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The Basic Problem

Broker buys/sells large block of shares on behalf of client

Large orders will incur costs, due to price impact (liquidity)
effects

→ e.g. rapidly selling a large block of shares will depress the price

Slow trading minimizes price impact, but leaves exposure to
stochastic price changes

Fast trading will minimize risk due to random stock price
movements, but price impact will be large

What is the optimal strategy?
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An Interesting Example of Price Impact

Remember Jérôme Kerviel

Rogue trader at Société Générale

The book value of Kerviel’s portfolio, January 19, 2008 1

→ −2.7 Billion e

SocGen decided to unwind this portfolio as rapidly as possible

Over three days, the total cost of unwinding the portfolio was

→ −6.3 Billion e

The price impact of rapid liquidation caused the realized loss
to more than double the book value loss

1Report of the Commission Bancaire
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Previous Approaches (a small sample)

Almgren, Chriss (2001) Mean-variance trade-off, discrete time,
assume optimal asset positions are asset price
independent (industry standard approach)

He, Mamaysky; Vath, Mnif, Pham; Schied, Schoneborn Maximize
utility function, continuous time, dynamic
programming, HJB equation.

Almgren, Lorenz (2011) Recognize that asset price independent
solution is not optimal. Suggest HJB equation,
continuous time, mean variance tradeoff.

Guilbaud, Mnif, H. Pham Impulse control formulation (discrete
trading)

Gatheral, Schied (2011) Almgren, Chriss + GBM
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Formulation

P = Trading portfolio

= B + AS

B = Bank account: keeps track of gains/losses

S = Price of risky asset

A = Number of units of the risky asset

T = Trading horizon
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For Simplicity: Sell Case Only

Sell

t = 0→ B = 0,S = S0,A = A0

t = T → B = BL,S = ST ,A = 0

BL is the cash generated by trading in [0,T )

↪→ Plus a final sale at t = T to ensure that zero shares owned.

Success is measured by BL (proceeds from sale).

Maximize E [BL], minimize Var [BL]
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Price Impact Modelling
In practice, a hierarchy of models is used

Level 1 Considers all buy/sell orders of a large financial institution,
over many assets

Simple model of asset price movements, considers correlation
between assets
Output: “sell 107 shares of RIM today”.

Level 2 Single name sell strategy (schedule over the day)
Level 2 models attempt to determine optimal strategy for
selling a single name, assuming trades occur continuously, at
rate v
Price impact is a function of trade rate
Output: “sell 105 shares of RIM between 10:15-10:45”

Level 3 Fine grain model
Level 3 models assume discrete trades, and try to trade
optimally based on an order book model.
Output: “place sell order for 1000 shares at 10:22”

We focus on Level 2 models today.
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Basic Problem

Trading rate v (A = number of shares)

dA

dt
= v .

Suppose that S follows geometric Brownian Motion (GBM) under
the objective measure

dS = (η + g(v))S dt + σS dZ

η is the drift rate of S

g(v) is the permanent price impact

σ is the volatility

dZ is the increment of a Wiener process .
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Basic Problem II

To avoid round-trip arbitrage (Huberman, Stanzl (2004))

g(v) = κpv

κp permanent price impact factor (const.)

The bank account B is assumed to follow

dB

dt
= rB − vSexec

r is the risk-free return

Sexec is the execution price

= Sf (v)

f (v) is the temporary price impact

(−vSexec) represents the rate of cash generated when buying
shares at price Sexec at rate v .
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Temporary Price Impact: Sexec = f (v)S

Temporary price impact and transaction cost function f (v) is
assumed to be

f (v) = [1 + κs sgn(v)] exp[κt sgn(v)|v |β]

κs is the bid-ask spread parameter

κt is the temporary price impact factor

β is the price impact exponent

f (v) > 1 if buying: execution price > pre-trade price

< 1 if selling: execution price < pre-trade price
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Optimal Strategy
Define:

X = (S(t),A(t),B(t)) = State

BL = Liquidation Value

v(X , t) = trading rate

Let

E
v(·)
t,x [·] = E [·|X (t) = x ] with v(X (u), u), u ≥ t

being the strategy along path X (u), u ≥ t

Var
v(·)
t,x [·] = Var[·|X (t) = x ] Variance under strategy v(·)

so that

Var
v(·)
t,x [BL] = E

v(·)
t,x [(BL)2]−

(
E
v(·)
t,x [BL]

)2
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Liquidation Value

If (S(T−),A(T−),B(T−)) are the state variables the instant
before the end of trading t = T−, BL is given by

BL = B − vT (∆t)TSf (vT )

vT =
0− A

(∆t)T

.

Choosing (∆t)T small, penalizes trader for not hitting target
A = 0.

Optimal strategy will avoid the state A 6= 0

Numerical solution insensitive to (∆t)T if sufficiently small
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Mean Variance: Standard Formulation

The objective is to determine the strategy2 v(·) such that

J(x , t) = sup
v(X (u),u≥t)

{
E v
t,x [BL]− λVar vt,x [BL]

}
,

λ = Lagrange multiplier (1)

Solving (1) for various λ traces out a curve in the expected value,
standard deviation plane.
• Let v∗t (x , u), u ≥ t be the optimal policy for (1).
Then v∗t+∆t(x , u), u ≥ t + ∆t is the optimal policy for

J(X (t + ∆t), t + ∆t) =

sup
v(X (u),u≥t+∆t))

{
E v
t+∆t,X (t+∆t)[BL]− λVar vt+∆t,X (t+∆t)[BL]

}
.

2Using the usual approach of converting the Pareto optimization into a
scalar problem
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Pre-commitment Policy

However, in general

v∗t (X (u), u) 6= v∗t+∆t(X (u), u) ; u ≥ t + ∆t , (2)

↪→ Optimal policy is not time-consistent.
The strategy which solves problem (1) has been called the
pre-commitment policy (Basak,Chabakauri: 2010; Bjork et al:
2010)

Much discussion on the economic meaning of such strategies.

Possible to formulate a time-consistent version of
mean-variance.

Or other strategies: mean quadratic variation

Different applications may require different strategies.

We focus on pre-commitment solution today, with a brief
discussion of alternative strategies
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Ulysses and the Sirens: A pre-commitment strategy

Ulysses had himself tied to the mast of his ship (and put wax in his

sailor’s ears) so that he could hear the sirens song, but not jump to his

death.
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Pre-commitment

Problem:

Since the pre-commitment strategy is not time consistent,
there is no natural dynamic programming principle

We would like to formulate this problem as the solution of an
HJB equation.

How are we going to do this?

Solution:

Use embedding technique (Zhou and Li (2000), Li and Ng
(2000) )
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LQ Embedding

Equivalent formulation: for fixed λ, if v∗(·) maximizes

sup
v(X (u),u≥t),v(·)∈Z

{
E v
t,x [BL]− λVar vt,x [BL]

}
,

Z is the set of admissible controls (3)

then there exists a γ = γ(t, x ,E [BL]) such that v∗(·) minimizes

inf
v(·)∈Z

E
v(·)
t,x

[(
BL −

γ

2

)2]
. (4)

Note we have effectively replaced parameter λ by γ in (4).
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Construction of Efficient Frontier 4

We can alternatively now regard γ as a parameter, and determine
the optimal strategy v∗(·) which solves

min
v(·)∈Z

E
v(·)
t,x

[
(BL −

γ

2
)2

]
. (5)

Once v∗(·) is known, we can easily determine E
v∗(·)
t,x [BL],

E
v∗(·)
t,x [(BL)2], by solving an additional linear PDE.

For given γ, this gives us (E
v∗(·)
t,x [BL],Std

v∗(·)
t,x [BL]), a single point

on the efficient frontier.

Repeating the above for different γ generates points on the
efficient frontier. 3

3Strictly speaking, since some values of γ may not represent points on the
original frontier, we need to construct the upper convex hull of these points.

4In simple cases, this can be shown to be equivalent to minimizing
quadratic loss, with target ' expected value (Vigna, 2011)
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Hamilton Jacobi Bellman (HJB) Equation

Let

V (s, α, b, τ)

= min
v(·)∈Z

{
E
v(·)
t,x

[
(BL −

γ

2
)2
∣∣ S(t) = s,A(t) = α,B(t) = b

}
x = (s, α, b)

s = stock price

α = number of units of stock

b = cash obtained so far

T = Trading horizon

τ = T − t

Z = [vmin, 0] (Only selling permitted)
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HJB Equation for Optimal Control v ∗(·)

We can use dynamic programming5 to solve for

min
v(·)∈Z

E
v(·)
t,x

[(
BL −

γ

2

)2]
. (6)

Then, using usual arguments, V (s, α, b, τ) is determined by

Vτ = LV + rbVb + min
v∈Z

[
−vsf (v)Vb + vVα + g(v)sVs

]
LV ≡ σ2s2

2
Vss + ηsVs

Z = [vmin, 0]

with the payoff V (s, α, b, τ = 0) = (b − γ/2)2 . 6

5But this is not time-consistent since γ = γ(t, x ,E [BL])
6But note that v is arbitrary if Vb = Vα = Vs = 0
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But solving the HJB equation requires some work

I will give a brief description of how to do this (later).

But this is considered too complex in industry

So, the original (Almgren and Chriss) paper made several
approximations (e.g. v(·) independent of S(t)).

In fact, a careful read of this paper, shows that the objective
function (after the approximations) is not actually
mean-variance, but is mean quadratic-variation
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Mean Quadratic Variation

Formally, the quadratic variation risk measure is defined as

E

[∫ T

t

(
A(t ′)dS(t ′)

)2

]
. (7)

Informally (if P = B + AS)(
A(t ′)dS(t ′)

)2
=
(
dP(t ′)

)2

i.e. the quadratic variation of the portfolio value process.

Originally suggested as an alternate risk measure by Brugièrre
(1996).

This measures risk in terms of the variability of the stock holding
position, along the entire trading path.
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Mean Quadratic Variation
Objective Function

J(s, α, t, v(·);λ) = E
v(·)
s,α,t

[
BL

]
− λE v(·)

s,α,t

[∫ T

t

(
A(t ′)dS(t ′)

)2
]

(8)

where

BL =

∫ T−

t
(Cash Flows from selling)dt ′ + (Final Sale at t = T ) (9)

One can easily derive the HJB equation for the optimal control
v∗(·)

Vτ = ηsVs +
σ2s2

2
Vss − λσ2α2s2

+ max
v∈Z

[
erτ (−vf (v))s + g(v)sVs + vVα

]
.
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Mean Quadratic Variation

The control is time consistent in this case

If we assume Arithmetic Brownian Motion, then HJB equation
has analytic solution (Almgren, Chriss(2001))

Control is independent of S(t)

One could argue that mean quadratic variation is a reasonable risk
measure

Risk is measured along the entire trading path

In contrast, Mean variance only measures risk at end of path

Time-consistency → smoothly varying controls

But

Mean Quadratic Variation 6= Mean Variance
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How do We Measure Performance of Trading Algorithms?

Imagine we carry out many hundreds of trades

We then examine post-trade data7

Determine the realized mean return and standard deviation
(relative to the pre-trade or arrival price)

Assuming the modeled dynamics very closely match the
dynamics in the real world

→ Optimal pre-commitment Mean Variance strategy will result in
the largest realized mean return, for given standard deviation

So, if we measure performance in this way

We should use Mean Variance optimal control

But this is not what’s done in industry

→ Effectively, a Mean Quadratic Variation Control is used
(Almgren, Chriss (2001))

7According to my industry contacts, some clients actually do this
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HJB Equation: Mean Variance

Define the Lagrangian derivative

DV

Dτ
(v) = Vτ − Vsg(v)s − Vb(rb − vf (v)s)− Vαv ,

which is the rate of change of V along the characteristic curve

s = s(τ) ; b = b(τ) ; α = α(τ)

defined by the trading velocity v through

ds

dτ
= −g(v)s,

db

dτ
= −(rb − vf (v)s),

dα

dτ
= −v .
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HJB Equation: Lagrangian Form

We can then write the Mean Variance HJB equation as

LV − max
v(·)∈Z

DV

Dτ
(v) = 0.

LV ≡ σ2s2

2
Vss + ηsVs

Numerical Method:

Discretize the Lagrangian form directly (semi-Lagrangian
method)

Timestepping algorithm

Solve local optimization problem at each grid node
Discretized linear PDE solve to advance one timestep

Provably convergent to the viscosity solution of the HJB PDE

Similar approach for the Mean Quadratic Variation HJB PDE
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Numerical Method: Efficient Frontier

Recall that (Mean Variance)

V (s, α, b, τ = 0) = (b − γ/2)2

Numerical Algorithm

Pick a value for γ

Solve HJB equation for optimal control v = v(s, α, b, τ)
Store control at all grid points
Simulate trading strategy using a Monte Carlo method (use
stored optimal controls)
Compute mean, standard deviation
This gives a single point on the efficient frontier

Repeat

Similar approach for Mean Quadratic Variation
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Numerical Examples
Simple case: GBM, zero drift, zero permanent price impact

dS = σS dZ

Temporary Price Impact:

f (v) = exp(κtv)

T r sinit αinit Action vmin

1/250 0.0 100 1.0 Sell -1000/T
(One Day)

Case σ κt Percentage of Daily Volume

1 1.0 2× 10−6 16.7%

2 0.2 2.4× 10−6 20.0%

3 0.2 6× 10−7 5.0%

4 0.2 1.2× 10−7 1.0%

5 0.2 2.4× 10−8 0.2%
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σ = 1.0, 16.7% daily volume, Sinit = 100

Standard Deviation
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1600 time steps
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σ = .2, 20% daily volume, Sinit = 100

Standard Deviation
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σ = .2, 5% daily volume, Sinit = 100

Standard Deviation
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σ = .2, 1% daily volume, Sinit = 100

Standard Deviation
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σ = .2, 0.2% daily volume, Sinit = 100

Standard Deviation
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Optimal trading rate: t = 0, α = 1, b = 0

σ = 1.0, 16.7%
daily volume

Mean: 99.29.

Std(Mean Variance)
= 0.68

Std(Mean Quadratic
Variation) = 0.93

Vs ' Vb ' Vs ' 0
when S > 104
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Mean Share Position (α) vs. Time

σ = 1.0, 16.7%
daily volume

Mean: 99.29.

Std(Mean Variance)
= 0.68

Std(Mean Quadratic
Variation) = 0.93
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Standard Deviation of Share Position (α) vs. Time

σ = 1.0, 16.7%
daily volume

Mean: 99.29.

Std(Mean Variance)
= 0.68

Std(Mean Quadratic
Variation) = 0.93
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Conclusions: Mean Variance

Pros:

If performance is measured by post-trade data (mean and
variance)

→ This is the truly optimal strategy

Significantly outperforms Mean Quadratic Variation for low
levels of required risk (fast trading)

Cons:

Non-trivial to compute optimal strategy

Very aggressive in-the-money strategy

Share position has high standard deviation

Optimal trading rate is almost ill posed: many nearby
strategies give almost same efficient frontier

→ Simple example: zero standard deviation 8

8Recall that v is arbitrary if Vs = Vb = Vα = 0
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Conclusions: Mean Quadratic Variation

Pros:

Simple analytic solution for Arithmetic Brownian Motion Case

Trading rate a smooth, predictable function of time

→ For GBM case, only weakly sensitive to asset price S

Almost same results as Mean Variance, for large levels of
required risk (slow trading)

Cons:

If performance is measured by post-trade data (mean and
variance)

→ This is not the optimal strategy
→ Significantly sub-optimal for low levels of risk (fast trading)
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