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Abstract5

Leveraged Exchange Traded Funds (LETFs), while extremely controversial in the literature, remain6

stubbornly popular with both institutional and retail investors in practice. While the criticisms of LETFs7

are certainly valid, we argue that their potential has been underestimated in the literature due to the8

use of very simple investment strategies involving LETFs. In this paper, we systematically investigate9

the potential of including a broad stock market index LETF in long-term, dynamically-optimal investment10

strategies designed to maximize the outperformance over standard investment benchmarks in the sense of the11

information ratio (IR). Our results exploit the observation that positions in a LETF deliver call-like payoffs,12

so that the addition of a LETF to a portfolio can be a convenient way to add inexpensive leverage while13

providing downside protection. Under stylized assumptions, we present and analyze closed-form IR-optimal14

investment strategies using either a LETF or standard/vanilla ETF (VETF) on the same equity index,15

which provides the necessary intuition for the potential and benefits of LETFs. In more realistic settings of16

infrequent trading, leverage restrictions and additional constraints, we use a neural network-based approach17

to determine the IR-optimal strategies, trained on bootstrapped historical data. We find that IR-optimal18

strategies with a broad stock market LETF are not only more likely to outperform the benchmark than19

IR-optimal strategies derived using the corresponding VETF, but are able to achieve partial stochastic20

dominance over the benchmark and VETF-based strategies in terms of terminal wealth, even if investment21

in the VETF can be leveraged. Our results help to explain the empirical appeal of LETFs to investors,22

and encourage the reconsideration in academic research of the role of broad stock market LETFs within the23

context of more sophisticated investment strategies.24
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JEL classification: G11, C6126

1 Introduction27

Leveraged Exchange Traded Funds (LETFs) are exchange traded funds (ETFs) with the stated objective of28

replicating some multiple β of the daily returns of their underlying reference assets/indices before costs, where29

values of β of +2, +3, −2 and −3 are commonly used. In contrast, standard/vanilla ETFs (VETFs) aim simply30

to replicate the returns of their underlying assets/indices before costs (i.e. β = 1).31

A review of the academic literature suggests that incorporating LETFs in investment strategies are commonly32

regarded with at least some suspicion, if not outright distrust. “Just say no to leveraged ETFs”, the title of a33

recent article (Bednarek and Patel (2022)), provides perhaps the most succinct summary of the broadly negative34

view of LETFs that permeates the literature. There are certainly good reasons for these negative perceptions35

of LETFs. A common criticism in the literature focuses on the “compounding” effect of LETF returns, which36

arises since a LETF returning β times the daily returns of the underlying index obviously does not imply that37

the LETF also returns β times the quarterly returns of the underlying index. This observation, along with38

the time decay and volatility decay of LETF positions, results in the potential wealth-destroying effects of39

LETF investments which increase with the holding time horizon (Mackintosh (2008),Carver (2009), Sullivan40
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(2009), Charupat and Miu (2011)). The poor investment outcomes using LETFs reported in the literature41

should therefore not come as a surprise if an investor uses a basic buy-and-hold investment strategy (Charupat42

and Miu (2011), Bednarek and Patel (2022), Leung and Santoli (2012)), or very simple (if not outright naive)43

portfolio rebalancing rules typically considered in conjunction with unrealistically frequent rebalancing1 from44

the perspective of long-term investors (Cheng and Madhavan (2009), Avellaneda and Zhang (2010), Bansal and45

Marshall (2015), DeVault et al. (2021)). While there are a few studies observing that LETFs could have a role46

within diversified portfolios, especially where the investor might have relatively aggressive performance targets47

(Bansal and Marshall (2015), Hill and Foster (2009)), wish to circumvent onerous leverage restrictions or large48

margin rates on borrowing (DeVault et al. (2021)), or want to outperform broad market indices using daily49

rebalancing (Knapp (2023)), these perspectives remain the exception to the mainstream academic view and50

tend to leave questions regarding the formulation of practical investment strategies unanswered.51

However, the contrast between the general perceptions in the academic literature and investment practice52

could not be more profound. LETFs have consistently remained incredibly popular financial products since their53

introduction in 2006, as emphasized by recent headlines such as “Investors pump record sums into leveraged54

ETFs” (Financial Times, November 20222) and “Retail investors snap up triple-leveraged US equity ETFs”55

(Financial Times, May 20243). LETFs consistently dominate the top 10 most popular ETFs listed on US56

exchanges4.57

Perhaps more significantly, LETFs also enjoy substantial popularity among institutional investors. Analyz-58

ing the quarterly reports by institutional investment managers with at least US$100 million in assets under59

management that were filed with the SEC from September 2006 to December 2016, DeVault et al. (2021) finds60

that more than 20% of the reports reference at least one LETF in the end-of-quarter portfolio allocation.61

Leaving speculative trading aside, what could explain the appeal of LETFs for institutional investors?62

Suppose an investor wants to leverage returns in a cost-effective way which also offers some downside protection.63

Since the requirement of downside protection rules out simple leverage, such an institutional investor has64

broadly speaking at least two options, namely (a) engage with a hedge fund or fund manager to use for example65

managed futures strategies, or (b) follow a dynamic trading strategy using for example LETFs as discussed66

in this paper. Since the expense ratios of LETFs range typically between 80 and 150 basis points, whereas67

standard leveraged positions are subject to substantial margin rates of borrowing which can easily exceed 5%68

for smaller institutional investors even during periods of low interest rates (DeVault et al. (2021)) while hedge69

funds charge hefty management fees, LETFs are certainly cost effective. In addition, LETFs can offer great70

upside returns in combination with limited liability without the need to manage short positions, and as discussed71

in this paper, positions in LETFs can be infrequently rebalanced while still obtaining competitive investment72

outcomes relative to standard investment benchmarks.73

1.1 Main Contributions74

While the academic literature offers a sophisticated and careful treatment of optimal rebalancing for hedging75

purposes in the case of LETFs (Dai et al. (2023)), or optimal replication policies for LETF construction (Gua-76

soni and Mayerhofer (2023)), in this paper we therefore aim to make progress towards closing the observed77

gap between the literature and investment practice by showing that there is a role for LETFs in infrequently78

rebalanced (e.g. quarterly rebalanced) portfolios designed for long-term institutional or retail investors wishing79

to outperform some investment benchmark.80

In more detail, the main contributions of this paper are as follows:81

(i) We construct dynamic (multi-period) investment strategies which maximize the information ratio (IR)82

of the active portfolio manager (or simply “investor”) relative to standard investment benchmarks using83

a LETF or a VETF on the same underlying equity index as well as bonds. The IR is chosen due to84

its popularity in investment practice (Bajeux-Besnainou et al. (2013); Bolshakov and Chincarini (2020);85

Hassine and Roncalli (2013); Israelsen and Cogswell (2007)), so that the results are not just of academic86

interest but also of practical relevance to institutional investors.87

1For example, daily rebalancing. Note that in some cases, the general investment literature actually advises investors not to
hold LETFs for longer than a single trading session. See for example Forbes Advisor, accessed 10 March 2024. Michael Adams.
Eight best leveraged ETFs of March 2024. https://www.forbes.com/advisor/investing/best-leveraged-etfs.

2Financial Times, November 14, 2022. Steven Johnson. Investors pump record sums into leveraged ETFs.
https://www.ft.com/content/b98ab360-2506-44f2-8e08-9d434df5f15d

3Financial Times, May 4, 2024. George Steer and Will Schmitt. Retail investors snap up triple-leveraged US equity ETFs.
https://on.ft.com/3WsWTom

4For example, as at 9 October 2023, four out of the five most popular ETFs as measured by the average daily trading volume
over the preceding three months were LETFs. https://etfdb.com/compare/volume. Accessed 9 October 2023
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(ii) Under stylized assumptions including parametric dynamics for the underlying assets, we present closed-88

form IR-optimal dynamic investment strategies which enable us to obtain intuition regarding the expected89

behavior of IR-optimal investment strategies in more general settings. Note that the closed-form solutions90

allow for jump-diffusion dynamics of the equity index, which as noted above is crucial to consider in the91

case of LETFs, so that our results contributes to the existing literature which is almost exclusively based92

on diffusion dynamics (see for example Giese (2010), Jarrow (2010) Leung and Santoli (2012), Leung et al.93

(2017), Leung and Sircar (2015), Wagalath (2014), Guasoni and Mayerhofer (2023)). However, in the94

context of Q measure option pricing, Ahn et al. (2015) consider jump processes for LETFs.95

(iii) Relaxing the stylized assumptions to allow for multi-asset portfolios, infrequent rebalancing, multiple96

investment constraints including leverage restrictions and no need to specify parametric asset dynamics, we97

use a neural network-based approach to obtain and analyze the resulting dynamic IR-optimal investment98

strategies for different scenarios, including: (i) investing in a VETF and bonds but with no leverage99

allowed, (ii) investing in a VETF and bonds with different levels of maximum leverage allowed and100

different levels of borrowing premiums being applicable, and (iii) investing in a LETF on the same equity101

market index as well as bonds with no leverage being allowed. We use a data-driven approach based on102

stationary block bootstrap resampling of historical data.103

(iv) We find that IR-optimal investment strategies involving LETFs are fundamentally contrarian. This finding104

aligns to the empirical asset allocation behavior observed by DeVault et al. (2021) in their analysis of the105

SEC filings by institutional fund managers, whereby managers seem to decrease their holdings in LETFs106

after observing strong recent investment performance. In terms of investment performance, we find that107

IR-optimal strategies including the LETF are not only more likely to outperform the benchmark than108

IR-optimal strategies derived using the corresponding VETF, but are able to achieve partial stochastic109

dominance over the investment benchmark in terms of portfolio value (wealth).5 This result holds even110

if the VETF can be leveraged with zero borrowing premium over the risk-free rate. Our results therefore111

encourage the reconsideration of the role of broad equity market LETFs within more sophisticated dynamic112

investment strategies, and provide a potential additional motivation regarding the enduring popularity of113

LETFs observed in practice.114

To ensure the practical relevance of our conclusions, illustrative investment results are based on data sets115

generated using (i) stochastic differential equations calibrated to historical data for closed-form solutions and116

(ii) block bootstrap resampling of historical data (Anarkulova et al. (2022); Cogneau and Zakalmouline (2013);117

Politis and Romano (1994)) for neural network-based numerical solutions. Due to the relative paucity of LETF118

data, we construct a proxy LETF replicating the β = 2 times the daily returns of a broad US equity market119

index since 1929, deflating the returns by a typical LETF expense ratio and interest rates (see Appendix B).120

We make the standard assumption (see e.g. Bansal and Marshall (2015), Leung and Sircar (2015)) that the121

LETF managers do not have challenges in replicating the underlying index. Note that given improvements122

in designing replication strategies for LETFs that remain robust even during periods of market volatility (see123

for example Guasoni and Mayerhofer (2023)), this appears to be a reasonable assumption for ETFs (VETFs124

and LETFs) written on major equity market indices as considered in this paper. All returns time series are125

inflation-adjusted to reflect real returns.126

1.2 Intuition127

In this section, we provide some insight into the potential advantages of including LETFs in optimal dynamic128

asset allocation. We will give an overview here, leaving the technical details to Section 3.1.129

Suppose an investor allocates their initial wealth W (0) to US 30-day T-bills and either a LETF (β = 2) or130

a VETF on a broad US equity market index S at time t0 = 0, and does not rebalance the portfolio over the131

holding time horizon ∆t > 0. We discuss in more detail in Section 3 how the LETF and VETF can be viewed132

as derivative contracts on underlying S costing F` (0) (LETF) and Fv (0) (VETF) to purchase, with payoffs of133

F` (∆t) and Fv (∆t), respectively.134

Assume that the underlying index price follows a geometric Brownian motion, which implies that the price135

is always positive. In addition, assume a constant risk-free rate for short term bonds. It can be easily shown136

5For a definition of partial stochastic dominance, see Atkinson (1987); Van Staden et al. (2021)
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that (see e.g. (Avellaneda and Zhang, 2010))137

F` (∆t)

F` (0)
= exp {−c` ·∆t} · f` (∆t;β) ·

(
S (∆t)

S (0)

)β
, (1.1)138

where139

f` (∆t;β) = exp

{
−
[
(β − 1) r +

1

2
(β − 1)βσ2

]
·∆t

}
(1.2)140

c` > 0 is the expense ratio, r is the risk-free interest and σ is the volatility of return. In other words, payoff141

F` (∆t) is a deterministic function of the terminal value of the underlying index. Of course, S(∆t) itself is142

stochastic.143

Since small values of maturity ∆t can be undesirable due to frequent trading, and large values of ∆t emphasize144

the time- and volatility decay of simply holding the LETF F`, suppose the investor chooses a convenient maturity145

of ∆t = 0.25 years (one quarter). Figure 1.1 illustrates the payoff diagrams for the investor’s wealth at maturity146

W (∆t) under different combinations of T-bills and an ETF, as a function of the value at maturity S (∆t) of147

the underlying equity index. Similar payoff diagrams can be seen in Knapp (2023) and for the unleveraged case148

in Bertrand and Prigent (2022).149

For simplicity, we assume parametric asset dynamics for the T-bills and index S (S follows geometric150

Brownian motion) in Figure 1.1 calibrated to US market data over 1926 to 2023. We impose realistic ETF151

expense ratios, and a borrowing premium of 3% over the T-bill rate for short positions. Note that the assumption152

of parametric asset dynamics is for purposes of intuition only, since the investment results in Section 5 do not153

rely on any parametric assumptions. Leaving rigorous derivation for subsequent sections, we make the following154

qualitative observations regarding the payoff diagrams for purposes of intuition:155

• Figures 1.1 illustrate that we can characterize the payoffs of LETF investments as call-like. This suggests156

that the addition of an LETF to a portfolio can be a useful way to add inexpensive leverage while preserving157

downside protection, much like a usual call option. Provided that the investment in the LETF is itself158

not funded by borrowing (i.e. the LETF position itself is not leveraged), the LETF payoff is always159

non-negative due to limited liability even in the case of significant drops in the value of the underlying160

equity index, in contrast with leveraged VETF positions.161

• For calibrated geometric Brownian motion (GBM) dynamics for the equity index S, Figure 1.1 illustrates162

that investing all wealth in the LETF with β = 2 (Figure 1.1(a)) dominates the 2x leveraged investment163

in the VETF (200% of wealth in VETF funded by borrowing and amount equal to 100% of wealth)164

almost everywhere, but underperforms a 100% investment in the VETF for negative underlying index165

returns (i.e. when S (∆t) /S (0) < 1). By contrast, investing 50% of wealth in the LETF (Figure 1.1(a))166

and the remaining 50% in T-bills dominates the payoff of investing 100% of wealth in the VETF almost167

everywhere, but underperforms a 2x leveraged investment in the VETF for positive underlying index168

returns (S (∆t) /S (0) > 1). Note that under GBM dynamics for S, the terminal wealthW (∆t) conditional169

on the terminal value S (∆t) is deterministic for both VETF and LETF investments (see Section 3.1).170

171

When the underlying index is modelled by a jump process, due to limited liability, a correction to the index172

price is needed so that LETF remains positive, see Section 3.1 for a more detailed discussion. This makes the173

payoff relation between LETF and the underlying index stochastic. While qualitatively similar observations as174

in the case of no jumps (Figure 1.1) apply to the median payoffs of the LETF investments, allowing for jumps175

in the underlying asset dynamics can affect the LETF payoff significantly, and jumps are therefore critical to176

incorporate in the investor’s strategy. However, most of the existing literature on investment strategies with177

LETFs only allows for pure diffusion processes for the equity index underlying the LETF (Giese (2010) Jarrow178

(2010), Leung and Santoli (2012), Leung et al. (2017), Leung and Sircar (2015), Wagalath (2014), Guasoni and179

Mayerhofer (2023)).180

We emphasize that while Figure 1.1 is for the purposes of intuition only, it is nevertheless based on asset181

dynamics calibrated to empirical US market data. Since even long-term investments (e.g. 10 years) can be182

managed effectively using a dynamic investment strategy with for example quarterly rebalancing (i.e. at the183

beginning of each quarter, the investor faces investment choices and associated outcomes such as those in Figure184

1.1 ), this suggests that the benefits of LETFs could potentially be harnessed without being unduly affected by185

the compounding effects as well as time- and volatility-decay. Our results show that this is indeed the case,186

even if no parametric form of the underlying dynamics is assumed.187
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(a) LETF: 100%, T-bills: 0% vs. VETF combinations
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(b) LETF: 50%, T-bills: 50% vs. VETF combinations

Figure 1.1: Payoffs when equity market index S follows calibrated GBM dynamics: Investor wealth gross return
W (∆t) /W (0) as a function of underlying equity index gross return S (∆t) /S (0), ∆t = 0.25 (1 quarter), for different
proportions of initial wealth W (0) invested in the LETF, VETF and T-bills at time t0 = 0. Asset parameters are
calibrated to US equity and bond market data over the period 1926:01 to 2023:12 (Appendix B), LETF and VETF
expense ratios are assumed to be 0.89% and 0.06% respectively, and a borrowing premium of 3% over the T-bill rate is
applicable to short positions. See Section 3.1 for a rigorous treatment of the illustrated relationships.

1.3 Organization188

The remainder of the paper is organized as follows. Section 2 provides the general problem formulation, with189

Section 3 presenting closed-form results obtained under stylized assumptions. Section 4 discusses a neural190

network-based solution approach to obtain the optimal investment strategies numerically under multiple invest-191

ment constraints. Finally, Section 5 presents indicative investment results and Section 6 concludes the paper,192

with additional analytical and numerical results presented in Appendices A, B and C.193

2 General problem formulation194

In this section we formulate, in general terms, the dynamic portfolio optimization problem to be solved by an195

active portfolio manager (simply “investor”) over a given time horizon [t0 = 0, T ], where T > 0 can be large196

(e.g. 10 years). We assume that the investment performance of the investor is measured relative to that of a197

given benchmark portfolio, as is typically the case for professional asset managers (see for example Alekseev and198

Sokolov (2016); Kashyap et al. (2021); Korn and Lindberg (2014); Lehalle and Simon (2021); Zhao (2007)). To199

this end, for any t ∈ [t0 = 0, T ], letW (t) and Ŵ (t) denote the portfolio value (or informally, simply the “wealth”)200

of the investor and benchmark portfolios, respectively. The same initial wealth w0 := W (t0) = Ŵ (t0) > 0 is201

assumed to ensure that the performance comparison remains fair. The investor’s strategy is based on investing202

in any of a set of Na candidate assets, while the benchmark is defined in terms of N̂a potentially different203

underlying assets.204

In more detail, if X̂ (t) denotes the state (or informally, the information) used in obtaining the benchmark205

asset allocation strategy at time t ∈ [t0, T ], let p̂j
(
t, X̂ (t)

)
denotes the proportion of the benchmark wealth206

Ŵ (t) invested in asset j ∈
{

1, .., N̂a

}
. The vector p̂

(
t, X̂ (t)

)
=
(
p̂j

(
t, X̂ (t)

)
: j = 1, .., N̂a

)
∈ RN̂a then207

denotes the asset allocation or investment strategy of the benchmark at time t ∈ [t0, T ].208

Similarly, if X (t) denotes the state or information incorporated by the investor in making their asset209

allocation decision, let pi (t,X (t)) denote the proportion of the investor’s wealth W (t) invested in asset i ∈210

{1, .., Na}, with p (t,X (t)) = (pi (t,X (t)) : i = 1, .., Na) ∈ RNa denoting the investor’s asset allocation or211

investment strategy at time t ∈ [t0, T ].212

The set of portfolio rebalancing events is denoted by T ⊆ [t0, T ], where we consider T = [t0, T ] in the case of213

continuous rebalancing (Section 3), or a discrete subset T ⊂ [t0, T ] in the case of discrete rebalancing (Section214

4). Given the set T , the investor and benchmark investment strategies are respectively defined as215

P = {p (t,X (t)) , t ∈ T } , and P̂ =
{
p̂
(
t, X̂ (t)

)
, t ∈ T

}
. (2.1)216

It is typical for the investor to be subject to investment constraints, which are encoded by the setA of admissi-217
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ble controls. In the simplest case, admissible investor strategies P ∈ A are such that P = {p (t,X (t)) ∈ Z : t ∈ T },218

with Z denoting the admissible control space. More complex constraints require a more careful formulation of219

A and Z, see for example Section 4.220

Since the investor aims to construct P to outperform the benchmark strategy P̂, Assumption 2.1 below221

outlines some general assumptions regarding the investment benchmark P̂. Note that Assumption 2.1 aligns222

with investment practice and is important for assessing the relevance of LETFs when constructing portfolios for223

outperforming a benchmark - see further discussion in Remark 2.1 below.224

Assumption 2.1. (General assumptions regarding the benchmark strategy P̂) We make the following general225

assumptions regarding the benchmark strategies considered in this paper:226

(i) The investor can observe the asset allocation p̂
(
t, X̂ (t)

)
of the benchmark strategy at each t ∈ T .227

(ii) The sets of investable assets available to the investor and benchmark, respectively, do not necessarily228

correspond. In particular, the benchmark strategy may invest in assets which the investor is unwilling or229

unable to invest in, or the investor might consider investing in a much larger universe of investable assets230

than those included in the benchmark.231

Remark 2.1 highlights some key observations regarding Assumption 2.1.232

Remark 2.1. (Clarification of benchmark assumptions) With regards to Assumption 2.1, we observe the fol-233

lowing:234

(i) Observable benchmarks play a key role in performance reporting for many institutional investors, since235

active portfolio managers often explicitly pursue the outperformance of a predetermined investment bench-236

mark (see for example Alekseev and Sokolov (2016); Kashyap et al. (2021); Korn and Lindberg (2014);237

Lehalle and Simon (2021); Zhao (2007)). As a result, the benchmark is clearly defined and transpar-238

ent in the sense of the underlying asset allocation, which often incorporates broad market indices and239

bonds. In the case of pension funds, the benchmark (or “reference”) portfolios are usually constructed240

using traded assets in fixed proportions. Examples include the Canadian Pension Plan (CPP) with a base241

reference portfolio of 15% Canadian government bonds and 85% global equity (Canadian Pension Plan242

(2022)), or the Norwegian government pension plan (“Government Pension Fund Global”, or GPFG) using243

a benchmark portfolio of 70% equities and 30% bonds (Government Pension Fund Global (2022)).244

(ii) Active portfolio managers often consider not only different but indeed larger/broader sets of assets than245

the benchmark. For example, pension funds might include private equity whereas the benchmark might be246

based on publicly traded assets only (see for example Canadian Pension Plan (2022)). In the assessment247

of the effect of replacing VETFs with LETFs discussed in Section 3, we consider scenarios where the248

benchmark strategy is defined in terms of a broad stock market index, but the investor might not be able249

to invest directly in the index itself, and invests instead in an ETF (VETF or LETF) replicating the index250

returns. Since the ETFs only replicate (a multiple of) the index returns before costs, the existence of a251

non-zero ETF expense ratios implies that investing in ETFs is not exactly the same as investing in the252

underlying index, i.e. an ETF and its underlying index can be viewed as different assets. Assumption253

2.1(ii) is therefore relevant to an assessment of the role of a VETF or LETF within portfolios designed to254

beat a broad equity index-based investment benchmark.255

Let Et0,w0

P [·] and V art0,w0

P [·] denote the expectation and variance, respectively, given initial wealth w0 =256

W (t0) = Ŵ (t0) at time t0 = 0 and using admissible investor strategy P ∈ A over [t0, T ]. As a result of257

Assumption 2.1, the benchmark strategy P̂ remains implicit and fixed for notational simplicity.258

As discussed in the Introduction, for an investment objective measuring outperformance, we wish to maximize259

the information ratio (IR) of the investor relative to the benchmark. In the context of dynamic trading with260

strategies of the form (2.1), the information ratio (IR) is defined as (Bajeux-Besnainou et al. (2013); Goetzmann261

et al. (2002))262

IRt0,w0

P =
Et0,w0

P

[
W (T )− Ŵ (T )

]
Stdevt0,w0

P

[
W (T )− Ŵ (T )

] . (2.2)263

Maximizing the IR (2.2) can be achieved by solving a mean-variance (MV) optimization problem (Bajeux-264

Besnainou et al. (2013)) ,265
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sup
P∈A

{
Et0,w0

P

[
W (T )− Ŵ (T )

]
− ρ · V art0,w0

P

[
W (T )− Ŵ (T )

]}
, ρ > 0, (2.3)266

where ρ denotes a scalarization parameter.267

Using the embedding technique of Li and Ng (2000); Zhou and Li (2000), we solve (2.3) by formulating the268

equivalent problem (Van Staden et al. (2023))269

(IR (γ)) : inf
P∈A

Et0,w0

P

[(
W (T )−

[
Ŵ (T ) + γ

])2
]
, γ > 0, (2.4)270

where γ > 0 denotes the embedding parameter. As discussed in Van Staden et al. (2023), the parameter γ271

can be viewed as the investor’s (implicit) target for benchmark outperformance formulated in terms of terminal272

wealth.273

Remark 2.2. (Time consistency.) Note that the control for problem (2.3) is formally the pre-commitment274

policy, i.e. not time consistent. However, the pre-commitment policy solution of Problem (2.3) is identical to the275

strategy for an induced time consistent policy (Forsyth, 2020; Strub et al., 2019), and hence it is implementable.6276

The induced time consistent strategy in this case is the target based Problem (2.4), with a fixed value of277

γ,∀t > 0. The relationship between pre-commitment and implementable target-based schemes in the mean-278

variance context is discussed in Menoncin and Vigna (2017); Vigna (2014, 2020, 2022). We consider the policy279

followed by the investor for t > 0 to be the implementable solution of Problem (2.4) with a fixed value of γ.280

This is identical to the solution of Problem (2.3) as seen at t = 0.281

3 Closed-form solutions282

To obtain the valuable intuition regarding the characteristics of IR-optimal investment strategies incorporating283

a LETF or VETF on a broad equity market index, we present closed-form solutions to the IR problem (2.4)284

under stylized assumptions. Remark 3.1 emphasizes that these assumptions are required for the derivation of285

closed-form solutions in this section only.286

Remark 3.1. (Relaxing closed-form assumptions) The closed-form results presented in this section require287

stylized assumptions (Assumption 3.1 and Assumption 3.2 below), but we will use numerical techniques (Sec-288

tion 4) and present indicative investment results (Section 5) where these assumptions are not required. The289

investment problem is solved numerically in a setting where the following is allowed: (i) no restrictions on the290

number of underlying assets, (ii) no parametric assumptions are required for the dynamics of the underlying291

assets, (iii) discrete portfolio rebalancing is used, (iv) leverage is restricted and in some scenarios not allowed292

at all, (v) nonzero borrowing premiums over the risk-free rate are applicable when funding leveraged positions,293

(vi) no trading in the event of insolvency can occur, and (vii) more general benchmark strategies are allowed,294

though for illustrative purposes we will use constant proportion strategies due to their popularity in practical295

applications.296

The first set of general assumptions for the derivation of the closed-form solution in this section is outlined297

in Assumption 3.1.298

Assumption 3.1. (Stylized assumptions for closed-form solutions) For the purposes of obtaining closed-form299

solutions in this section, we assume the following:300

(i) The benchmark investment strategy (asset allocation) is a deterministic function of time defined in terms301

of the 30-day T-bills (“risk-free” asset) denoted by B and a broad equity market index (“risky” asset)302

denoted by S. Note that any known deterministic benchmark strategy clearly satisfies Assumption 2.1,303

and includes as a special case the constant proportion strategies which are popular benchmarks used in304

practice (see for example Canadian Pension Plan (2022),Government Pension Fund Global (2022)).305

(ii) We consider two investors, each optimizing their respective portfolios relative to the same benchmark. Both306

investors are assumed to be unable or unwilling to invest directly the underlying broad equity market index307

itself (i.e. replicate the index with individual stocks), and instead invests in ETFs referencing the index.308

6An implementable strategy has the property that the investor has no incentive to deviate from the strategy computed at time
zero at later times (Forsyth, 2020).
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The first investor, informally referred to as the “VETF investor”, allocates wealth to two underlying assets,309

namely 30-day T-bills B and a VETF Fv with expense ratio cv > 0, where the VETF simply replicates310

the instantaneous returns of the index S before costs. The second investor, informally referred to as the311

“LETF investor”, allocates wealth to two underlying assets, namely 30-day T-bills B and a LETF F` with312

expense ratio c` > 0, where the LETF returns β > 1 times the instantaneous returns of the index S before313

costs.314

(iii) Parametric dynamics for all underlying assets are assumed, including jump-diffusion dynamics for the315

broad equity market index S - see (3.1)-(3.2), (3.4) and (3.8) below.316

Table 3.1 provides an example of an investment scenario consistent with Assumption 3.1(i)-(ii), which will317

be used for the illustration of the closed-form solutions of this section.318

Table 3.1: Closed-form solutions - Candidate assets and benchmark: Example of the investment scenario outlined
in Assumption 3.1(i)-(ii), which will be used when illustrating the closed-form solutions in this section. The constant
proportion benchmark has been chosen to align with typical benchmarks used by pension funds, while the indicative
expense (or cost) ratios are chosen from the range of expense ratios of VETFs and LETFs on broad equity market indices
typically observed in practice.

Underlying assets
Benchmark

Investor candidate assets
Label Value Asset description Using VETF Using LETF

T30 B (t) 30-day Treasury bill 30% X X

Market S (t) Market portfolio (broad equity market index) 70% - -
VETF Fv (t) Vanilla or standard/unleveraged ETF (VETF)

replicating the returns of the market portfolio S (t), with
expense ratio cv = 0.06%

0% X -

LETF F` (t) Leveraged ETF (LETF) with daily returns replicating
β = 2 times the daily returns of the market portfolio
S (t), with expense ratio c` = 0.89%

0% - X

319

We assume that the underlying index S can follow any of the commonly-encountered jump diffusion processes320

in finance (see for example Kou (2002); Merton (1976)), resulting in the following assumed dynamics for B and321

S, respectively,322

dB (t)

B (t)
= r · dt, (3.1)323

dS (t)

S (t−)
= (µ− λκs1) dt+ σ · dZ + d

π(t)∑
i=1

(ξsi − 1)

 . (3.2)324

In (3.1)-(3.2), r denotes the continuously compounded risk-free rate, π (t) denotes a Poisson process with325

intensity λ ≥ 0, while µ and σ denote the drift and volatility coefficients, respectively, under the objective (real-326

world) probability measure. ξsi are i.i.d. random variables with the same distribution as ξs, which represents327

the jump multiplier associated with the S-dynamics, and we define328

κs1 = E [ξs − 1] , κs2 = E
[
(ξs − 1)

2
]
, (3.3)329

which can be obtained using a given probability density function (pdf) of ξs, denoted by G (ξs). Finally,330

for any functional ψ (t) , t ∈ [t0, T ], we use ψ (t−) and ψ (t+) as shorthand notation for the one-sided limits331

ψ (t−) = limε↓0 ψ (t− ε) and ψ (t+) = limε↓0 ψ (t+ ε), respectively. Note that we can recover the assumption of332

geometric Brownian motion (GBM) dynamics for S by simply setting the intensity λ ≡ 0 in (3.2).333

Since the VETF Fv with expense ratio cv is a vanilla/standard ETF simply replicating the returns of S334

before costs, it has dynamics given by335

dFv (t)

Fv (t−)
=

dS (t)

S (t−)
− cv · dt336

= (µ− λκs1 − cv) · dt+ σ · dZ + d

π(t)∑
i=1

(ξsi − 1)

 . (3.4)337
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In contrast, the LETF F` with expense ratio c` > 0 aims at replicating β > 1 times the instantaneous returns338

of the underlying broad stock market index S before costs, and therefore has dynamics approximately given by339

dF` (t)

F` (t−)
' β

dS (t)

S (t−)
− [(β − 1) r + c`] dt. (3.5)340

It should be emphasized that (3.5) is only an approximation. Since the investor in an LETF has limited liability,341

exact equality in (3.5) only holds in the case where there are no jumps in the dynamics of S. In the case of pure342

GBM dynamics, F` can never become negative, hence limited liability is irrelevant. As a result, (3.5) is indeed343

used to model LETF dynamics in the literature where the analysis is limited to GBM dynamics for S (see344

for example Avellaneda and Zhang (2010), Jarrow (2010), Guasoni and Mayerhofer (2023)), with the notable345

exception of Ahn et al. (2015) in the context of Q measure dynamics.346

However, in the case of jump-diffusion dynamics for S, (3.5) is not quite correct since the LETF investor347

is protected by limited liability. In more detail, if there is a jump with multiplier ξs in the underlying index348

(3.2) at a specific time t, then the approximation (3.5) suggests that the value of the LETF would jump to349

F` (t) = F` (t−) · [1 + β (ξs − 1)].350

Therefore, in the case of a large downward jump in the underlying index, in particular where the jump351

multiplier satisfies ξs < (β − 1) /β, the approximation (3.5) implies that F` (t) < 0, which cannot occur due352

to limited liability of the LETF. Instead, if it is indeed the case that ξs ≤ (β − 1) /β, the value of the LETF353

simply drops to zero, i.e. F` (t) ≡ 0.354

We can therefore model the limited liability of the LETF F` by observing that F` therefore experiences355

jumps which are related to, but not necessarily exactly the same as the jumps experienced by the underlying356

index S. To this end, we define a jump multiplier ξ` for the F`-dynamics in terms of the jump multiplier ξs in357

the S-dynamics as358

ξ` =


ξs if ξs > (β − 1) /β,

(β − 1)

β
if ξs ≤ (β − 1) /β.

(3.6)359

The second case in (3.6) enforces the limited liability of the LETF investor in the case of large downward jumps,360

i.e. F` (t) ≡ 0 if ξs ≤ (β − 1) /β. For subsequent use, we also define the following quantities involving the LETF361

jump multiplier ξ`,362

κ`1 = E
[
ξ` − 1

]
, κ`2 = E

[(
ξ` − 1

)2]
, κ`,sχ = E

[(
ξ` − 1

)
(ξs − 1)

]
. (3.7)363

Given (3.2), (3.5) and (3.6), the LETF dynamics correctly incorporating jumps is therefore given by364

dF` (t)

F` (t−)
= [β (µ− λκs1)− (β − 1) r − c`] · dt+ βσ · dZ + β · d

π(t)∑
i=1

(
ξ`i − 1

) , (3.8)365

where ξ`i are i.i.d. random variables with the same distribution as ξ`, which represents the jump multiplier366

associated with the F`-dynamics (3.6). We highlight the following observations regarding the dynamics (3.2),367

(3.4) and (3.8).368

(i) The jumps in the underlying index S, the VETF Fv and LETF F` occur at the same time, so the Poisson369

process π (t) and intensity λ are the same in (3.2), (3.4) and (3.8). More formally, the processes (3.2),370

(3.4) and (3.8) have the same Poisson random measures, but the compensated Poisson random measure371

is different for the F`-dynamics since the LETF jump sizes are slightly different due to (3.6).372

(ii) The dynamics (3.4) and (3.8) implicitly assume that the ETFs have negligible tracking errors, while having373

non-negligible expense ratios. While ETF expense ratios can indeed be material, especially for LETFs, the374

assumption that tracking errors are negligible are often employed in the literature (see for example Bansal375

and Marshall (2015), Leung and Sircar (2015)). Given the recent developments in designing replication376

strategies for LETFs that remain robust even during periods of market volatility (see for example Guasoni377

and Mayerhofer (2023)), this appears to be a reasonable assumption especially in the case of the most378

popular VETFs and LETFs written on the major stock market indices.379

(iii) As noted in the Introduction, we limit the analysis to the case of LETFs where β > 1 (i.e. “bullish”380
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LETFs). However, the dynamics (3.8) could also be applicable to inverse or “bearish” ETFs where β < 1381

(see for example Jarrow (2010)), but adjustments are usually required to incorporate the time-dependent382

borrowing cost involved in short-selling the particular components of the underlying replication basket383

each time t (see for example Avellaneda and Zhang (2010)).384

Remark 3.2. (Relationship to Ahn et al. (2015)) In Ahn et al. (2015), the authors model the limited liability385

of the LETF by taking the point of view of the manager of the LETF. The manager must purchase insurance to386

handle the cases where the manager’s position becomes negative. In this work, we simply take the point of view387

of the holder the LETF (not the manager), who has no exposure to the possible negative value of the manager’s388

position. The cost of this insurance (to the manager) is assumed to be passed on to the LETF investor as part389

of the fee c` charged by the manager, which is easily observable.390

3.1 Intuition: lump sum investment scenario391

As a simple and intuitive illustration of the potential and risks of using LETFs vs. VETFs, we consider a simple392

version of the general formulation of the problem as outlined in Section 2. Specifically, we consider a lump393

sum investment scenario as discussed in the Introduction (see Figures 1.1 and 3.1), where the initial wealth394

w0 = W (t0) = Ŵ (t0) > 0 is invested at time t0 = 0 with no intermediate intervention/rebalancing until the395

terminal time T = ∆t = 0.25 years (i.e. one quarter). In the notation of Section 2, we therefore have a trivial396

set of rebalancing events T = [t0].397

First, we consider the implications of the underlying asset dynamics without referencing the investment398

strategy (i.e. wealth allocation to assets). The dynamics (3.1)-(3.2) imply that399

B (∆t)

B (0)
= exp {r ·∆t} , (3.9)400

S (∆t)

S (0)
= exp


(
µ− λκs1 −

1

2
σ2

)
·∆t+ σ · Z (∆t) +

π(∆t)∑
i=1

log ξsi

 , (3.10)401

where the values B (0) and S (0) are observable at time t0 = 0. In the case of the VETF, we simply have

Fv (∆t)

Fv (0)
= exp {−cv ·∆t} ·

(
S (∆t)

S (0)

)
. (3.11)

In the case of the LETF, we have402

F` (∆t)

F` (0)
= exp {−c` ·∆t} · f` (∆t;β) · Ỹ` (∆t;β) ·

(
S (∆t)

S (0)

)β
, (3.12)403

where404

f` (∆t;β) = exp

{
−
[
(β − 1) r +

1

2
(β − 1)βσ2

]
·∆t

}
, and Ỹ` (∆t;β) =

π(∆t)∏
i=1

[
1 + β

(
ξ`i − 1

)
(ξsi )

β

]
. (3.13)405

Expression (3.12) for the case where there are no jumps, is given in Avellaneda and Zhang (2010).406

For purposes of intuition, consider the special case where the underlying index S experiences zero growth/decline407

over the time horizon ∆t. If S (∆t) = S (0), it is clear that the LETF will perform worse than the VETF, i.e.408

assuming β > 1, F` (∆t) < Fv (∆t), due to the following:409

• Decay due to volatility: The term f` (∆t;β) < 1, which only affects the LETF, is dominated by the410

diffusive volatility σ in the underlying S-dynamics. All else being equal, the larger volatility of S, the411

worse the performance of the LETF relative to the VETF, with the limiting case limσ→∞ f` (∆t;β) = 0.412

• Time decay: Even if there is no change in the value of the underlying index, S (∆t) = S (0), the value of413

the LETF tends to zero if held for a long time, since lim∆t→∞ f` (∆t;β) = 0.414

• Costs and interest rates: Expense ratios for LETFs are typically substantially higher than for VETFs,415

0 < cv � c`. In addition, all else being equal, increasing interest rates r > 0 also decreases f` (∆t;β).416

However, while these effects further decrease the value of the VETF relative to the LETF, they are417

expected to be comparatively small compared to the other effects.418
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• Decay due to jumps: It can be shown that the term Ỹ` (∆t;β), which only affects the LETF, satisfies419

Ỹ` (∆t;β) ≤ 1, where the maximum value (Ỹ` (∆t;β) = 1) is achieved either when there are no jumps in420

the value of the underlying over [0,∆t] (i.e. π (∆t) = 0), or if there are jumps but they all satisfy ξsi = 1421

which has probability of almost surely zero. In other words, when S (∆t) = S (0), the mere presence of422

jumps in the underlying S decreases the value of the LETF relative to the VETF via the term Ỹ` (∆t;β).423

This is illustrated in Figure 3.1 at the point where S (∆t) /S (0) = 1.424

The preceding observations summarize what are effectively the standard objections to LETFs that can be found425

in the literature, the only addition being the rigorous treatment of jumps in the LETF dynamics and the426

associated jump decay component.427

Next, we discuss lump sum investment strategies, i.e. wealth allocation to assets at time t0 = 0 with no428

subsequent rebalancing prior to maturity T = ∆t. For simplicity, we consider a constant proportion benchmark429

strategy P̂ = p̂ (t0) := (1− p̂s, p̂s), where p̂s denotes the proportion of benchmark wealth Ŵ (t0) = w0 invested430

in the broad equity market index S at time t0, with the remaining proportion (1− p̂s) invested in 30-day T-bills.431

To emphasize that the benchmark wealth at the end of the investment time horizon depends on p̂s, we use the432

notation Ŵ (∆t; p̂s), and observe that433

Ŵ (∆t; p̂s)

w0
= (1− p̂s) · exp {r ·∆t}+ p̂s ·

S (∆t)

S (0)
. (3.14)434

(a) LETF: 100%, T-bills: 0% vs. VETF combinations (b) LETF: 50%, T-bills: 50% vs. VETF combinations

Figure 3.1: Payoffs when equity market index S follows calibrated jump-diffusion dynamics (Kou (2002) model):
Investor wealth gross returnW (∆t) /W (0) as a function of underlying equity index gross return S (∆t) /S (0), ∆t = 0.25
(1 quarter), for different proportions of initial wealth W (0) invested in the LETF, VETF and T-bills at time t0 = 0.
Asset parameters are calibrated to US equity and bond market data over the period 1926:01 to 2023:12 (Appendix B),
LETF and VETF expense ratios are assumed to be 0.89% and 0.06% respectively, and a borrowing premium of 3% over
the T-bill rate is applicable to short positions.

435

The investor, being unable to invest directly in S, can combine an ETF investment with T-bills. We will436

assume that the investor does not short-sell the LETF or VETF7, but might short-sell the T-bills (i.e. borrow437

funds) to leverage their investment in the ETF, in which case a constant borrowing premium b ≥ 0 is added438

to the T-bill returns. In more detail, if p denotes the fraction of wealth W (t0) = w0 that the LETF or VETF439

investors invest in their respective ETFs, an investment fraction p > 1 in the ETF is funded by borrowing the440

amount (1− p) · w0 at an interest rate of (r + b), so the T-bill dynamics applicable to the investors can be441

modified as442

B (∆t)

B (0)
= exp {r (p) ·∆t} , where r (p) = r + b · I[p>1], (3.15)443

with I[A] denoting the indicator of the event A.444

7As can be seen from the relationship between the objective functions (2.3) and (2.4), optimizing the IR essentially places
us within a variant of the Mean-Variance (MV) framework with a constant risk aversion parameter. In MV optimization (see for
example Bensoussan et al. (2014); Van Staden et al. (2018)) with a constant risk aversion parameter, it is never optimal to short-sell
the risky asset. The subsequent results of Section 3 and the results of Ni et al. (2024) suggest that this observation also holds our
investment scenario, i.e. it is never expected to be IR-optimal to short-sell high return/high volatility assets given the existence of
low return/low volatility assets.
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The VETF investor (see Assumption 3.1(ii)) specifies an investment strategy Pv = pv (t0) = (1− pv, pv),445

where pv denotes the fraction of wealthW (t0) = w0 invested in the VETF Fv at time t0 = 0, and the remaining446

fraction of wealth (1− pv) invested in 30-day T-bills. The VETF investor’s wealth at the end of the investment447

time horizon,Wv (∆t; pv) therefore satisfies448

Wv (∆t; pv)

w0
= (1− pv) · exp {r (pv) ·∆t}+ pv · exp {−cv ·∆t} ·

(
S (∆t)

S (0)

)
. (3.16)449

Similarly, the LETF investor specifies investment strategy P` = p` (t0) = (1− p`, p`), where p` is the450

fraction of wealth W (t0) = w0 invested in the LETF F` at time t0 = 0, and the remaining fraction of wealth451

(1− p`) invested in 30-day T-bills. Using (3.12), the LETF investor’s wealth at the end of the investment time452

horizon,W` (∆t; p`) therefore satisfies453

W` (∆t; p`)

w0
= (1− p`) · exp {r (p`) ·∆t}+ p` · exp {−c` ·∆t} · f` (∆t;β) · Ỹ` (∆t;β) ·

(
S (∆t)

S (0)

)β
. (3.17)454

Varying pv and p` in (3.16) and (3.17) therefore trace out different payoffs for Wv (∆t; pv) and W` (∆t; p`)455

as a function of the (random) underlying index outcome S (∆t), with specific choices of pv and p` illustrated456

in Figures 1.1 and 3.1. Note however that the wealth of the VETF investor Wv (∆t; pv) is linear in S (∆t), and457

conditional on S (∆t) the outcome Wv (∆t; pv) is deterministic. However, this is not the case for the wealth458

W` (∆t; p`) of the LETF investor, which has a power call-like payoff due to the [S (∆t)]
β term of (3.17) in459

conjunction with limited liability. Note that even if we condition on the value of S (∆t), the wealth outcome460

W` (∆t; p`) is not deterministic due to the presence of the jump term Ỹ` (∆t;β)in (3.17). However, if no jumps461

are present then W` (∆t; p`) conditional on S (∆t) is linear in [S (∆t)]
β , compare Figures 1.1 and 3.1.462

Suppose the LETF and VETF investors want to choose values p∗v and p∗` , respectively, to maximize the IR463

(2.2) subject to an implicit target γ > 0 in (2.4). In this setting of parametric asset dynamics, we can simulate464

Nd paths of the underlying equity index using (3.10) use each path’s information together.465

First, we discretize possible values of the fractions pv and p` using a fine grid, so that using each discretized466

value of pv and p`, we can obtain the corresponding values of W (j)
v (∆t; pv) and W

(j)
` (∆t; p`) respectively, along467

each path j = 1, ..., Nd. Next, using a discretization of the objective (2.4) in this setting, we can find the468

approximate IR-optimal values p∗v and p∗` by exhaustive search over the grid by solving469

p∗k = arg min
pk

 1

Nd

Nd∑
j=1

(
W

(j)
k (∆t; pk)−

[
Ŵ (j) (∆t; p̂s) + γ

])2

 , k ∈ {v, `} . (3.18)470

Figure 3.2 illustrates the results of this procedure for two different values of the implicit target, γ = 20 and471

γ = 50, where we observe the following:472

• In the case of γ = 20 in Figure 3.2(a), the VETF investor simply invests all wealth in the VETF (p∗v =473

100%), whereas the LETF investor invests slightly less than half of total wealth in the LETF (p∗` = 48.3%).474

Note that the IR-optimal strategies in this case satisfy p∗v/p∗` = 2.070.475

• With a significantly more aggressive benchmark outperformance target of γ = 50 in Figure 3.2(b), the476

LETF investor now invests p∗` = 70.1% in the LETF, i.e. there is no need to leverage the LETF investment477

itself, whereas the VETF investor borrows 20% of wealth to invest p∗v = 120% in the VETF. This leverage478

is costly for the VETF investor due to the lack of downside protection and borrowing premiums, which479

can be seen in both the upside and extreme downside outcomes of Figure 3.2(b). In this case, we have480

p∗v/p
∗
` = 1.712.481

Comparing IR-optimal investment strategies implemented using a LETF or VETF with the same benchmark482

outperformance target γ > 0, the observation that p∗v/p∗` ≈ β = 2 holds in the cases illustrated in Figure 3.2483

is not an accident. This relationship is more rigorously discussed in the subsequent results of this section, but484

for now we note that exact equality p∗v/p
∗
` ≡ β, where β is the returns multiplier of the LETF, only holds485

for the IR-optimal investment strategies in the case of continuous rebalancing (∆t ↓ 0), zero expense ratios486

(cv = c` = 0), zero borrowing premium over the risk-free rate r (b = 0), and when no leverage restrictions are487

applicable. While this is a very restrictive set of assumptions, p∗v/p∗` ≈ β is nevertheless a useful rule-of-thumb488

to keep in mind when comparing IR-optimal investment strategies in more general cases, a simple example489

being Figure 3.2. However, it should be emphasized that while the strategies might satisfy p∗v/p∗` ≈ β, this does490
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not mean that the ultimate investment outcomes for the LETF and VETF investors (such as investor wealth,491

benchmark outperformance etc.) have straightforward relationships except under very restrictive conditions,492

since the outcomes are affected by limited liability and the path-dependent role of jumps (see Figure 3.2).493

(a) γ = 20: p∗` = 48.3%, p∗v = 100% (b) γ = 50: p∗` = 70.1%, p∗v = 120%

Figure 3.2: Payoffs when equity market index S follows calibrated jump-diffusion dynamics (Kou (2002) model):
Investor wealth gross returnW (∆t) /W (0) as a function of underlying equity index gross return S (∆t) /S (0), ∆t = 0.25
(1 quarter), for different proportions of initial wealth W (0) invested in the LETF, VETF and T-bills at time t0 = 0.
Asset parameters are calibrated to US equity and bond market data over the period 1926:01 to 2023:12 (Appendix B),
LETF and VETF expense ratios are assumed to be 0.89% and 0.06% respectively, and a borrowing premium of 3% over
the T-bill rate is applicable to short positions.

494

3.2 Dynamically-optimal strategies under continuous rebalancing495

Section 3.1 treated the lump-sum investment scenario with no subsequent intervention over (t0, T ], i.e. the set496

of rebalancing times being simply T = [t0]. We now consider the other extreme, namely that of continuous497

rebalancing, where the set of rebalancing times is given by T = [t0, T ].498

Derivation of closed-form optimal strategies necessarily requires stylized assumptions, in this case outlined in499

Assumption 3.2. As per Remark 3.1, we emphasize that these assumptions are not required for the subsequent500

results discussed in Section 5.501

Assumption 3.2. (Stylized assumptions - continuous rebalancing) In the case of continuous rebalancing, for502

the purposes of obtaining closed-form solutions in this section, we assume the following:503

(i) Assumption 3.1 holds, including parametric dynamics (3.1)-(3.2), (3.4) and (3.8) for the underlying assets.504

(ii) The investor injects cash into the portfolio at a constant rate of q ≥ 0 per year. To ensure the wealth505

processes remain comparable, the identical rate of cash injection is assumed for the benchmark portfolio.506

(iii) We assume continuous portfolio rebalancing (T = [t0, T ]), no investment constraints (i.e. no leverage507

limits or short-selling constraints), zero borrowing premium so that both borrowing and lending occurs508

at the risk-free rate r, and trading is allowed to continue in the event of insolvency. Note that these509

assumptions are standard in the derivation of closed-form solutions of multi-period portfolio optimization510

problems (see for example Zhou and Li (2000)). This implies that the investment in the LETF can itself511

be leveraged, which is plausible since even retail investors can borrow and invest in LETFs. However, the512

degree to which leverage is required by either the LETF or VETF investors depends on the aggressiveness513

of the outperformance target γ, as shown by the subsequent results.514

Since Assumption 3.1 remains applicable (see Assumption 3.2(i)), the deterministic benchmark strategy515

allocates wealth to two assets, namely the T-bills B and the broad equity market index S. For the special case516

of continuous rebalancing, let t→ %̂s (t) be a deterministic function of time denoting the proportional allocation517

to S at time t ∈ T = [t0, T ], with (1− %̂s (t)) denoting the corresponding allocation to T-bills. The benchmark518

strategy in this section is therefore given by519

P̂ =
{
p̂
(
t, Ŵ (t)

)
= (1− %̂s (t) , %̂s (t)) : t ∈ [t0, T ]

}
. (3.19)520
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By Assumption 3.1(ii), in the case of the VETF investor, let %v (t,Xv (t)) denote the proportional al-521

location of wealth Wv (t) at time t to the VETF Fv in the case of continuous rebalancing, with Xv (t) =522 (
Wv (t) , Ŵ (t) , %̂s (t)

)
. The VETF investor strategy is therefore of the form523

Pv = {pv (t,Xv (t)) = (1− %v (t,Xv (t)) , %v (t,Xv (t))) : t ∈ [t0, T ]} . (3.20)524

In the case of the LETF investor, let %` (t,X` (t)) denote the proportional allocation of wealth W` (t) at525

time t to the LETF F` in the case of continuous rebalancing, with X` (t) =
(
W` (t) , Ŵ (t) , %̂s (t)

)
, to obtain526

the LETF investor strategy as527

P` = {p` (t,X` (t)) = (1− %` (t,X` (t)) , %` (t,X` (t))) : t ∈ [t0, T ]} . (3.21)528

Given investment strategies of the form (3.19) and (3.21), as well as dynamics (3.1), (3.2), (3.4) and (3.8),529

we therefore have the following wealth dynamics in the case of continuous rebalancing:530

dŴ (t) =
{
Ŵ
(
t−
)
· [r + %̂s (t) (µ− λκs1 − r)] + q

}
· dt531

+Ŵ
(
t−
)
%̂s (t)σ · dZ (t) + Ŵ

(
t−
)
%̂s (t) · d

π(t)∑
i=1

(ξsi − 1)

 , (3.22)532

533

dWv (t) =
{
Wv

(
t−
)
·
[
r + %v

(
t,Xv

(
t−
))
{(µ− λκs1 − r)− cv}

]
+ q
}
· dt534

+Wv

(
t−
)
%v
(
t,Xv

(
t−
))
σ · dZ (t) +Wv

(
t−
)
%v
(
t,Xv

(
t−
))
· d

π(t)∑
i=1

(ξsi − 1)

 , (3.23)535

536

dW` (t) =
{
W`

(
t−
)
·
[
r + %`

(
t,X`

(
t−
))
{β (µ− λκs1 − r)− c`}

]
+ q
}
· dt537

+W`

(
t−
)
%`
(
t,X`

(
t−
))
βσ · dZ (t) +W`

(
t−
)
%`
(
t,X`

(
t−
))
β · d

π(t)∑
i=1

(
ξ`i − 1

) , (3.24)538

for t ∈ (t0, T ], with initial wealth Wv (t0) = W` (t0) = Ŵ (t0) = w0. As a reminder, q ≥ 0 denotes the constant539

rate per year at which cash is contributed to each portfolio (see Assumption 3.2(ii)), and β > 1 in (3.24) denotes540

the multiplier of the LETF.541

Due to Assumption 3.2(iii), the set of admissible investor strategies is given by %k (t,Xk (t)) ∈ A0 for542

k ∈ {v, `}, where543

A0 =
{
%k (t, w, ŵ, %̂s (t))| %k : [t0, T ]× R3 → R

}
, k ∈ {v, `} . (3.25)544

The IR optimization problem (2.4) in this setting can therefore be written as545

(IR (γ)) : inf
%k∈A0

Et0,w0
%k

[(
Wk (T )−

[
Ŵ (T ) + γ

])2
]
, γ > 0, for k ∈ {v, `} , (3.26)546

with wealth dynamics (3.22),(3.23) and (3.24) respectively.547

The following theorem describes the HJB partial integro-differential equation (PIDE) satisfied by the value548

function of (3.26) for the LETF investor.549

Theorem 3.1. (IR optimization for the LETF investor: Verification theorem) Let γ > 0, and assume a given550

benchmark strategy t→ %̂s (t) that is deterministic and integrable. Suppose that for all (t, w, ŵ, %̂s) ∈ [t0, T ]×R3,551

there exist functions V (t, w, ŵ, %̂s) : [t0, T ] × R3 → R and %∗` (t, w, ŵ, %̂s; γ) : [t0, T ] × R3 → R such that: (i)552

V and %∗` are sufficiently smooth and solve the HJB PIDE (3.27)-(3.28), and (ii) the pointwise supremum in553

(3.27) is attained by the function %∗` (t, w, ŵ, %̂s; γ).554

∂V

∂t
+ inf
%`∈R

{
H (%`; t, w, ŵ, %̂s)

}
= 0, (3.27)555

V (T,w, ŵ, %̂s) = (w − ŵ − γ)
2
, (3.28)556
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where557

H (%`; t, w, ŵ, %̂s) = (w · [r + {β (µ− λκs1 − r)− c`} · %`] + q) · ∂V
∂w

558

+ (ŵ · [r + (µ− λκs1 − r) · %̂s] + q) · ∂V
∂ŵ

559

+
1

2
(%` · wβσ)

2 · ∂
2V

∂w2
+

1

2
(%̂sŵσ)

2 · ∂
2V

∂ŵ2
+ (%` · wβσ) (%̂sŵσ) · ∂

2V

∂w∂ŵ
560

−λ · V + λ ·
∫ ∞

0

V
(
w + %` · wβ

(
ξ` − 1

)
, ŵ + %̂sŵ (ξs − 1) , t

)
G (ξs) dξs. (3.29)561

Then given Assumption 3.2 and wealth dynamics (3.22) and (3.24), V is the value function and %∗` is the562

optimal control (i.e. optimal proportion of the investor’s wealth to be invested in the LETF with β > 1) for the563

IR (γ) problem (3.26) for the LETF investor.564

Proof. See Appendix A.1. Note that since ξ` is a function of ξs (see (3.6)), the integral in (3.29) is only written565

with respect to values of ξs with associated PDF G (ξs).566

Solving the HJB PIDE (3.27)-(3.28), we obtain the IR-optimal investment strategy for the LETF investor567

as per Proposition 3.2.568

Proposition 3.2. (IR-optimal investment strategy using the LETF) Let γ > 0 be fixed. Suppose that Assump-569

tion 3.2 and wealth dynamics (3.22) and (3.24) apply. Let W ∗` (t) denote the LETF investor’s wealth process570

(3.24) under the optimal strategy %∗` , and let X∗` (t) =
(
W ∗` (t) , Ŵ (t) , %̂s (t)

)
. Then the IR-optimal fraction of571

the investor’s wealth invested in the LETF, %∗` , satisfies572

%∗`
(
t,X∗`

(
t−
))
·W ∗`

(
t−
)

573

=

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

β2
(
σ2 + λκ`2

) )
·
[
h` (t) + γe−r(T−t) −

(
W ∗`

(
t−
)
− g` (t) · Ŵ

(
t−
))]

574

+
1

β
g` (t)

(
σ2 + λκ`,sχ
σ2 + λκ`2

)
· %̂s (t) Ŵ

(
t−
)
, (3.30)575

where g` and h` are the following deterministic functions,576

g` (t) = exp

{
K`,s
β ·

∫ T

t

%̂s (u) du

}
, (3.31)577

h` (t) = −q
r

(
1− e−r(T−t)

)
+ qe−r(T−t) ·

∫ T

t

exp

{
r (T − y) +K`,s

β ·
∫ T

y

%̂s (u) du

}
dy, (3.32)578

with constant K`,s
β given by579

K`,s
β = µ− r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

) (
σ2 + λκ`,sχ

)
β
(
σ2 + λκ`2

) . (3.33)580

Proof. See Appendix A.2.581

Note that values of κ`1, κ`2 and κ`,sχ (see (3.7)), which depend on the multiplier β through the LETF jumps582

(3.6), are required by the optimal strategy (3.30). Expressions for these quantities can be derived in terms of the583

calibrated parameters of the underlying asset dynamics (3.1)-(3.2) without difficulty. As an illustration, Lemma584

A.1 in Appendix A.3 presents expressions for κ`1, κ`2 and κ`,sχ in the case of the double-exponential Kou model585

(Kou (2002)) used for illustrating the results of this section, but we note that this can also be done similarly586

for other jump diffusion models (e.g. Merton (1976)).587

The IR-optimal investment strategy for the VETF investor is given in Corollary 3.3.588

Corollary 3.3. (IR-optimal investment strategy using the VETF) Let γ > 0 be fixed. Suppose that Assumption589

3.2 and wealth dynamics (3.22) and (3.23) apply. Let W ∗v (t) denote the VETF investor’s wealth process (3.23)590

under the optimal strategy %∗v, and let X∗v (t) =
(
W ∗v (t) , Ŵ (t) , %̂s (t)

)
. Then the IR-optimal fraction of the591
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investor’s wealth invested in the VETF, %∗v, satisfies592

%∗v
(
t,X∗v

(
t−
))
·W ∗v

(
t−
)

=

(
µ− r − cv
σ2 + λκs2

)
·
[
hv (t) + γe−r(T−t) −

(
W ∗v

(
t−
)
− gv (t) · Ŵ

(
t−
))]

593

+gv (t) · %̂s (t) Ŵ
(
t−
)
, (3.34)594

where gv and hv are the following deterministic functions,595

gv (t) = exp

{
cv ·

∫ T

t

%̂s (u) du

}
, (3.35)596

hv (t) = −q
r

(
1− e−r(T−t)

)
+ qe−r(T−t) ·

∫ T

t

exp

{
r (T − y) + cv ·

∫ T

y

%̂s (u) du

}
dy. (3.36)597

Proof. See Appendix A.4.598

The following remark relates the results of Proposition 3.2 and Corollary 3.3 to the available results in the599

literature.600

Remark 3.3. (Relationship of Proposition 3.2 and Corollary 3.3 to results in the literature). In the special601

case of a VETF with zero expense ratio cv = 0, the results of Corollary 3.3 imply that gv (t) = 1 and hv (t) = 0602

for all t ∈ [t0 = 0, T ], so that (3.34) simplifies considerably to603

%∗v
(
t,X∗v

(
t−
))
·W ∗v

(
t−
)

=

(
µ− r

σ2 + λκs2

)
·
[
γe−r(T−t) −

(
W ∗v

(
t−
)
− Ŵ

(
t−
))]

+ %̂s (t) Ŵ
(
t−
)
, (3.37)604

which corresponds to the IR-optimal investment strategy where direct investment in the underlying equity605

market index S is possible. This special case (3.37) can be found in Van Staden et al. (2023), where the results606

of Goetzmann et al. (2002, 2007) are extended to the case of jumps in the risky asset processes. Corollary 3.3607

therefore extends this to the case of investing in the equity index indirectly via a VETF with a non-negligible608

expense ratio, whereas Proposition 3.2 extends these results further to the case a LETF with multiplier β > 1609

and expense ratio c` referencing an equity index S with jump-diffusion dynamics.610

To gain some intuition regarding the behavior of the IR-optimal investment strategies in Proposition 3.2 and611

Corollary 3.3, we compare the illustrative investment results from implementing these strategies over a 10-year612

time horizon. We use a benchmark and assets as in Table 3.1, illustrative investment parameters as in Table613

3.2, and a Kou model (Kou (2002)) is assumed for the jump diffusion dynamics with calibrated parameters as614

in Appendix B (Table B.1). Since LETFs are a relatively recent invention, we follow the example of Bansal615

and Marshall (2015) in constructing a proxy LETF replicating β = 2 times the daily returns of a broad stock616

market index, in this case using the CRSP VWD index, which is a capitalization-weighted index consisting of617

all domestic stocks trading on major US exchanges, with historical data available since January 1926. As in for618

example Bansal and Marshall (2015) and Leung and Sircar (2015), we assume that the managers of the LETF619

do not have challenges in replicating the underlying index, which is reasonable given the possibility of designing620

replication strategies for LETFs that remain robust even during periods of market volatility (see for example621

Guasoni and Mayerhofer (2023)). For more information on the source data and calibrated, inflation-adjusted622

parameters, please refer to Appendix B.623

Table 3.2: Closed-form solutions - Investment parameters for illustrating the results. Note that the calibrated param-
eters for the jump-diffusion process are given in Appendix B (Table B.1), while the underlying assets, benchmark and
ETF expense ratios are given in Table 3.1.

Parameter T w0 q γ

Value 10 years $ 100 $ 5 per year 125

624

Figure 3.3 illustrates the IR-optimal proportion of wealth invested in the ETF as a function of time t and625

the wealth difference W ∗k (t)− Ŵ (t), k ∈ {v, `}. In the case of the LETF investor, Figure 3.3(a) illustrates %∗` ,626

whereas for the VETF investor, Figure 3.3(b) illustrates %∗v, where both strategies use the same target γ = 125.627

628
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(a) IR-optimal investment in LETF (β = 2), %∗` (b) IR-optimal investment in VETF, %∗v

Figure 3.3: Closed-form IR-optimal investment strategies using the LETF (%∗` as per (3.30)) or the VETF (%∗v as per
(3.34)) as a function of time t and the wealth difference W ∗

k (t) − Ŵ (t), k ∈ {v, `}, given the same implicit benchmark
outperformance target γ. The underlying assets, benchmark, investment parameters and calibrated process parameters
are as in Table 3.1, Table 3.2 and Table B.1, respectively. Note that the same color scale is used in both figures for
comparison purposes.

Using the same strategies as illustrated in Figure 3.3, Figure 3.4 shows the ratio of IR-optimal proportions629

of wealth invested in the VETF relative to the investment in the LETF, %∗v/%∗` , given an otherwise identical630

wealth difference W ∗k (t)− Ŵ (t) , k ∈ {v, `} at time t. We emphasize that both Figure 3.3 and Figure 3.4 treat631

the IR-optimal strategies from Proposition 3.2 and Corollary 3.3 simply as functions of time and the wealth632

difference relative to the benchmark.633

Figure 3.4: Ratio of IR-optimal proportions of wealth in the VETF vs. the LETF, %∗v/%∗` , given identical wealth
differences relative to the benchmarkW ∗ (t)−Ŵ (t) ≡W ∗

v (t)−Ŵ (t) = W ∗
` (t)−Ŵ (t) at each time t and same target γ.

The underlying assets, benchmark, investment parameters and calibrated process parameters are as in Table 3.1, Table
3.2 and Table B.1, respectively.

634

With regards to Figure 3.3 and Figure 3.4, we make the following observations regarding the IR-optimal635

investment strategies of the LETF investor vs. the VETF investor:636

(i) The IR-optimal investment strategy using a LETF (Figure 3.3(a)) is, like the strategy using a VETF637

(Figure 3.3(b)), fundamentally contrarian. Specifically, in the case of the LETF, we observe that the IR-638

optimal proportion of wealth %∗` in the LETF decreases as the wealth difference W ∗` (t)− Ŵ (t) increases,639

which happens after a period of strong LETF return performance. In their analysis of reports to the SEC640

by institutional fund managers, DeVault et al. (2021) show that institutional investors indeed empirically641

tend to decrease their holdings in LETFs following periods of strong investment performance. While642

DeVault et al. (2021) concludes that this behavior might be explained as being a result of compensation-643

17



based incentives, our results show that strategies based on maximizing the IR (a widely-used investment644

metric) relative to a standard investment benchmark could also be related to this empirical investment645

behavior.646

(ii) Figure 3.4 shows that the IR-optimal strategies under stylized assumptions (Assumption 3.1) and identical647

implicit benchmark outperformance target γ satisfy %∗v/%∗` ≈ β = 2. Informally, the LETF and VETF648

investors therefore take on nearly identical “risk” exposure to the movements of the underlying index,649

which provides valuable intuition when interpreting the results Section 5 where Assumption 3.2 is relaxed.650

While Figure 3.3 and Figure 3.4 illustrate the IR-optimal strategy as a function of time and the wealth difference651

relative to the benchmark, implementing this strategy in a Monte Carlo simulation provides an additional652

perspective. Figure 3.5 shows the median and 95th percentiles of the IR-optimal proportion of wealth invested653

in the LETF and VETF, given the same benchmark outperformance target γ. Note that under the stylized654

assumptions (Assumption 3.2), the LETF and VETF positions can be leveraged without restriction, with655

leverage constraints only subsequently introduced in Section 4. We observe that the corresponding ETF exposure656

percentiles tend to approximately satisfy %∗v/%
∗
` ≈ β = 2, with decreasing exposure over time due to the657

contrarian nature of both strategies.658
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(a) %∗` and %∗v : 95th percentiles over time
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(b) %∗` and %∗v : 50th percentiles over time

Figure 3.5: Closed-form IR-optimal investment strategies: 95th and 50th percentiles over time of the IR-optimal
proportion of wealth invested in the LETF (%∗` as per (3.30)) or the VETF (%∗v as per (3.34)) obtained using Monte Carlo
simulation of the underlying dynamics (3.22)-(3.24), and same target γ. The underlying assets, benchmark, investment
parameters and calibrated process parameters are as in Table 3.1, Table 3.2 and Table B.1, respectively.

659

Figure 3.6 compares the simulated CDFs of IR-optimal terminal wealth W ∗k (T ) , k ∈ {v, `} and CDFs of the660

terminal wealth ratio relative to the benchmark W ∗k (T ) /Ŵ (T ) , k ∈ {v, `} for the LETF and VETF investors,661

respectively.662
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Figure 3.6: Closed-form IR-optimal investment strategies: CDFs of the IR-optimal terminal wealth for the same target
γ obtained using Monte Carlo simulation of the underlying dynamics and investing according to optimal strategies (3.30)
and (3.34). The underlying assets, benchmark, investment parameters and calibrated process parameters are as in Table
3.1, Table 3.2 and Table B.1, respectively.

663
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Figure 3.6 shows that due to implicitly similar exposure levels to movements in the underlying equity index664

(since %∗v ' β · %∗` ) given identical targets γ for the LETF and VETF investors, implementing the strategies665

illustrated in Figure 3.3 result in nearly identical terminal wealth and outperformance outcomes. In fact, under666

the stylized assumptions of this section, Proposition 3.4 shows that in the special case of (i) zero expense ratios667

and (ii) no jumps in the S-dynamics, we have %∗v ≡ β · %∗` , the IR-optimal investor should be entirely indifferent668

as to whether the LETF-based strategy (3.30) or VETF-based strategy (3.34) is used for investment purposes.669

Proposition 3.4. (Special case: Zero expense ratios, no jumps) Let γ > 0 be fixed, and let Assumption 3.2670

and wealth dynamics (3.22)-(3.24) apply. If (i) both LETF (β > 1) and the VETF have zero expense ratios,671

i.e. cv = c` = 0, and (ii) there are no jumps in the underlying S-dynamics (i.e. λ = 0 in (3.2)), then following672

results hold:673

(i) The IR-optimal proportion of wealth invested in the VETF (3.34) is equal to β times the IR-optimal674

proportion of wealth invested in the LETF (3.30),675

%∗v (t,X∗v (t)) = β · %∗` (t,X∗` (t)) , ∀t ∈ [t0, T ] , (3.38)676

where X∗v (t) =
(
W ∗v (t) , Ŵ (t) , %̂s (t)

)
and X∗` (t) =

(
W ∗` (t) , Ŵ (t) , %̂s (t)

)
.677

(ii) An IR-optimal investor with given target γ > 0 would be indifferent as to whether the optimal strategy is678

executed with a LETF (3.30) or VETF (3.34), since wealth outcomes are identical,679

W ∗` (t) = W ∗v (t) , ∀t ∈ [t0, T ] , (3.39)680

and the same Information Ratio is obtained,681

Et0,w0

%∗`

[
W ∗` (T )− Ŵ (T )

]
Stdevt0,w0

%∗`

[
W ∗` (T )− Ŵ (T )

] =
Et0,w0

%∗v

[
W ∗v (T )− Ŵ (T )

]
Stdevt0,w0

%∗v

[
W ∗v (T )− Ŵ (T )

] =

(
exp

{(
µ− r
σ

)2

· T

}
− 1

)1/2

.

(3.40)682

Proof. See Appendix A.5.683

We summarize the closed-form solutions results presented in this section as follows. In the case of continuous684

rebalancing (i.e. rebalancing times T = [t0, T ]) with no investment constraints, the IR-optimal investor should685

be largely indifferent whether a VETF or LETF is used on the same underlying equity index to execute the686

IR-optimal investment strategy involving the ETF and T-bills for a given outperformance target γ. Since the IR-687

optimal investment strategies satisfy the approximate relationship %∗v ' β · %∗` (Figure 3.4), when continuously688

rebalancing the LETF and VETF investors effectively maintain similar implicit risk exposures at each time689

instant to movements of the underlying index, resulting in broadly similar investment outcomes (Figure 3.6),690

with differences between outcomes entirely driven by different ETF expense ratios and the presence of jumps691

(see Proposition 3.4).692

At the other extreme, namely the lump-sum investment scenario with no subsequent intervention (i.e. T =693

[t0]) and one-quarter time horizon (∆t = 0.25), we still observe the approximate relationship p∗v ≈ β ·p∗` between694

corresponding IR-optimal strategies (Figure 3.2). However, in this case the power call-like payoff of the LETF695

can clearly be observed, whereby the LETF investor benefits from an upside due to comparatively inexpensive696

leverage while simultaneously enjoying downside protection due to limited liability (Figures 1.1, 3.1 and 3.2).697

Far from ignoring the standard criticisms of LETFs in the literature (see Section 3.1), the closed form698

results of this section - illustrated using parametric dynamics calibrated to empirical market data - suggest699

that we should not be entirely surprised that LETFs might have substantial appeal to investors despite these700

shortcomings. However, we emphasize that none of the trading strategies illustrated - not even the lump-sum701

investment scenario results - advocate for simplistic strategies like buy-and-hold positions in the LETF over702

indefinite time horizons, so a certain degree of sophistication on the part of the investor is implicitly assumed. In703

addition, while the closed-form results provide valuable intuition, they were derived under stylized assumptions,704

which we relax in the subsequent sections to model the potential of LETFs under more realistic conditions.705
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4 Numerical solutions706

To assess the potential value of LETFs in designing investment strategies for benchmark outperformance under707

more reasonable assumptions than in Section 3, analytical solutions are typically no longer obtainable and a708

numerical solution technique is instead required.709

This section starts by formulating a more realistic investment setting with the following characteristics: (i)710

Restrictions on the maximum leverage and limitations on short-selling. (ii) An optional borrowing premium711

applicable when short-selling an asset. (iii) Prohibition of trading in insolvency. (iv) Infrequent (discrete)712

rebalancing of the portfolio. (v) Direct use of market data without the need to specify parametric dynamics713

for the underlying assets. This is followed by a brief overview of a neural network-based numerical solution714

approach to solve the IR problem (2.4) in this setting. Indicative investment results obtained by implementing715

these techniques on empirical market data are discussed in Section 5.716

4.1 Investment constraints and discrete rebalancing717

Recall from Section 2 that the investor’s strategy is based on investing in a set of Na candidate assets indexed718

by i ∈ {1, .., Na}, while the benchmark is defined in terms of N̂a potentially different underlying assets indexed719

by j ∈
{

1, .., N̂a

}
. With investor and benchmark strategies of the form (2.1), and the benchmark strategy720

satisfying only the general assumptions outlined in Assumption 2.1, we assume that both the investor and721

benchmark portfolios are rebalanced at each of Nrb discrete rebalancing times during the investment time722

horizon [t0 = 0, T ]. As a result, T is now of the form723

T = { tn = n∆t|n = 0, ..., Nrb − 1} , ∆t = T/Nrb. (4.1)724

The assumption of equally-spaced rebalancing times in (4.1) is only for convenience, and can be relaxed without725

difficulty. At each rebalancing time tn ∈ T , we assume a pre-specified cash contribution q (tn) is made to the726

investor portfolio, with the contribution also being added to the benchmark portfolio to ensure the comparison727

in performance remains appropriate.728

There is no need to specify any parametric dynamics for the underlying assets in the numerical solution729

approach, which only requires the availability of empirical market data for deriving the optimal strategy (see730

Subsection 4.2 below). Specifically, we assume that at each time tn+1 ∈ T ∪ T we can observe Ri (tn) and731

R̂j (tn), the returns on investor asset i ∈ {1, .., Na} and benchmark asset j ∈
{

1, .., N̂a

}
, respectively, over732

the time interval [tn, tn+1]. Note that these returns might be inflation-adjusted and might include a borrowing733

premium applicable to assets that have been shorted (see e.g. Assumption 4.1 below). As a result, for the734

purposes of numerical solutions, the investor and benchmark wealth dynamics are respectively of the form735

W
(
t−n+1

)
=

[
W
(
t−n
)

+ q (tn)
]
·
Na∑
i=1

pi
(
tn,X

(
t−n
))
· [1 +Ri (tn)] , (4.2)736

Ŵ
(
t−n+1

)
=

[
Ŵ
(
t−n
)

+ q (tn)
]
·
N̂a∑
j=1

p̂j

(
tn, X̂

(
t−n
))
·
[
1 + R̂j (tn)

]
, (4.3)737

where W
(
t−0
)

= Ŵ
(
t−0
)

:= w0 > 0 and n = 0, ..., Nrb − 1.738

Since active funds often have restrictions on leverage and short-selling (see for example Forsyth et al. (2019);739

Ni et al. (2024)), these constraints are included in the formulation.740

The investor’s candidate asset i = 1, assumed to be 30-day T-bills in the indicative investment results of741

Section 5, plays a special role in leveraged portfolios. The investor is assumed to be able to short-sell this asset742

with a potential borrowing premium payable, i.e. the investor can borrow funds at an approximation of the743

prevailing short-term interest rate plus a borrowing premium to fund leveraged investments in the other assets.744

In addition, in the case of insolvency, defined as occurring when the investor wealth is negative, W (tn) < 0, we745

will assume that the negative wealth (i.e. the outstanding debt) is placed in asset i = 1, where it grows at the746

rate of return of this asset with an addition of a possible borrowing premium. Note that this effectively implies747

that trading ceases when W < 0, either until maturity T or until such a time where the cash injections pay off748

the debt resulting in W > 0, in which case trading can resume. A maximum leverage ratio at a portfolio level749
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of pmax is also assumed, where typical values are in the range pmax ∈ [1.0, 1.5]. Assumption 4.1 outlines the750

details more formally.751

Assumption 4.1. (Investor strategy: Leverage restrictions, borrowing premium and no trading in insolvency)752

The following assumptions and restrictions apply to the investor strategy, where the investor considers invest-753

ment in Na ≥ 2 candidate assets. As discussed, the investor’s set of candidate assets may not correspond to the754

assets included in the benchmark strategy.755

(i) Shortable and long-only assets: Only investor candidate asset i = 1 will (potentially) be shorted, with756

the remaining investor candidate assets i ∈ {2, .., Na} being long only. In other words, at any rebalancing757

time tn ∈ T , we have758

(Shortable asset i = 1) : p1

(
tn,X

(
t−n
))
∈ R, , tn ∈ T , (4.4)759

(Long-only assets i ∈ {2, .., Na}) : pi
(
tn,X

(
t−n
))
≥ 0, i ∈ {2, .., Na} , tn ∈ T , (4.5)760

(All wealth invested) :

Na∑
i=1

pi
(
tn,X

(
t−n
))

= 1, tn ∈ T . (4.6)761

(ii) Borrowing premium b ≥ 0: If investor candidate asset i = 1 is shorted at time tn (i.e. if p1 (tn,X (t−n )) <762

0), then a constant borrowing premium b ≥ 0 is added to the returns on asset i = 1 over the time interval763

[tn, tn+1] to be paid by the investor. In other words, for asset i = 1, the return R1 (tn) incorporated in764

(4.2) is of the form765

(Borrowing premium) : R1 (tn) =

{
R1 (tn) , if p1 (tn,X (t−n )) ≥ 0

R1 (tn) + b, if p1 (tn,X (t−n )) < 0,
(4.7)766

where R1 (tn) is the (possibly inflation-adjusted) return on underlying asset i = 1 over [tn, tn+1] without767

any added premiums. For long-only assets, we simply have Ri (tn) = Ri (tn), i ∈ {2, .., Na} , tn ∈ T .768

Note that in the case of the benchmark strategy, no borrowing premium is applicable to any asset due to769

Assumption 4.2 below.770

(iii) Maximum leverage ratio pmax: The total allocated proportion of wealth to the long-only assets i ∈771

{2, .., Na} cannot exceed the maximum leverage ratio pmax ,772

(Maximum leverage ratio) :

Na∑
i=2

pi
(
tn,X

(
t−n
))
≤ pmax, tn ∈ T . (4.8)773

(iv) No trading in insolvency: If the investor wealth is negative, i.e. if W (tn) < 0 at any tn ∈ T , then all774

long asset positions (4.5) are liquidated and the total debt (the amount W (tn) < 0) is allocated to the775

shortable asset (4.4). In such a scenario, no further trading occurs for the remainder of the investment776

time horizon (tm ∈ T , tm > tn), unless cash injections pay off the debt, and the portfolio wealth becomes777

positive. Total debt accumulates at a rate (4.7) which possibly includes a borrowing premium. More778

formally,779

(No trading in insolvency) : If W
(
t−n
)
< 0 ⇒ p

(
tn,X

(
t−n
))

= e1, tn ∈ T , (4.9)780

where e1 = (1, 0, ..., 0) ∈ RNa is the standard basis vector RNa with 1 in the first position (corresponding781

to i = 1, the shortable asset as per (4.4)) and all other entries are zero.782

Note that (4.9) also implies p (tm,X (t−m)) = e1 for all tm > tn, so that no further trading does indeed occur783

in the case of insolvency as required by Assumption 4.1(iv).784

Recalling that A denotes the set of admissible controls and Z denoting the admissible control space, As-785

sumption 4.1 implies that we have the following form for Z and A, respectively:786

Z =

z ∈ RNa

∣∣∣∣∣∣∣∣∣
z1 ∈ R,

zi ≥ 0,∀i ∈ {2, .., Na} ,∑Na
i=1 zi = 1,∑Na

i=2 zi ≤ pmax.

 , (4.10)787
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and788

A =

{
P =

{
p (tn,X (tn)) , tn ∈ T

∣∣∣∣ p (tn,X (tn)) ∈ Z, if W (t−n ) ≥ 0,

p (tn,X (tn)) = e1, if W (t−n ) < 0.

}}
. (4.11)789

Note that with slight abuse of notation in (4.11), Z is the admissible control space in the case of solvency790

only.791

Finally, in order ensure that the benchmarks align with typical investment benchmarks used in practice (see792

Remark 2.1) and to avoid pathological examples, Assumption 4.2 below specifies that no short-selling is allowed793

in the case of the benchmark strategy.794

Assumption 4.2. (Benchmark: leverage restrictions) The benchmark strategy does not engage in the short-795

selling of any asset.796

(Long-only benchmark) p̂j

(
tn, X̂

(
t−n
))
≥ 0, ∀j = 1, ..., N̂a. (4.12)797

As a result, the benchmark strategy has an implicit maximum leverage ratio of pmax = 1, with no borrowing798

premium being applicable, while benchmark insolvency is ruled out in the sense that Ŵ (tn) ≥ 0 for all tn ∈ T799

given dynamics (4.3).800

4.2 Neural network solution approach801

The objective function in the case of the numerical solutions remains of the form (2.4),802

(IR (γ)) : inf
P∈A

Et0,w0

P

[(
W (T )−

[
Ŵ (T ) + γ

])2
]
, γ > 0, (4.13)803

with the main differences from the treatment in Section 3 being the following: (i) The set of admissible controls804

A is now given by (4.11). (ii) Rebalancing occurs at a strict discrete subset of times tn ∈ T ⊂ [t0 = 0, T ]. (iii)805

As discussed below, we no longer need the assumption of parametric models for the underlying assets, but can806

use market data directly.807

To solve (4.13) numerically to obtain the optimal investment strategy P∗ ∈ A, we follow the neural808

network-based solution approach of Ni et al. (2024), where a “leverage-feasible neural network” (LFNN) is con-809

structed to approximate the investment strategy directly as a feedback control (tn,X (tn))→ P (tn,X (tn)) :=810

p (tn,X (tn)) ,∀tn ∈ T in the case of admissible sets of the form (4.10)-(4.11). This approach forms part of811

a class of methods (see, for example, Buehler et al. (2019); Han and Weinan (2016); Mäkinen and Toivanen812

(2024); Reppen and Soner (2023); Reppen et al. (2023); Van Staden et al. (2023, 2024), ) that does not require813

dynamic programming to solve problems such as (2.4), thereby avoiding the typical challenges such as evaluating814

high-dimensional conditional expectations and error amplifications over time-stepping.815

Since more detailed information, including a convergence analysis, can be found in Ni et al. (2024), we give816

only a very short overview of the application of the LFNN approach in our setting. In this approach, the control817

function (tn,X (tn))→ p (tn,X (tn)) is approximated by a single neural network (NN) with at least 3 features818

(inputs), namely (tn,X (tn)) =
(
tn,W (tn) , Ŵ (tn)

)
. Note that additional features such as trading signals can819

be incorporated in the NN inputs in settings where this is considered valuable. Let F (t,X(t);θ) ≡ F (·,θ)820

denote the NN, where θ ∈ Rηθ is the NN parameters, i.e. the NN weights and biases. Since the time tn is used821

is an input into the NN, a single parameter vector θ (equivalently, a single NN) is applicable to all rebalancing822

times, identifying this as a “global-in-time” approach in the taxonomy of Hu and Laurière (2023). One of the823

key contributions of Ni et al. (2024) is to construct the NN F (·,θ) with an output layer that guarantees, for all824

inputs (t,X (t)) =
(
t,W (t) , Ŵ (t)

)
, that825

(t,X (t)) → F (t,X(t);θ)

∣∣∣∣ F (t,X(t);θ) ∈ Z, if W (t) ≥ 0,

F (t,X(t);θ) = e1, if W (t) < 0.
(4.14)826

As a result of (4.11), by using the approximation827

p(t,X(t)) ' F (t,X(t);θ) ≡ F (·,θ), (4.15)828

we can therefore approximate the investor strategies as P = {F (tn,X(tn);θ), tn ∈ T } while being assured that829
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P ∈ A where A is as per (4.11), without the need to impose constraints on the optimization problem itself. As830

a result, (4.13) can be solved as an unconstrained optimization problem over θ ∈ Rηθ ,831

inf
θ∈Rηθ

Et0,w0

F (·;θ)

[(
W (T ;θ)−

[
Ŵ (T ) + γ

])2
]
, (4.16)832

where the approximation (4.15) is used to obtain the asset allocation in the investor wealth dynamics (4.2)833

which depend on θ.834

Parametric models for the underlying asset dynamics are no longer required. Instead, we use a finite set835

of samples from the set Y =
{
Y (j) : j = 1, ..., Nd

}
, where each element Y (j) denotes a time series of joint836

asset return observations Ri, i ∈ {1, .., Na}, possibly adjusted for inflation and the application of a borrowing837

premium, observed at each tn ∈ T . Y represents the training data of the NN, so any θ ∈ Rηθ and returns838

path Y (j) ∈ Y , the wealth dynamics (4.2) with approximation (4.15) generates a terminal wealth outcome839

W (j) (T ;θ). The expectation in (4.16) is then approximated simply by840

min
θ∈Rηθ

 1

Nd

Nd∑
j=1

(
W (j) (T ;θ)−

[
Ŵ (j) (T ) + γ

])2

 , (4.17)841

where the optimal parameter vector θ∗ is obtained using stochastic gradient descent. The resulting IR-842

optimal strategy for (4.13) consistent with the constraints as outlined in Assumption 4.1 is therefore given843

by p∗(·,X(·)) ' F (·,θ∗).844

While the details underlying the construction of the data set Y are clearly of practical significance, we note845

that the approach of Ni et al. (2024) remains agnostic as to the how Y is constructed. It can be obtained using846

for example GAN-generated data sets (see e.g. Van Staden et al. (2024); Yoon et al. (2019)), or using Monte847

Carlo simulations if the underlying dynamics are specified for ground truth analysis purposes (see e.g. Van848

Staden et al. (2023)), or a version of bootstrap resampling of empirical market data, as we now discuss.849

In practical applications, the use of empirical market data might be preferred for the construction of Y .850

However, since only a single historical path of asset returns is available, some form of data augmentation is851

typically used to obtain sufficiently rich training and testing data. For illustrative purposes, in Section 5 we use852

stationary block bootstrap resampling (Politis and Romano (1994)) to construct Y . This technique, designed853

for weakly stationary time series with serial dependence, is both popular in academic settings (Anarkulova854

et al. (2022)) and practical applications (Cavaglia et al. (2022); Cogneau and Zakalmouline (2013); Dichtl et al.855

(2016); Scott and Cavaglia (2017); Simonian and Martirosyan (2022)). Note that bootstrap resampling methods856

have been proposed for non-stationary time series (Politis (2003), Politis et al. (1999)), but this is not used in857

the illustrative investment results of Section 5.858

5 Indicative investment results859

The main objective of this section is to demonstrate the potential role of LETFs within long-term, diversified,860

dynamic, IR-optimal investment strategies subject to the investment constraints outlined in Section 4. As a861

result, we focus entirely on applying the numerical approach discussed in Subsection 4.2 to obtain the IR-optimal862

strategies based on the combination of a LETF or a VETF on a broad equity market index with bonds (T-bills863

and T-bonds).864

5.1 Investment scenarios865

The key investment parameters used for illustrative purposes throughout this section are outlined in Table866

5.1. Note in particular that we use a relatively long investment time horizon (10 years) coupled with relatively867

infrequent (quarterly) rebalancing, and that the same implicit outperformance target γ is used in each of the868

scenarios to facilitate a fair comparison. This value of γ is chosen for general illustrative purposes only, and the869

conclusions remain qualitatively similar for different choices of γ.870

871

Table 5.2 provides an overview of the benchmark and the investor’s candidate assets. A 70/30 benchmark872

strategy is again used, since it aligns to the definition of popular investment benchmarks used in practice (see873

Remark 2.1). Note that the benchmark is defined in terms of the broad equity market index (“Market”) with874

70% of the wealth allocation, with the remaining 30% split between 30-day T-bills and 10-year T-bonds. As875
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Table 5.1: Key investment parameters for the illustrative results of Section 5.

Parameter T # rebalancing events
(Nrb)

Initial wealth
(w0)

Contributions
(qn)

Target
(γ)

Value 10 years 40
(quarterly rebalancing)

$ 100 $ 5 per year
($1.25/quarter)

125

in Section 3, we assume that the investor cannot invest directly in the broad equity market index (“Market”),876

but can gain exposure to this index via a VETF (expense ratio cv = 0.06%) or a LETF with multiplier β = 2877

(expense ratio c` = 0.89%).878

Table 5.2: Candidate assets and benchmark for the illustrative results of Section 5. A mark “X” indicates that an
asset is available for inclusion. Note that the investor cannot invest directly in the market portfolio (“Market”), but only
indirectly via either the VETF or LETF, whereas the benchmark is defined directly in terms of “Market” in alignment
with popular investment benchmarks.

Underlying assets
Benchmark

Investor candidate assets
Label Asset description Using VETF Using LETF
T30 30-day Treasury bill 15% X X

B10 10-year Treasury bond 15% X X

Market Market portfolio (broad equity market index) 70% - -
VETF Vanilla (unleveraged) ETF replicating the returns of the

market portfolio, with expense ratio cv = 0.06%

- X -

LETF Leveraged ETF with daily returns replicating β = 2

times the daily returns of the market portfolio, with
expense ratio c` = 0.89%

- - X

879

Table 5.3 provides more detail on the leverage and borrowing premium scenarios considered, where we880

highlight the following:881

• Investor portfolios formed with a LETF are never leveraged (pmax = 1.0), whereas portfolios formed882

with a VETF can use leverage up to a portfolio maximum of pmax ∈ {1.0, 1.2, 1.5, 2.0} via the short-883

selling of 30-day T-bills (i.e. borrowing funds to invest in the VETF) with a borrowing premium b ∈884

{0, 0.03} potentially being applicable. This is done in order to compare the performance of an IR-optimal885

portfolio with a LETF and no portfolio-level leverage with that of an IR-optimal portfolio formed with a886

(potentially) leveraged VETF under various leverage assumptions.887

• In terms of the selection of values for pmax ∈ {1.0, 1.2, 1.5, 2.0} in the case of the VETF investor, note that888

Regulation T of the US Federal Reserve board requires at least 50% of the initial price of a stock position889

to be available on deposit, while brokerage firms are free to establish more stringent requirements. For890

the VETF investor, for illustrative purposes we will therefore mostly focus on the cases of pmax = 1.0 (no891

leverage) or pmax = 1.5, and for comparison purposes provide the additional examples using pmax = 1.2892

and pmax = 2.0 in Appendix C.893

• In terms of the selection of borrowing premiums b ∈ {0, 0.03} for the VETF investor, we first note that894

all returns are inflation-adjusted (see Appendix B), and so these quantities should be interpreted net of895

inflation. The case of zero borrowing premium (b = 0) is provided for comparison purposes only, while896

the value of b = 3% is obtained from the examples in Ni et al. (2024), where it is based on a consideration897

of the average real return for T-bills and the average inflation-adjusted corporate bond yields for Moody’s898

Aaa and Baa-rated bond issues.899

900

The underlying data sets for the training and testing of the neural network giving the IR-optimal investment901

strategies using stationary block bootstrap resampling of empirical market data (see Section 4 and Appendix902

B) instead of calibrated process dynamics. In particular, we use all available inflation-adjusted market data903

over the time period January 1926 to December 2023, together with an expected block size of 3 months, to904

obtain 500,000 jointly bootstrapped asset return paths (see Li and Forsyth (2019); Van Staden et al. (2024) and905

Appendix B for more information). As in Ni et al. (2024), we use a shallow NN (2 hidden layers) with only the906
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Table 5.3: Maximum leverage and borrowing premium scenarios for the indicative investment results of Section 5.

Component of leverage scenario Benchmark
Investor candidate assets

Using VETF Using LETF
Maximum portfolio-level leverage ratio pmax No leverage

allowed
(pmax = 1.0)

No leverage allowed
(pmax = 1.0)

as well as scenarios
pmax ∈ {1.2, 1.5, 2.0}

No leverage allowed
(pmax = 1.0)

Shortable asset to fund leveraged position (if
applicable)

- T30 -

Borrowing premiums: Scenarios for premium b over
T30 return on leveraged positions (if applicable)

N/a b = 0 or b = 0.03 N/a

minimal input features (t,X (t)) =
(
t,W (t) , Ŵ (t)

)
, since that has been found sufficient to obtain a stable and907

accurate IR-optimal investment strategy in a setting where no additional market signals are used as inputs.908

For illustrative purposes, we also present the investment results obtained from investing according to the909

IR-optimal investment strategy on selected historical data paths. This is discussed in more detail in Remark910

5.1.911

Remark 5.1. (Performance on single historical data paths) Since the future evolution of asset returns are not912

expected to replicate the past evolution of returns precisely, we consider illustrative investment results based913

on bootstrapped data sets as significantly more informative than using a single historical data path of asset914

returns to illustrate performance.915

However, for purposes of concreteness and intuition, we do show the evolution of the LETF and VETF916

investor wealth obtained by implementing the corresponding IR-optimal portfolios and the benchmark on four917

historical data paths each spanning a period equal to the investment time horizon of 10 years:918

(i) January 2000 until December 2009, which illustrates the impact on the portfolio wealth of both the919

DotCom bubble crash as well as the GFC period.920

(ii) January 2005 until December 2014, which focuses on the GFC and the subsequent period of relatively921

slow market recovery.922

(iii) January 2010 until December 2019, which illustrates the performance during the bull market of the 2010s,923

a period of very low interest rates and therefore cheap leverage.924

(iv) January 2014 until December 2023, which combines an initial period of strong growth and low interest925

rates with the Covid-19 period and subsequent recovery, only to be followed by the bear market for stocks926

lasting from January to October 2022 and higher interest rates.927

Note that while the historical path of returns enter the training data of the NN indirectly via bootstrap resam-928

pling, the probability that the actual historical data path itself appearing in the resulting bootstrapped data929

sets is vanishingly small (see Ni et al. (2022) for a proof), so that the historical data paths can themselves be930

considered as effectively “out-of-sample” for testing purposes. However, we emphasize that in this section the931

main focus remains on the investment results based on the much richer bootstrapped data set of returns data,932

which ensures a meaningful discussion of the implications for wealth distributions, for example, rather than933

individual wealth values from a single historical path.934

5.2 Comparison of investment results935

Figure 5.1 illustrates the distributions of the IR-optimal terminal investor wealthW ∗k (T ) , k ∈ {v, `} for different936

portfolios formed under the leverage scenarios as per Table 5.3, as well as the distribution of the benchmark937

terminal wealth Ŵ (T ). With regards to Figure 5.1(a), we see that the IR-optimal strategy using the LETF938

(and bonds) achieves partial stochastic dominance (Atkinson (1987); Ni et al. (2024); Van Staden et al. (2021))939

over the IR-optimal strategies using the VETF (and bonds), even if the VETF investment can be leveraged.940

Note that all IR-optimal strategies achieve partial stochastic dominance over the benchmark, which is to be941

expected considering the results of Van Staden et al. (2023).942

943

While Figure 5.1 considers a maximum leverage ratio of pmax = 1.5 with a borrowing premium for short-944

selling of b = 3% (applicable to the leveraged VETF position), the results of Figure C.1 in Appendix C show945
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Figure 5.1: CDFs of IR-optimal terminal wealth W ∗
k (T ) , k ∈ {v, `} and the benchmark terminal wealth Ŵ (T ).

that qualitatively similar results are obtained even if there are no borrowing premiums on short-selling, and946

leverage is allowed to increase to pmax = 2.0. At first glance, this might be somewhat surprising. In the case947

of continuous rebalancing, no investment constraints and zero costs, Proposition 3.4 shows that the IR-optimal948

investment results are identical, regardless of whether the investor uses a LETF with multiplier β or a VETF949

leveraged β times. However, the underlying assumptions of Proposition 3.4 are violated in the setting of this950

section, where we have discrete rebalancing and investment constraints. Therefore, while we expect to see at951

least some difference in the IR-optimal investment results obtained using the LETF and VETF-based strategies,952

we might not expect a difference of the magnitude seen in for example Figure 5.1 or Figure C.1.953

The main driver of the difference in performance of the LETF-based strategy relative to that of the VETF-954

based strategy in this setting is a combination of (i) the call-like payoff of the LETF as underlying asset over955

a relatively short time horizon (e.g. 1 quarter) and (ii) the contrarian nature of the discretely-rebalanced IR-956

optimal investment strategy locking in the gains from rebalancing. First, holding the LETF position for a957

quarter amounts to holding a “continuously rebalanced” position in the equity index and bonds, resulting in958

the power law-type payoff discussed in Section 3.1. Note that the results of Section 3.1 were obtained using959

parametric models for the underlying assets. In contrast, in this section, we consider a data set obtained using960

the stationary block bootstrap resampling of historical data. As an aid to the intuition as to the implications of961

switching to bootstrapped historical data, Figure 5.2(a) compares the pathwise quarterly returns to two simple962

strategies using this data, namely investing all wealth in the LETF at the start of a quarter, as well as investing963

200% of wealth in the VETF at the start of a quarter funded by borrowing 100% of wealth at the T-bill rate,964

and comparing outcomes at the end of the quarter with no intermediate trading. While the actual IR-optimal965

investment strategies are clearly not that straightforward, Figure 5.2(a) confirms that the call-like payoff of the966

LETF also holds in the bootstrapped historical data, resulting in a slight potential advantage relative to the 2x967

leveraged VETF strategy (Figure 5.2(b)). Given this payoff structure of the LETF, as discussed in Section 3,968

the IR-optimal LETF strategy responds to gains by reducing exposure to the LETF, thus locking in the results969

of prior quarters of good performance while reducing exposure to future possible losses by having lower exposure970

to the LETF. The compounding effect of applying the contrarian IR-optimal investment strategy quarter after971

quarter given returns to underlying assets as per Figure 5.2 ultimately results in the strong performance of the972

LETF-based strategy illustrated in Figure C.1 in Appendix C (for zero borrowing premiums and maximum973

leverage of pmax = 2.0) and the more realistic results in Figure 5.1 (where a borrowing premium of b = 3%974

applies and maximum leverage is pmax = 1.5).975

However, as Figure 5.1(b) illustrates, there is no free lunch with regards to leverage, similar to what we976

observed in Figures 1.1, 3.1 and 3.2. In more detail, when considering the extreme left tails of the IR-optimal977

terminal wealth CDFs, whether leveraging an investment implicitly (via the LETF) or explicitly (via a lever-978

aged VETF investment), the downside wealth outcomes are worse than using the VETF with no leverage (or979

simply the benchmark). Note that this is based on the distribution of empirical market data together with the980

implementation of IR-optimal investment strategies, and is not inconsistent with the observations regarding the981

downside protection offered by the LETFs in truly extreme cases (illustrated in Figures 3.2).982

983

Figure 5.3 focuses on different measures of benchmark outperformance rather than investor wealth, with984
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Figure 5.2: Pathwise comparison of the quarterly inflation-adjusted returns of two simple strategies using empirical
data obtained by means of the stationary block bootstrap resampling of historical data as described in Section 5.1 and
Appendix B. The strategies consist of (i) investing all wealth in the LETF at the start of a quarter and (ii) investing 200%
of wealth in the VETF at the start of the quarter funded by borrowing 100% of wealth at the T-bill rate, and comparing
outcomes at the end of the quarter with no intermediate trading. Figure 5.2(a) illustrates the quarterly returns of the
simple strategies (y-axis) for a given level of equity index quarterly return (x-axis) over the quarter, which demonstrates
qualitative similarities to the theoretical payoffs seen in Figure 3.1 in the case of jumps in the underlying equity market
index. Figure 5.2(b) shows the distribution of pathwise quarterly return differences where, for each value of the x-axis
in Figure 5.2(a), and therefore for a particular given path of (joint) asset returns, we calculate the vertical difference
between the return of the simple strategy (i) where all wealth is invested in the LETF, minus the return of strategy (ii)
where the 200% of wealth investment in the VETF is funded by borrowing at the T-bill rate. Figure 5.2(b) shows that
the simple LETF-based strategy is empirically somewhat more likely to outperform the VETF-based strategy along any
given path of underlying returns over a single quarter, although the return difference distribution in Figure 5.2(b) has a
relatively small median value of only 59bps.

Figure 5.3(a) illustrating the CDF of the terminal pathwise wealth ratio W ∗k (T ) /Ŵ (T ) , k ∈ {v, `} and Figure985

5.3(b) illustrating the probability of benchmark outperformance over time. It is clear that IR-optimal portfolios986

formed using the LETF and no further leverage significantly improves the benchmark outperformance charac-987

teristics of the resulting strategy. Note that the results of Appendix C (Figure C.2 and Figure C.3) show that988

the conclusions of Figure 5.3 remain qualitatively applicable for different leverage and borrowing cost scenarios.989
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990

Figure 5.4 compares selected percentiles of the IR-optimal proportion of wealth in the LETF (no leverage)991

or leveraged VETF (pmax = 1.5, b = 0.03) over time, using the same scale in Figure 5.4(a) and Figure 5.4(b)992

for illustrative purposes. Figure 5.4(a) shows that the LETF investor initially allocates around 70% of wealth993

allocated to LETF, which quickly falls to around 40% or less around the middle of the investment time horizon994

for both the 20th and 50th percentiles. In the case of the portfolio with a leveraged position in the VETF995
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(pmax = 1.5), Figure 5.4(b) shows that the median allocation to the VETF exceeds 100% of wealth for more996

than half the investment time horizon.997
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Figure 5.4: Numerical solutions, Scenario 1, basic assets only (LETF or VETF and bonds - see Table 5.2): Selected
percentiles of the IR-optimal proportion of wealth in the LETF (no leverage) or leveraged VETF (pmax = 1.5, b = 0.03)
over time. Note the same scale on the y-axis has been used to facilitate comparison.

998

Figure 5.4 shows that executing the IR-optimal strategy using a LETF offers the investor more flexibility:999

with lower levels of wealth tied up in the LETF compared to the allocation to a VETF, together with the higher1000

volatility of LETF-based returns, the investor can “lock in” periods of good past returns by implementing a1001

systematic de-risking of the portfolio to a lower allocation to LETF over time, increasing the allocation to bonds.1002

While the leveraged VETF-based strategy essentially follows the same contrarian pattern, the 80th percentile1003

in Figure 5.4(b) shows that it significantly harder for the leveraged VETF strategy to recover from periods of1004

poor past returns in a setting of maximum leverage restrictions, borrowing costs and no trading in the event of1005

bankruptcy.1006

In addition to the preceding results which are based on the bootstrap resampling of historical data, for1007

illustrative purposes we consider the investment performance on selected single historical paths (see Remark1008

5.1) illustrated in Figure 5.5. Figures 5.5(a) and (b) show that both the LETF and VETF investors (regardless1009

of VETF leverage) underperform the benchmark during the lowest points of the DotCom and GFC crashes,1010

with the LETF investor experiences larger peak-to-trough declines but also faster post-crash recovery. Figure1011

5.5(c) illustrate that the LETF-based strategy remains only slightly ahead of the VETF-based strategies during1012

periods of strong equity market performance and low interest rates, while Figure 5.5(d) shows that the LETF1013

investor stays ahead despite the significant impact on portfolio wealth of the Covid-19 period and subsequent1014

bear market of 2022.1015

1016

6 Conclusion1017

In this paper, we investigated the potential of including a broad stock market index-based leveraged ETF1018

(LETF) in long-term, dynamically-optimal investment strategies designed to maximize the outperformance1019

over standard performance benchmarks in terms of the information ratio (IR).1020

Using both closed-form and numerical solutions, we showed that an investor can exploit the observation1021

that LETFs offer call-like payoffs, and therefore could be a convenient way to add inexpensive leverage to the1022

portfolio while providing extreme downside protection.1023

Under stylized assumptions including continuous rebalancing and no investment constraints, we derived the1024

closed-form IR-optimal investment strategy for the LETF investor, which provided valuable intuition as to the1025

contrarian nature of the strategy. In more practical settings of quarterly trading, leverage restrictions, no trading1026

in the event of insolvency and the presence of margin costs on borrowing, we employed a neural network-based1027

approach to determine the IR-optimal strategies. Our findings show that unleveraged IR-optimal strategies1028

with a broad stock market LETF not only outperform the benchmark more often than possibly leveraged IR-1029

optimal strategies derived using a VETF, but can achieve partial stochastic dominance over the benchmark and1030
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Figure 5.5: Evolution of portfolio wealth over time when investing according to the corresponding IR-optimal investment
strategies on historical paths selected for the reasons as discussed in Remark 5.1.

(leveraged or unleveraged) VETF-based strategies in terms of terminal wealth.1031

Two important caveats are to be kept in mind regarding our results demonstrating the potential of LETFs:1032

(i) The results and conclusions are associated with dynamic IR-optimal investment strategies, which are most1033

emphatically not naive strategies like the buy-and-hold strategies over long time horizons often considered in1034

the literature (see the Introduction for a discussion). In particular, critical to the investment outcomes are the1035

rebalancing of the portfolio within the context of a contrarian investment strategy. (ii) The results emphasize1036

that there is no free lunch with regards to leverage. Specifically, the extreme left tails of the IR-optimal1037

terminal wealth CDFs confirm that whether leveraging an investment implicitly (via the LETF) or explicitly1038

(via a leveraged VETF investment), the downside wealth outcomes are worse than using the VETF without any1039

leverage, and therefore the upside outcomes of leverage is not without significant risks. Nevertheless, bootstrap1040

resampling tests indicate that use of an optimal strategy using LETFs outperforms the benchmark > 95% of1041

the time, which may make the extreme tail risk acceptable.1042

Despite the controversy surrounding the uses of LETFs for investment purposes in the literature, our results1043

help to explain the empirical appeal of LETFs to institutional and retail investors alike, and encourage a1044

reconsideration of the role of broad stock market LETFs within the context of more sophisticated investment1045

strategies.1046
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Appendix A: Proofs of main results1188

The proofs of the key results of Section 3 are presented in this appendix.1189

A.1: Proof of Theorem 3.11190

For a given deterministic benchmark strategy %̂s (t), consider an arbitrary admissible investor strategy %` (t) :=1191

%` (t,X` (t)) ∈ A0, where we omit the dependence of %` on X` (t) =
(
W` (t) , Ŵ (t) , %̂s (t)

)
for notational1192

simplicity. Considering the objective functional of the IR problem (3.26) at a given point (t, w, ŵ) ∈ [t0, T ]×R2
1193

for a given and fixed value of γ > 0, define1194

J (t, w, ŵ; %`) = Et,w,ŵ%`

[(
W` (T )−

[
Ŵ (T ) + γ

])2
]
. (A.1)1195

If we proceed informally and assume that J sufficiently smooth, then the application of Itô’s lemma for jump1196
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processes (Oksendal and Sulem (2019)) gives1197

Et,w,ŵ%`

[∫ t+h

t

dJ
(
u,W` (u) , Ŵ (u) ; %`

)]
1198

= Et,w,ŵ%`

[∫ t+h

t

(
∂J

∂t
+
∂J

∂w
· {W` (u) · [r + %` (u) {β (µ− λκs1 − r)− c`}] + q}

)
· du

]
1199

+Et,w,ŵ%`

[∫ t+h

t

∂J

∂ŵ
·
{
Ŵ (u) · [r + (µ− λκs1 − r) %̂s (u)] + q

}
· du

]
1200

+Et,w,ŵ%`

[∫ t+h

t

1

2

(
∂2J

∂ŵ2
·
[
%̂s (u) Ŵ (u)σ

]2
+
∂2J

∂w2
· [%` (u)W` (u)βσ]

2

)
· du

]
1201

+Et,w,ŵ%`

[∫ t+h

t

∂2J

∂w∂ŵ
· [%` (u)W` (u)βσ]

[
%̂s (u) Ŵ (u)σ

]
· du

]
1202

+Et,w,ŵ%`

[
λ

∫ t+h

t

[∫ ∞
0

φ
(
u,W`

(
u−
)
, Ŵ

(
u−
)
, ξs; %`

)
G (ξs) dξs − J

(
W`

(
u−
)
, Ŵ

(
u−
)
, u; %`

)]
du

]
,(A.2)1203

where all partial derivatives are evaluated at
(
u,W` (u) , Ŵ (u) ; %`

)
, and1204

φ
(
u,W`

(
u−
)
, Ŵ

(
u−
)
, ξs; %`

)
1205

= J
(
W`

(
u−
)

+ %` (u)W`

(
u−
)
β
(
ξ` − 1

)
, Ŵ

(
u−
)

+ %̂s (u) Ŵ
(
u−
)

(ξs − 1) , u; %`

)
. (A.3)1206

1207

Recall that the LETF jump multiplier ξ` is a function (3.6) of the underlying index S jump multiplier ξs, so φ1208

in (A.4) can be interpreted as a function of ξs if all other values are held fixed.1209

Continuing to proceed informally, dividing (A.2) by h > 0, taking limits as h ↓ 0 and assuming the limits1210

and expectations could be interchanged, an application of the dynamic programming principle results in the1211

PIDE (3.27)-(3.28).1212

While providing the necessary intuition, the preceding arguments are merely informal. However, since1213

similar arguments (see Applebaum (2004); Oksendal and Sulem (2019)) can be applied to a suitably smooth1214

test function instead of the objective functional in order to formally prove (3.27)-(3.28), the details are therefore1215

omitted.1216

A.2: Proof of Proposition 3.21217

The quadratic terminal condition (3.28) suggests an ansatz for the value function V of the form1218

V (t, w, ŵ, %̂s) = A (t)w2 + Â (t) ŵ2 +D (t)wŵ + F (t)w + F̂ (t) ŵ + C (t) , (A.4)1219

where A, Â,D, F, F̂ and C are deterministic but unknown functions of time. Since (A.4) implies partial deriva-1220

tives of the form1221

∂V

∂w
= 2A (t)w + F (t) +D (t) ŵ,

∂2V

∂w2
= 2A (t) , and

∂2V

∂w∂ŵ
= D (t) , (A.5)1222

substituting (A.4)-(A.5) into the HJB PIDE (3.27) results in the pointwise supremum %∗` = %∗` (t, w, ŵ, %̂s)1223

obtained from the first-order condition that satisfies the relationship1224

%∗` · w = −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

β2
(
σ2 + λκ`2

) )[
w +

F (t)

2A (t)
+

D (t)

2A (t)
· ŵ
]

1225

−

[
σ2 + λκ`,sχ

β
(
σ2 + λκ`2

)] D (t)

2A (t)
· %̂sŵ. (A.6)1226
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Substituting (A.6) into (3.29) to obtain H (%∗` ; t, w, ŵ, %̂s), the PIDE (3.27)-(3.28) implies the following set of1227

ordinary differential equations (ODEs) for the unknown functions A,D and F on t ∈ [t0, T ],1228

d

dt
A (t) = −

(
2r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

)2
β2
(
σ2 + λκ`2

) )
A (t) , A (T ) = 1, (A.7)1229

d

dt
D (t) = −

(
2r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

)2
β2
(
σ2 + λκ`2

) +K`,s
β · %̂s (t)

)
D (t) , D (T ) = −2, (A.8)1230

d

dt
F (t) = −2qA (t)−

(
r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

)2
β2
(
σ2 + λκ`2

) )
F (t)− qD (t) , F (T ) = −2γ, (A.9)1231

where the constant K`,s
β is given by (3.33)1232

Note that the derivation of (A.8) as an ODE requires the benchmark strategy %̂s to be deterministic (in the1233

case of closed-form solutions) as per Assumption 3.2. Solving ODEs (A.7)-(A.9), we obtain1234

A (t) = exp

{(
2r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

)2
β2
(
σ2 + λκ`2

) )
(T − t)

}
, (A.10)1235

D (t) = −2 · exp

{(
2r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

)2
β2
(
σ2 + λκ`2

) )
(T − t) +K`,s

β ·
∫ T

t

%̂s (u) du

}
, (A.11)1236

F (t) = 2 exp

{(
r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− c`

)2
β2
(
σ2 + λκ`2

) )
(T − t)

}
×1237 [

−γ +
q

r

(
er(T−t) − 1

)
− q ·

∫ T

t

exp

{
r (T − v) +K`,s

β ·
∫ T

v

%̂s (u) du

}
dv

]
. (A.12)1238

Substituting (A.10)-(A.12) into (A.6) and simplifying, we obtain the optimal fraction of wealth %∗` to invest in1239

the LETF (3.30) as per Proposition 3.2.1240

A.3: Expressions for κ`1, κ`2 and κ`,sχ1241

For the purposes of illustrating the closed-form solutions of Section 3, the broad equity market index S is
assumed to have dynamics (3.2) with jumps as modelled in Kou (2002). As a result, with pup denoting the
probability of an upward jump given that a jump occurs, y = log ξs is assumed in Kou (2002) to follow an
asymmetric double-exponential distribution with PDF g (y),

g (y) =pupη1e
−η1yI{y≥0} + (1− pup) η2e

η2yI{y<0}, (A.13)

where pup ∈ [0, 1] and η1 > 1, η2 > 0. Equivalently, the PDF of ξs is given by1242

G (ξs) = pupη1 (ξs)
−η1−1 I[ξs≥1] (ξs) + (1− pup) η2 (ξs)

η2−1 I[0≤ξs<1] (ξs) . (A.14)1243

Recall that we have defined κs1 and κs1 in (3.3), repeated here for convenience,1244

κs1 = E [ξs − 1] , κs2 = E
[
(ξs − 1)

2
]
. (A.15)1245

From the results in Kou (2002), we can obtain (A.15) for the distribution (A.14) using the results1246

E [ξs] =
pupη1

η1 − 1
+

(1− pup) η2

η2 + 1
, E

[
(ξs)

2
]

=
pupη1

η1 − 2
+

(1− pup) η2

η2 + 2
. (A.16)1247

However, since the LETF experiences slightly different jumps as per (3.6), which we repeat here for convenience,1248

ξ` =


ξs if ξs > (β − 1) /β,

(β − 1)

β
if ξs ≤ (β − 1) /β,

(A.17)1249
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we cannot use the results (A.15) directly. Instead, expressions for κ`1, κ`2 and κ`,sχ are obtained using the results1250

the following lemma.1251

Lemma A.1. (κ`1, κ`2 and κ`,sχ in the Kou (2002) model) Suppose the jump multiplier ξs in the S-dynamics1252

(3.2) has PDF G (ξs) given by (A.14), and a LETF with returns multiplier β > 1 and dynamics (3.8) has jump1253

multiplier ξ`, which is defined in terms of ξs as per (A.17). Then the quantities1254

κ`1 = E
[
ξ` − 1

]
, κ`2 = E

[(
ξ` − 1

)2]
, κ`,sχ = E

[(
ξ` − 1

)
(ξs − 1)

]
, (A.18)1255

required by the IR-optimal investment strategy in Proposition 3.2 can be obtained using the following expressions:1256

E
[
ξ`
]

=
pupη1

η1 − 1
+ (1− pup) η2 ·

[
ϑη2+1

η2
+

(
1− ϑη2+1

η2 + 1

)]
, (A.19)1257

E
[(
ξ`
)2]

=
pupη1

η1 − 2
+ (1− pup) η2 ·

[
ϑη2+2

η2
+

(
1− ϑη2+2

η2 + 2

)]
, (A.20)1258

E
[
ξ`ξs

]
=

pupη1

η1 − 2
+ (1− pup) η2 ·

[
ϑη2+2

η2 + 1
+

(
1− ϑη2+2

η2 + 2

)]
, (A.21)1259

where ϑ = (β − 1) /β.1260

Proof. Consider (A.21). Since β > 1 and ϑ = (β − 1) /β, we have 0 < ϑ < 1. Therefore, using the definition of1261

the LETF jump multiplier (A.17) and the PDF G (ξs), we have1262

E
[
ξ`ξs

]
=

∫ ∞
0

ξ`ξs ·G (ξs) dξs1263

= ϑ ·
∫ ϑ

0

ξs ·G (ξs) dξs +

∫ 1

ϑ

(ξs)
2 ·G (ξs) dξs +

∫ ∞
1

(ξs)
2 ·G (ξs) dξs. (A.22)1264

Standard results (see (A.16) and Kou (2002)) for the Kou model gives1265 ∫ ∞
1

(ξs)
2 ·G (ξs) dξs =

pupη1

η1 − 2
. (A.23)1266

Using (A.23) and writing the first two terms of (A.22) in terms of the log jump multiplier y = log ξs with PDF1267

g (y) as per (A.13), we have1268

E
[
ξ`ξs

]
= ϑ ·

∫ log ϑ

−∞
eyg (y) dy +

∫ 0

log ϑ

e2yg (y) dy +
pupη1

η1 − 2
1269

= (1− pup) η2ϑ ·
∫ log ϑ

−∞
e(η2+1)ydy + (1− pup) η2

∫ 0

log ϑ

e(η2+2)ydy +
pupη1

η1 − 2
. (A.24)1270

Simplifying (A.24) gives (A.21). Since (A.19) and (A.20) can be obtained using similar arguments, the details1271

are omitted.1272

A.4: Proof of Corollary 3.31273

For purposes of intuition, we first give informal arguments as to how the results of Corollary 3.3 relate to the1274

results of Proposition 3.2. Recall that the VETF has returns multiplier β = 1 (i.e. the VETF simply aims to1275

replicate the returns of S before costs) and expense ratio cv > 0. Note that if we let β ↓ 1 in (3.6), we have1276

lim
β↓1

ξ` = ξs a.s., (A.25)1277

from which it follows that1278

lim
β↓1

κ`1 = κs1, lim
β↓1

κ`2 = κs2, lim
β↓1

κ`,sχ = κs2. (A.26)1279

Therefore, comparing the VETF and LETF investor wealth dynamics (3.23)-(3.24) in the case of identical1280

expense ratios (i.e. c` = cv), identical but not necessarily optimal investment strategies (%` = %v) and the1281

35



identical initial wealth, we have1282

lim
β↓1

W` (t) = Wv (t) a.s. ∀t ∈ [t0, T ] , if W` (t0) = Wv (t0) , c` = cv, and %` = %v. (A.27)1283

In other words, if we let β ↓ 1 in the LETF investor wealth dynamics (3.24), we recover the VETF investor1284

wealth dynamics (3.23). Continuing to proceed informally, the results of Corollary 3.3 can therefore be obtained1285

by letting β ↓ 1 in the results of Proposition 3.2, provided we use the VETF expense ratio cv in both (3.24)1286

and (3.23). Note that the definition (3.33) of K`,s
β , results (A.26) and setting c` = cv imply that1287

lim
β↓1

K`,s
β = lim

β↓1

[
µ− r −

(
β
[
µ+ λ

(
κ`1 − κs1

)
− r
]
− cv

) (
σ2 + λκ`,sχ

)
β
(
σ2 + λκ`2

) ]
1288

= cv, (A.28)1289

which confirms that the functions gv and hv ((3.35)-(3.36)) can be obtained from the functions the functions g`1290

and h` ((3.31)-(3.32)) if identical expense ratios are used.1291

The preceding discussions were merely informal. More formally, the proof of Corollary 3.3 proceeds along1292

the same lines as the proof of Proposition 3.2, except that VETF investor wealth dynamics (3.23) is used instead1293

of (3.24), and details are therefore omitted.1294

A.5: Proof of Proposition 3.41295

Suppose we have zero expense ratios, i.e. cv = c` = 0, and there are no jumps in the underlying S-dynamics1296

(i.e. λ = 0 in (3.2)). Substituting these values in the deterministic functions g` and h` ((3.31) and (3.32)) in1297

the case of a LETF and the deterministic functions gv and hv ((3.35) and (3.36)) in the case of the VETF, we1298

have1299

g` (t) = gv (t) = 1, (A.29)1300

and1301

h` (t) = hv (t) = 0. (A.30)1302

In the case of the LETF investor, the optimal control (3.30) now satisfies1303

β ·W ∗` (t) · %∗` (t,X∗` (t)) =

(
µ− r
σ2

)
·
[
γe−r(T−t) −

(
W ∗` (t)− Ŵ (t)

)]
+ %̂s (t) Ŵ (t) , (A.31)1304

whereas in the case of the VETF investor, the optimal control (3.30) now becomes1305

W ∗v (t) · %∗v (t,X∗v (t)) =

(
µ− r
σ2

)
·
[
γe−r(T−t) −

(
W ∗v (t)− Ŵ (t)

)]
+ %̂s (t) Ŵ (t) . (A.32)1306

Using (A.31) and (A.32), define the auxiliary process Q (t) as1307

Q (t) = e−rt · [W ∗` (t)−W ∗v (t)] , t ∈ [t0 = 0, T ] , (A.33)1308

with Q (t0) = e−rt0 [W ∗` (t0)−W ∗v (t0)] = w0 − w0 = 0.1309

Substituting the optimal controls in this special case ((A.31) and (A.32)) into the wealth dynamics (3.23)-
(3.24) and recalling that there are no jumps, we obtain the dynamics

dQ (t)

Q (t)
=

(
µ− r
σ

)2

· dt−
(
µ− r
σ

)
· dZ (t) . (A.34)

Since Q (t0) = 0, dynamics (A.34) therefore imply that Q (t) = 0,∀t ≥ t0, so that in the special case of zero1310

costs, we have1311

W ∗` (t) = W ∗v (t) , ∀t ∈ [t0, T ] , (A.35)1312

which confirms (3.39).1313

Using (A.35) to write W ∗ (t) := W ∗` (t) = W ∗v (t) in this special case, the difference in controls (A.31) and
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(A.32) satisfy

[β · %∗` (t,X∗` (t))− %∗v (t,X∗v (t))] ·W ∗ (t) =β ·W ∗` (t) · %∗` (t,X∗` (t))−W ∗v (t) · %∗v (t,X∗v (t))

=−
(
µ− r
σ2

)
[W ∗` (t)−W ∗v (t)]

=0, ∀t ≥ t0, (A.36)

thereby verifying (3.38).1314

Finally, given the form of the optimal control (A.32) for the VETF in this special case, together with1315

Assumption 3.1 and wealth dynamics (3.23), imply that we can obtain the optimal Information Ratio in the1316

case of the VETF as given by (3.40) (see Van Staden et al. (2023)). However, since (A.35), this is also the1317

optimal IR using the LET in this special case, thereby confirming (3.40) and completing the proof of Proposition1318

3.4.1319

Appendix B: Source data and parameters1320

In this appendix, we provide details regarding the source data used to obtain the indicative investment results1321

presented in Section 3 and Section 5.1322

Returns data for US Treasury bills and bonds, as well as the broad equity market index, were obtained from1323

the CRSP8. In more detail, the historical time series are as follows:1324

(i) T30 (30-day Treasury bill): CRSP, monthly returns for 30-day Treasury bill.1325

(ii) B10 (10-year Treasury bond): CRSP, monthly returns for 10-year Treasury bond.1326

(iii) Market (broad equity market index): CRSP, monthly and daily returns, including dividends and distribu-1327

tions, for a capitalization-weighted index consisting of all domestic stocks trading on major US exchanges1328

(the VWD index).1329

CRSP data was obtained for the historical time period 1926:01 to 2023:12. All time series were inflation-adjusted1330

using inflation data from the US Bureau of Labor Statistics9.1331

B.1: Constructing VETF and LETF returns time series1332

LETFs were only introduced in 2006 (Bansal and Marshall (2015)), whereas the first VETFs were listed in the1333

US in the 1990s. In order to obtain longer time series of returns for indicative investment results of Section 5,1334

we construct a proxy returns time series for a VETF and LETF referencing a broad equity market index as1335

follows:1336

(i) Obtain daily returns for the underlying broad equity market index referenced by the VETF and LETF. For1337

this purpose, we used daily returns for the CRSP capitalization-weighted index consisting of all domestic1338

stocks trading on major US exchanges (the VWD index - see above), with historical data that is available1339

since January 1926. We prefer to use a time series that is as long as possible, since this would include1340

additional periods of exceptional market volatility such as 1929-1933.1341

(ii) Multiply each daily return by the returns multiplier β, where we used β = 2 for the LETF and β = 1 for1342

the VETF, and construct a time series of monthly returns.1343

(iii) Adjust the time series of VWD returns using (3.5) to reflect the ETF expense ratios ck, k ∈ {v, `} and the1344

observed T-bill rate r. As per Table 3.1, we assumed expense ratios of c` = 0.89% p.a. for the LETF and1345

cv = 0.06% p.a. for the VETF to reflect typical values observed in the market.1346

(iv) Inflation-adjust the time series using inflation data from the US Bureau of Labor Statistics.1347

8Calculations were based on data from the Historical Indexes 2024©, Center for Research in Security Prices (CRSP), The
University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This service
and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third party suppliers.

9The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see http://www.bls.gov.cpi
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Note that a proxy time series of LETF returns is also similarly constructed in Bansal and Marshall (2015),1348

although a number of details (such as inflation adjustment of returns and choice of underlying index) differ.1349

As noted in Bansal and Marshall (2015), the construction of such a proxy returns time series assumes that the1350

ETF managers achieve a negligible tracking error with respect to the underlying index. We observe that these1351

assumptions are often made out of necessity in the literature concerning LETFs (e.g. Bansal and Marshall (2015),1352

Leung and Sircar (2015)). Furthermore, given improvements in designing replication strategies for LETFs that1353

remain robust even during periods of market volatility (see for example Guasoni and Mayerhofer (2023)), this1354

appears to be a reasonable assumption for ETFs written on major stock market indices as considered in this1355

paper.1356

We emphasize that the proxy time series for VETF and LETF returns are only used for bootstrapping the1357

data sets for the numerical solutions implementing the data-driven neural network approach (Section 4 and1358

Section 5), and not for the closed-form solutions of Section 3. This follows since closed-form solutions in Section1359

3 assume parametric dynamics for the underlying assets including the broad equity market index, from which1360

the LETF and VETF dynamics can be constructed using (3.8) and (3.4), respectively.1361

B.2: Calibrated parameters for closed-form solutions1362

For the closed-form solutions of Section 3, using the CRSP data for 30-day T-bills and the broad equity market1363

index (VWD index) for the period 1926:01 to 2023:12 as outlined above, the filtering technique as per Dang1364

and Forsyth (2016); Forsyth and Vetzal (2017) for calibrating inflation-adjusted Kou (2002) jump-diffusion1365

processes resulted in the calibrated process parameters as presented in Table B.1. Given the specified dynamics1366

(3.1)-(3.2) of the risk-free asset B and equity market index S (with parameters as in Table B.1), we can obtain1367

the dynamics of the LETF (3.8) and VETF (3.4).1368

Table B.1: Closed-form solutions: Calibrated, inflation-adjusted parameters for asset dynamics (3.1) and (3.2), assum-
ing the Kou (2002) jump-diffusion model with G (ξs) given by (A.14). The calibration methodology of Dang and Forsyth
(2016); Forsyth and Vetzal (2017) is used with a jump threshold parameter value of 3.

Assumption for S-dynamics
Calibrated parameters

r µ σ λ pup η1 η2

Jump-diffusion (Kou model) 0.0031 0.0873 0.1477 0.3163 0.2258 4.3591 5.5337
GBM dynamics (no jumps) 0.0031 0.0819 0.1850 - - - -

1369

Note that the values of the remaining parameters for the parametric dynamics can be calculated by sub-1370

stituting the values of Table B.1 into the results of Appendix A.3. This gives κs1 = −0.0513, κs2 = 0.0884,1371

κ`1 = −0.0500, κ`2 = 0.0870 and κ`,sχ = 0.0876.1372

Appendix C: Additional numerical results1373

Additional leverage and borrowing cost scenarios are analyzed as a supplement to the results of Section 5. We1374

consider scenarios where the maximum leverage allowed decreases from pmax = 1.5 to pmax = 1.2, or increases1375

to pmax = 2.0, and where zero borrowing costs might be applicable (as opposed to borrowing costs of b = 0.031376

throughout Section 5).1377

As discussed in Section 5, we observe that the IR-optimal portfolio of the LETF investor achieves partial1378

stochastic dominance over the corresponding IR-optimal portfolio of the VETF investor with the same outper-1379

formance target γ, even if the VETF investment can be leveraged and borrowing costs on short-selling decrease1380

to zero (see for example Figure C.1). For some intuition as to the underlying explanation, please refer to Section1381

5 and in particular Figure 5.2 and the associated discussion.1382

In summary, the results of this appendix confirm that the conclusions of Section 5 do not appear to be1383

sensitive in a qualitative sense to the specific maximum leverage or borrowing costs parameters used in the1384

numerical analysis, provided these values are within a reasonable range.1385

1386
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Figure C.1: Effect of leverage and borrowing cost assumptions on CDFs of IR-optimal terminal wealth W ∗
k (T ) , k ∈

{v, `}.
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Figure C.2: Effect of leverage and borrowing cost assumptions on the CDFs of IR-optimal terminal wealth ratios
W ∗

k (T ) /Ŵ (T ) , k ∈ {v, `}.
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Figure C.3: Effect of leverage and borrowing cost assumptions on the probability W ∗
k (t) > Ŵ (t) , k ∈ {v, `} of

benchmark outperformance as a function of time t.
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