Decumulation of Retirement Savings:
The Nastiest, Hardest Problem in Finance

Part I: Introduction and Results

Peter Forsyth1

1Cheriton School of Computer Science
University of Waterloo

Woudschoten
September 27-29, 2023
Thursday 10:00
Motivation

Defined Benefit Plans (DB) are disappearing

→ Corporations/governments no longer willing to take risk of DB plans

Recent survey\(^1\) P7 countries\(^2\)

- Defined Contribution (DC)\(^3\) plan assets: 55% of all pension assets

- Some examples
 → Australia 87% DC
 → US 65% DC
 → Canada 43% DC
 → ... (omitted)
 → Japan 5% DC

Netherlands → Collective DC plan (2027)

\(^1\)Thinking Ahead Institute (2023)
\(^2\)Australia, Canada, Japan, Netherlands, Switzerland, UK, US
\(^3\)DC plan: retiree takes on all investment risk
The retiree dilemma (Defined Contribution (DC))

A retiree with savings in a DC plan⁴⁵ has to decide on
- An investment strategy (stocks vs. bonds)
- A decumulation schedule

The retiree now has two major sources of risk
- Investment risk
- Longevity risk (running out of cash before death)

William Sharpe (Nobel Laureate in Economics) calls this “The nastiest hardest problem in finance”

⁴ In a DC plan, the retiree is responsible for investment/decumulation
⁵ RRSP (Canada), SIPP (UK), 401(k) (US), Super Fund (Australia)
The Four per Cent Rule

Based on rolling 30-year historical periods, Bengen (1994) showed: A retiree who

- Invested in a portfolio of 50% bonds, 50% stocks (US), rebalanced annually
- Withdrew 4% of initial capital (adjusted for inflation) annually

→ Would never have run out of cash, over any rolling 30-year period (from 1926)

Criticism

- Simplistic asset allocation strategy
- Simplistic withdrawal strategy
- Rolling 30 year periods contain large overlaps
 → Underestimates risk of portfolio depletion
Bengen rule

“Play the long game. A retirement income plan should be based on planning to live, not planning to die. A long life will be expensive to support, and it should take precedence over death planning.” Pfau (2018)

Note that Bengen rule is based on assumption that 65-year old will live to be 95

- Should we mortality weight the cash flows (as in an annuity)?
- Example: median life expectancy of 65-year old male \(\approx 87 \).
 - Effectively, mortality weighting will weight minimum cash flow of 87-year old by 1/2
 - If I am 87, and alive, I need 100% of my minimum cash flows
 - If I am dead, I need zero dollars

- We will consider an individual investor, not averaging over a population
 - 30 year retirement, no mortality weighting
 - Consistent with Bengen approach
Fear of running out of cash

Recent survey\(^6\)
- Majority of pre-retirees fear exhausting their savings in retirement more than death

In Canada, a 65-year old male
- Probability of 0.13 of living to be 95
- Probability of 0.02 of living to be 100

Conservative strategy:
- Assume 30 year retirement (as in Bengen (1994)).

Other assets can be used to hedge extreme longevity\(^7\)

\(^{6}\) 2017 Allianz Generations Ahead Study - Quick Facts #1. (2017), Allianz
\(^{7}\) Real estate
Objective of this talk

Determine a decumulation strategy which has
- Variable withdrawals (minimum and maximum constraints)
- Minimizes risk of portfolio depletion
- Maximizes total expected withdrawals
- Allows for dynamic, non-deterministic asset allocation

We will treat this as a problem in optimal stochastic control
Formulation

Investor has access to two funds
- A broad stock market index fund
 - *Amount* in stock index S_t
- A constant maturity bond index fund
 - *Amount* in bond index B_t

Total Wealth $W_t = S_t + B_t$ \hspace{1cm} (1)

Model the returns of both indexes
- Parametric, jump diffusion
- Non-zero stock-bond correlation
- Fit parameters to market data 1926:1-2019:12
 - All returns adjusted for inflation
Notation

Withdraw/rebalance at discrete times $t_i \in [0, T]$

The investor has two controls at each rebalancing time

\[q_i = \text{Amount of withdrawal} \]

\[p_i = \text{Fraction in stocks after withdrawal} \] (2)

At t_i, the investor withdraws q_i

\[
W_i^- = \overbrace{S_i^- + B_i^-}^{\text{wealth before withdrawal}}
\]

\[W_i^+ = W_i^- - q_i \] (3)

Then, the investor rebalances the portfolio

\[S_i^+ = p_i W_i^+ \]

\[B_i^+ = (1 - p_i) W_i^+ \] (4)

Can show that

\[q_i = q_i(W_i^-) \quad ; \quad p_i = p_i(W_i^+) \]
Controls

Constraints on controls

\[q_i \in [q_{\text{min}}, q_{\text{max}}] ; \quad \text{withdrawal amount} \]
\[p_i \in [0, 1] ; \quad \text{fraction in stocks} \]
\[\Rightarrow \text{no shorting, no leverage} \]

Set of controls

\[\mathcal{P} = \{ (q_i(\cdot), p_i(\cdot)) : i = 0, \ldots, M \} \] (5)
Reward and Risk

Reward: Expected total (real) withdrawals (EW)

\[
EW = E \left[\sum_i q_i \right]
\]

Risk measure: Expected Shortfall \(ES\)

\[
ES(5\%) \equiv \left\{ \text{Mean of worst 5\% of } W_T \right\}
\]

\(W_T = \text{terminal wealth at } t = T\)

ES defined in terms of final wealth, *not losses*\(^8\)

→ Larger is better

\(^8\)ES is basically the negative of CVAR
Objective Function

Multi-objective problem \rightarrow scalarization approach for Pareto points

Find controls \mathcal{P} which maximize (scalarization parameter $\kappa > 0$)9

$$
\sup_{\mathcal{P}} \left\{ EW + \kappa \ ES \right\}
$$

$$
\sup_{\mathcal{P}} \left\{ \underbrace{E_{\mathcal{P}}[\sum_i q_i]}_{\text{total withdrawals}} + \kappa \left(\frac{E_{\mathcal{P}}[W_T 1_{W_T \leq W^*}]}{.05} \right) \right\}
$$

s.t. $\text{Prob}[W_T \leq W^*] = .05$

Varying κ traces out the efficient frontier in the (EW, ES) plane

$^9 E_{\mathcal{P}}[.] \equiv \text{expectation under control } \mathcal{P}$.
EW-ES Objective Function

Given an expectation under control $E_P[\cdot]$ (Rockafellar and Uryasev, 2000)

$$ES_{5\%} = \sup_{W^*} E_P \left[G(W_T, W^*) \right]$$

$$G(W_T, W^*) = \left(W^* + \frac{1}{.05} \min(W_T - W^*, 0) \right)$$

Reformulate objective function:

$$\sup \sup_{P, W^*} E_P \left\{ \sum_i q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}$$

Why do we need the stabilization term?

\leftrightarrow More later
Time Consistency

The EW-ES objective function is not formally \textit{time consistent}

Time inconsistency

\[\Rightarrow \] Investor has incentive to deviate from initial optimal policy at later times

EW-ES policy computed at time zero

\[\leftrightarrow \] Pre-commitment policy
Induced time consistent policy

At \(t_0 \) we compute the pre-commitment EW-ES control

- For \(t > t_0 \) we assume that the investor follows the *induced time consistent* control (Strub et al (2019))
- This control is identical to the pre-commitment control at \(t_0 \)
- No incentive to deviate from this control at \(t > t_0 \)

Induced time consistent control determined from (fixed \(W^* \))

\[
\sup_\mathcal{P} E_{\mathcal{P}} \left\{ \sum_i q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}
\]

\(W^* \) from pre-commitment solution at time zero

Alternative: equilibrium mean-ES control

\(\leftrightarrow \) Does not actually control tail risk! (Forsyth(2020)) \(^{10}\)

\(^{10}\)For more discussion of time consistency, induced time consistency, pre-commitment, see Bjork et al (2021), Vigna (2020, 2022), Strub et al (2019), Forsyth (2020)
Theorem 1 (Bang-bang withdrawal control: continuous limit)

Assume that

- the stock and bond indexes follow a parametric jump-diffusion
- the portfolio is continuously rebalanced, and withdrawals occur at the continuous (finite) rate $\hat{q} \in [\hat{q}_{\text{min}}, \hat{q}_{\text{max}}]$

then the optimal control is bang-bang, i.e. the optimal withdrawal \hat{q}^* is either $\hat{q}^* = \hat{q}_{\text{min}}$ or $\hat{q}^* = \hat{q}_{\text{max}}$.

Proof.
See Forsyth (North American Actuarial Journal (2022))

But of course, in real life, we do not withdraw/rebalance continuously.
Scenario: all amounts indexed to inflation

- DC account at $t = 0$ (age 65) $1,000K$ (one million)
- Minimum withdrawal from DC account $35K$ per year\(^{11}\)
- Maximum withdrawal from DC $60K$ per year
- No shorting, no leverage ($p \in [0, 1]$)
- Annual rebalancing/withdrawals
- Retiree owns mortgage-free real estate worth $400K$

Investment Horizon

- $T = 30$ years, i.e. from age 65 to 95
 \[\Rightarrow \text{Plan to live long and prosper} \]

\(^{11}\)Assume gov’t benefits of 22K/year. Minimum income $\approx 22K + 35K = 57K$/year.
Scenario II

Why do we include real estate in the scenario?

Since $q_{\text{min}} = 35K$ per year, W_t can become negative

- When $W_t < 0$, assume retiree is borrowing, using a reverse mortgage\(^\text{12}\)
 - Reverse mortgages allow borrowing of 50% of home value
 - In our case: $200K$
- Once $W_t < 0$
 - All stocks are liquidated
 - Debt accumulates at borrowing rate
- If $W_T > 0$, then real-estate is a bequest
- Real estate is a hedge of last resort: not fungible with other wealth
 - This mental bucketing of real estate is a well-known behavioral finance result.\(^\text{13}\)

\(^{13}\)I also observe this with my fellow retirees: real-estate is a separate bucket
Pre-commitment control at t_0 (same as induced time consistent control)

Interchange $\sup \sup(\ldots)$

Solve using Dynamic Programming (fixed W^*)

$$\sup_{W^*} \sup_{\mathcal{P}} E_{\mathcal{P}} \left\{ \sum_i q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}$$

maximize over W^*

Solve inner DP problem using PIDE methods
Numerical Method II

Inner maximization: dynamic programming

- Conditional expectations at t_i^+
 - Solve linear 2-d PIDE
 - Use δ-monotone Fourier method (Forsyth and Labahn (2019))
- Optimal controls at each rebalancing time
 - Discretize controls
 - Find maximum by exhaustive search
- Guaranteed to converge to the solution as discretization parameters $\to 0$

Outer maximization over W^*

- Discretize W^*, use coarse PIDE grid
 - Find optimal W^* by exhaustive search
- Use coarse grid W^* as starting point for 1-d optimization on finer grids
Data

Center for Research in Security Prices (CRSP) US
- Cap weighted index, all stocks on all major US exchanges 1926:1-2019:12
- US 10 year Treasury index
- Monthly data, inflation adjusted by CPI

Synthetic Market
- Stock/bond returns driven by parametric jump-diffusion model, calibrated to data
- Optimal controls computed in the *synthetic* market

Historical market
- Stock/bond returns from stationary block bootstrap resampling of actual data\(^\text{14}\)
- No assumptions about stock/bond processes
- Used to test control robustness computed in the synthetic market

Pareto optimal points (Units: Thousands)

Varying scalarization parameter κ

\rightarrow Traces out efficient frontier

- y-axis is annual average expected withdrawals
- E.g.: 50K ($W_0 = 1000K$) corresponds to 5% withdrawal rate
- Recall ES is mean of worst 5% $W_T \Rightarrow$ larger is better
EW-ES efficient frontier (Units: thousands)

- Solutions with different PIDE grids
- ES is the mean of the worst 5% of outcomes
- Each pt on curve, different κ
- Reverse mortgage hedge
 - Any point $ES > -200K$ is acceptable

Note Efficient Frontier almost vertical at right hand end

- Base case: constant withdrawal 35K/year
- Tiny increase in risk (smaller ES)
 - Average withdrawal 50K per year (never less than 35K)
Point on Frontier: \((EW, ES) = (52K/\text{year}, -42K)\)

\(\rightarrow ES \simeq -42K\)

\(\rightarrow\) 5th percentile wealth at \(t = 30 \simeq 58K\)

\(\rightarrow\) Average withdrawal \(\simeq 52K/\text{year}\)
Point on Frontier: \((\text{EW,ES}) = (52\text{K/year, -42K})\)

- Withdrawal controls \(\simeq\) *bang-bang*, i.e. only withdraw either \(q_{\text{min}}\) or \(q_{\text{max}}\).
- Median \(W_t \simeq 1000K \rightarrow 300K\)
Robustness Check: Efficient Frontier (Units: thousands)

Bengen 4% rule: bootstrapped historical market\(^a\) \(^b\)

\Rightarrow very inefficient

\Rightarrow More risky than advertised, ES

\simeq -270K

\(^a\)Bengen suggests 50% in stocks.

\(^b\)Experimentally, 40% in stocks maximized ES.

Controls computed and stored in the *synthetic* market

- Parametric model calibrated to historical data

Controls tested\(^{15}\) in the bootstrapped historical market

\Rightarrow Controls are robust to parametric model misspecification

\(^{15}\)“Out-of-sample” test.
Stabilization term \((EW, ES) = (52K/\text{year}, -42K)\)

Recall objective function:

\[
\sup_{\mathcal{P}} \sup_{W^*} \left\{ \begin{aligned}
 EW &+ \kappa \, G(W_T, W^*) + \epsilon W_T \end{aligned} \right\}
\]

\[
\epsilon = +10^{-6}
\]

\[
\epsilon = -10^{-6}
\]
Stabilization term

Plots of efficient EW-ES frontiers overlap for $\epsilon = \pm 10^{-6}$

Recall that we are assuming the investor follows the induced time consistent strategy

$\epsilon = +10^{-6}$

- $W^* = 58K$
- Suppose that $t = 25$, i.e. 90 years old
- $W = 2000K$, you will never run out of cash with $q_{max} = 60K/\text{year}$
- It does not matter whether you invest 100% in stocks or bonds
If you are Warren Buffet, this problem is ill-posed

If you are rich and old, then it does not matter what you do

- $\epsilon = +10^{-6}$ invest 100% in stocks
- $\epsilon = -10^{-6}$ invest 100% in bonds

But these lucky large wealth outcomes \Rightarrow no effect on (EW,ES) frontier
Peter Ponzo: Canasta Strategy

Peter Ponzo (retired Applied Math Professor from Waterloo)

- Retired: 1993; passed away: 2020
- In 1993, took commuted value of his pension
 - One-half → annuity (interest rate: 9.8%)
 - One-half → self-directed investments
 - Wrote a blog about his attempts to “beat the market”
- It turned out that beating the market was not easy!

But: he summarized his withdrawal strategy: “Canasta Strategy”
“*If we have a good year, we take a trip to China,...,if we have a bad year, we stay home and play canasta.*”

This is a bang-bang control!
Conclusions

- Optimal strategy: flexible withdrawals, dynamic stock-bond allocation
 - Less risk, higher average withdrawals\(^{16}\) compared to 4% rule
 - Bootstrap resampling ⇒ controls are robust
- In the continuous withdrawal limit
 - Optimal withdrawals are *bang-bang*, i.e. only withdraw at either maximum or minimum rate
- Discrete rebalancing: withdrawal controls are very close to bang-bang
- Intuition: if you are lucky, and make money in stocks, take money off the table and go on a cruise
 - Otherwise: sit tight

\(^{16}\)Optimal: 5% EW, with ES \(\sim 0\); Bengen: 4% EW, with ES \(\sim -270K\).
Cumulative Distribution Functions: \((EW, ES) = (52K/\text{year}, -42K)\)

Average withdrawal

Wealth at \(T = 30\) years

Bootstrap resampled historical data (blksize = 3 months)

- > 94% probability: average withdrawals \(> 40K\) per year
- > 98% probability: \(W_T > 0\)
Decumulation of Retirement Savings:
The Nastiest, Hardest Problem in Finance

Part II: Numerical Algorithms

Peter Forsyth¹ Y. Li¹ M. Chen¹ M. Shirazi¹

¹Cheriton School of Computer Science
University of Waterloo

Woudschoten
September 27-29, 2023
Friday 9:00
Decumulation of Retirement Savings

Recall from the first talk

- Retiree wants to maximize total withdrawals
- Minimize risk of running out of cash (30 year retirement)
- Can invest in a mix of stocks and bonds
- At each (yearly) rebalancing time
 - Choose amount to withdraw q
 - Fraction in stocks p
- No shorting/leverage for investments
- $q \in [q_{\text{min}}, q_{\text{max}}]$
Let S_t be the real (inflation adjusted) amount in a stock index. S_t follows a jump diffusion process

$$\frac{dS_t}{S_t^-} = (\mu - \lambda \gamma) \, dt + \sigma \, dZ + d \left(\sum_{i=1}^{\pi_t^s} (\xi_i - 1) \right),$$

$\sigma^s = \text{volatility}$

$dZ = \text{increment of Wiener process}$

$\pi_t^s = \text{Poisson process with intensity } \lambda$

$S_t^- \rightarrow \xi_i S_t$ at jump times

$\gamma = E[\xi - 1]$

$\xi \sim \text{double exponential distribution}$

(1)
Stochastic Process: Bond Index

Let B_t be the real (inflation adjusted) amount in a constant maturity bond index.
Model real returns of the bond index directly as a stochastic process:

- Common practitioner approach (Lin et al, IME (2015))
- Avoids modelling interest rates, inflation
- Easy to calibrate to historical data

B_t follows a jump diffusion process:

$$ \frac{dB_t}{B_t^-} = \ldots \text{ similar to stock process} $$

(2)

Parameters for both processes calibrated to historical data.
Recall

Withdraw/rebalance at discrete times \(t_i \in [0, T] \)

The investor has two controls at each rebalancing time

\[
q_i = \text{Amount of withdrawal} \\
p_i = \text{Fraction in stocks after withdrawal} \quad (3)
\]

At \(t_i \), the investor withdraws \(q_i \)

wealth before withdrawal

\[
W_i^- = S_i^- + B_i^- \\
W_i^+ = W_i^- - q_i \\
\quad (4)
\]

Then, the investor rebalances the portfolio

\[
S_i^+ = p_i W_i^+ \\
B_i^+ = (1 - p_i) W_i^+ \quad (5)
\]

Can show that

\[
q_i = q_i(W_i^-) \quad ; \quad p_i = p_i(W_i^+)
\]
Controls

Constraints on controls

\[q_i \in [q_{\text{min}}, q_{\text{max}}] \; ; \; \text{withdrawal amount} \]

\[p_i \in [0, 1] \; ; \; \text{fraction in stocks} \]

\text{no shorting, no leverage}

Set of controls

\[\mathcal{P} = \{(q_i(\cdot), p_i(\cdot)) : i = 0, \ldots, M\} \] (6)

\[\mathcal{P}_n = \{(q_i(\cdot), p_i(\cdot)) : i = n, \ldots, M\} \]

\text{tail of the controls} (7)
EW-ES Objective Function

Objective function:

$$\sup_P \sup W^* \mathbb{E}_P \left\{ \sum_i q_i \text{ total withdrawals} + \kappa G(W_T, W^*) \text{ mean worst 5% outcomes} + \epsilon W_T \text{ Stabilization} \right\}$$
Interchange sup sup(…)

\[
\sup_{W^*} \sup_{\mathcal{P}} \mathbb{E}_\mathcal{P} \left\{ \sum_i q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}
\]

Solve inner DP problem using PIDE methods
Inner problem: value function

\[V(s, b, W^*, t_n^-) = \sup_{P_n} \left\{ E_{P_n}^{(S_n^-, B_n^-), t_n^-} \left[\sum_{i=n}^{M} q_i \right. \right. \]
\[\left. \left. + \kappa \left(W^* + \frac{1}{\alpha} \min((W_T - W^*), 0) \right) \right| (S_n^-, B_n^-)) = (s, b) \right\} \]

Where:

\[
\begin{cases}
(S_t, B_t) \text{ follow processes (1) and (2);} \\
W^+_\ell = S^-_\ell + B^-_\ell - q_\ell \\
S^+_\ell = p_\ell(\cdot)W^+_\ell; \quad B^+_\ell = (1 - p_\ell(\cdot))W^+_\ell \\
t_\ell = \text{rebalancing times}
\end{cases}
\]
Dynamic Programming Approach

Terminal condition at $t_M = T$

$$V(s, b, W^*, T^+) = \kappa \left(W^* + \frac{\min((s + b - W^*), 0)}{.05} \right).$$

At any rebalancing time t_n

\iff Advance the solution backwards $t_n^+ \rightarrow t_n^-$

$$V(s, b, W^*, t_n^-) = \sup_{(p, q)} \left\{ q + \left[V(w^+ p, w^+(1 - p), W^*, t_n^+) \right] \right\}$$

$$w^- = s + b$$

$$w^+ = w^- - q$$

$t_n^+ = t_n + \epsilon, \ t_n^- = t_n - \epsilon, \ \epsilon \uparrow 0^+$
Between rebalancing times

For \(t \in (t_{n-1}^+, t_n^-) \)
\(\leftrightarrow \) No cashflows, no discounting, for \(h \to 0 \)
\(\leftrightarrow \) Tower property

\[
V(s, b, W^*, t) = E \left[V(S(t + h), B(t + h), W^*, t + h) \right. \\
\left. | S(t) = s, B(t) = b \right]
\]

Apply Itô’s Lemma for jump/diffusion processes
\(\rightarrow \) 2-D Partial Integro Differential Equation (PIDE)
\(\rightarrow \) Independent variables \((s, b, t)\)
Numerical Algorithm: Details

Discretize state space \((s, b)\)
\[\mapsto\] 2-D grid, with mesh parameter \(h\)

Solve PIDE, using Fourier method

- Standard Fourier methods may not be monotone
- Example: Two possible controls \(\mathcal{P}^A, \mathcal{P}^B\) are such that

\[
\begin{align*}
\mathcal{P}^A &= \{(q_i(\cdot), p_i(\cdot)) : i = 0, \ldots, M\} \in A \\
\mathcal{P}^B &= \{(q_i(\cdot), p_i(\cdot)) : i = 0, \ldots, M\} \in B
\end{align*}
\]

- Assume \(A \subset B\)

Then we should have the monotonicity property (optimal control maximizes \(V\))

\[
V^A(s, b, t) \leq V^B(s, b, t) ; \forall (s, b, t)
\]

We use a \(\delta\)-monotone Fourier method \(\mapsto\) guarantees

\[
V^A(s, b, t) \leq V^B(s, b, t) + \delta
\]

Given fixed \(h\), \(\delta\) can be made arbitrarily small
At rebalancing times:

- Discretize the controls with spacing $O(h)$
- Find optimal (p, q) by exhaustive search
- For off-grid points
 - Use linear interpolation of discretized value function

Actual value function $\hat{V}(s_0, b_0, t_0)$

$$\hat{V}(s_0, b_0, t_0) = \sup_{W^*} V(s_0, b_0, W^*, t_0)$$

Solve problem on sequence of grids

- On coarse grid, discretize W^*, maximize by exhaustive search
- On finer grids, use coarse grid estimate for W^* as starting point
 - Find optimal W^* using 1-d optimization algorithm
Numerical Details III

Solve control problem on grid
 - At each rebalancing time, store optimal controls

Determine statistical quantities
 - **Synthetic Market**: use stored controls, do Monte Carlo simulations with parametric SDE model of stocks and bonds
 - **Historical Market**: use stored controls, do bootstrap resampling of historical stock, bond returns

Bootstrap simulations
 - *Out of sample* test
 - No assumptions about market stochastic processes
Numerical Example

- DC account at $t = 0$ (age 65) $\$1,000K$ (one million)
- Minimum withdrawal from DC account $\$35K$ per year\(^2\)
- Maximum withdrawal from DC $\$60K$ per year
- No shorting, no leverage ($p \in [0, 1]$)
- Annual rebalancing/withdrawals
- Retiree owns mortgage-free real estate worth $\$400K$
 → Hedge of last resort if account exhausted
- Investment horizon: age 65 to 95

\(^2\)Assume gov’t benefits of 22K/year. Minimum income
$\sim 22K + 35K = 57K$/year.
Convergence Check: Synthetic Market

Even coarse grid gives good solution
Alternative Approach: Machine Learning

- Does not use dynamic programming
 - Efficient in cases where performance criteria is high dimensional
 → Control is low dimensional (see van Staden, Forsyth, Li, SIFIN (2023))
 - Can be used in cases where no dynamic programming principle exists (e.g. mean semi-variance)
- Does not require a parametric model of stochastic processes for stock and bond
- Can be extended to higher dimensional problems (e.g. more assets)

Basic idea

- Go back to original problem formulation
- Approximate control directly using a Neural Network (NN)
- Approximate expectations by sampling paths
- Optimize w.r.t. NN parameters

\(^3\text{See also Han (2016), Andersson, Oosterlee (2023).}\)
NN Framework

Approximate controls

\[q_i(W_i^-, t_i^-) \approx \hat{q}(W_i^-, t_i^-; \theta_q) \]
\[p_i(W_i^+, t_i^+) \approx \hat{p}(W_i^+, t_i^+; \theta_p) \]

\[\mathcal{P} \approx \hat{\mathcal{P}} = \{ \hat{q}(\cdot), \hat{p}(\cdot) \} \]

\{ \hat{q}(W_i^-, t_i^-; \theta_q), \hat{p}(W_i^+, t_i^+; \theta_p) \}

- fully connected feedforward NNs, parameterized by \((\theta_q, \theta_p)\)
- Separate NN for \(\hat{q}\) and \(\hat{p}\).
- Note that using time \(t\) as input
 \[\rightarrow \text{recurrent network} \]
- Wealth is only state variable needed in this case

Solve for control directly (Policy Function Approximation)
Recall Objective function

$$\begin{align*}
\sup_{P} \sup_{W^*} E_P \left\{ \sum_{i} q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}
\end{align*}$$

Generate M sample paths (use stochastic model)

$$W^j_T = \text{Final wealth along } j^t h \text{ path}$$

$$q^j_i = \text{Withdrawal at time } t_i \text{ along } j^t h \text{ path}$$

Approximate $E[.]$ by mean of samples

$$\sup_{W^*, \theta_q, \theta_p} \frac{1}{M} \sum_{j=1}^{M} \left\{ \sum_{i} q^j_i + \kappa G(W^j_T, W^*) + \epsilon W^j_T \right\}$$

Simultaneously maximize over $(W^*, \theta_p, \theta_q)$
NN Method

Each NN has output activation function that encodes constraints

→ Allows unconstrained optimization (i.e. SGD)

No need to have inner/outer optimization

→ \(\mathcal{W}^* \) maximized along with \((\theta_q, \theta_p)\)

- A single network \(\hat{q}(\mathcal{W}^-, t; \theta_q) \) approximates the \(q \) control for all \(t \)
- Similarly for the \(p \) control
 → Contrasts with *stacked NN* approach used previously

- Note: we generate paths using parameterized SDEs
 → We are agnostic to method used to generate paths
NN Framework Diagram

\[
X(t_i^-) = (S(t_i^-), B(t_i^-))
\]
\[
S(t_i^-) + B(t_i^-) = W(t_i^-)
\]
\[
\hat{q}(W_i^-, t_i, \theta_q)
\]
(Withdrawal NN)

Withdrawal NN result is used to create feature vector for allocation NN

Output of \(\hat{q} \) network
\[
\Rightarrow \text{Input to } \hat{p} \text{ network}
\]
Withdrawal Control Heatmaps

Withdrawal control is ‘bang-bang’: Switches abruptly between q_{min} and q_{max}.

Figure: Withdrawal amount, PDE Control, $\epsilon = 10^{-6}$

Figure: Withdrawal amount, NN Control, $\epsilon = 10^{-6}$

Units: thousands of dollars
Effect of stabilization term clearly shown in PDE heatmap, but NN is not sensitive enough (ϵ is tiny). *Units: thousands of dollars*
Stock Allocation Control Heatmaps (2)

Figure: Fraction in stocks, PDE Control, $\epsilon = -10^{-6}$

Figure: Fraction in stocks, NN Control, $\epsilon = 10^{-6}$

Making **stabilization term negative** shows that NN control is somewhere in between +/- epsilon versions of PDE control. **Units:** thousands of dollars
Figure: Comparison of EW-ES frontier for NN and PDE methods. Labels on nodes are the κ values. Units: thousands of dollars

PDE frontier virtually the same, $\epsilon = \pm 10^{-6}$
Bootstrap Resampling

Stationary Block Bootstrap resampling

- Monthly historical data: 1926:1-2020:1
- Draw blocks of data (with replacement) from historical data
 - Simultaneously draw stock and bond returns
 - Sampling in blocks preserves serial correlation
- Blocksizes are drawn from a geometric distribution
 - Random blocksizes reduce edge effects, preserve stationarity
- Concatenate blocks to form a single path of T years
- Dubious algorithm available to determine expected blocksize

Typical parameters

- 10^5 training samples, 10^5 test samples
- Probability of a single identical train, test path $< 10^{-29}$

The universe is 10^{18} seconds old.
Train on Synthetic Data, Test on Historical Data

Figure: Comparison of EW-ES frontier for NN training performance vs. tests on resampled historical data. Units: thousands of dollars
Train with Historical Data, Test on Synthetic Data

Demonstrates NN framework’s ability to use other datasets and still yield good results.

Figure: Historical training data, block size = 3 months

Figure: Historical training data, block size = 12 months

Labels on nodes: κ values. Units: thousands of dollars
Conclusions

- Train/test combinations → multi-period optimization is robust
- NN method → accurate results compared to ground truth
 → Even for bang-bang controls
- Advantages of NN
 - Does not depend on parametric SDE model (data driven)
 - Can solve high dimensional problems
 - Can be used for problems which do not have DP principle

But

CPU time for computing a single point on the efficient frontier
- PDE: medium grid (C++) ≃ 400 sec (laptop)
- NN: 2 hours (Pytorch + GPUs)

Low dimensional problem, parametric model for stochastic processes
→ PDEs win