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Wealth Management1

Suppose you are saving for retirement (i.e. 20 years away)

A standard problem is

What is your portfolio allocation strategy?

i.e. how much should you allocate to bonds, and how much to
equities (i.e. an index ETF)

How should this allocation change through time?

Typical rule of thumb: fraction of portfolio in stocks
= 110 minus your age.

Target Date (Lifecycle) funds

Automatically adjust the fraction in stocks (risky assets) as
time goes on
Use a specified “glide path” to determine the risky asset
proportion as a function of time to go
At the end of 2013, over $600 billion invested in US

1Many Canadian banks moving into wealth management: no capital
requirements, little regulation, baby boomers will have large inheritances
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Optimal Control: Multi-period Mean Variance

Criticism: variance as risk measure penalizes upside as well as
downside

I hope to convince you that multi-period mean variance
optimization

Can be modified slightly to be (effectively) a downside risk
measure

Has other good properties: small probability of shortfall

Outcome: optimal strategy for a Target Date Fund

I will show you that most Target Date Funds being sold in the
marketplace use a sub-optimal strategy
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Example: Target Date (Lifecycle) Fund with two assets
Risk free bond B

dB = rB dt

r = risk-free rate

Amount in risky stock index S

dS = (µ− λκ)S dt + σS dZ + (J − 1)S dq

µ = P measure drift ; σ = volatility

dZ = increment of a Wiener process

dq =

{
0 with probability 1− λdt

1 with probability λdt,

log J ∼ N (µJ , σ
2
J). ; κ = E [J − 1]
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Optimal Control
Define:

X = (S(t),B(t)) = Process

x = (S(t) = s,B(t) = b) = (s, b) = State

(s + b) = total wealth

Let (s, b) = (S(t−),B(t−)) be the state of the portfolio the
instant before applying a control

The control c(s, b) = (d ,B+) generates a new state

b → B+

s → S+

S+ = (s + b)︸ ︷︷ ︸
wealth at t−

−B+ − d︸︷︷︸
withdrawal

Note: we allow cash withdrawals of an amount d ≥ 0 at a
rebalancing time
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Semi-self financing policy

Since we allow cash withdrawals

→ The portfolio may not be self-financing

→ The portfolio may generate a free cash flow

Let Wa = S(t) + B(t) be the allocated wealth

Wa is the wealth available for allocation into (S(t),B(t)).

The non-allocated wealth Wn(t) consists of cash withdrawals and
accumulated interest
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Constraints on the strategy

The investor can continue trading only if solvent

Wa(s, b) = s + b > 0︸ ︷︷ ︸
Solvency condition

. (1)

In the event of bankruptcy, the investor must liquidate

S+ = 0 ; B+ = Wa(s, b) ; if Wa(s, b) ≤ 0︸ ︷︷ ︸
bankruptcy

.

Leverage is also constrained

S+

W +
≤ qmax

W + = S+ + B+ = Total Wealth
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Mean and Variance under control c(X (t), t)

Let:

E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

= Expectation conditional on (x , t) under control c(·)

Var
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

= Variance conditional on (x , t) under control c(·)

Important:

mean and variance of Wa(T ) are as observed at time t, initial
state x .
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Basic problem: find Efficient frontier

We construct the efficient frontier by finding the optimal control
c(·) which solves (for fixed λ) 2

sup
c

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk

}
(2)

• Varying λ ∈ [0,∞) traces out the efficient frontier

• λ = 0;→ we seek only maximize cash received, we don’t care
about risk.
• λ =∞→ we seek only to minimize risk, we don’t care about the
expected reward.

2We may not find all the Pareto optimal points by this method unless the
achievable set in the (E c [Wa(T )],Var c [Wa(T )]) plane is convex.
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Mean Variance: Standard Formulation

Let c∗t (x , u), u ≥ t be the optimal policy for (3)

sup
c(X (u),u≥t)

{
E
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Reward as seen at t

−λVar
c(·)
t,x [Wa(T )]︸ ︷︷ ︸

Risk as seen at t

}
, (3)

Then c∗t+∆t(x , u), u ≥ t + ∆t is the optimal policy which
maximizes

sup
c(X (u),u≥t+∆t))

{
E
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Reward as seen at t+∆t

−λVar
c(·)
t+∆t,X (t+∆t)[Wa(T )]︸ ︷︷ ︸
Risk as seen at t+∆t

}
.
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Pre-commitment Policy

However, in general

c∗t (X (u), u)︸ ︷︷ ︸
optimal policy as seen at t

6= c∗t+∆t(X (u), u)︸ ︷︷ ︸
optimal policy as seen at t+∆t

; u ≥ t + ∆t︸ ︷︷ ︸
any time>t+∆t

,

(4)
↪→ Optimal policy is not time-consistent.

The strategy which solves problem (3) has been called the
pre-commitment policy3

Can force time consistency 4

↪→ sub-optimal compared to pre-commitment solution.

We will look for the pre-commitment solution

Pre-commitment is difficult for most investors!

3Basak,Chabakauri: 2010; Bjork et al: 2010
4Wang and Forsyth (2011)
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Reformulate MV Problem ⇒ Dynamic Programming

Embedding technique5: for fixed λ, if c∗(·) maximizes

sup
c(X (u),u≥t),c(·)∈Z

{
E c
t,x [Wa(T )]︸ ︷︷ ︸

Reward

−λVar ct,x [Wa(T )]︸ ︷︷ ︸
Risk

}
,

Z is the set of admissible controls (5)

→ ∃ γ such that c∗(·) minimizes

inf
c(·)∈Z

E
c(·)
t,x

[(
Wa(T )− γ

2

)2]
. (6)

5Does not require that we have convex constraints. Can be applied to
problems with nonlinear transaction costs. Contrast with Lagrange multiplier
approach. (Zhou and Li (2000), Li and Ng (2000) )
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Construction of Efficient Frontier

Regard γ as a parameter ⇒ determine the optimal strategy c∗(·)
which solves

inf
c(·)∈Z

E
c(·)
t,x

[
(Wa(T )− γ

2
)2

]
Once c∗(·) is known

Easy to determine E
c∗(·)
t,x [Wa(T )], Var

c∗(·)
t,x [Wa(T )]

Repeat for different γ, traces out efficient frontier6

6Strictly speaking, since some values of γ may not represent points on the
original frontier, we need to construct the upper left convex hull of these points
(Tse, Forsyth, Li (2014), SIAM J. Control Optimization) .
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HJB PIDE

Determination of the optimal control c(·) is equivalent to
determining the value function

V (x , t) = inf
c∈Z

{
E x ,t
c [(Wa(T )− γ/2)2]

}
,

Define:

LV ≡ σ2s2

2
Vss + (µ− λκ)sVs + rbVb − λV ,

JV ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ

p(ξ) = jump size density

and the intervention operator M(c) V (s, b, t)

M(c) V (s, b, t) = V (S+(s, b, c),B+(s, b, c), t)
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HJB PIDE II

The value function (and the control c(·)) is given by solving the
impulse control HJB equation

max

[
Vt + LV + JV ,V − inf

c∈Z
(M(c) V )

]
= 0

if (s + b > 0) (7)

Along with liquidation constraint if insolvent

V (s, b, t) = V (0,Wa(s, b), t)

if (s + b) ≤ 0 and s 6= 0 (8)

We can easily generalize the above equation to handle the discrete
rebalancing case.
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Computational Domain7

S

B

Solve HJB Equation

Solve HJB equation

Liquidate

S + B = 0

Solve HJB
equation

Solve HJB
equation

(S,B) ∈ [ 0, ∞] x [ ­∞, +∞]

(0,0)

+∞

­∞

+∞

7If µ > r it is never optimal to short S
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Global Optimal Point

Optimal target strategy: try to hit Wa(T ) = γ/2 = F (T ).

If Wa(t) > F (t) = F (T )e−r(T−t), then the target can be hit
exactly by

Withdrawing8 Wa(t)− F (t) from the portfolio

Investing F (t) in the risk free account ⇒ V (0,F (t), t) ≡ 0

V (s, b, t) ≥ 0⇒ V (0,F (t), t) = 0 is a global minimum

Any admissible policy which allows moving to this point is an
optimal policy

Once this point is attained, it is optimal to remain at this
point

This strategy dominates any other MV strategy → the investor
receives a bonus in terms of a free cash flow

8Idea that withdrawing cash may be mean variance optimal was also
suggested in (Ehrbar, J. Econ. Theory (1990) )
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Globally Optimal Point 9

S

B

Liquidate

W = 0

V(0, F(t) ) = 0

F(t) = e
­r(T­t)

(γ/2)

Increasing
(T­t)

W = F(t)

Move to optimal
point

9This is admissible only if γ > 0
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Numerical Method

We solve the HJB impulse control problem numerically using a
finite difference method

We use a semi-Lagrangian timestepping method

Can impose realistic constraints on the strategy

Maximum leverage, no trading if insolvent
Arbitrarily shaped solvency boundaries

Continuous or discrete rebalancing

Nonlinearities

Different interest rates for borrowing/lending
Transaction costs

Regime switching (i.e. stochastic volatility and interest rates)

We can prove10 that the method is monotone, consistent, `∞
stable

→ Guarantees convergence to the viscosity solution

10Dang and Forsyth (2014) Numerical Methods for PDEs
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Example I

Two assets: risk-free bond, index

Risky asset follows GBM (no jumps)

According to Benjamin Graham11, most investors should

Pick a fraction p of wealth to invest in an index fund (i.e.
p = 1/2).

Invest (1− p) in bonds

Rebalance to maintain this asset mix

How much better is the optimal asset allocation vs. simple
rebalancing rules?

11Benjamin Graham, The Intelligent Investor
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Long term investment asset allocation

Investment horizon (years) 30
Drift rate risky asset µ .10
Volatility σ .15
Risk free rate r .04
Initial investment W0 100

Benjamin Graham strategy

Constant Expected Standard Quantile
proportion Value Deviation
p = 0.0 332.01 NA NA
p = 0.5 816.62 350.12 Prob(W (T ) < 800) = 0.56
p = 1.0 2008.55 1972.10 Prob(W (T ) < 2000) = 0.66

Table: Constant fixed proportion strategy. p = fraction of wealth in risky
asset. Continuous rebalancing.
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Optimal semi-self-financing asset allocation
Fix expected value to be the same as for constant proportion
p = 0.5.

Determine optimal strategy which minimizes the variance for this
expected value.

We do this by determining the value of γ/2 (the wealth
target) by Newton iteration

Strategy Expected Standard Quantile
Value Deviation

Graham p = 0.513 816.62 350.12 Prob(W (T ) < 800) = 0.56
Optimal 816.62 142.85 Prob(W (T ) < 800) = 0.19

Table: T = 30 years. W (0) = 100. Semi-self-financing: no trading if
insolvent; maximum leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250 %, shortfall probability reduced by 3×
13Continuous rebalancing
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Cumulative Distribution Functions
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Optimal
Allocation

Risky Asset
Proportion = 1/2

E [WT ] = 816.62 for both
strategies

Optimal policy: Contrarian:
when market goes down →
increase stock allocation;
when market goes up →
decrease stock allocation

Optimal allocation gives up
gains � target in order to
reduce variance and
probability of shortfall.

Investor must pre-commit to
target wealth
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Example II: jump diffusion

Investment horizon (years) 30 Drift rate risky asset µ 0.10
λ (jump intensity) 0.10 Volatility σ 0.10
E [J]14 0.62 Effective volatility (with jumps) 0.16
Risk free rate r 0.04 Initial Investment W0 100

Strategy Expected Standard Pr(W (T )) < 800
Value Deviation

Graham p = 0.515 826 399 0.55
Optimal 826 213 0.23

Table: T = 30 years. W (0) = 100. Optimal: semi-self-financing; no
trading if insolvent; maximum leverage = 1.5, rebalancing once/year.

14When a jump occurs S → JS .
15Yearly rebalancing
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Other Tests

Sensitivity to Market Parameters

Compute control using fixed values

Carry out Monte Carlo simulations, randomly vary parameters

→ Similar (good) results

Optimal control mean-reverting stochastic volatility → almost
same as GBM

Compare with Target Date Glide Path strategy

Proof: for either GBM or jump diffusion, ∃ a constant weight
strategy which is superior to any deterministic glide path

Optimal MV strategy is superior to a constant weight strategy
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Back Testing

Back test problem: only a few non-overlapping 30 year paths
↪→ Backtesting is dubious in this case

Assume GBM

Estimate µ, σ, r 16 from real data 1934-1954

With these parameters, estimate E [W (1985)] for an equally
weighted portfolio (p = 1/2) for 1955− 1985.

Determine the MV optimal strategy which has same expected
value

Now, run both strategies on observed 1955− 1985 data

Second test: repeat: estimate parameters from 1934− 1985 data

Compare strategies using real returns from 1985− 2015

163 month US treasuries. S&P 500 total return.
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Back Test: 1955-198517
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17W (1955) = 100. GBM parameters estimated from 1934− 1954 data.
Estimated E [W (1985) | t = 1955] = 625 same for both strategies. Estimated
parameters: µ = .12, σ = .18, r = .0063. MV optimal target 641.4. Observed
data used for 1955− 1985. Maximum leverage 1.5.
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Back Test: 1985-201518
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18W (1985) = 100. GBM parameters estimated from 1934− 1984 data.
Estimated E [W (2015) | t = 1985] = 967 same for both strategies. Estimated
parameters: µ = .11, σ = .16, r = .037. MV optimal target 1010.5. Observed
data used for 1985− 2015. Maximum leverage 1.5.
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Conclusions

Optimal allocation strategy dominates simple constant
proportion strategy by a large margin

→ Probability of shortfall ' 2− 3 times smaller!

But

→ Investors must pre-commit to a wealth target
→ Investors must commit to a long term strategy (> 20 years)
→ Investors buy-in when market crashes, de-risk when near target

Standard “glide path” strategies of Target Date funds

→ Inferior to constant mix strategy19

→ Constant mix strategy inferior to optimal control strategy

Optimal mean-variance policy

Seems to be insensitive to parameter estimates
Good performance even if jump processes modelled
Limited backtests: works as expected

19See also “The false promise of Target Date funds”, Esch and Michaud
(2014); “Life-cycle funds: much ado about nothing?”, Graf (2013)
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