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Outline

@ Dynamic mean variance

o Embedding result = quadratic target
e Removal of spurious points

@ HJB PDE

o Intuitive discretization
e Semi-Lagrangian timestepping and explicit control
e Unconditionally stable, monotone and consistent

@ Calibrate to historical market data (1926-2015)

e Synthetic market: M-V optimal beats constant proportion

o Backtests using real historical data: M-V optimal even better!

e Constant proportion beats any deterministic glide path
strategy1

— M-V optimal beats any glide path strategy

!Strategy used in Target Date funds (over $700 billion in US)

)
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Dynamic Mean Variance: Abstract Formulation

Define:
X = Process
dX
— = SDE
dt S
x = (X(t)=x)= State
W(X(t)) = total wealth

Control ¢(X(t), t) is applied to X(t)

Define admissible set Z, i.e.

c(x,t) € Z(x,t)



Mean and Variance under control c(X(t), t)

Let:

ECOIW(T)]
N —

Reward

= Expectation conditional on (x, t) under control c(-)

Varg [W(T)]
—_——
Risk
= Variance conditional on (x, t) under control c(-)

Important:

@ mean and variance of W(T) are as observed at time t, initial
state x.



Basic Problem: Find Pareto Optimal Strategy

We desire to find the investment strategy c*(-) such that, there
exists no other other strategy c(-) such that

c(- c(*-
EXw > B
Reward under strategy c(-) Reward under strategy c*(-)
c() ()
Varg [Wr] < Vary [(Wr]
—_— —— —_— ——
Risk under strategy c(-) Risk under strategy c*(-)

and at least one of the inequalities is strict.

Scalarization: For A > 0, find ¢(-) which solves
ot Lovari Q) - 01w}
(-

Varying X traces out the efficient frontier.
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Pareto optimal points
Let
£=EVWr] i V=var[wy]
The achievable set Y is
Y={(V,&) : c() e 2},
Given X > 0, define scalarization set 2

S\V)={V, &) ey :Av-€= (v*,igf)ey()‘v* — &)

The efficient frontier Vp is

Yp = U Sx(Y)

A>0

The efficient frontier is a collection of Pareto points

2y is the closure of ).

6
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Scalarization: intuition®

Recall scalarization set:

SN ={V,&)ey:Awv-¢&= (leg*f)ey(/\]}* — &}

Geometric interpretation:
e Consider the straight line (for fixed \)

AV-E=0G

Points in (1)

@ Choose (7 as small as possible, such that:

— Intersection of ) and straight line (2) has at least one point

3We may not get all the Pareto points here if ) is not convex
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Intuition

M-V achievable set

Move dotted lines line AV — & = (; to the left as much as possible
(decrease ()

Line will touch Y at Pareto point



Problem
Pareto point

AV—-E= inf (A —& 3

Problem arises from variance

Vo= EW(T)’] - (ES[W(T)])°
(ESIW(T)])®> — problem for dynamic programming

Consider the optimization problem (for fixed ~)

inf E2 —~E 4
(V,Ig)eyv+ 7 ( )

Note that
V4 &% = ES[W(T)?

Minimizing (4) can be done using dynamic programming
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Embedded Objective Function Intuition
Examine points (V,£) € ) such that (for fixed )

E2_~E= inf .+ E2—~E, 5
v+ v (v*,lg*)eyv Rt (5)

Geometric interpretation:
@ Consider the parabola

V+E2 =G (6)

Points in (5)
@ Choose C; as small as possible, such that
o Intersection of parabola and ) has at least one point

Rewriting equation (6)

V=— (82 -7+ C=—(E—7/2 +7?/4+ G
= — (-2’ + G

Parabola faces left, symmetric about line £ = ~/2
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Embedded Pareto Points
Suppose (Vi, &) € Yp — IXN >0, (4, s.t.

M-V achievable set

Pick /2, move parabola to left as much as possible, and intersect
line AV, — & = ( at a single point.
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Tangency Condition

&

M-V achievable set )

Parabola V = — (£ — 7/2)2 + G; tangent to line AV — € = G at (Wi, &)
a—g = X ; A= slope of dotted lines
oy parabola

— v/2=1/(2X) + &,
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Embedding Result

Theorem 1 ((Li and Ng (2000); Zhou and Li (2000))
If

MNVog—& = inf (A\VW=E), 7
o — o (V,Ig)ey( ) (7)
then
2 — inf 2
Vo + & — 7&o (v’lg)ey(VJrf 7€), (8)
1
=Z 42
=57t o
Implication

@ We can determine all the Pareto points from (7) by solving
problem (8)
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Value function

Note:
V+E2— 7€ = EEI(W(T) — )]+ —
Define value function* (ignore v2/4 term when minimizing)

Vion) = inf ELIW(T) = /2)] (9)

Key Result: Given point (V*,£*) on the efficient frontier,
generated by control ¢*(-), then 3y s.t.

— ¢*(+) is an optimal control for (9)

*Precommitment MV optimal = quadratic target optimal. Precommittment
— choose target wealth v/2 at time zero
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Spurious points

But, converse not necessarily true: i.e. there may be some
v € (—o0,+00) s.t. ¢*(-) which solves

Vi) = inf EL(W(T) = /2)] (10)

does not correspond to a point on the efficient frontier

M-V achievable set
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Basic Algorithm

Discretize the parameter ~y

k k k k
e r = [_"Ymax’v_h/max‘+hk7"'7h/max’] (11)
he =05 7k, —00; k— o0 (12)

e For each v,
o Determine optimal control cj() by solving the embedded
problem (solve HJB equation, store control)
e Using this control, compute E;WX"(.)[( W), Var,i”x"
Monte Carlo (one point on the frontier)

wr)] via

Does this converge to true efficient frontier as k — 00?

16
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Problems

@ Controls which minimize Etci)[( W(T) —~/2)?] (from
numerical solve)
e May generate spurious points (e.g. non-convex ))

@ The control which minimizes
ELOUW(T) /27 (13)

may not be unique.
o Numerical HJB solve for fixed /2
— picks out only one control ¢*(+)

e Does the control we compute correspond to a point in Vp?
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Convergent Algorithm?®
For k=0,1,...
@ Solve value function V~; € Tk
o Generate set of candidate points on the efficient frontier A
o Determine upper left convex hull S(A¥)
e Approximate points on efficient frontier: A% N S(A¥)

—— upper left boundary of convex hull
® S(A)

o A\S(A)

5Tse, Forsyth, Li (2014, SIAM Cont. Opt.); Dang,Forsyth, Li (2016, Num.

Math.)
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Convergence result

Recall def'n of scalarization set:

S\X)={(Ve,ENEX: AV, —E = inf AV-—E)}, (14
M&) = {( ) € UL 5o (14)

Suppose Sy(V) # 0, > 0 (i.e. S\()’) are points on the efficient
frontier for fixed \)

Theorem 2

Suppose ¥ is systematically refined ® as k — oo, and let

(Vk, Ek) € SA(AX). Let (Vi, &) be a limit point of {(Vk,Ek)}.
Then (Vs, &) is on the original efficient frontier.

Remark 1
All points on the approximate efficient frontier A N S(A¥) are
valid points on the true efficient frontier as k — co. '

6Any reasonable refinement satisfies this condition
"There may some gaps in the approximate frontier if there are 3 or more

points on a straight line segment.
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Asset allocation: risk free bond, stock index
Risk free bond B

dB = rBdt

r = risk-free rate
Amount in risky stock index S (jump diffusion)
dS = (p—pk)Sdt+o0SdZ+(J—1)S dqg

=P measure drift ; o = volatility

dZ = increment of a Wiener process

da — 0 with probability 1 — p dt
P71 with probability pd,
log J ~ double exponential. ; k= E[J— 1]
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Optimal Control

Define:
X = (5(t),B(t)) = Process
x = (S(t)=s,B(t) =b) = (s,b) = State
(s+b) = total wealth

Let (s, b) = (S(t), B(t™)) be the state of the portfolio the
instant before applying a control

The control ¢(s,b) = (d, BT) generates a new state

b — BT
s —» ST
+ _pt
ST= (s+b) -B d
wealth at t— withdrawal

Note: we allow cash withdrawals of an amount d > 0 at a

rebalancing time
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Optimal de-risking (free cash flow)

Let

F(t) = %e‘r(T_t)
= discounted target wealth

Proposition 1 (Dang and Forsyth (2016))
If Wy > F(t), t € [0, T], an optimal MV strategy is
o Withdraw cash d = W, — F(t) from the portfolio

@ Invest the remaining amount F(t) in the risk-free asset.

We will refer to the amount withdrawn as a free cash flow. 8

8See also: Ehrbar, J. Econ. Theory (1990); Cui, Li, Wang, Zhu
Mathematical Finance (2012); Bauerle, Grether Mathematical Methods of
Operations Research (2015).



Constraints on the strategy

The investor can continue trading only if solvent

W(s,b)=s+b>0. (15)

Solvency condition

In the event of bankruptcy, the investor must liquidate
St=0 ; BT =W(s,b) ; if W(s,b)<0 .
~—_——
bankruptcy

Leverage is also constrained

m < gmax
WT =St 4+ BT = Total Wealth
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HJB PIDE

Find optimal control ¢(-) = solve for value function

Vix.t) = int { EELW(T) - 9/271}

Define:

02s?

LV = TVSS—i—(u—pm)sVs —pV

TV zlémmavaaaﬂds

p(&) = jump size density ; p = jump intensity
and the intervention operator M(c) V(s, b, t)

M(c) V(s,b,t) = V(ST(s,b,c),B"(s,b,c),t)
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HJB PIDE Il

Value function, control ¢(-) = solve impulse control HJB equation

max| Ve + LV + rbVp + TV, V — in;(/\/l(c) V)| =0
ce

Discretize computational domain (s, b) € [0, 00) X (—00, +00)
{51, S, ... ,S,'max} ) {bl, ey bjmax}
Constant timesteps, discretize control
Ar=7"Tt " o BT e b, ..., bjrae }
Discretization parameter h

max(sit1 — s;) = max(bj11 — bj) = max(r™! — 7") = O(h)
i J n
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Computational Domain®

400

A

(S,B) € [0, ] X[-c0, +0]
Solve HJB
equation
Solve HJB equation

B
0,0 —
( 3 ) s +°°

Saquation” S+B=0
\ 2
Solve HJB Equation
Liquidate
=00

9 . .
If & > r it is never optimal to short S -



Intuitive Derivation of Discretization

Consider a set of discrete rebalancing times {t, ts,...}
Define

th =tm+e ; t.=tm—ec ; e—0" (16)

m

At t =tl, s=5(t) and b = B(t)

Step [t t,,.1] (bond amount constant)

@ The value function V(s, b, t) evolves according to the PIDE

No rbV, term  Jump term
~ = =
Vi + Lv 4+ JVv =0,
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Evolution over [t .1, t; ]

Step [t,, 1, tm+1] (Stock amount constant)
o Pay interest earned in [t t, ]

V(s,b,t,.1) = Vs, be™t t,i1) ; by no-arbitrage
At = tmi1 — tm

Step [tm+1, tiq]
@ Optimal rebalance

rebalance

V(S? b, tm+1) = min V(S+(57 b, C)7 B+(57 b, C)v tiJrl)
c
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Backwards time: discrete solution

Now, we write these steps down in backwards time 7= T — t

o Define V/; = discrete solution Vj(s;, bj, ")

Optimization step with " data

\/ H A A
Vlnj :ggg Vh(SJr(Sivbjer Tac)7B+(si7bjer Tac)77-n)
h
nt1 v
1,) L Vn+1 Vn+1 _ 1,J
=LV =TV = ==
AT !+ !+ AT

Linear time advance

Formally: Semi-Lagrangian timestepping and explicit impulse
control
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Discretization Properties

@ Positive coefficient method used to discretize P,
@ Jump term: fixed point iteration + FFT for dense
matrix-vector product

© Linear interpolation used to approximate V), at off grid points
(needed for optimal control)

Assume strong comparison property holds:
o Consistent, ¢, stable, monotone
— Convergence to viscosity solution
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Example Asset Allocation: Constant Proportions

According to Benjamin Graham!®, most investors should

@ Pick a fraction p of wealth to invest in a diversified equity
fund (e.g. p=1/2).
@ Invest (1 — p) in bonds
@ Rebalance to maintain this asset mix
— i.e. a constant proportion strategy

How does this strategy compare with standard target date funds,
which follow a glide path over time T7?

Typical glide path strategy!!

p(t) = (110 — your age )

Benjamin Graham, The Intelligent Investor
" This used to be (100 — your age) but people are living longer
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Constant Proportion Beats Glide Path
Consider any glide path strategy p(t)
p(t) = fraction of wealth invested in equities

Define a constant weight strategy p* where

1 /T
pT = 7/0 p(s) ds

= time average fraction in equities

Let W denote total wealth. We can prove (GBM + jumps) 12

constant weight glide path constant weight glide path

—— —
EW(T)] =E[W(T)] : Var[W(T)] < Var[W(T)]  (17)

Backtests on historical data and MC simulations'?® indicates (17) holds in
general — constant proportion beats glide path

12Graf (2013), Forsyth and Vetzal (2016)
B3Esch and Michaud (2014)
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Monte Carlo Simulation Results

o Inflation-adjusted equity: jump diffusion’* model estimated using
CRSP? total return index and CPI data (1926 to 2015)

@ Inflation-adjusted bonds: average real 3M T-bills (1926 to 2015)

Strategy Expected | Standard | Prob(W(T)) | Prob(W(T))
Value Deviation < 300 < 400

Constant 417 299 0.41 0.60

Proportion p = 0.5

M-V

Optimal Control 417 117 0.13 0.22

Table: Investment horizon T = 30 years. Initial investment W(0) = 100.

Optimal de-risking; no trading if insolvent; maximum leverage = 1.5,
rebalancing once/year.

Standard deviation reduced by 250%, shortfall probability

reduced by 3 x

14 Jump size had double exponential distribution (Kou, 2002)
Capitalization weighted index of all stocks traded on major US exchanges.
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Cumulative Distribution Function: IRR®

E[W(T)] = 417 same for
both strategies

o
©
T

Constant Optimal policy: Contrarian:
08E PE‘;E%"E;’" when market goes down —

e
N
T

increase stock allocation;
when market goes up —
decrease stock allocation

g
)
T

MV Optimal

e ¢
>
REEEEEEnE

Optimal allocation gives up
gains > target in order to
reduce variance and
probability of shortfall.

I
w
T

Prob( Internal Rate of Return < IRR)
S &
Banman T

o
T

EHHl\u\|\\HluHl\u\|\\Hluuluuluuluul
O0 0.01 0.02 0.03 0.04 IOROFSR 0.06 0.07 0.08 0.09 0.1 Investor must pre_commit to

target wealth

MV optimal beats constant proportion, consequently it also beats
any glide path!

®|nternal rate of return (i.e. effective rate of return) = log(W/(T)/W(0))/T
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Strategy Heat Map

Fraction in Risky Asset
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200

Real Wealth

100
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15
Time (years)
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Back Testing

M-V optimal performance on historical data

@ Compute and store strategy based on estimated parameters
for entire historical period (January 1, 1926 - December 31,
2014).

e E[W(T)] same as for constant proportion strategy (p = .5),
for this set of average parameters.

@ Select starting date
o Compare:
o Optimal MV strategy (based on average parameters, not tuned

to this period)
e Constant proportion strategy

36
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Back Test, Real Returns: Jan 1, 1985 - Dec 31, 201417

500

Mean Variance

450 Optimal

400
350
£300
©
(]
=250
3
o200 50% Stocks
50% Bonds

150

NN RN ANEE AL AANEN RRERERRREE pnnnS|

100

50

TR [T SNSRI N TNIN ST NY N NVAN RN SAE R |
10985 1990 1995 2000 2005 2010 2015
time

7 W/(1985) = 100. Maximum leverage 1.5. Optimal MV strategy computed
using parameters for 1926-2015 period. Yearly rebalancing.
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Back Test, Real Returns: Jan 1, 1930 - Dec 31, 195918

Mean Variance

£a00 Optimal Note Falling Knife effect in
%250 \ 1932
Ezoo

n we fix this: regim

50% Stocks Ca_ ? this eg. €

50% Bonds switching plus machine
learning?

T ETEATIERIN IV TN SR |
1940 1945 1950 1955 1960
time

[
QT
St

ol

@

Gl

B1//(1930) = 100. Maximum leverage 1.5. Optimal MV strategy computed
using parameters for 1926-2015 period. Yearly rebalancing.
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Bootstrap Resampling: 1926-2015
More Scientific Test: Resampling
Use real historical data, quarterly returns

@ Randomly draw 30 years of returns (with replacement) from
historical returns (blocksize 10 years)

@ 10,000 simulations, each block starts at random quarter

Strategy Expected | Standard | Pr(W(T)) | Expected
Value Deviation < 300 Free Cash

Constant

Proportion p = 0.5 385 183 0.38 0.0

M-V

Optimal Control 431 84 0.07 40

Table: T =30 years. W(0) = 100. Yearly rebalancing. Optimal

de-risking ; no trading if insolvent; maximum leverage = 1.5.

Performs even better on actual historical data than on synthetic

market data!
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Resampled Cumulative Distribution Function: IRR®

-

MV Optimal

o (no free cash)\

08 MV Optimal

07F Constant (plus free cash)
o6 Proportion

o
w

o
o

o
~
S SN RN AN RN NN AR AR AR EEREE R

Prob( Internal Rate of Return < IRR)
o
[9;]

o
pN

o ST INSTATNEN ISRV IFANENATS IFANANAYS WAIANE IAVAINE S W |
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

o

YInternal rate of return, (i.e. effective rate of return) = log(W(T)/W(0))/T 0 /a1



Conclusions

o M-V strategy is very robust
e Insensitive to calibration ambiguity
o MC tests: insensitive to random perturbations of synthetic
market SDE parameters
e Stochastic volatility: typical parameters, insignificant for long
term investors
o 10 year treasuries (instead of 3-M) similar results
e Good results on historical backtests
@ Similar results for accumulation, decumulation
@ M-V beats constant proportion, i.e. probability of shortfall
2 — 3x smaller
— Constant proportion beats any deterministic glide path
@ M-V optimal equivalent to minimizing quadratic loss w.r.t.
wealth target
o Optimal strategy is M-V optimal and quadratic loss optimal
@ More sophisticated models
o Regime switching? (machine learning approach being
investigated)
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