Better than pre-commitment mean-variance portfolio allocation strategies: a semi-self-financing Hamilton-Jacobi-Bellman equation approach Peter Forsyth¹ D.M. Dang¹ Ken Vetzal² ¹Cheriton School of Computer Science University of Waterloo ²School of Accounting and Finance University of Waterloo Frankfurt School of Finance 9:00-9:45 March 24, 2015 # Wealth Management¹ Suppose you are saving for retirement (i.e. 20 years away) ## A standard problem is - What is your portfolio allocation strategy? - i.e. how much should you allocate to bonds, and how much to equities (i.e. an index ETF) - How should this allocation change through time? - Typical rule of thumb: fraction of portfolio in stocks = 110 *minus your age*. - Target Date (Lifecycle) funds - Automatically adjust the fraction in stocks (risky assets) as time goes on - Use a specified "glide path" to determine the risky asset proportion as a function of time to go - At the end of 2013, over \$600 billion invested in US ¹Many Canadian banks moving into wealth management: no capital requirements, little regulation, baby boomers will have large inheritances # Optimal Control: Multi-period Mean Variance Criticism: variance as risk measure penalizes upside as well as downside I hope to convince you that multi-period mean variance optimization - Can be modified slightly to be (effectively) a downside risk measure - Has other good properties: small probability of shortfall Outcome: optimal strategy for a Target Date Fund I will show you that most Target Date Funds being sold in the marketplace use a sub-optimal strategy # Example: Target Date (Lifecycle) Fund with two assets Risk free bond B $$dB = rB dt$$ $r = risk-free rate$ Amount in risky stock index S $$\mathit{dS} \ = \ (\mu - \lambda \kappa) \mathit{S} \ \mathit{dt} + \sigma \mathit{S} \ \mathit{dZ} + (\mathit{J} - 1) \mathit{S} \ \mathit{dq}$$ $$\mu = \mathbb{P}$$ measure drift ; $\sigma =$ volatility $dZ =$ increment of a Wiener process $$dq = egin{cases} 0 & ext{with probability } 1 - \lambda dt \ 1 & ext{with probability } \lambda dt, \ \log J \sim \mathcal{N}(\mu_J, \sigma_J^2). \;\; ; \;\; \kappa = E[J-1] \end{cases}$$ ## **Optimal Control** Define: $$X=(S(t),B(t))={ m Process}$$ $x=(S(t)=s,B(t)=b)=(s,b)={ m State}$ $(s+b)={ m total\ wealth}$ Let $(s, b) = (S(t^-), B(t^-))$ be the state of the portfolio the instant before applying a control The control $c(s,b)=(d,B^+)$ generates a new state $$b \rightarrow B^{+}$$ $$s \rightarrow S^{+}$$ $$S^{+} = \underbrace{(s+b)}_{wealth \ at \ t^{-}} -B^{+} - \underbrace{d}_{withdrawal}$$ Note: we allow cash withdrawals of an amount $d \ge 0$ at a rebalancing time ## Semi-self financing policy Since we allow cash withdrawals - → The portfolio may not be self-financing - ightarrow The portfolio may generate a free cash flow Let $W_a = S(t) + B(t)$ be the allocated wealth • W_a is the wealth available for allocation into (S(t), B(t)). The non-allocated wealth $W_n(t)$ consists of cash withdrawals and accumulated interest # Constraints on the strategy The investor can continue trading only if solvent $$\underbrace{W_a(s,b) = s + b > 0}_{Solvency\ condition}.$$ (1) In the event of bankruptcy, the investor must liquidate $$S^+=0$$; $B^+=W_a(s,b)$; if $\underbrace{W_a(s,b)\leq 0}_{bankruptcy}$. Leverage is also constrained $$\frac{S^+}{W^+} \le q_{\mathsf{max}}$$ $W^+ = S^+ + B^+ = \mathsf{Total} \; \mathsf{Wealth}$ # Mean and Variance under control c(X(t), t) Let: $$\underbrace{E_{t,x}^{c(\cdot)}[W_a(T)]}_{Reward}$$ = Expectation conditional on (x, t) under control $c(\cdot)$ $$\underbrace{Var_{t,x}^{c(\cdot)}[W_a(T)]}_{Risk}$$ = Variance conditional on (x, t) under control $c(\cdot)$ #### Important: • mean and variance of $W_a(T)$ are as observed at time t, initial state x. ## Basic problem: find Efficient frontier We construct the *efficient frontier* by finding the optimal control $c(\cdot)$ which solves (for fixed λ) ² $$\sup_{c} \left\{ \underbrace{E_{t,x}^{c(\cdot)}[W_a(T)]}_{Reward} - \lambda \underbrace{Var_{t,x}^{c(\cdot)}[W_a(T)]}_{Risk} \right\}$$ (2) - ullet Varying $\lambda \in [0,\infty)$ traces out the efficient frontier - $\lambda = 0$; \rightarrow we seek only maximize cash received, we don't care about risk. - \bullet $\lambda=\infty\to$ we seek only to minimize risk, we don't care about the expected reward. ²We may not find all the Pareto optimal points by this method unless the achievable set in the $(E^c[W_a(T)], Var^c[W_a(T)])$ plane is convex. ## Mean Variance: Standard Formulation Let $c_t^*(x, u), u \ge t$ be the optimal policy for (3) $$\sup_{c(X(u), u \ge t)} \left\{ \underbrace{E_{t, x}^{c(\cdot)}[W_a(T)]}_{Reward \ as \ seen \ at \ t} - \lambda \underbrace{Var_{t, x}^{c(\cdot)}[W_a(T)]}_{Risk \ as \ seen \ at \ t} \right\}, \quad (3)$$ Then $c_{t+\Delta t}^*(x,u), u \geq t+\Delta t$ is the optimal policy which maximizes $$\sup_{c(X(u),u\geq t+\Delta t))} \left\{ \underbrace{E^{c(\cdot)}_{t+\Delta t,X(t+\Delta t)}[W_{a}(T)]}_{\textit{Reward as seen at } t+\Delta t} - \lambda \underbrace{Var^{c(\cdot)}_{t+\Delta t,X(t+\Delta t)}[W_{a}(T)]}_{\textit{Risk as seen at } t+\Delta t} \right\} \; .$$ ## Pre-commitment Policy However, in general $$\underbrace{c_t^*(X(u),u)}_{\text{optimal policy as seen at }t} \neq \underbrace{c_{t+\Delta t}^*(X(u),u)}_{\text{optimal policy as seen at }t+\Delta t}; \underbrace{u \geq t+\Delta t}_{\text{any time}>t+\Delta t},$$ \hookrightarrow Optimal policy is not *time-consistent*. The strategy which solves problem (3) has been called the *pre-commitment* policy³ Can force time consistency ⁴ \hookrightarrow sub-optimal compared to pre-commitment solution. We will look for the pre-commitment solution Pre-commitment is difficult for most investors! ³Basak, Chabakauri: 2010; Bjork et al: 2010 ⁴Wang and Forsyth (2011) # Reformulate MV Problem ⇒ Dynamic Programming Embedding technique⁵: for fixed λ , if $c^*(\cdot)$ maximizes $$\sup_{c(X(u), u \geq t), c(\cdot) \in \mathbb{Z}} \left\{ \underbrace{E^{c}_{t, x}[W_{a}(T)]}_{Reward} - \lambda \underbrace{Var^{c}_{t, x}[W_{a}(T)]}_{Risk} \right\} ,$$ $$\mathbb{Z} \text{ is the set of admissible controls}$$ (5) $ightarrow \exists \ \gamma \ \mathsf{such that} \ c^*(\cdot) \ \mathsf{minimizes}$ $$\inf_{c(\cdot)\in\mathbb{Z}} E_{t,x}^{c(\cdot)} \left[\left(W_a(T) - \frac{\gamma}{2} \right)^2 \right] . \tag{6}$$ $^{^5 \}mbox{Does}$ not require that we have convex constraints. Can be applied to problems with nonlinear transaction costs. Contrast with Lagrange multiplier approach. (Zhou and Li (2000), Li and Ng (2000)) ## Construction of Efficient Frontier Regard γ as a parameter \Rightarrow determine the optimal strategy $c^*(\cdot)$ which solves $$\inf_{c(\cdot)\in\mathbb{Z}}E_{t,x}^{c(\cdot)}\bigg[(W_{\mathsf{a}}(T)-\frac{\gamma}{2})^2\bigg]$$ Once $c^*(\cdot)$ is known - Easy to determine $E_{t,x}^{c^*(\cdot)}[W_a(T)]$, $Var_{t,x}^{c^*(\cdot)}[W_a(T)]$ - Repeat for different γ , traces out efficient frontier⁶ $^{^6}$ Strictly speaking, since some values of γ may not represent points on the original frontier, we need to construct the upper left convex hull of these points (Tse, Forsyth, Li (2014), SIAM J. Control Optimization) . #### HJB PIDE Determination of the optimal control $c(\cdot)$ is equivalent to determining the value function $$V(x,t) = \inf_{c \in \mathcal{Z}} \left\{ E_c^{x,t} [(W_{\mathsf{a}}(T) - \gamma/2)^2] \right\} ,$$ Define: $$\mathcal{L}V \equiv \frac{\sigma^2 s^2}{2} V_{ss} + (\mu - \lambda \kappa) s V_s + r b V_b - \lambda V ,$$ $$\mathcal{J}V \equiv \int_0^\infty p(\xi) V(\xi s, b, \tau) d\xi$$ $$p(\xi) = \text{jump size density}$$ and the intervention operator $\mathcal{M}(c)$ V(s,b,t) $$\mathcal{M}(c) \ V(s,b,t) = V(S^{+}(s,b,c),B^{+}(s,b,c),t)$$ ## HJB PIDE II The value function (and the control $c(\cdot)$) is given by solving the impulse control HJB equation $$\max \left[V_t + \mathcal{L}V + \mathcal{J}V, V - \inf_{c \in \mathcal{Z}} (\mathcal{M}(c) \ V) \right] = 0$$ if $(s + b > 0)$ (7) Along with liquidation constraint if insolvent $$V(s, b, t) = V(0, W_a(s, b), t)$$ if $(s + b) \le 0$ and $s \ne 0$ (8) We can easily generalize the above equation to handle the discrete rebalancing case. # Computational Domain⁷ ⁷If $\mu > r$ it is never optimal to short S ## Global Optimal Point Optimal target strategy: try to hit $W_a(T) = \gamma/2 = F(T)$. If $W_a(t) > F(t) = F(T)e^{-r(T-t)}$, then the target can be hit exactly by - Withdrawing⁸ $W_a(t) F(t)$ from the portfolio - Investing F(t) in the risk free account $\Rightarrow V(0,F(t),t) \equiv 0$ $$V(s,b,t) \ge 0 \Rightarrow V(0,F(t),t) = 0$$ is a global minimum - Any admissible policy which allows moving to this point is an optimal policy - Once this point is attained, it is optimal to remain at this point This strategy dominates any other MV strategy \rightarrow the investor receives a bonus in terms of a free cash flow $^{^8}$ Idea that withdrawing cash may be mean variance optimal was also suggested in (Ehrbar, J. Econ. Theory (1990)) # Globally Optimal Point 9 $^{^{9}}$ This is admissible only if $\gamma > 0$ #### Numerical Method We solve the HJB impulse control problem numerically using a finite difference method - We use a semi-Lagrangian timestepping method - Can impose realistic constraints on the strategy - Maximum leverage, no trading if insolvent - Arbitrarily shaped solvency boundaries - Continuous or discrete rebalancing - Nonlinearities - Different interest rates for borrowing/lending - Transaction costs - Regime switching (i.e. stochastic volatility and interest rates) We can prove 10 that the method is monotone, consistent, ℓ_{∞} stable → Guarantees convergence to the viscosity solution ¹⁰Dang and Forsyth (2014) Numerical Methods for PDEs ## Example I Two assets: risk-free bond, index Risky asset follows GBM (no jumps) According to Benjamin Graham¹¹, most investors should - Pick a fraction p of wealth to invest in an index fund (i.e. p = 1/2). - Invest (1-p) in bonds - Rebalance to maintain this asset mix How much better is the optimal asset allocation vs. simple rebalancing rules? ¹¹Benjamin Graham, The Intelligent Investor # Long term investment asset allocation | Investment horizon (years) | 30 | |------------------------------|-----| | Drift rate risky asset μ | .10 | | Volatility σ | .15 | | Risk free rate <i>r</i> | .04 | | Initial investment W_0 | 100 | ## Benjamin Graham strategy | Constant | Expected | Standard | Quantile | |------------|----------|-----------|--------------------------| | proportion | Value | Deviation | | | p = 0.0 | 332.01 | NA | NA | | p = 0.5 | 816.62 | 350.12 | Prob(W(T) < 800) = 0.56 | | p = 1.0 | 2008.55 | 1972.10 | Prob(W(T) < 2000) = 0.66 | Table: Constant fixed proportion strategy. p = fraction of wealth in risky asset. Continuous rebalancing. # Optimal semi-self-financing asset allocation Fix expected value to be the same as for constant proportion p=0.5. Determine optimal strategy which minimizes the variance for this expected value. • We do this by determining the value of $\gamma/2$ (the wealth target) by Newton iteration | Strategy | Expected | Standard | Quantile | |-----------------------|----------|-----------|--------------------------------| | | Value | Deviation | | | Graham $p = 0.5^{13}$ | 816.62 | 350.12 | Prob(W(T) < 800) = 0.56 | | Optimal | 816.62 | 142.85 | Prob(W(T) < 800) = 0.19 | Table: T=30 years. W(0)=100. Semi-self-financing: no trading if insolvent; maximum leverage = 1.5, rebalancing once/year. Standard deviation reduced by 250 %, shortfall probability reduced by $3\times$ ¹³Continuous rebalancing ## **Cumulative Distribution Functions** $E[W_T] = 816.62$ for both strategies Optimal policy: Contrarian: when market goes down \rightarrow increase stock allocation; when market goes up \rightarrow decrease stock allocation Optimal allocation gives up gains \gg target in order to reduce variance and probability of shortfall. Investor must pre-commit to target wealth # Example II: jump diffusion | Investment horizon (years) | 30 | Drift rate risky asset μ | 0.10 | |----------------------------|------|-----------------------------------|------| | λ (jump intensity) | 0.10 | Volatility σ | 0.10 | | $E[J]^{14}$ | 0.62 | Effective volatility (with jumps) | 0.16 | | Risk free rate r | 0.04 | Initial Investment W_0 | 100 | | Strategy | Expected | Standard | Pr(W(T)) < 800 | |-----------------------|----------|-----------|----------------| | | Value | Deviation | | | Graham $p = 0.5^{15}$ | 826 | 399 | 0.55 | | Optimal | 826 | 213 | 0.23 | Table: T=30 years. W(0)=100. Optimal: semi-self-financing; no trading if insolvent; maximum leverage =1.5, rebalancing once/year. ¹⁴When a jump occurs $S \rightarrow JS$. ¹⁵Yearly rebalancing ## Other Tests #### Sensitivity to Market Parameters - Compute control using fixed values - Carry out Monte Carlo simulations, randomly vary parameters - \rightarrow Similar (good) results - ullet Optimal control mean-reverting stochastic volatility o almost same as GBM #### Compare with Target Date Glide Path strategy - Proof: for either GBM or jump diffusion, ∃ a constant weight strategy which is superior to any deterministic glide path - Optimal MV strategy is superior to a constant weight strategy # **Back Testing** Back test problem: only a few non-overlapping 30 year paths \hookrightarrow Backtesting is dubious in this case #### Assume GBM - Estimate μ, σ, r^{-16} from real data 1934-1954 - With these parameters, estimate E[W(1985)] for an equally weighted portfolio (p=1/2) for 1955-1985. - Determine the MV optimal strategy which has same expected value - Now, run both strategies on observed 1955 1985 data Second test: repeat: estimate parameters from $1934-1985\ data$ Compare strategies using real returns from 1985 – 2015 ¹⁶3 month US treasuries. S&P 500 total return. ## Back Test: 1955-1985¹⁷ $^{^{17}}W(1955)=100$. GBM parameters estimated from 1934-1954 data. Estimated $E[W(1985)\mid t=1955]=625$ same for both strategies. Estimated parameters: $\mu=.12, \sigma=.18, r=.0063$. MV optimal target 641.4. Observed data used for 1955-1985. Maximum leverage 1.5. ## Back Test: 1985-2015¹⁸ $^{^{18}}W(1985)=100$. GBM parameters estimated from 1934-1984 data. Estimated $E[W(2015)\mid t=1985]=967$ same for both strategies. Estimated parameters: $\mu=.11, \sigma=.16, r=.037$. MV optimal target 1010.5. Observed data used for 1985-2015. Maximum leverage 1.5. #### Conclusions - Optimal allocation strategy dominates simple constant proportion strategy by a large margin - \rightarrow Probability of shortfall $\simeq 2-3$ times smaller! - But - → Investors must pre-commit to a wealth target - \rightarrow Investors must commit to a long term strategy (> 20 years) - ightarrow Investors buy-in when market crashes, de-risk when near target - Standard "glide path" strategies of Target Date funds - ightarrow Inferior to constant mix strategy 19 - → Constant mix strategy inferior to optimal control strategy - Optimal mean-variance policy - Seems to be insensitive to parameter estimates - Good performance even if jump processes modelled - Limited backtests: works as expected ¹⁹See also "The false promise of Target Date funds", Esch and Michaud (2014); "Life-cycle funds: much ado about nothing?", Graf (2013)