006),1398

max (x, 0) '


x, if x > λmcv,

1
4λmcv

x2 + 1
2x+ 1

4λmcv, if − λmcv ≤ x ≤ λmcv
0, otherwise,

, (B.1)1399

where λmcv is some small smoothing parameter (e.g. λmcv = 10−3).1400

In addition to considering the smoothing of certain objectives, minor modifications to objective functions1401

to avoid (mathematical) ill-posedness may be desirable in certain situations. For example, in the case1402

of the OSQ objective (3.11), the term εW (·) is added to ensure the problem remains well-posed even1403

if W (t) � γ. In this case, when implementing the numerical solution, small values of ε (for example1404

ε = 10−6 was chosen in the numerical results of Section 6) do not have a noticeable effect on either the1405

summary statistics or the optimal controls.1406

Appendix C: Additional parameters for numerical results1407

In this appendix, additional parameters related to the numerical results of Section 6 are discussed.1408

The historical returns data for the basic assets such as the T-bills/bonds and the broad market index were1409

obtained from the CRSP 7, whereas factor data for Size and Value (see Fama and French (2015, 1992)) were1410

obtained from Kenneth French’s data library8 (KFDL). The detailed time series sourced for each asset is as1411

follows:1412

(i) T30 (30-day Treasury bill): CRSP, monthly returns for 30-day Treasury bill.1413

(ii) B10 (10-year Treasury bond): CRSP, monthly returns for 10-year Treasury bond.91414

(iii) Market (broad equity market index): CRSP, monthly returns, including dividends and distributions, for a1415

capitalization-weighted index consisting of all domestic stocks trading on major US exchanges (the VWD1416

index).1417

7Calculations were based on data from the Historical Indexes 2020©, Center for Research in Security Prices (CRSP), The
University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This service
and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third party suppliers.

8See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
9The 10-year Treasury index was constructed from monthly returns from CRSP back to 1941. The data for 1926-1941 were

interpolated from annual returns in Homer and Sylla (2015)

36



(iv) Size (Portfolio of small stocks): KFDL, “Portfolios Formed on Size”, which consists of monthly returns1418

on a capitalization-weighted index consisting of the firms (listed on major US exchanges) with market1419

value of equity, or market capitalization, at or below the 30th percentile (i.e. smallest 30%) of market1420

capitalization values of NYSE-listed firms.1421

(v) Value (Portfolio of value stocks): KFDL, “Portfolios Formed on Book-to-Market”, which consists of1422

monthly returns on a capitalization-weighted index of the firms (listed on major US exchanges) con-1423

sisting of the firms (listed on major US exchanges) with book-to-market value of equity ratios at or above1424

the 70th percentile (i.e. highest 30%) of book-to-market ratios of NYSE-listed firms.1425

(vi) LowVol (Portfolio of low volatility stocks): KFDL, “Portfolios Formed on Variance”: Monthly returns on1426

a capitalization-weighted portfolio formed at the end of each month, consisting of the firms (listed on1427

major US exchanges) with daily return variance calculated over the preceding 60 days at or below the1428

20th percentile (i.e. lowest 20%) of the same quantity calculated for NYSE-listed firms.1429

(vii) Momentum (Portfolio of stocks with high past returns, “winners”): KFDL, “Sorts involving Prior Returns”:1430

Monthly returns on the long portfolio (“winners”) component of the Fama-French version of the long-short1431

momentum factor (see Fama and French (2010, 2012)). This consists of the equal-weighted average of the1432

returns of two capitalization-weighted sub-indices, named “Small High” and “Big High” as per the KFDL1433

data description. For these sub-indices, firms listed on major US exchanges with market capitalization1434

below (resp. above) the monthly median NYSE market capitalization is classified as “small” (resp. “big”).1435

Firms listed on major US exchanges with 2-12 month prior returns above the 70th percentile (i.e. highest1436

30%) of the NYSE-listed firms’ prior returns are classified as having “high” prior returns. The “Small1437

High” and “Big High” sub-indices are formed at the end of each month as the intersection of the “small”1438

and “big” portfolios, respectively, with the portfolio of firms with high prior returns.1439

The historical asset returns time series are inflation-adjusted using inflation data from the US Bureau of Labor1440

Statistics10.1441

For the purposes of obtaining the parameters for (6.1) in Subsections (6.1) and (6.2), we use the same1442

calibration methodology as outlined in Dang and Forsyth (2016); Forsyth and Vetzal (2017), and assume the1443

jump dynamics of the Kou (2002) model.1444

In particular, we assume that in the dynamics (6.1), log ϑi has a asymmetric double-exponential distribution,1445

fϑi (ϑi) = νiζi,1ϑ
−ζi,1−1
i I[ϑi≥1] (ϑi) + (1− νi) ζi,2ϑ

ζi,2−1
i I[0≤ϑi<1] (ϑi) , (C.1)1446

where υi ∈ [0, 1] and ζi,1 > 1, ζi,2 > 0. In (C.1), νi denotes the probability of an upward jump given that a1447

jump occurs. The resulting parameters are obtained using the filtering technique for the calibration of jump1448

diffusion processes - see Dang and Forsyth (2016); Forsyth and Vetzal (2017) for the relevant methodological1449

details. For calibration purposes, a jump threshold equal to 3 has been used in the methodology of Dang and1450

Forsyth (2016).1451

Table C.1 and Table C.2 summarize the parameters for the asset dynamics for Subsections (6.1) and (6.2),1452

respectively.1453

Table C.1: Calibrated, inflation-adjusted parameters for asset dynamics in Subsection 6.1: Ground truth - DSQ (γ)
with continuous rebalancing. In this example, the first asset is assumed to be a risk-free asset, so we set µ1 = r, while
the second asset follows jump dynamics. The parametric asset returns are (trivially) uncorrelated, and parameters are
based on the inflation-adjusted returns of the T30 and VWD time series, respectively, over the period 1926:01 to 2019:12

Parameter µi σi λi υi ζi,1 ζi,2

Asset 1 (T30) 0.0043 - - - - -
Asset 2(VWD) 0.0877 0.1459 0.3191 0.2333 4.3608 5.504

1454

1455

10The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see http://www.bls.gov.cpi
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Table C.2: Calibrated, inflation-adjusted parameters for asset dynamics in Subsection 6.2: Ground truth - problem
MCV (ρ). In this example, there are two assets with jump dynamics (see Forsyth and Vetzal (2022)), with parameters
based on the inflation-adjusted returns of the T30 and VWD time series over the period 1926:01 to 2019:12. The
Brownian motions in (6.1) have correlation dZ1dZ2 = ρ1,2dt.

Parameter µi σi λi υi ζi,1 ζi,2 ρ1,2

Asset 1 (T30) 0.0045 0.0130 0.5106 0.3958 65.85 57.75 0.08228
Asset 2(VWD) 0.0877 0.1459 0.3191 0.2333 4.3608 5.504 0.08228
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