Hedging Under Jump Diffusions with Transaction Costs

Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Overview

Overview

- Single factor diffusion models for equities not adequate for risk management
- Alternatives:

Stochastic Volatility/Regime Switching: can hedge with underlying plus small number of options (sometimes one)

- **Jump processes:** hedge with underlying plus infinite number of options!
- Obviously, hedging jumps is hard

Why Jumps?

Why Do We Need Jump Models?

- Equity return data suggests jumps.
- Typical local volatility surfaces
 - Heavy skew for short dated options
 - Consistent with jumps
- Large asset price changes more frequent than suggested by Geometric Brownian Motion
- Risk management: if we don't hedge the jumps
 - We are exposed to sudden, large losses

Example: A Drug Company

- This is not Geometric Brownian Motion!
- 80% and 50% drops in one day!

- Scaled to zero mean and unit standard deviation
- Standard normal distribution also shown
- \hookrightarrow Extreme events more likely than simple GBM
- \hookrightarrow Higher peak, fatter tail than normal distribution

Hedging

Hedging the Jumps

- If we believe that the underlying process has jumps, hedging portfolio must contain underlying plus options
- Hedging the jumps: previous work (Carr, He *et al*), good results for semi-static hedging (European options)
- We need a dynamic strategy for path dependent options
- Questions:
 - How many options do we need to reduce jump risk?
 - Will the bid-ask spread of the options in our hedging portfolio make a dynamic strategy too expensive?

Overview

- Assume price process is a jump diffusion
- Force delta neutrality (diffusion risk hedged)
- Isolate jump risk and transaction cost (bid/ask spread) terms
 - Model bid-ask spread as a function of moneyness
- At each hedge rebalance time
 - Minimize jump risk and transaction costs
- Test strategy by Monte Carlo simulation

Stochastic Process

Assumption: Stochastic Process for Underlying Asset S

$$\begin{array}{lll} \displaystyle \frac{dS}{S} &=& \mu dt + \sigma dZ + (J-1)dq \\ & \mu = \mbox{ drift rate,} \\ \sigma = \mbox{ volatility,} \\ \displaystyle dZ = \mbox{ increment of a Wiener process} \\ \displaystyle dq = \begin{cases} 0 & \mbox{ with probability } 1 - \lambda dt \\ 1 & \mbox{ with probability } \lambda dt, \\ \lambda = \mbox{ mean arrival rate of Poisson jumps; } S \to JS. \end{cases}$$

Option Price
$$V = V(S, t)$$
 Given by PIDE/LCP

$$\min(V_{\tau} - \mathcal{L}V - \lambda \mathcal{I}V, V - V^*) = 0 \qquad \text{American}$$
$$V_{\tau} = \mathcal{L}V - \lambda \mathcal{I}V \qquad \text{European}$$

$$\begin{split} \mathcal{L}V &\equiv \frac{\sigma^2}{2}S^2V_{SS} + (r - \lambda\kappa)SV_S - (r + \lambda)V \\ \mathcal{I}V &\equiv \int_0^\infty V(SJ)g^{\mathbb{Q}}(J) \ dJ \\ T &= \text{maturity date,} \quad \kappa = E^{\mathbb{Q}}[J-1], \quad V^* = \text{ payoff }, \\ r &= \text{risk free rate }, \quad \tau = T - t, \\ g^{\mathbb{Q}}(J) &= \text{ probability density function of the jump amplitude } J \end{split}$$

Computational Finance Workshop, Shanghai, July 4, 2008

PIDE

Hedging

Hedging Strategy

Hedging Portfolio Π

$$\Pi = -V + eS + \vec{\phi} \cdot \vec{I} + B$$

- \bullet Short option worth V
- $\bullet \ {\rm Long} \ e$ units underlying worth S
- Long N additional instruments worth $\vec{I} = [I_1, I_2, \dots, I_N]^T$, with weights $\vec{\phi} = [\phi_1, \phi_2, \dots, \phi_N]^T$
- \bullet Cash worth B

Jump Risk

- In $t \to t + dt$, $\Pi \to \Pi + d\Pi$.
- Use Ito's formula for finite activity jump diffusions, force delta neutrality
- Assume mid-point option prices given by linear pricing PIDE
- Recall: $\mathbb{Q} = \text{pricing measure}$; $\mathbb{P} = \text{real world measure}$
 - In practice, ${\mathbb Q}$ measure parameters obtained by calibration
- $\bullet \ \mathbb{P}$ measure parameters unknown to hedger

Change in Delta Neutral Portfolio

$$d\Pi = \text{Jump Risk} = \lambda^{\mathbb{Q}} dt \mathbb{E}^{\mathbb{Q}} \Big[\Delta V - \left(\vec{\phi} \cdot \Delta \vec{I} + e \Delta S \right) \Big] + dq^{\mathbb{P}} \left[-\Delta V + \left(\vec{\phi} \cdot \Delta \vec{I} + e \Delta S \right) \right]$$

$$\Delta S = JS - S \quad ; \quad \Delta V = V(JS) - V(S)$$
$$\Delta \vec{I} = \vec{I}(JS) - \vec{I}(S)$$

Note: if $\mathbb{E}^{\mathbb{Q}} = \mathbb{E}^{\mathbb{P}}$, deterministic drift term exactly compensates random term. But in general $\mathbb{E}^{\mathbb{Q}} \neq \mathbb{E}^{\mathbb{P}}$, i.e. usually \mathbb{Q} is more pessimistic than \mathbb{P}

Minimizing Jump Risk

When a jump occurs $dq^{\mathbb{P}} \neq 0$, the random change in Π is

$$\Delta H(J) = -\Delta V + \vec{\phi} \cdot \Delta \vec{I} + e\Delta S$$

Let W(J) be any positive weighting function. Consider:

$$F(\vec{\phi}, e)_{jump} = \int_0^\infty \left[\Delta H(J)\right]^2 W(J) dJ$$

Minimizing Jump Risk

If $F(\vec{\phi}, e)_{jump} = 0$, then both the deterministic and random component of jump risk is zero.

Objective: make $F(\vec{\phi}, e)_{jump}$ (weighted jump risk) as small as possible

- Problem: What weighting function to use?
- \bullet Ideally, $W(J) = \mathbb{P}$ measure jump distribution, but this is unobservable
- If you guess wrong, results can be be very bad

Weighting Function

Practical Solution: set W(J) to be nonzero for *likely* jump sizes $S \rightarrow JS$ (triangular tails avoid numerical problems)

Computational Finance Workshop, Shanghai, July 4, 2008

Bid-Ask Spreads

- \bullet Assume that hedger buys/sells at PIDE midpoint price \pm one half spread
- This represents a lost transaction cost at each hedge rebalance time

$$F(\vec{\phi}, e)_{spread} = \sum_{portfolio} \left(\text{ Money lost due to spreads} \right)^2$$

Objective Function

At each hedge rebalance time, choose $(e, \vec{\phi})$ (weights in underlying and hedging options), so that

- Portfolio is Delta neutral
- Minimize

Objective Function =
$$\xi F(\vec{\phi}, e)_{jump} + (1 - \xi)F(\vec{\phi}, e)_{spread}$$

 $\xi = 1 \rightarrow \text{ Minimize jump risk only}$
 $\xi = 0 \rightarrow \text{ Minimize trans. cost only}$

Review Assumptions: Synthetic Market

- Price process is Merton type jump diffusion
- All options in market can be bought/sold for the fair price plus/minus one half spread
- Mid-point option prices determined by linear pricing PIDE
- \mathbb{Q} measure parameters: Andersen and Andreasen (2000)
- \mathbb{P} measure market parameters: utility equilibrium model
- \bullet Hedger knows the ${\mathbb Q}$ measure market parameters
- Hedger does not know \mathbb{P} measure market parameters

Test Strategy

Basic Testing Method

- Choose target option, set of hedging instruments, hedging horizon
- \bullet Carry out MC simulations of hedging strategy, assume underlying follows a jump diffusion, with specified $\mathbb P$ measure parameters, option prices given by solution of PIDE
- Record discounted relative P&L at end of hedging horizon (or exercise) $t = T^*$ for each MC simulation

Relative P & L =
$$\frac{\exp\{-rT^*\}\Pi(T^*)}{V(S_0,0)}$$

 $V(S_0,0) =$ Initial Target Option Price

Base Case Example

- Target option: one year European straddle
- Hedging horizon: 1.0 years, rebalance 40 times
- Initial $S_0 = 100$
- Hedging portfolio: underlying plus five .25 year puts/calls with strikes near S_0 (liquidate portfolio at t = .25, .50., .75, buy new .25 year options)
- Case 1: no bid-ask spreads
- Case 2: flat relative bid-ask spreads

Relative Spread: underlying = .002

Relative Spread: options = .10

Optimization Weights

Recall that, at each rebalance date, we minimize:

Objective Function = $\xi \times (\text{ Jump Risk})$ + $(1 - \xi) \times (\text{ Transaction Cost})$

How to pick ξ ?

- No *right* answer
- Tradeoff between risk and cost
- We simply compute the density of the P&L for a range of ξ values, report results which give smallest standard deviation.

Base Case

Base Case Results

- Dotted no transaction costs
- Solid transaction cost in market; not in objective function
- Dashed transaction cost in market; transaction cost in objective function

Base Case Summary

- Delta hedging alone not very good
- If there are bid-ask spreads, and you don't take them into account when determining portfolio weights
 - \rightarrow Hedging with options worse then delta hedging!
- Minimizing both jump risk and transaction costs
 - \rightarrow Small standard deviation
 - \rightarrow Cumulative transaction cost comparable with relative spreads assumed for hedging options.

A More Realistic Example

- Use better model for bid-ask spreads
- Allow a larger number of possible options for use in hedge portfolio (10 14 possible hedging options)
 - Consider $.25~{\rm year}$ puts/calls with strikes at \$10 intervals, centered near S=100
- Realistic bid-ask spread model should make deep out of the money options too expensive to use

Bid-Ask Spreads

Relative bid-ask spreads, Amazon, 22Oct2005 puts/calls, as of August 10, 2005 vs. K/S.

Model relative spread as a function of moneyness (K/S)

Flat top data to avoid unrealistically large relative spread.

- Same target option (one year straddle)
- Forty rebalances
- Optimization method should pick out cheapest options to minimize jump risk

Realistic Spread Model: Results

	(P&L)/ Initial option price			
Hedging	Mean	Standard	Percentiles	
Strategy		Deviation	0.02%	0.2%
Delta Hedge	0.0565	1.0395	-11.55	-9.01
Ten Hedging	-0.0639	0.0230	-0.1493	-0.1250
Options				
Fourteen Hedging	-0.0667	0.0206	-0.1251	-0.1152
Options				

- \bullet Note that ten hedging options $\to 99.98\%$ of the time we can lose no more than 15% of the initial option premium
- Note positive mean for simple delta hedging

No Transaction Costs

Some Analysis: No Transaction Costs

Suppose that the weighting function W(J) is such that for any function f(J)

$$\int_0^\infty f^2(J)g^{\mathbb{P}}(J)\,dJ \leq \int_0^\infty f^2(J)W(J)\,dJ < \infty$$

Recall notation:

T = Expiry time of option $\Delta H(J) = \text{Jump Risk}$ $\Delta t = \text{Hedge rebalance interval}$

No Transaction Costs

Global Bound: Hedging Error

Theorem 1. In the limit as $\Delta t \rightarrow 0$, and if at each hedge rebalance time

- The hedge portfolio Π is delta neutral
- $\int_0^\infty [\Delta H(J)]^2 W(J) \ dJ \le \epsilon$

Then

$E^{\mathbb{P}}[(\text{Total Hedging Error})_T^2] \leq \mathbb{C}_1 \epsilon$

where \mathbb{C}_1 is a constant.

Analysis

Adding in Transaction Costs

Theorem 2. In the limit as $\Delta t \rightarrow 0$, assuming Π is delta neutral and, at each rebalance time

holds for some $\xi \in (0, 1)$. Then

$$E^{\mathbb{P}}[(\text{Total Hedging Error})_T^2] \leq \mathbb{C}_2 \epsilon$$

Adding in Transaction Costs II

- It is always possible to minimize transaction costs by not trading
- It may not be possible to minimize both transaction costs and jump risk as required by the Theorem
- As a practical solution, we attempt to make the objective function as small as possible at each rebalance time

Objective Function =
$$\xi \left\{ \int_0^\infty \left[\Delta H_J(S_t, t) \right]^2 W(J) \, dJ \right\}$$

+ $(1 - \xi) \left\{ \text{ Transaction Costs} \right\}^2$

Adding in Transaction Costs III

It follows from this result that if ξ is fixed for given Δt , and we minimize the local objective function at each rebalance time, then the best choice for ξ is

$$\xi = \mathbb{C}_3(\Delta t)^2$$

This is observed in the numerical experiments.

Note that this means that more weight is put on the transaction cost term in the objective function as $\Delta t \rightarrow 0$.

This is required to avoid infinite transaction costs

Conclusions

Conclusions

- In market with jumps \rightarrow delta hedging is bad
- Need to use additional options in the hedging portfolio
- If hedging portfolio is determined only on basis of minimizing jump risk \rightarrow bid-ask spreads cause poor results when hedging with options
- If both jump risk and transaction costs minimized
 - Standard deviation much reduced compared to delta hedge
 - Relative cumulative transaction costs $\simeq 6-7\%$
- Similar results for American options

Let's Start a Hedge Fund ©

- Recall that hedge fund managers typically receive 20% of the gain in an investment portfolio, but *no penalty if a loss*.
- Hedge fund strategy
 - Select asset which has large, infrequent jumps
 - Sell contingent claims (on this asset) with positive gamma, delta hedge
 - In a market with jumps, recall that this strategy has a positive mean
- This means that we, as hedge fund managers make money most of the time (and collect large bonuses)
- When a jump occurs, the investors are left with large, unhedged losses, hedge fund is bankrupt, but we retire rich!
- Sound familiar?