Dynamic Mean Variance Asset Allocation: Numerics and Backtests

Peter Forsyth¹

¹Cheriton School of Computer Science University of Waterloo

> May 12, 2016 Oxford

Outline

Dynamic mean variance

- Embedding result \Rightarrow quadratic target
- Removal of spurious points
- IJB PDE
 - Intuitive discretization
 - Semi-Lagrangian timestepping and explicit control
 - Unconditionally stable, monotone and consistent
- Solution Calibrate to historical market data (1926-2015)
 - Synthetic market: M-V optimal beats constant proportion
 - Backtests using real historical data: M-V optimal even better!
 - Constant proportion beats any deterministic glide path strategy¹
 - $\rightarrow~$ M-V optimal beats any glide path strategy

¹Strategy used in Target Date funds (over \$700 billion in US)

Dynamic Mean Variance: Abstract Formulation

Define:

$$X = Process$$
$$\frac{dX}{dt} = SDE$$
$$x = (X(t) = x) = State$$
$$W(X(t)) = total wealth$$

Control c(X(t), t) is applied to X(t)

Define admissible set \mathcal{Z} , i.e.

$$c(x,t) \in \mathcal{Z}(x,t)$$

Mean and Variance under control c(X(t), t)

Let:

Important:

• mean and variance of W(T) are as observed at time t, initial state x.

Basic Problem: Find Pareto Optimal Strategy

We desire to find the investment strategy $c^*(\cdot)$ such that, there exists no other other strategy $c(\cdot)$ such that

and at least one of the inequalities is strict.

Scalarization: For $\lambda > 0$, find $c(\cdot)$ which solves

$$\inf_{c(\cdot)} \left\{ \lambda \operatorname{Var}_{t,x}^{c(\cdot)}[W_{T}] - E_{t,x}^{c(\cdot)}[W_{T}] \right\}$$

Varying λ traces out the efficient frontier.

Pareto optimal points

Let

$$\mathcal{E} = E_{t,x}^{c(\cdot)}[W_T]$$
; $\mathcal{V} = \mathsf{Var}_{t,x}^{c(\cdot)}[W_T]$

The achievable set $\mathcal Y$ is

$$\mathcal{Y} = \{(\mathcal{V}, \mathcal{E}) : c(\cdot) \in \mathcal{Z}\},\$$

Given $\lambda >$ 0, define scalarization set 2

$$\mathcal{S}_{\lambda}(\mathcal{Y}) = \{(\mathcal{V}, \mathcal{E}) \in \overline{\mathcal{Y}} : \lambda \mathcal{V} - \mathcal{E} = \inf_{(\mathcal{V}_*, \mathcal{E}_*) \in \mathcal{Y}} (\lambda \mathcal{V}_* - \mathcal{E}_*)\}$$

The efficient frontier \mathcal{Y}_P is

$$\mathcal{Y}_P = igcup_{\lambda > 0} \mathcal{S}_\lambda(\mathcal{Y})$$

The efficient frontier is a collection of Pareto points

 $^{^{2}\}bar{\mathcal{Y}}$ is the closure of $\mathcal{Y}.$

Scalarization: intuition³

Recall scalarization set:

$$\mathcal{S}_{\lambda}(\mathcal{Y}) = \{ (\mathcal{V}, \mathcal{E}) \in \bar{\mathcal{Y}} : \lambda \mathcal{V} - \mathcal{E} = \inf_{(\mathcal{V}_*, \mathcal{E}_*) \in \mathcal{Y}} (\lambda \mathcal{V}_* - \mathcal{E}_* \}$$
(1)

Geometric interpretation:

• Consider the straight line (for fixed λ)

$$\lambda \mathcal{V} - \mathcal{E} = C_1 \tag{2}$$

Points in (1)

- Choose C_1 as small as possible, such that:
 - ightarrow Intersection of ${\mathcal Y}$ and straight line (2) has at least one point

³We may not get all the Pareto points here if ${\mathcal Y}$ is not convex

Intuition

Move dotted lines line $\lambda V - \mathcal{E} = C_1$ to the left as much as possible (decrease C_1)

Line will touch $\mathcal Y$ at Pareto point

Problem

Pareto point

$$\lambda \mathcal{V} - \mathcal{E} = \inf_{(\mathcal{V}_*, \mathcal{E}_*) \in \mathcal{Y}} (\lambda \mathcal{V}_* - \mathcal{E}_*)$$
(3)

Problem arises from variance

$$\mathcal{V} = E^{c}[W(T)^{2}] - (E^{c}[W(T)])^{2}$$
$$(E^{c}[W(T)])^{2} \rightarrow \text{ problem for dynamic programming}$$

Consider the optimization problem (for fixed γ)

$$\inf_{(\mathcal{V},\mathcal{E})\in\mathcal{Y}}\mathcal{V}+\mathcal{E}^2-\gamma\mathcal{E}$$
(4)

Note that

$$\mathcal{V} + \mathcal{E}^2 = E^c[W(T)^2]$$

Minimizing (4) can be done using dynamic programming

Embedded Objective Function Intuition

Examine points $(\mathcal{V}, \mathcal{E}) \in \mathcal{Y}$ such that (for fixed γ)

$$\mathcal{V} + \mathcal{E}^2 - \gamma \mathcal{E} = \inf_{(\mathcal{V}_*, \mathcal{E}_*) \in \mathcal{Y}} \mathcal{V}_* + \mathcal{E}_*^2 - \gamma \mathcal{E}_*$$
(5)

Geometric interpretation:

• Consider the parabola

$$\mathcal{V} + \mathcal{E}^2 - \gamma \mathcal{E} = C_2 \tag{6}$$

Points in (5)

- Choose C_2 as small as possible, such that
 - Intersection of parabola and ${\mathcal Y}$ has at least one point

Rewriting equation (6)

$$\begin{split} \mathcal{V} &= -\left(\mathcal{E}^2 - \gamma \mathcal{E}\right) + C_2 = -\left(\mathcal{E} - \gamma/2\right)^2 + \gamma^2/4 + C_2 \\ &= -\left(\mathcal{E} - \gamma/2\right)^2 + C_3. \end{split}$$

Parabola faces left, symmetric about line ${\cal E}=\gamma/2$

Embedded Pareto Points

Suppose $(\mathcal{V}_*, \mathcal{E}_*) \in \mathcal{Y}_P o \exists \lambda > 0$, C_1 , s.t.

$$\lambda \mathcal{V}_* - \mathcal{E}_* = \mathcal{C}_1$$

Pick $\gamma/2$, move parabola to left as much as possible, and intersect line $\lambda V_* - \mathcal{E}_* = C_1$ at a single point.

Tangency Condition

Parabola $\mathcal{V} = -(\mathcal{E} - \gamma/2)^2 + C_3$ tangent to line $\lambda \mathcal{V} - \mathcal{E} = C_1$ at $(\mathcal{V}_*, \mathcal{E}_*)$ $\left(\frac{\partial \mathcal{E}}{\partial \mathcal{V}}\right)_{parabola} = \lambda$; $\lambda = \text{ slope of dotted lines}$ $\rightarrow \gamma/2 = 1/(2\lambda) + \mathcal{E}_*$

Embedding Result

Theorem 1 ((Li and Ng (2000); Zhou and Li (2000)) If

$$\lambda \mathcal{V}_0 - \mathcal{E}_0 = \inf_{(\mathcal{V}, \mathcal{E}) \in \mathcal{Y}} (\lambda \mathcal{V} - \mathcal{E}), \tag{7}$$

then

$$\mathcal{V}_{0} + \mathcal{E}_{0}^{2} - \gamma \mathcal{E}_{0} = \inf_{(\mathcal{V}, \mathcal{E}) \in \mathcal{Y}} (\mathcal{V} + \mathcal{E}^{2} - \gamma \mathcal{E}),$$
(8)
$$\gamma = \frac{1}{\lambda} + 2\mathcal{E}_{0}$$

Implication

• We can determine all the Pareto points from (7) by solving problem (8)

Value function

Note:

$$\mathcal{V} + \mathcal{E}^2 - \gamma \mathcal{E} = E^c_{t,x}[(W(T) - \frac{\gamma}{2})^2] + \frac{\gamma^2}{4},$$

Define value function⁴ (ignore $\gamma^2/4$ term when minimizing)

$$V(x,t) = \inf_{c(\cdot)\in\mathcal{Z}} E_{t,x}^{c(\cdot)}[(W(T) - \gamma/2)^2]$$
(9)

Key Result: Given point $(\mathcal{V}^*, \mathcal{E}^*)$ on the efficient frontier, generated by control $c^*(\cdot)$, then $\exists \gamma$ s.t.

 $ightarrow c^*(\cdot)$ is an optimal control for (9)

⁴Precommitment MV optimal \equiv quadratic target optimal. Precommittment

ightarrow choose target wealth $\gamma/2$ at time zero

Spurious points

But, converse not necessarily true: i.e. there may be some $\gamma \in (-\infty, +\infty)$ s.t. $c^*(\cdot)$ which solves

$$V(x,t) = \inf_{c(\cdot)\in\mathcal{Z}} \mathcal{E}_{t,x}^{c(\cdot)}[(W(T) - \gamma/2)^2]$$
(10)

does not correspond to a point on the efficient frontier

Basic Algorithm

Discretize the parameter γ

$$\gamma \in \Gamma^{k} = [-|\gamma_{\max}^{k}|, -|\gamma_{\max}^{k}| + h_{k}, \dots, |\gamma_{\max}^{k}|]$$
(11)
$$h_{k} \to 0 ; \gamma_{\max}^{k} \to \infty ; k \to \infty$$
(12)

- For each γ_i ,
 - Determine optimal control c^{*}_{γi}(·) by solving the embedded problem (solve HJB equation, store control)
 - Using this control, compute $E_{t,x}^{c_{\gamma_i}^*(\cdot)}[(W_T)]$, $Var_{t,x}^{c_{\gamma_i}^*(\cdot)}[(W_T)]$ via Monte Carlo (one point on the frontier)

Does this converge to *true* efficient frontier as $k \to \infty$?

Problems

- Controls which minimize E^{c(·)}_{t,x} [(W(T) γ/2)²] (from numerical solve)
 - May generate spurious points (e.g. non-convex \mathcal{Y})
- 2 The control which minimizes

$$E_{t,x}^{c(\cdot)}[(W(T) - \gamma/2)^2]$$
(13)

may not be unique.

• Numerical HJB solve for fixed $\gamma/2$

ightarrow picks out only one control $c^*(\cdot)$

• Does the control we compute correspond to a point in \mathcal{Y}_P ?

Convergent Algorithm⁵

For $k = 0, 1, \ldots$

- Solve value function $\forall \gamma_i \in \Gamma^k$
- Generate set of candidate points on the efficient frontier \mathcal{A}^k
- Determine upper left convex hull $\mathcal{S}(\mathcal{A}^k)$
- Approximate points on efficient frontier: $\mathcal{A}^k \cap \mathcal{S}(\mathcal{A}^k)$

⁵Tse, Forsyth, Li (2014, SIAM Cont. Opt.); Dang,Forsyth, Li (2016, Num. Math.)

Convergence result

Recall def'n of scalarization set:

$$\mathcal{S}_{\lambda}(\mathcal{X}) = \left\{ (\mathcal{V}_*, \mathcal{E}_*) \in \overline{\mathcal{X}} : \lambda \mathcal{V}_* - \mathcal{E}_* = \inf_{(\mathcal{V}, \mathcal{E}) \in \mathcal{X}} \lambda \mathcal{V} - \mathcal{E} \right\}, \quad (14)$$

Suppose $S_{\lambda}(\mathcal{Y}) \neq \emptyset, \lambda > 0$ (i.e. $S_{\lambda}(\mathcal{Y})$ are points on the efficient frontier for fixed λ)

Theorem 2 Suppose Γ^k is systematically refined ⁶ as $k \to \infty$, and let $(\mathcal{V}_k, \mathcal{E}_k) \in \mathcal{S}_{\lambda}(\mathcal{A}^k)$. Let $(\mathcal{V}_*, \mathcal{E}_*)$ be a limit point of $\{(\mathcal{V}_k, \mathcal{E}_k)\}$. Then $(\mathcal{V}_*, \mathcal{E}_*)$ is on the original efficient frontier.

Remark 1

All points on the approximate efficient frontier $\mathcal{A}^k \cap \mathcal{S}(\mathcal{A}^k)$ are valid points on the true efficient frontier as $k \to \infty$.⁷

⁶Any reasonable refinement satisfies this condition

⁷There may some gaps in the approximate frontier if there are 3 or more points on a straight line segment.

Asset allocation: risk free bond, stock index Risk free bond *B*

$$dB = rB dt$$

 $r = risk-free rate$

Amount in risky stock index S (jump diffusion)

$$dS = (\mu - \rho \kappa)S \ dt + \sigma S \ dZ + (J-1)S \ dq$$

$$\mu = \mathbb{P}$$
 measure drift ; $\sigma =$ volatility
 $dZ =$ increment of a Wiener process

$$dq = \begin{cases} 0 & \text{with probability } 1 - \rho \ dt \\ 1 & \text{with probability } \rho dt, \\ \log J \sim & \text{double exponential.} \quad ; \quad \kappa = E[J-1] \end{cases}$$

Optimal Control

Define:

$$X = (S(t), B(t)) = Process$$

$$x = (S(t) = s, B(t) = b) = (s, b) = State$$

$$(s + b) = total wealth$$

Let $(s, b) = (S(t^{-}), B(t^{-}))$ be the state of the portfolio the instant before applying a control

The control $c(s,b) = (d,B^+)$ generates a new state

$$b \rightarrow B^{+}$$

$$s \rightarrow S^{+}$$

$$S^{+} = \underbrace{(s+b)}_{wealth at t^{-}} - B^{+} - \underbrace{d}_{withdrawal}$$

Note: we allow cash withdrawals of an amount $d \ge 0$ at a rebalancing time

Optimal de-risking (free cash flow)

Let

$$F(t) = \frac{\gamma}{2}e^{-r(T-t)}$$

= discounted target wealth

Proposition 1 (Dang and Forsyth (2016)) If $W_t > F(t)$, $t \in [0, T]$, an optimal MV strategy is

- Withdraw cash $d = W_t F(t)$ from the portfolio
- Invest the remaining amount F(t) in the risk-free asset.

We will refer to the amount withdrawn as a free cash flow. ⁸

⁸See also: Ehrbar, *J. Econ. Theory* (1990); Cui, Li, Wang, Zhu *Mathematical Finance* (2012); Bauerle, Grether *Mathematical Methods of Operations Research* (2015).

Constraints on the strategy

The investor can continue trading only if solvent

$$\underbrace{W(s,b) = s + b > 0}_{\text{Solvency condition}}.$$
(15)

In the event of bankruptcy, the investor must liquidate

$$S^+=0$$
 ; $B^+=W(s,b)$; if $\underbrace{W(s,b)\leq 0}_{bankruptcy}$.

Leverage is also constrained

$$egin{array}{rcl} \displaystyle rac{S^+}{W^+} &\leq & q_{\mathsf{max}} \ & & W^+ = S^+ + B^+ = & \mathsf{Total Wealth} \end{array}$$

HJB PIDE

Find optimal control $c(\cdot) \Rightarrow$ solve for value function

$$V(x,t) = \inf_{c \in \mathcal{Z}} \left\{ E^c_{t,x}[(W(T) - \gamma/2)^2] \right\} ,$$

Define:

$$\begin{aligned} \mathcal{L}V &\equiv \frac{\sigma^2 s^2}{2} V_{ss} + (\mu - \rho \kappa) s V_s - \rho V , \\ \mathcal{J}V &\equiv \int_0^\infty p(\xi) V(\xi s, b, \tau) \ d\xi \\ p(\xi) &= \text{ jump size density ; } \rho = \text{ jump intensity} \end{aligned}$$

and the intervention operator $\mathcal{M}(c)$ V(s, b, t)

$$\mathcal{M}(c) \ V(s,b,t) = V(S^+(s,b,c),B^+(s,b,c),t)$$

HJB PIDE II

Value function, control $c(\cdot) \Rightarrow$ solve impulse control HJB equation

$$\max\left[V_t + \mathcal{L}V + rbV_b + \mathcal{J}V, V - \inf_{c \in \mathcal{Z}}(\mathcal{M}(c) \ V)\right] = 0$$

Discretize computational domain $(s, b) \in [0, \infty) \times (-\infty, +\infty)$

$$\{s_1, s_2, \dots, s_{i_{\max}}\}$$
 ; $\{b_1, \dots, b_{j_{\max}}\}$

Constant timesteps, discretize control

$$\Delta au = au^{n+1} - au^n$$
 ; $B^+ \in \{b_1, \dots, b_{j_{\mathsf{max}}}\}$

Discretization parameter h

$$\max_{i}(s_{i+1} - s_i) = \max_{j}(b_{j+1} - b_j) = \max_{n}(\tau^{n+1} - \tau^n) = O(h)$$

Computational Domain⁹

⁹ If $\mu > r$ it is never optimal to short S

Intuitive Derivation of Discretization

Consider a set of discrete rebalancing times $\{t_1, t_2, \ldots\}$ Define

$$t_m^+ = t_m + \epsilon$$
; $t_m^- = t_m - \epsilon$; $\epsilon \to 0^+$ (16)
At $t = t_m^+$, $s = S(t)$ and $b = B(t)$

Step $[t_m^+, t_{m+1}^-]$ (bond amount constant)

• The value function V(s, b, t) evolves according to the PIDE

$$V_t + \overbrace{\mathcal{L}V}^{No \ rbV_b \ term} + \overbrace{\mathcal{J}V}^{Jump \ term} = 0,$$

Evolution over $[t_{m+1}^-, t_{m+1}^+]$

Step $[t_{m+1}^-, t_{m+1}]$ (Stock amount constant)

• Pay interest earned in $[t_m^+, t_{m+1}^-]$

$$V(s,b,t_{m+1}^-) = V(s,be^{r\Delta t},t_{m+1})$$
 ; by no-arbitrage $\Delta t = t_{m+1} - t_m$

Step $[t_{m+1}, t_{m+1}^+]$

• Optimal rebalance

$$V(s, b, t_{m+1}) = \overbrace{\min_{c} V(S^{+}(s, b, c), B^{+}(s, b, c), t_{m+1}^{+})}^{rebalance}$$

Backwards time: discrete solution

Now, we write these steps down in backwards time au = T - t

• Define $V_{i,j}^n \equiv$ discrete solution $V_h(s_i, b_j, \tau^n)$

$$\widetilde{V}_{i,j}^{n} = \underbrace{\overbrace{c \in \mathcal{Z}_{h}}^{Optimization step with \tau^{n} data}}_{\underset{\Delta \tau}{V_{i,j}^{n+1}} - \mathcal{L}_{h}V_{i,j}^{n+1} - \mathcal{J}_{h}V_{i,j}^{n+1} = \underbrace{\widetilde{V}_{i,j}^{n}}_{\Delta \tau}}_{\underset{Linear time advance}{V_{i,j}^{n+1}}}$$

Linear time advance

Formally: Semi-Lagrangian timestepping and explicit impulse control

Discretization Properties

- $\textbf{ 0 Positive coefficient method used to discretize } \mathcal{P},$
- Jump term: fixed point iteration + FFT for dense matrix-vector product
- Linear interpolation used to approximate V_h at off grid points (needed for optimal control)

Assume strong comparison property holds:

- $\bullet\,$ Consistent, ℓ_∞ stable, monotone
 - \hookrightarrow Convergence to viscosity solution

Example Asset Allocation: Constant Proportions

According to Benjamin Graham¹⁰, most investors should

- Pick a fraction p of wealth to invest in a diversified equity fund (e.g. p = 1/2).
- Invest (1 p) in bonds
- Rebalance to maintain this asset mix
 - $\rightarrow\,$ i.e. a constant proportion strategy

How does this strategy compare with standard target date funds, which follow a glide path over time T?

Typical glide path strategy¹¹

$$p(t) = (110 - \text{ your age })$$

¹⁰Benjamin Graham, *The Intelligent Investor*

¹¹This used to be $(100 - your \ age)$ but people are living longer

Constant Proportion Beats Glide Path

Consider any glide path strategy p(t)

p(t) = fraction of wealth invested in equities

Define a constant weight strategy p^* where

$$p^* = \frac{1}{T} \int_0^T p(s) \, ds$$

= time average fraction in equities

Let W denote total wealth. We can prove (GBM + jumps) ¹²

$$\overbrace{E[W(T)]}^{\text{constant weight}} = \overbrace{E[W(T)]}^{\text{glide path}} ; \overbrace{Var[W(T)]}^{\text{constant weight}} \leq \overbrace{Var[W(T)]}^{\text{glide path}}$$
(17)

Backtests on historical data and MC simulations 13 indicates (17) holds in general \rightarrow constant proportion beats glide path

¹²Graf (2013), Forsyth and Vetzal (2016)

¹³Esch and Michaud (2014)

Monte Carlo Simulation Results

- Inflation-adjusted equity: jump diffusion¹⁴ model estimated using CRSP¹⁵ total return index and CPI data (1926 to 2015)
- Inflation-adjusted bonds: average real 3M T-bills (1926 to 2015)

Strategy	Expected	Standard	Prob(W(T))	Prob(W(T))
	Value	Deviation	< 300	< 400
Constant	417	200	0.41	0.60
Proportion $p = 0.5$	417	299	0.41	0.00
M-V	417	117	0.12	0.22
Optimal Control	417	117	0.15	0.22

Table: Investment horizon T = 30 years. Initial investment W(0) = 100. Optimal de-risking; no trading if insolvent; maximum leverage = 1.5, rebalancing once/year.

Standard deviation reduced by 250%, shortfall probability reduced by $3\times$

¹⁴Jump size had double exponential distribution (Kou, 2002)

¹⁵Capitalization weighted index of all stocks traded on major US exchanges.

Cumulative Distribution Function: IRR¹⁶

E[W(T)] = 417 same for both strategies

Optimal policy: Contrarian: when market goes down \rightarrow increase stock allocation; when market goes up \rightarrow decrease stock allocation

Optimal allocation gives up gains \gg target in order to reduce variance and probability of shortfall.

Investor must pre-commit to target wealth

MV optimal beats constant proportion, consequently it also beats any glide path!

¹⁶Internal rate of return (i.e. effective rate of return) = $\log(W(T)/W(0))/T$

Strategy Heat Map

Fraction in Risky Asset

Back Testing

M-V optimal performance on historical data

- Compute and store strategy based on estimated parameters for entire historical period (January 1, 1926 December 31, 2014).
- E[W(T)] same as for constant proportion strategy (p = .5), for this set of average parameters.
- Select starting date
- Compare:
 - Optimal MV strategy (based on average parameters, not tuned to this period)
 - Constant proportion strategy

Back Test, Real Returns: Jan 1, 1985 - Dec 31, 2014¹⁷

 $^{17}W(1985) = 100$. Maximum leverage 1.5. Optimal MV strategy computed using parameters for 1926-2015 period. Yearly rebalancing.

Back Test, Real Returns: Jan 1, 1930 - Dec 31, 1959¹⁸

 $^{18}W(1930) = 100$. Maximum leverage 1.5. Optimal MV strategy computed using parameters for 1926-2015 period. Yearly rebalancing.

Bootstrap Resampling: 1926-2015

More Scientific Test: Resampling

Use real historical data, quarterly returns

- Randomly draw 30 years of returns (with replacement) from historical returns (blocksize 10 years)
- 10,000 simulations, each block starts at random quarter

Strategy	Expected	Standard	Pr(W(T))	Expected
	Value	Deviation	< 300	Free Cash
Constant	295	193	0.38	0.0
Proportion $p = 0.5$	305	105	0.50	0.0
M-V	421	0/	0.07	40
Optimal Control	431	04	0.07	40

Table: T = 30 years. W(0) = 100. Yearly rebalancing. Optimal de-risking ; no trading if insolvent; maximum leverage = 1.5.

Performs even better on actual historical data than on synthetic market data!

Resampled Cumulative Distribution Function: IRR¹⁹

¹⁹Internal rate of return, (i.e. effective rate of return) = $\log(W(T)/W(0))/T_{40/41}$

Conclusions

- M-V strategy is very robust
 - Insensitive to calibration ambiguity
 - MC tests: insensitive to random perturbations of synthetic market SDE parameters
 - Stochastic volatility: typical parameters, insignificant for long term investors
 - 10 year treasuries (instead of 3-M) similar results
 - Good results on historical backtests
- Similar results for accumulation, decumulation
- M-V beats constant proportion, i.e. probability of shortfall $2-3\times$ smaller
 - $\rightarrow\,$ Constant proportion beats any deterministic glide path
- M-V optimal equivalent to minimizing quadratic loss w.r.t. wealth target
 - Optimal strategy is M-V optimal and quadratic loss optimal
- More sophisticated models
 - Regime switching? (machine learning approach being investigated)